/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.16 - (show annotations) (download) (as text)
Wed Jun 28 15:12:14 2006 UTC (19 years, 1 month ago) by edhill
Branch: MAIN
Changes since 1.15: +1 -1 lines
File MIME type: application/x-tex
remove spurious colon

1 \subsection{Fizhi: High-end Atmospheric Physics}
2 \label{sec:pkg:fizhi}
3 \begin{rawhtml}
4 <!-- CMIREDIR:package_fizhi: -->
5 \end{rawhtml}
6 \input{texinputs/epsf.tex}
7
8 \subsubsection{Introduction}
9 The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10 physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11 boundary layer turbulence, and land surface processes. The collection of atmospheric
12 physics parameterizations were originally used together as part of the GEOS-3
13 (Goddard Earth Observing System-3) GCM developed at the NASA/Goddard Global Modelling
14 and Assimilation Office (GMAO).
15
16 % *************************************************************************
17 % *************************************************************************
18
19 \subsubsection{Equations}
20
21 Moist Convective Processes:
22
23 \paragraph{Sub-grid and Large-scale Convection}
24 \label{sec:fizhi:mc}
25
26 Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
27 Schubert (RAS) scheme of \cite{moorsz:92}, which is a linearized Arakawa Schubert
28 type scheme. RAS predicts the mass flux from an ensemble of clouds. Each subensemble is identified
29 by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.
30
31 The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are
32 the dry static energy, $s=c_pT +gz$, and the moist static energy, $h=c_p T + gz + Lq$.
33 The conceptual model behind RAS depicts each subensemble as a rising plume cloud, entraining
34 mass from the environment during ascent, and detraining all cloud air at the level of neutral
35 buoyancy. RAS assumes that the normalized cloud mass flux, $\eta$, normalized by the cloud base
36 mass flux, is a linear function of height, expressed as:
37 \[
38 \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
39 -{c_p \over {g}}\theta\lambda
40 \]
41 where we have used the hydrostatic equation written in the form:
42 \[
43 \pp{z}{P^{\kappa}} = -{c_p \over {g}}\theta
44 \]
45
46 The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
47 detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral
48 buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal
49 to the saturation moist static energy of the environment, $h^*$. Following \cite{moorsz:92},
50 $\lambda$ may be written as
51 \[
52 \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,
53 \]
54
55 where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.
56
57
58 The convective instability is measured in terms of the cloud work function $A$, defined as the
59 rate of change of cumulus kinetic energy. The cloud work function is
60 related to the buoyancy, or the difference
61 between the moist static energy in the cloud and in the environment:
62 \[
63 A = \int_{P_D}^{P_B} { {\eta \over {1 + \gamma} }
64 \left[ {{h_c-h^*} \over {P^{\kappa}}} \right] dP^{\kappa}}
65 \]
66
67 where $\gamma$ is ${L \over {c_p}}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,
68 and the subscript $c$ refers to the value inside the cloud.
69
70
71 To determine the cloud base mass flux, the rate of change of $A$ in time {\em due to dissipation by
72 the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation
73 by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:
74 \[
75 m_B = {{- \left.{dA \over dt} \right|_{ls}} \over K}
76 \]
77
78 where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per
79 unit cloud base mass flux, and is currently obtained by analytically differentiating the
80 expression for $A$ in time.
81 The rate of change of $A$ due to the generation by the large scale can be written as the
82 difference between the current $A(t+\Delta t)$ and its equillibrated value after the previous
83 convective time step
84 $A(t)$, divided by the time step. $A(t)$ is approximated as some critical $A_{crit}$,
85 computed by Lord (1982) from $in situ$ observations.
86
87
88 The predicted convective mass fluxes are used to solve grid-scale temperature
89 and moisture budget equations to determine the impact of convection on the large scale fields of
90 temperature (through latent heating and compensating subsidence) and moisture (through
91 precipitation and detrainment):
92 \[
93 \left.{\pp{\theta}{t}}\right|_{c} = \alpha { m_B \over {c_p P^{\kappa}}} \eta \pp{s}{p}
94 \]
95 and
96 \[
97 \left.{\pp{q}{t}}\right|_{c} = \alpha { m_B \over {L}} \eta (\pp{h}{p}-\pp{s}{p})
98 \]
99 where $\theta = {T \over P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.
100
101 As an approximation to a full interaction between the different allowable subensembles,
102 many clouds are simulated frequently, each modifying the large scale environment some fraction
103 $\alpha$ of the total adjustment. The parameterization thereby ``relaxes'' the large scale environment
104 towards equillibrium.
105
106 In addition to the RAS cumulus convection scheme, the fizhi package employs a
107 Kessler-type scheme for the re-evaporation of falling rain (\cite{sudm:88}), which
108 correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current
109 formulation assumes that all cloud water is deposited into the detrainment level as rain.
110 All of the rain is available for re-evaporation, which begins in the level below detrainment.
111 The scheme accounts for some microphysics such as
112 the rainfall intensity, the drop size distribution, as well as the temperature,
113 pressure and relative humidity of the surrounding air. The fraction of the moisture deficit
114 in any model layer into which the rain may re-evaporate is controlled by a free parameter,
115 which allows for a relatively efficient re-evaporation of liquid precipitate and larger rainout
116 for frozen precipitation.
117
118 Due to the increased vertical resolution near the surface, the lowest model
119 layers are averaged to provide a 50 mb thick sub-cloud layer for RAS. Each time RAS is
120 invoked (every ten simulated minutes),
121 a number of randomly chosen subensembles are checked for the possibility
122 of convection, from just above cloud base to 10 mb.
123
124 Supersaturation or large-scale precipitation is initiated in the fizhi package whenever
125 the relative humidity in any grid-box exceeds a critical value, currently 100 \%.
126 The large-scale precipitation re-evaporates during descent to partially saturate
127 lower layers in a process identical to the re-evaporation of convective rain.
128
129
130 \paragraph{Cloud Formation}
131 \label{sec:fizhi:clouds}
132
133 Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined
134 diagnostically as part of the cumulus and large-scale parameterizations.
135 Convective cloud fractions produced by RAS are proportional to the
136 detrained liquid water amount given by
137
138 \[
139 F_{RAS} = \min\left[ {l_{RAS}\over l_c}, 1.0 \right]
140 \]
141
142 where $l_c$ is an assigned critical value equal to $1.25$ g/kg.
143 A memory is associated with convective clouds defined by:
144
145 \[
146 F_{RAS}^n = \min\left[ F_{RAS} + (1-{\Delta t_{RAS}\over\tau})F_{RAS}^{n-1}, 1.0 \right]
147 \]
148
149 where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction
150 from the previous RAS timestep. The memory coefficient is computed using a RAS cloud timescale,
151 $\tau$, equal to 1 hour. RAS cloud fractions are cleared when they fall below 5 \%.
152
153 Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative
154 humidity:
155
156 \[
157 F_{LS} = \min\left[ { \left( {RH-RH_c \over 1-RH_c} \right) }^2, 1.0 \right]
158 \]
159
160 where
161
162 \bqa
163 RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\
164 s & = & p/p_{surf} \nonumber \\
165 r & = & \left( {1.0-RH_{min} \over \alpha} \right) \nonumber \\
166 RH_{min} & = & 0.75 \nonumber \\
167 \alpha & = & 0.573285 \nonumber .
168 \eqa
169
170 These cloud fractions are suppressed, however, in regions where the convective
171 sub-cloud layer is conditionally unstable. The functional form of $RH_c$ is shown in
172 Figure (\ref{fig.rhcrit}).
173
174 \begin{figure*}[htbp]
175 \vspace{0.4in}
176 \centerline{ \epsfysize=4.0in \epsfbox{part6/rhcrit.ps}}
177 \vspace{0.4in}
178 \caption [Critical Relative Humidity for Clouds.]
179 {Critical Relative Humidity for Clouds.}
180 \label{fig.rhcrit}
181 \end{figure*}
182
183 The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:
184
185 \[
186 F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] .
187 \]
188
189 Finally, cloud fractions are time-averaged between calls to the radiation packages.
190
191
192 Radiation:
193
194 The parameterization of radiative heating in the fizhi package includes effects
195 from both shortwave and longwave processes.
196 Radiative fluxes are calculated at each
197 model edge-level in both up and down directions.
198 The heating rates/cooling rates are then obtained
199 from the vertical divergence of the net radiative fluxes.
200
201 The net flux is
202 \[
203 F = F^\uparrow - F^\downarrow
204 \]
205 where $F$ is the net flux, $F^\uparrow$ is the upward flux and $F^\downarrow$ is
206 the downward flux.
207
208 The heating rate due to the divergence of the radiative flux is given by
209 \[
210 \pp{\rho c_p T}{t} = - \pp{F}{z}
211 \]
212 or
213 \[
214 \pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}
215 \]
216 where $g$ is the accelation due to gravity
217 and $c_p$ is the heat capacity of air at constant pressure.
218
219 The time tendency for Longwave
220 Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is updated once
221 every three hours assuming a normalized incident solar radiation, and subsequently modified at
222 every model time step by the true incident radiation.
223 The solar constant value used in the package is equal to 1365 $W/m^2$
224 and a $CO_2$ mixing ratio of 330 ppm.
225 For the ozone mixing ratio, monthly mean zonally averaged
226 climatological values specified as a function
227 of latitude and height (\cite{rosen:87}) are linearly interpolated to the current time.
228
229
230 \paragraph{Shortwave Radiation}
231
232 The shortwave radiation package used in the package computes solar radiative
233 heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen,
234 clouds, and aerosols and due to the
235 scattering by clouds, aerosols, and gases.
236 The shortwave radiative processes are described by
237 \cite{chou:90,chou:92}. This shortwave package
238 uses the Delta-Eddington approximation to compute the
239 bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).
240 The transmittance and reflectance of diffuse radiation
241 follow the procedures of Sagan and Pollock (JGR, 1967) and \cite{lhans:74}.
242
243 Highly accurate heating rate calculations are obtained through the use
244 of an optimal grouping strategy of spectral bands. By grouping the UV and visible regions
245 as indicated in Table \ref{tab:fizhi:solar2}, the Rayleigh scattering and the ozone absorption of solar radiation
246 can be accurately computed in the ultraviolet region and the photosynthetically
247 active radiation (PAR) region.
248 The computation of solar flux in the infrared region is performed with a broadband
249 parameterization using the spectrum regions shown in Table \ref{tab:fizhi:solar1}.
250 The solar radiation algorithm used in the fizhi package can be applied not only for climate studies but
251 also for studies on the photolysis in the upper atmosphere and the photosynthesis in the biosphere.
252
253 \begin{table}[htb]
254 \begin{center}
255 {\bf UV and Visible Spectral Regions} \\
256 \vspace{0.1in}
257 \begin{tabular}{|c|c|c|}
258 \hline
259 Region & Band & Wavelength (micron) \\ \hline
260 \hline
261 UV-C & 1. & .175 - .225 \\
262 & 2. & .225 - .245 \\
263 & & .260 - .280 \\
264 & 3. & .245 - .260 \\ \hline
265 UV-B & 4. & .280 - .295 \\
266 & 5. & .295 - .310 \\
267 & 6. & .310 - .320 \\ \hline
268 UV-A & 7. & .320 - .400 \\ \hline
269 PAR & 8. & .400 - .700 \\
270 \hline
271 \end{tabular}
272 \end{center}
273 \caption{UV and Visible Spectral Regions used in shortwave radiation package.}
274 \label{tab:fizhi:solar2}
275 \end{table}
276
277 \begin{table}[htb]
278 \begin{center}
279 {\bf Infrared Spectral Regions} \\
280 \vspace{0.1in}
281 \begin{tabular}{|c|c|c|}
282 \hline
283 Band & Wavenumber(cm$^{-1}$) & Wavelength (micron) \\ \hline
284 \hline
285 1 & 1000-4400 & 2.27-10.0 \\
286 2 & 4400-8200 & 1.22-2.27 \\
287 3 & 8200-14300 & 0.70-1.22 \\
288 \hline
289 \end{tabular}
290 \end{center}
291 \caption{Infrared Spectral Regions used in shortwave radiation package.}
292 \label{tab:fizhi:solar1}
293 \end{table}
294
295 Within the shortwave radiation package,
296 both ice and liquid cloud particles are allowed to co-exist in any of the model layers.
297 Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles.
298 Cloud parameters are defined as the cloud optical thickness and the effective cloud particle size.
299 In the fizhi package, the effective radius for water droplets is given as 10 microns,
300 while 65 microns is used for ice particles. The absorption due to aerosols is currently
301 set to zero.
302
303 To simplify calculations in a cloudy atmosphere, clouds are
304 grouped into low ($p>700$ mb), middle (700 mb $\ge p > 400$ mb), and high ($p < 400$ mb) cloud regions.
305 Within each of the three regions, clouds are assumed maximally
306 overlapped, and the cloud cover of the group is the maximum
307 cloud cover of all the layers in the group. The optical thickness
308 of a given layer is then scaled for both the direct (as a function of the
309 solar zenith angle) and diffuse beam radiation
310 so that the grouped layer reflectance is the same as the original reflectance.
311 The solar flux is computed for each of eight cloud realizations possible within this
312 low/middle/high classification, and appropriately averaged to produce the net solar flux.
313
314 \paragraph{Longwave Radiation}
315
316 The longwave radiation package used in the fizhi package is thoroughly described by \cite{chsz:94}.
317 As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
318 dioxide, and ozone. The spectral bands together with their absorbers and parameterization methods,
319 configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.
320
321
322 \begin{table}[htb]
323 \begin{center}
324 {\bf IR Spectral Bands} \\
325 \vspace{0.1in}
326 \begin{tabular}{|c|c|l|c| }
327 \hline
328 Band & Spectral Range (cm$^{-1}$) & Absorber & Method \\ \hline
329 \hline
330 1 & 0-340 & H$_2$O line & T \\ \hline
331 2 & 340-540 & H$_2$O line & T \\ \hline
332 3a & 540-620 & H$_2$O line & K \\
333 3b & 620-720 & H$_2$O continuum & S \\
334 3b & 720-800 & CO$_2$ & T \\ \hline
335 4 & 800-980 & H$_2$O line & K \\
336 & & H$_2$O continuum & S \\ \hline
337 & & H$_2$O line & K \\
338 5 & 980-1100 & H$_2$O continuum & S \\
339 & & O$_3$ & T \\ \hline
340 6 & 1100-1380 & H$_2$O line & K \\
341 & & H$_2$O continuum & S \\ \hline
342 7 & 1380-1900 & H$_2$O line & T \\ \hline
343 8 & 1900-3000 & H$_2$O line & K \\ \hline
344 \hline
345 \multicolumn{4}{|l|}{ \quad K: {\em k}-distribution method with linear pressure scaling } \\
346 \multicolumn{4}{|l|}{ \quad T: Table look-up with temperature and pressure scaling } \\
347 \multicolumn{4}{|l|}{ \quad S: One-parameter temperature scaling } \\
348 \hline
349 \end{tabular}
350 \end{center}
351 \vspace{0.1in}
352 \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from \cite{chsz:94})}
353 \label{tab:fizhi:longwave}
354 \end{table}
355
356
357 The longwave radiation package accurately computes cooling rates for the middle and
358 lower atmosphere from 0.01 mb to the surface. Errors are $<$ 0.4 C day$^{-1}$ in cooling
359 rates and $<$ 1\% in fluxes. From Chou and Suarez, it is estimated that the total effect of
360 neglecting all minor absorption bands and the effects of minor infrared absorbers such as
361 nitrous oxide (N$_2$O), methane (CH$_4$), and the chlorofluorocarbons (CFCs), is an underestimate
362 of $\approx$ 5 W/m$^2$ in the downward flux at the surface and an overestimate of $\approx$ 3 W/m$^2$
363 in the upward flux at the top of the atmosphere.
364
365 Similar to the procedure used in the shortwave radiation package, clouds are grouped into
366 three regions catagorized as low/middle/high.
367 The net clear line-of-site probability $(P)$ between any two levels, $p_1$ and $p_2 \quad (p_2 > p_1)$,
368 assuming randomly overlapped cloud groups, is simply the product of the probabilities within each group:
369
370 \[ P_{net} = P_{low} \times P_{mid} \times P_{hi} . \]
371
372 Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within
373 a group is given by:
374
375 \[ P_{group} = 1 - F_{max} , \]
376
377 where $F_{max}$ is the maximum cloud fraction encountered between $p_1$ and $p_2$ within that group.
378 For groups and/or levels outside the range of $p_1$ and $p_2$, a clear line-of-site probability equal to 1 is
379 assigned.
380
381
382 \paragraph{Cloud-Radiation Interaction}
383 \label{sec:fizhi:radcloud}
384
385 The cloud fractions and diagnosed cloud liquid water produced by moist processes
386 within the fizhi package are used in the radiation packages to produce cloud-radiative forcing.
387 The cloud optical thickness associated with large-scale cloudiness is made
388 proportional to the diagnosed large-scale liquid water, $\ell$, detrained due to super-saturation.
389 Two values are used corresponding to cloud ice particles and water droplets.
390 The range of optical thickness for these clouds is given as
391
392 \[ 0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002 \quad\mbox{for}\quad 0 \le \ell \le 2 \quad\mbox{mg/kg} , \]
393 \[ 0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2 \quad\mbox{for}\quad 0 \le \ell \le 10 \quad\mbox{mg/kg} . \]
394
395 The partitioning, $\alpha$, between ice particles and water droplets is achieved through a linear scaling
396 in temperature:
397
398 \[ 0 \le \alpha \le 1 \quad\mbox{for}\quad 233.15 \le T \le 253.15 . \]
399
400 The resulting optical depth associated with large-scale cloudiness is given as
401
402 \[ \tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} . \]
403
404 The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as
405
406 \[ \tau_{RAS} = 0.16 \quad mb^{-1} . \]
407
408 The total optical depth in a given model layer is computed as a weighted average between
409 the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the
410 layer:
411
412 \[ \tau = \left( {F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} \over F_{RAS}+F_{LS} } \right) \Delta p, \]
413
414 where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale
415 processes described in Section \ref{sec:fizhi:clouds}.
416 The optical thickness for the longwave radiative feedback is assumed to be 75 $\%$ of these values.
417
418 The entire Moist Convective Processes Module is called with a frequency of 10 minutes.
419 The cloud fraction values are time-averaged over the period between Radiation calls (every 3
420 hours). Therefore, in a time-averaged sense, both convective and large-scale
421 cloudiness can exist in a given grid-box.
422
423 \paragraph{Turbulence}:
424
425 Turbulence is parameterized in the fizhi package to account for its contribution to the
426 vertical exchange of heat, moisture, and momentum.
427 The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
428 time scheme with an internal time step of 5 minutes.
429 The tendencies of atmospheric state variables due to turbulent diffusion are calculated using
430 the diffusion equations:
431
432 \[
433 {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
434 = {\pp{}{z} }{(K_m \pp{u}{z})}
435 \]
436 \[
437 {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
438 = {\pp{}{z} }{(K_m \pp{v}{z})}
439 \]
440 \[
441 {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
442 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
443 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
444 \]
445 \[
446 {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
447 = {\pp{}{z} }{(K_h \pp{q}{z})}
448 \]
449
450 Within the atmosphere, the time evolution
451 of second turbulent moments is explicitly modeled by representing the third moments in terms of
452 the first and second moments. This approach is known as a second-order closure modeling.
453 To simplify and streamline the computation of the second moments, the level 2.5 assumption
454 of Mellor and Yamada (1974) and \cite{yam:77} is employed, in which only the turbulent
455 kinetic energy (TKE),
456
457 \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]
458
459 is solved prognostically and the other second moments are solved diagnostically.
460 The prognostic equation for TKE allows the scheme to simulate
461 some of the transient and diffusive effects in the turbulence. The TKE budget equation
462 is solved numerically using an implicit backward computation of the terms linear in $q^2$
463 and is written:
464
465 \[
466 {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ {5 \over 3} {{\lambda}_1} q { \pp {}{z}
467 ({\h}q^2)} })} =
468 {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
469 { \pp{V}{z} }} + {{g \over {\Theta_0}}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} }
470 - { q^3 \over {{\Lambda} _1} }
471 \]
472
473 where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and
474 ${{\theta}^{\prime}}$ are the fluctuating parts of the velocity components and potential
475 temperature, $U$ and $V$ are the mean velocity components, ${\Theta_0}^{-1}$ is the
476 coefficient of thermal expansion, and ${{\lambda}_1}$ and ${{\Lambda} _1}$ are constant
477 multiples of the master length scale, $\ell$, which is designed to be a characteristic measure
478 of the vertical structure of the turbulent layers.
479
480 The first term on the left-hand side represents the time rate of change of TKE, and
481 the second term is a representation of the triple correlation, or turbulent
482 transport term. The first three terms on the right-hand side represent the sources of
483 TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation
484 of TKE.
485
486 In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the
487 wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and
488 $K_m$, respectively. In the statisically realizable level 2.5 turbulence scheme of
489 \cite{helflab:88}, these diffusion coefficients are expressed as
490
491 \[
492 K_h
493 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
494 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
495 \]
496
497 and
498
499 \[
500 K_m
501 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}
502 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
503 \]
504
505 where the subscript $e$ refers to the value under conditions of local equillibrium
506 (obtained from the Level 2.0 Model), $\ell$ is the master length scale related to the
507 vertical structure of the atmosphere,
508 and $S_M$ and $S_H$ are functions of $G_H$ and $G_M$, the dimensionless buoyancy and
509 wind shear parameters, respectively.
510 Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
511 are functions of the Richardson number:
512
513 \[
514 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
515 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } .
516 \]
517
518 Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)
519 indicate dominantly unstable shear, and large positive values indicate dominantly stable
520 stratification.
521
522 Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer,
523 which corresponds to the lowest GCM level (see \ref{tab:fizhi:sigma}),
524 are calculated using stability-dependant functions based on Monin-Obukhov theory:
525 \[
526 {K_m} (surface) = C_u \times u_* = C_D W_s
527 \]
528 and
529 \[
530 {K_h} (surface) = C_t \times u_* = C_H W_s
531 \]
532 where $u_*=C_uW_s$ is the surface friction velocity,
533 $C_D$ is termed the surface drag coefficient, $C_H$ the heat transfer coefficient,
534 and $W_s$ is the magnitude of the surface layer wind.
535
536 $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
537 similarity functions:
538 \[
539 {C_u} = {u_* \over W_s} = { k \over \psi_{m} }
540 \]
541 where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional
542 wind shear given by
543 \[
544 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} .
545 \]
546 Here $\zeta$ is the non-dimensional stability parameter, and
547 $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of
548 the momentum gradient. The functional form of $\phi_m$ is specified differently for stable and unstable
549 layers.
550
551 $C_t$ is the dimensionless exchange coefficient for heat and
552 moisture from the surface layer similarity functions:
553 \[
554 {C_t} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
555 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
556 { k \over { (\psi_{h} + \psi_{g}) } }
557 \]
558 where $\psi_h$ is the surface layer non-dimensional temperature gradient given by
559 \[
560 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} .
561 \]
562 Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
563 the temperature and moisture gradients, and is specified differently for stable and unstable
564 layers according to \cite{helfschu:95}.
565
566 $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,
567 which is the mosstly laminar region between the surface and the tops of the roughness
568 elements, in which temperature and moisture gradients can be quite large.
569 Based on \cite{yagkad:74}:
570 \[
571 \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
572 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
573 \]
574 where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the
575 surface roughness length, and the subscript {\em ref} refers to a reference value.
576 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
577
578 The surface roughness length over oceans is is a function of the surface-stress velocity,
579 \[
580 {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
581 \]
582 where the constants are chosen to interpolate between the reciprocal relation of
583 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
584 for moderate to large winds. Roughness lengths over land are specified
585 from the climatology of \cite{dorsell:89}.
586
587 For an unstable surface layer, the stability functions, chosen to interpolate between the
588 condition of small values of $\beta$ and the convective limit, are the KEYPS function
589 (\cite{pano:73}) for momentum, and its generalization for heat and moisture:
590 \[
591 {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
592 {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .
593 \]
594 The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind
595 speed approaches zero.
596
597 For a stable surface layer, the stability functions are the observationally
598 based functions of \cite{clarke:70}, slightly modified for
599 the momemtum flux:
600 \[
601 {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}
602 (1+ 5 {{\zeta}_1}) } } \hspace{1cm} ; \hspace{1cm}
603 {\phi_h} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {\zeta}
604 (1+ 5 {{\zeta}_1}) } } .
605 \]
606 The moisture flux also depends on a specified evapotranspiration
607 coefficient, set to unity over oceans and dependant on the climatological ground wetness over
608 land.
609
610 Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically
611 using an implicit backward operator.
612
613 \paragraph{Atmospheric Boundary Layer}
614
615 The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the
616 level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value.
617 The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers.
618
619 \paragraph{Surface Energy Budget}
620
621 The ground temperature equation is solved as part of the turbulence package
622 using a backward implicit time differencing scheme:
623 \[
624 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
625 \]
626 where $R_{sw}$ is the net surface downward shortwave radiative flux and $R_{lw}$ is the
627 net surface upward longwave radiative flux.
628
629 $H$ is the upward sensible heat flux, given by:
630 \[
631 {H} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY})
632 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
633 \]
634 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
635 heat of air at constant pressure, and $\theta$ represents the potential temperature
636 of the surface and of the lowest $\sigma$-level, respectively.
637
638 The upward latent heat flux, $LE$, is given by
639 \[
640 {LE} = \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY})
641 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
642 \]
643 where $\beta$ is the fraction of the potential evapotranspiration actually evaporated,
644 L is the latent heat of evaporation, and $q_{surface}$ and $q_{NLAY}$ are the specific
645 humidity of the surface and of the lowest $\sigma$-level, respectively.
646
647 The heat conduction through sea ice, $Q_{ice}$, is given by
648 \[
649 {Q_{ice}} = {C_{ti} \over {H_i}} (T_i-T_g)
650 \]
651 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
652 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the
653 surface temperature of the ice.
654
655 $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
656 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
657 \[
658 C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
659 {86400 \over 2 \pi} } \, \, .
660 \]
661 Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ ${ly\over{ sec}}
662 {cm \over {^oK}}$,
663 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
664 by $2 \pi$ $radians/
665 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
666 is a function of the ground wetness, $W$.
667
668 Land Surface Processes:
669
670 \paragraph{Surface Type}
671 The fizhi package surface Types are designated using the Koster-Suarez (\cite{ks:91,ks:92})
672 Land Surface Model (LSM) mosaic philosophy which allows multiple ``tiles'', or multiple surface
673 types, in any one grid cell. The Koster-Suarez LSM surface type classifications
674 are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid
675 cell occupied by any surface type were derived from the surface classification of
676 \cite{deftow:94}, and information about the location of permanent
677 ice was obtained from the classifications of \cite{dorsell:89}.
678 The surface type map for a $1^\circ$ grid is shown in Figure \ref{fig:fizhi:surftype}.
679 The determination of the land or sea category of surface type was made from NCAR's
680 10 minute by 10 minute Navy topography
681 dataset, which includes information about the percentage of water-cover at any point.
682 The data were averaged to the model's grid resolutions,
683 and any grid-box whose averaged water percentage was $\geq 60 \%$ was
684 defined as a water point. The Land-Water designation was further modified
685 subjectively to ensure sufficient representation from small but isolated land and water regions.
686
687 \begin{table}
688 \begin{center}
689 {\bf Surface Type Designation} \\
690 \vspace{0.1in}
691 \begin{tabular}{ |c|l| }
692 \hline
693 Type & Vegetation Designation \\ \hline
694 \hline
695 1 & Broadleaf Evergreen Trees \\ \hline
696 2 & Broadleaf Deciduous Trees \\ \hline
697 3 & Needleleaf Trees \\ \hline
698 4 & Ground Cover \\ \hline
699 5 & Broadleaf Shrubs \\ \hline
700 6 & Dwarf Trees (Tundra) \\ \hline
701 7 & Bare Soil \\ \hline
702 8 & Desert (Bright) \\ \hline
703 9 & Glacier \\ \hline
704 10 & Desert (Dark) \\ \hline
705 100 & Ocean \\ \hline
706 \end{tabular}
707 \end{center}
708 \caption{Surface type designations used to compute surface roughness (over land)
709 and surface albedo.}
710 \label{tab:fizhi:surftype}
711 \end{table}
712
713
714 \begin{figure*}[htbp]
715 \begin{center}
716 \rotatebox{270}{\resizebox{90mm}{!}{\includegraphics{part6/surftypes.eps}}}
717 \rotatebox{270}{\resizebox{100mm}{!}{\includegraphics{part6/surftypes.descrip.eps}}}
718 \end{center}
719 \vspace{0.2in}
720 \caption {Surface Type Combinations at $1^\circ$ resolution.}
721 \label{fig:fizhi:surftype}
722 \end{figure*}
723
724 % \rotatebox{270}{\centerline{ \epsfysize=4in \epsfbox{part6/surftypes.eps}}}
725 % \rotatebox{270}{\centerline{ \epsfysize=4in \epsfbox{part6/surftypes.descrip.eps}}}
726 %\begin{figure*}[htbp]
727 % \centerline{ \epsfysize=4in \epsfbox{part6/surftypes.descrip.ps}}
728 % \vspace{0.3in}
729 % \caption {Surface Type Descriptions.}
730 % \label{fig:fizhi:surftype.desc}
731 %\end{figure*}
732
733
734 \paragraph{Surface Roughness}
735 The surface roughness length over oceans is computed iteratively with the wind
736 stress by the surface layer parameterization (\cite{helfschu:95}).
737 It employs an interpolation between the functions of \cite{larpond:81}
738 for high winds and of \cite{kondo:75} for weak winds.
739
740
741 \paragraph{Albedo}
742 The surface albedo computation, described in \cite{ks:91},
743 employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
744 Model which distinguishes between the direct and diffuse albedos in the visible
745 and in the near infra-red spectral ranges. The albedos are functions of the observed
746 leaf area index (a description of the relative orientation of the leaves to the
747 sun), the greenness fraction, the vegetation type, and the solar zenith angle.
748 Modifications are made to account for the presence of snow, and its depth relative
749 to the height of the vegetation elements.
750
751 \paragraph{Gravity Wave Drag}
752
753 The fizhi package employs the gravity wave drag scheme of \cite{zhouetal:95}).
754 This scheme is a modified version of Vernekar et al. (1992),
755 which was based on Alpert et al. (1988) and Helfand et al. (1987).
756 In this version, the gravity wave stress at the surface is
757 based on that derived by Pierrehumbert (1986) and is given by:
758
759 \bq
760 |\vec{\tau}_{sfc}| = {\rho U^3\over{N \ell^*}} \left(F_r^2 \over{1+F_r^2}\right) \, \, ,
761 \eq
762
763 where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the
764 surface wind speed, $h$ is the standard deviation of the sub-grid scale orography,
765 and $\ell^*$ is the wavelength of the monochromatic gravity wave in the direction of the low-level wind.
766 A modification introduced by Zhou et al. allows for the momentum flux to
767 escape through the top of the model, although this effect is small for the current 70-level model.
768 The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.
769
770 The effects of using this scheme within a GCM are shown in \cite{taksz:96}.
771 Experiments using the gravity wave drag parameterization yielded significant and
772 beneficial impacts on both the time-mean flow and the transient statistics of the
773 a GCM climatology, and have eliminated most of the worst dynamically driven biases
774 in the a GCM simulation.
775 An examination of the angular momentum budget during climate runs indicates that the
776 resulting gravity wave torque is similar to the data-driven torque produced by a data
777 assimilation which was performed without gravity
778 wave drag. It was shown that the inclusion of gravity wave drag results in
779 large changes in both the mean flow and in eddy fluxes.
780 The result is a more
781 accurate simulation of surface stress (through a reduction in the surface wind strength),
782 of mountain torque (through a redistribution of mean sea-level pressure), and of momentum
783 convergence (through a reduction in the flux of westerly momentum by transient flow eddies).
784
785
786 Boundary Conditions and other Input Data:
787
788 Required fields which are not explicitly predicted or diagnosed during model execution must
789 either be prescribed internally or obtained from external data sets. In the fizhi package these
790 fields include: sea surface temperature, sea ice estent, surface geopotential variance,
791 vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,
792 and stratospheric moisture.
793
794 Boundary condition data sets are available at the model's
795 resolutions for either climatological or yearly varying conditions.
796 Any frequency of boundary condition data can be used in the fizhi package;
797 however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@.
798 The time mean values are interpolated during each model timestep to the
799 current time.
800
801 \begin{table}[htb]
802 \begin{center}
803 {\bf Fizhi Input Datasets} \\
804 \vspace{0.1in}
805 \begin{tabular}{|l|c|r|} \hline
806 \multicolumn{1}{|c}{Variable} & \multicolumn{1}{|c}{Frequency} & \multicolumn{1}{|c|}{Years} \\ \hline\hline
807 Sea Ice Extent & monthly & 1979-current, climatology \\ \hline
808 Sea Ice Extent & weekly & 1982-current, climatology \\ \hline
809 Sea Surface Temperature & monthly & 1979-current, climatology \\ \hline
810 Sea Surface Temperature & weekly & 1982-current, climatology \\ \hline
811 Zonally Averaged Upper-Level Moisture & monthly & climatology \\ \hline
812 Zonally Averaged Ozone Concentration & monthly & climatology \\ \hline
813 \end{tabular}
814 \end{center}
815 \caption{Boundary conditions and other input data used in the fizhi package. Also noted are the
816 current years and frequencies available.}
817 \label{tab:fizhi:bcdata}
818 \end{table}
819
820
821 \paragraph{Topography and Topography Variance}
822
823 Surface geopotential heights are provided from an averaging of the Navy 10 minute
824 by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
825 model's grid resolution. The original topography is first rotated to the proper grid-orientation
826 which is being run, and then averages the data to the model resolution.
827
828 The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute
829 data to the model's resolution and re-interpolating back to the 10 minute by 10 minute resolution.
830 The sub-grid scale variance is constructed based on this smoothed dataset.
831
832
833 \paragraph{Upper Level Moisture}
834 The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas
835 Experiment (SAGE) as input into the model's radiation packages. The SAGE data is archived
836 as monthly zonal means at $5^\circ$ latitudinal resolution. The data is interpolated to the
837 model's grid location and current time, and blended with the GCM's moisture data. Below 300 mb,
838 the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb,
839 a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
840
841
842 \subsubsection{Fizhi Diagnostics}
843
844 Fizhi Diagnostic Menu:
845 \label{sec:pkg:fizhi:diagnostics}
846
847 \begin{tabular}{llll}
848 \hline\hline
849 NAME & UNITS & LEVELS & DESCRIPTION \\
850 \hline
851
852 &\\
853 UFLUX & $Newton/m^2$ & 1
854 &\begin{minipage}[t]{3in}
855 {Surface U-Wind Stress on the atmosphere}
856 \end{minipage}\\
857 VFLUX & $Newton/m^2$ & 1
858 &\begin{minipage}[t]{3in}
859 {Surface V-Wind Stress on the atmosphere}
860 \end{minipage}\\
861 HFLUX & $Watts/m^2$ & 1
862 &\begin{minipage}[t]{3in}
863 {Surface Flux of Sensible Heat}
864 \end{minipage}\\
865 EFLUX & $Watts/m^2$ & 1
866 &\begin{minipage}[t]{3in}
867 {Surface Flux of Latent Heat}
868 \end{minipage}\\
869 QICE & $Watts/m^2$ & 1
870 &\begin{minipage}[t]{3in}
871 {Heat Conduction through Sea-Ice}
872 \end{minipage}\\
873 RADLWG & $Watts/m^2$ & 1
874 &\begin{minipage}[t]{3in}
875 {Net upward LW flux at the ground}
876 \end{minipage}\\
877 RADSWG & $Watts/m^2$ & 1
878 &\begin{minipage}[t]{3in}
879 {Net downward SW flux at the ground}
880 \end{minipage}\\
881 RI & $dimensionless$ & Nrphys
882 &\begin{minipage}[t]{3in}
883 {Richardson Number}
884 \end{minipage}\\
885 CT & $dimensionless$ & 1
886 &\begin{minipage}[t]{3in}
887 {Surface Drag coefficient for T and Q}
888 \end{minipage}\\
889 CU & $dimensionless$ & 1
890 &\begin{minipage}[t]{3in}
891 {Surface Drag coefficient for U and V}
892 \end{minipage}\\
893 ET & $m^2/sec$ & Nrphys
894 &\begin{minipage}[t]{3in}
895 {Diffusivity coefficient for T and Q}
896 \end{minipage}\\
897 EU & $m^2/sec$ & Nrphys
898 &\begin{minipage}[t]{3in}
899 {Diffusivity coefficient for U and V}
900 \end{minipage}\\
901 TURBU & $m/sec/day$ & Nrphys
902 &\begin{minipage}[t]{3in}
903 {U-Momentum Changes due to Turbulence}
904 \end{minipage}\\
905 TURBV & $m/sec/day$ & Nrphys
906 &\begin{minipage}[t]{3in}
907 {V-Momentum Changes due to Turbulence}
908 \end{minipage}\\
909 TURBT & $deg/day$ & Nrphys
910 &\begin{minipage}[t]{3in}
911 {Temperature Changes due to Turbulence}
912 \end{minipage}\\
913 TURBQ & $g/kg/day$ & Nrphys
914 &\begin{minipage}[t]{3in}
915 {Specific Humidity Changes due to Turbulence}
916 \end{minipage}\\
917 MOISTT & $deg/day$ & Nrphys
918 &\begin{minipage}[t]{3in}
919 {Temperature Changes due to Moist Processes}
920 \end{minipage}\\
921 MOISTQ & $g/kg/day$ & Nrphys
922 &\begin{minipage}[t]{3in}
923 {Specific Humidity Changes due to Moist Processes}
924 \end{minipage}\\
925 RADLW & $deg/day$ & Nrphys
926 &\begin{minipage}[t]{3in}
927 {Net Longwave heating rate for each level}
928 \end{minipage}\\
929 RADSW & $deg/day$ & Nrphys
930 &\begin{minipage}[t]{3in}
931 {Net Shortwave heating rate for each level}
932 \end{minipage}\\
933 PREACC & $mm/day$ & 1
934 &\begin{minipage}[t]{3in}
935 {Total Precipitation}
936 \end{minipage}\\
937 PRECON & $mm/day$ & 1
938 &\begin{minipage}[t]{3in}
939 {Convective Precipitation}
940 \end{minipage}\\
941 TUFLUX & $Newton/m^2$ & Nrphys
942 &\begin{minipage}[t]{3in}
943 {Turbulent Flux of U-Momentum}
944 \end{minipage}\\
945 TVFLUX & $Newton/m^2$ & Nrphys
946 &\begin{minipage}[t]{3in}
947 {Turbulent Flux of V-Momentum}
948 \end{minipage}\\
949 TTFLUX & $Watts/m^2$ & Nrphys
950 &\begin{minipage}[t]{3in}
951 {Turbulent Flux of Sensible Heat}
952 \end{minipage}\\
953 \end{tabular}
954
955 \newpage
956 \vspace*{\fill}
957 \begin{tabular}{llll}
958 \hline\hline
959 NAME & UNITS & LEVELS & DESCRIPTION \\
960 \hline
961
962 &\\
963 TQFLUX & $Watts/m^2$ & Nrphys
964 &\begin{minipage}[t]{3in}
965 {Turbulent Flux of Latent Heat}
966 \end{minipage}\\
967 CN & $dimensionless$ & 1
968 &\begin{minipage}[t]{3in}
969 {Neutral Drag Coefficient}
970 \end{minipage}\\
971 WINDS & $m/sec$ & 1
972 &\begin{minipage}[t]{3in}
973 {Surface Wind Speed}
974 \end{minipage}\\
975 DTSRF & $deg$ & 1
976 &\begin{minipage}[t]{3in}
977 {Air/Surface virtual temperature difference}
978 \end{minipage}\\
979 TG & $deg$ & 1
980 &\begin{minipage}[t]{3in}
981 {Ground temperature}
982 \end{minipage}\\
983 TS & $deg$ & 1
984 &\begin{minipage}[t]{3in}
985 {Surface air temperature (Adiabatic from lowest model layer)}
986 \end{minipage}\\
987 DTG & $deg$ & 1
988 &\begin{minipage}[t]{3in}
989 {Ground temperature adjustment}
990 \end{minipage}\\
991
992 QG & $g/kg$ & 1
993 &\begin{minipage}[t]{3in}
994 {Ground specific humidity}
995 \end{minipage}\\
996 QS & $g/kg$ & 1
997 &\begin{minipage}[t]{3in}
998 {Saturation surface specific humidity}
999 \end{minipage}\\
1000 TGRLW & $deg$ & 1
1001 &\begin{minipage}[t]{3in}
1002 {Instantaneous ground temperature used as input to the
1003 Longwave radiation subroutine}
1004 \end{minipage}\\
1005 ST4 & $Watts/m^2$ & 1
1006 &\begin{minipage}[t]{3in}
1007 {Upward Longwave flux at the ground ($\sigma T^4$)}
1008 \end{minipage}\\
1009 OLR & $Watts/m^2$ & 1
1010 &\begin{minipage}[t]{3in}
1011 {Net upward Longwave flux at the top of the model}
1012 \end{minipage}\\
1013 OLRCLR & $Watts/m^2$ & 1
1014 &\begin{minipage}[t]{3in}
1015 {Net upward clearsky Longwave flux at the top of the model}
1016 \end{minipage}\\
1017 LWGCLR & $Watts/m^2$ & 1
1018 &\begin{minipage}[t]{3in}
1019 {Net upward clearsky Longwave flux at the ground}
1020 \end{minipage}\\
1021 LWCLR & $deg/day$ & Nrphys
1022 &\begin{minipage}[t]{3in}
1023 {Net clearsky Longwave heating rate for each level}
1024 \end{minipage}\\
1025 TLW & $deg$ & Nrphys
1026 &\begin{minipage}[t]{3in}
1027 {Instantaneous temperature used as input to the Longwave radiation
1028 subroutine}
1029 \end{minipage}\\
1030 SHLW & $g/g$ & Nrphys
1031 &\begin{minipage}[t]{3in}
1032 {Instantaneous specific humidity used as input to the Longwave radiation
1033 subroutine}
1034 \end{minipage}\\
1035 OZLW & $g/g$ & Nrphys
1036 &\begin{minipage}[t]{3in}
1037 {Instantaneous ozone used as input to the Longwave radiation
1038 subroutine}
1039 \end{minipage}\\
1040 CLMOLW & $0-1$ & Nrphys
1041 &\begin{minipage}[t]{3in}
1042 {Maximum overlap cloud fraction used in the Longwave radiation
1043 subroutine}
1044 \end{minipage}\\
1045 CLDTOT & $0-1$ & Nrphys
1046 &\begin{minipage}[t]{3in}
1047 {Total cloud fraction used in the Longwave and Shortwave radiation
1048 subroutines}
1049 \end{minipage}\\
1050 LWGDOWN & $Watts/m^2$ & 1
1051 &\begin{minipage}[t]{3in}
1052 {Downwelling Longwave radiation at the ground}
1053 \end{minipage}\\
1054 GWDT & $deg/day$ & Nrphys
1055 &\begin{minipage}[t]{3in}
1056 {Temperature tendency due to Gravity Wave Drag}
1057 \end{minipage}\\
1058 RADSWT & $Watts/m^2$ & 1
1059 &\begin{minipage}[t]{3in}
1060 {Incident Shortwave radiation at the top of the atmosphere}
1061 \end{minipage}\\
1062 TAUCLD & $per 100 mb$ & Nrphys
1063 &\begin{minipage}[t]{3in}
1064 {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1065 \end{minipage}\\
1066 TAUCLDC & $Number$ & Nrphys
1067 &\begin{minipage}[t]{3in}
1068 {Cloud Optical Depth Counter}
1069 \end{minipage}\\
1070 \end{tabular}
1071 \vfill
1072
1073 \newpage
1074 \vspace*{\fill}
1075 \begin{tabular}{llll}
1076 \hline\hline
1077 NAME & UNITS & LEVELS & DESCRIPTION \\
1078 \hline
1079
1080 &\\
1081 CLDLOW & $0-1$ & Nrphys
1082 &\begin{minipage}[t]{3in}
1083 {Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)}
1084 \end{minipage}\\
1085 EVAP & $mm/day$ & 1
1086 &\begin{minipage}[t]{3in}
1087 {Surface evaporation}
1088 \end{minipage}\\
1089 DPDT & $hPa/day$ & 1
1090 &\begin{minipage}[t]{3in}
1091 {Surface Pressure tendency}
1092 \end{minipage}\\
1093 UAVE & $m/sec$ & Nrphys
1094 &\begin{minipage}[t]{3in}
1095 {Average U-Wind}
1096 \end{minipage}\\
1097 VAVE & $m/sec$ & Nrphys
1098 &\begin{minipage}[t]{3in}
1099 {Average V-Wind}
1100 \end{minipage}\\
1101 TAVE & $deg$ & Nrphys
1102 &\begin{minipage}[t]{3in}
1103 {Average Temperature}
1104 \end{minipage}\\
1105 QAVE & $g/kg$ & Nrphys
1106 &\begin{minipage}[t]{3in}
1107 {Average Specific Humidity}
1108 \end{minipage}\\
1109 OMEGA & $hPa/day$ & Nrphys
1110 &\begin{minipage}[t]{3in}
1111 {Vertical Velocity}
1112 \end{minipage}\\
1113 DUDT & $m/sec/day$ & Nrphys
1114 &\begin{minipage}[t]{3in}
1115 {Total U-Wind tendency}
1116 \end{minipage}\\
1117 DVDT & $m/sec/day$ & Nrphys
1118 &\begin{minipage}[t]{3in}
1119 {Total V-Wind tendency}
1120 \end{minipage}\\
1121 DTDT & $deg/day$ & Nrphys
1122 &\begin{minipage}[t]{3in}
1123 {Total Temperature tendency}
1124 \end{minipage}\\
1125 DQDT & $g/kg/day$ & Nrphys
1126 &\begin{minipage}[t]{3in}
1127 {Total Specific Humidity tendency}
1128 \end{minipage}\\
1129 VORT & $10^{-4}/sec$ & Nrphys
1130 &\begin{minipage}[t]{3in}
1131 {Relative Vorticity}
1132 \end{minipage}\\
1133 DTLS & $deg/day$ & Nrphys
1134 &\begin{minipage}[t]{3in}
1135 {Temperature tendency due to Stratiform Cloud Formation}
1136 \end{minipage}\\
1137 DQLS & $g/kg/day$ & Nrphys
1138 &\begin{minipage}[t]{3in}
1139 {Specific Humidity tendency due to Stratiform Cloud Formation}
1140 \end{minipage}\\
1141 USTAR & $m/sec$ & 1
1142 &\begin{minipage}[t]{3in}
1143 {Surface USTAR wind}
1144 \end{minipage}\\
1145 Z0 & $m$ & 1
1146 &\begin{minipage}[t]{3in}
1147 {Surface roughness}
1148 \end{minipage}\\
1149 FRQTRB & $0-1$ & Nrphys-1
1150 &\begin{minipage}[t]{3in}
1151 {Frequency of Turbulence}
1152 \end{minipage}\\
1153 PBL & $mb$ & 1
1154 &\begin{minipage}[t]{3in}
1155 {Planetary Boundary Layer depth}
1156 \end{minipage}\\
1157 SWCLR & $deg/day$ & Nrphys
1158 &\begin{minipage}[t]{3in}
1159 {Net clearsky Shortwave heating rate for each level}
1160 \end{minipage}\\
1161 OSR & $Watts/m^2$ & 1
1162 &\begin{minipage}[t]{3in}
1163 {Net downward Shortwave flux at the top of the model}
1164 \end{minipage}\\
1165 OSRCLR & $Watts/m^2$ & 1
1166 &\begin{minipage}[t]{3in}
1167 {Net downward clearsky Shortwave flux at the top of the model}
1168 \end{minipage}\\
1169 CLDMAS & $kg / m^2$ & Nrphys
1170 &\begin{minipage}[t]{3in}
1171 {Convective cloud mass flux}
1172 \end{minipage}\\
1173 UAVE & $m/sec$ & Nrphys
1174 &\begin{minipage}[t]{3in}
1175 {Time-averaged $u-Wind$}
1176 \end{minipage}\\
1177 \end{tabular}
1178 \vfill
1179
1180 \newpage
1181 \vspace*{\fill}
1182 \begin{tabular}{llll}
1183 \hline\hline
1184 NAME & UNITS & LEVELS & DESCRIPTION \\
1185 \hline
1186
1187 &\\
1188 VAVE & $m/sec$ & Nrphys
1189 &\begin{minipage}[t]{3in}
1190 {Time-averaged $v-Wind$}
1191 \end{minipage}\\
1192 TAVE & $deg$ & Nrphys
1193 &\begin{minipage}[t]{3in}
1194 {Time-averaged $Temperature$}
1195 \end{minipage}\\
1196 QAVE & $g/g$ & Nrphys
1197 &\begin{minipage}[t]{3in}
1198 {Time-averaged $Specific \, \, Humidity$}
1199 \end{minipage}\\
1200 RFT & $deg/day$ & Nrphys
1201 &\begin{minipage}[t]{3in}
1202 {Temperature tendency due Rayleigh Friction}
1203 \end{minipage}\\
1204 PS & $mb$ & 1
1205 &\begin{minipage}[t]{3in}
1206 {Surface Pressure}
1207 \end{minipage}\\
1208 QQAVE & $(m/sec)^2$ & Nrphys
1209 &\begin{minipage}[t]{3in}
1210 {Time-averaged $Turbulent Kinetic Energy$}
1211 \end{minipage}\\
1212 SWGCLR & $Watts/m^2$ & 1
1213 &\begin{minipage}[t]{3in}
1214 {Net downward clearsky Shortwave flux at the ground}
1215 \end{minipage}\\
1216 PAVE & $mb$ & 1
1217 &\begin{minipage}[t]{3in}
1218 {Time-averaged Surface Pressure}
1219 \end{minipage}\\
1220 DIABU & $m/sec/day$ & Nrphys
1221 &\begin{minipage}[t]{3in}
1222 {Total Diabatic forcing on $u-Wind$}
1223 \end{minipage}\\
1224 DIABV & $m/sec/day$ & Nrphys
1225 &\begin{minipage}[t]{3in}
1226 {Total Diabatic forcing on $v-Wind$}
1227 \end{minipage}\\
1228 DIABT & $deg/day$ & Nrphys
1229 &\begin{minipage}[t]{3in}
1230 {Total Diabatic forcing on $Temperature$}
1231 \end{minipage}\\
1232 DIABQ & $g/kg/day$ & Nrphys
1233 &\begin{minipage}[t]{3in}
1234 {Total Diabatic forcing on $Specific \, \, Humidity$}
1235 \end{minipage}\\
1236 RFU & $m/sec/day$ & Nrphys
1237 &\begin{minipage}[t]{3in}
1238 {U-Wind tendency due to Rayleigh Friction}
1239 \end{minipage}\\
1240 RFV & $m/sec/day$ & Nrphys
1241 &\begin{minipage}[t]{3in}
1242 {V-Wind tendency due to Rayleigh Friction}
1243 \end{minipage}\\
1244 GWDU & $m/sec/day$ & Nrphys
1245 &\begin{minipage}[t]{3in}
1246 {U-Wind tendency due to Gravity Wave Drag}
1247 \end{minipage}\\
1248 GWDU & $m/sec/day$ & Nrphys
1249 &\begin{minipage}[t]{3in}
1250 {V-Wind tendency due to Gravity Wave Drag}
1251 \end{minipage}\\
1252 GWDUS & $N/m^2$ & 1
1253 &\begin{minipage}[t]{3in}
1254 {U-Wind Gravity Wave Drag Stress at Surface}
1255 \end{minipage}\\
1256 GWDVS & $N/m^2$ & 1
1257 &\begin{minipage}[t]{3in}
1258 {V-Wind Gravity Wave Drag Stress at Surface}
1259 \end{minipage}\\
1260 GWDUT & $N/m^2$ & 1
1261 &\begin{minipage}[t]{3in}
1262 {U-Wind Gravity Wave Drag Stress at Top}
1263 \end{minipage}\\
1264 GWDVT & $N/m^2$ & 1
1265 &\begin{minipage}[t]{3in}
1266 {V-Wind Gravity Wave Drag Stress at Top}
1267 \end{minipage}\\
1268 LZRAD & $mg/kg$ & Nrphys
1269 &\begin{minipage}[t]{3in}
1270 {Estimated Cloud Liquid Water used in Radiation}
1271 \end{minipage}\\
1272 \end{tabular}
1273 \vfill
1274
1275 \newpage
1276 \vspace*{\fill}
1277 \begin{tabular}{llll}
1278 \hline\hline
1279 NAME & UNITS & LEVELS & DESCRIPTION \\
1280 \hline
1281
1282 &\\
1283 SLP & $mb$ & 1
1284 &\begin{minipage}[t]{3in}
1285 {Time-averaged Sea-level Pressure}
1286 \end{minipage}\\
1287 CLDFRC & $0-1$ & 1
1288 &\begin{minipage}[t]{3in}
1289 {Total Cloud Fraction}
1290 \end{minipage}\\
1291 TPW & $gm/cm^2$ & 1
1292 &\begin{minipage}[t]{3in}
1293 {Precipitable water}
1294 \end{minipage}\\
1295 U2M & $m/sec$ & 1
1296 &\begin{minipage}[t]{3in}
1297 {U-Wind at 2 meters}
1298 \end{minipage}\\
1299 V2M & $m/sec$ & 1
1300 &\begin{minipage}[t]{3in}
1301 {V-Wind at 2 meters}
1302 \end{minipage}\\
1303 T2M & $deg$ & 1
1304 &\begin{minipage}[t]{3in}
1305 {Temperature at 2 meters}
1306 \end{minipage}\\
1307 Q2M & $g/kg$ & 1
1308 &\begin{minipage}[t]{3in}
1309 {Specific Humidity at 2 meters}
1310 \end{minipage}\\
1311 U10M & $m/sec$ & 1
1312 &\begin{minipage}[t]{3in}
1313 {U-Wind at 10 meters}
1314 \end{minipage}\\
1315 V10M & $m/sec$ & 1
1316 &\begin{minipage}[t]{3in}
1317 {V-Wind at 10 meters}
1318 \end{minipage}\\
1319 T10M & $deg$ & 1
1320 &\begin{minipage}[t]{3in}
1321 {Temperature at 10 meters}
1322 \end{minipage}\\
1323 Q10M & $g/kg$ & 1
1324 &\begin{minipage}[t]{3in}
1325 {Specific Humidity at 10 meters}
1326 \end{minipage}\\
1327 DTRAIN & $kg/m^2$ & Nrphys
1328 &\begin{minipage}[t]{3in}
1329 {Detrainment Cloud Mass Flux}
1330 \end{minipage}\\
1331 QFILL & $g/kg/day$ & Nrphys
1332 &\begin{minipage}[t]{3in}
1333 {Filling of negative specific humidity}
1334 \end{minipage}\\
1335 \end{tabular}
1336 \vspace{1.5in}
1337 \vfill
1338
1339 \newpage
1340 \vspace*{\fill}
1341 \begin{tabular}{llll}
1342 \hline\hline
1343 NAME & UNITS & LEVELS & DESCRIPTION \\
1344 \hline
1345
1346 &\\
1347 DTCONV & $deg/sec$ & Nr
1348 &\begin{minipage}[t]{3in}
1349 {Temp Change due to Convection}
1350 \end{minipage}\\
1351 DQCONV & $g/kg/sec$ & Nr
1352 &\begin{minipage}[t]{3in}
1353 {Specific Humidity Change due to Convection}
1354 \end{minipage}\\
1355 RELHUM & $percent$ & Nr
1356 &\begin{minipage}[t]{3in}
1357 {Relative Humidity}
1358 \end{minipage}\\
1359 PRECLS & $g/m^2/sec$ & 1
1360 &\begin{minipage}[t]{3in}
1361 {Large Scale Precipitation}
1362 \end{minipage}\\
1363 ENPREC & $J/g$ & 1
1364 &\begin{minipage}[t]{3in}
1365 {Energy of Precipitation (snow, rain Temp)}
1366 \end{minipage}\\
1367 \end{tabular}
1368 \vspace{1.5in}
1369 \vfill
1370
1371 \newpage
1372
1373 Fizhi Diagnostic Description:
1374
1375 In this section we list and describe the diagnostic quantities available within the
1376 GCM. The diagnostics are listed in the order that they appear in the
1377 Diagnostic Menu, Section \ref{sec:pkg:fizhi:diagnostics}.
1378 In all cases, each diagnostic as currently archived on the output datasets
1379 is time-averaged over its diagnostic output frequency:
1380
1381 \[
1382 {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1383 \]
1384 where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1385 output frequency of the diagnostic, and $\Delta t$ is
1386 the timestep over which the diagnostic is updated.
1387
1388 { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1389
1390 The zonal wind stress is the turbulent flux of zonal momentum from
1391 the surface.
1392 \[
1393 {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1394 \]
1395 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1396 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1397 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1398 the zonal wind in the lowest model layer.
1399 \\
1400
1401
1402 { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1403
1404 The meridional wind stress is the turbulent flux of meridional momentum from
1405 the surface.
1406 \[
1407 {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1408 \]
1409 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1410 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1411 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1412 the meridional wind in the lowest model layer.
1413 \\
1414
1415 { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1416
1417 The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1418 gradient of virtual potential temperature and the eddy exchange coefficient:
1419 \[
1420 {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1421 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1422 \]
1423 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1424 heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1425 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1426 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1427 for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1428 at the surface and at the bottom model level.
1429 \\
1430
1431
1432 { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1433
1434 The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1435 gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1436 \[
1437 {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1438 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1439 \]
1440 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1441 the potential evapotranspiration actually evaporated, L is the latent
1442 heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1443 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1444 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1445 for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1446 humidity at the surface and at the bottom model level, respectively.
1447 \\
1448
1449 { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1450
1451 Over sea ice there is an additional source of energy at the surface due to the heat
1452 conduction from the relatively warm ocean through the sea ice. The heat conduction
1453 through sea ice represents an additional energy source term for the ground temperature equation.
1454
1455 \[
1456 {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1457 \]
1458
1459 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1460 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1461 $T_g$ is the temperature of the sea ice.
1462
1463 NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1464 \\
1465
1466
1467 { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1468
1469 \begin{eqnarray*}
1470 {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
1471 & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1472 \end{eqnarray*}
1473 \\
1474 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1475 $F_{LW}^\uparrow$ is
1476 the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1477 \\
1478
1479 { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1480
1481 \begin{eqnarray*}
1482 {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
1483 & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1484 \end{eqnarray*}
1485 \\
1486 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1487 $F_{SW}^\downarrow$ is
1488 the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1489 \\
1490
1491
1492 \noindent
1493 { \underline {RI} Richardson Number} ($dimensionless$)
1494
1495 \noindent
1496 The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1497 \[
1498 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1499 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1500 \]
1501 \\
1502 where we used the hydrostatic equation:
1503 \[
1504 {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1505 \]
1506 Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1507 indicate dominantly unstable shear, and large positive values indicate dominantly stable
1508 stratification.
1509 \\
1510
1511 \noindent
1512 { \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1513
1514 \noindent
1515 The surface exchange coefficient is obtained from the similarity functions for the stability
1516 dependant flux profile relationships:
1517 \[
1518 {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1519 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1520 { k \over { (\psi_{h} + \psi_{g}) } }
1521 \]
1522 where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1523 viscous sublayer non-dimensional temperature or moisture change:
1524 \[
1525 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1526 \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1527 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1528 \]
1529 and:
1530 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1531
1532 \noindent
1533 $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1534 the temperature and moisture gradients, specified differently for stable and unstable
1535 layers according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1536 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1537 viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1538 (see diagnostic number 67), and the subscript ref refers to a reference value.
1539 \\
1540
1541 \noindent
1542 { \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
1543
1544 \noindent
1545 The surface exchange coefficient is obtained from the similarity functions for the stability
1546 dependant flux profile relationships:
1547 \[
1548 {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1549 \]
1550 where $\psi_m$ is the surface layer non-dimensional wind shear:
1551 \[
1552 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1553 \]
1554 \noindent
1555 $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1556 the temperature and moisture gradients, specified differently for stable and unstable layers
1557 according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1558 non-dimensional stability parameter, $u_*$ is the surface stress velocity
1559 (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1560 \\
1561
1562 \noindent
1563 { \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1564
1565 \noindent
1566 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1567 moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1568 diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1569 or moisture. In the \cite{helflab:88} adaptation of this closure, $K_h$
1570 takes the form:
1571 \[
1572 {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1573 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1574 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1575 \]
1576 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1577 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1578 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1579 depth,
1580 $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1581 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1582 dimensionless buoyancy and wind shear
1583 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1584 are functions of the Richardson number.
1585
1586 \noindent
1587 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1588 see \cite{helflab:88}.
1589
1590 \noindent
1591 In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1592 in units of $m/sec$, given by:
1593 \[
1594 {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
1595 \]
1596 \noindent
1597 where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1598 surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1599 friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1600 and $W_s$ is the magnitude of the surface layer wind.
1601 \\
1602
1603 \noindent
1604 { \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
1605
1606 \noindent
1607 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1608 momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1609 diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1610 In the \cite{helflab:88} adaptation of this closure, $K_m$
1611 takes the form:
1612 \[
1613 {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1614 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1615 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1616 \]
1617 \noindent
1618 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1619 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1620 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1621 depth,
1622 $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1623 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1624 dimensionless buoyancy and wind shear
1625 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1626 are functions of the Richardson number.
1627
1628 \noindent
1629 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1630 see \cite{helflab:88}.
1631
1632 \noindent
1633 In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1634 in units of $m/sec$, given by:
1635 \[
1636 {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1637 \]
1638 \noindent
1639 where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1640 similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1641 (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1642 magnitude of the surface layer wind.
1643 \\
1644
1645 \noindent
1646 { \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1647
1648 \noindent
1649 The tendency of U-Momentum due to turbulence is written:
1650 \[
1651 {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1652 = {\pp{}{z} }{(K_m \pp{u}{z})}
1653 \]
1654
1655 \noindent
1656 The Helfand and Labraga level 2.5 scheme models the turbulent
1657 flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1658 equation.
1659
1660 \noindent
1661 { \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1662
1663 \noindent
1664 The tendency of V-Momentum due to turbulence is written:
1665 \[
1666 {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1667 = {\pp{}{z} }{(K_m \pp{v}{z})}
1668 \]
1669
1670 \noindent
1671 The Helfand and Labraga level 2.5 scheme models the turbulent
1672 flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1673 equation.
1674 \\
1675
1676 \noindent
1677 { \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1678
1679 \noindent
1680 The tendency of temperature due to turbulence is written:
1681 \[
1682 {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1683 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1684 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1685 \]
1686
1687 \noindent
1688 The Helfand and Labraga level 2.5 scheme models the turbulent
1689 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1690 equation.
1691 \\
1692
1693 \noindent
1694 { \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1695
1696 \noindent
1697 The tendency of specific humidity due to turbulence is written:
1698 \[
1699 {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1700 = {\pp{}{z} }{(K_h \pp{q}{z})}
1701 \]
1702
1703 \noindent
1704 The Helfand and Labraga level 2.5 scheme models the turbulent
1705 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1706 equation.
1707 \\
1708
1709 \noindent
1710 { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1711
1712 \noindent
1713 \[
1714 {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1715 \]
1716 where:
1717 \[
1718 \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1719 \hspace{.4cm} and
1720 \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1721 \]
1722 and
1723 \[
1724 \Gamma_s = g \eta \pp{s}{p}
1725 \]
1726
1727 \noindent
1728 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1729 precipitation processes, or supersaturation rain.
1730 The summation refers to contributions from each cloud type called by RAS.
1731 The dry static energy is given
1732 as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1733 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1734 the description of the convective parameterization. The fractional adjustment, or relaxation
1735 parameter, for each cloud type is given as $\alpha$, while
1736 $R$ is the rain re-evaporation adjustment.
1737 \\
1738
1739 \noindent
1740 { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1741
1742 \noindent
1743 \[
1744 {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1745 \]
1746 where:
1747 \[
1748 \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1749 \hspace{.4cm} and
1750 \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1751 \]
1752 and
1753 \[
1754 \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1755 \]
1756 \noindent
1757 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1758 precipitation processes, or supersaturation rain.
1759 The summation refers to contributions from each cloud type called by RAS.
1760 The dry static energy is given as $s$,
1761 the moist static energy is given as $h$,
1762 the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1763 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1764 the description of the convective parameterization. The fractional adjustment, or relaxation
1765 parameter, for each cloud type is given as $\alpha$, while
1766 $R$ is the rain re-evaporation adjustment.
1767 \\
1768
1769 \noindent
1770 { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1771
1772 \noindent
1773 The net longwave heating rate is calculated as the vertical divergence of the
1774 net terrestrial radiative fluxes.
1775 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1776 longwave routine.
1777 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1778 For a given cloud fraction,
1779 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1780 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1781 for the upward and downward radiative fluxes.
1782 (see Section \ref{sec:fizhi:radcloud}).
1783 The cloudy-sky flux is then obtained as:
1784
1785 \noindent
1786 \[
1787 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1788 \]
1789
1790 \noindent
1791 Finally, the net longwave heating rate is calculated as the vertical divergence of the
1792 net terrestrial radiative fluxes:
1793 \[
1794 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1795 \]
1796 or
1797 \[
1798 {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1799 \]
1800
1801 \noindent
1802 where $g$ is the accelation due to gravity,
1803 $c_p$ is the heat capacity of air at constant pressure,
1804 and
1805 \[
1806 F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1807 \]
1808 \\
1809
1810
1811 \noindent
1812 { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1813
1814 \noindent
1815 The net Shortwave heating rate is calculated as the vertical divergence of the
1816 net solar radiative fluxes.
1817 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1818 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1819 both CLMO (maximum overlap cloud fraction) and
1820 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1821 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1822 true time-averaged cloud fractions CLMO
1823 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1824 input at the top of the atmosphere.
1825
1826 \noindent
1827 The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1828 \[
1829 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1830 \]
1831 or
1832 \[
1833 {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1834 \]
1835
1836 \noindent
1837 where $g$ is the accelation due to gravity,
1838 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1839 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1840 \[
1841 F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1842 \]
1843 \\
1844
1845 \noindent
1846 { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1847
1848 \noindent
1849 For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1850 the vertical integral or total precipitable amount is given by:
1851 \[
1852 {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1853 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1854 \]
1855 \\
1856
1857 \noindent
1858 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1859 time step, scaled to $mm/day$.
1860 \\
1861
1862 \noindent
1863 { \underline {PRECON} Convective Precipition ($mm/day$) }
1864
1865 \noindent
1866 For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1867 the vertical integral or total precipitable amount is given by:
1868 \[
1869 {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1870 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1871 \]
1872 \\
1873
1874 \noindent
1875 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1876 time step, scaled to $mm/day$.
1877 \\
1878
1879 \noindent
1880 { \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1881
1882 \noindent
1883 The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1884 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1885
1886 \[
1887 {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1888 {\rho } {(- K_m \pp{U}{z})}
1889 \]
1890
1891 \noindent
1892 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1893 \\
1894
1895 \noindent
1896 { \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1897
1898 \noindent
1899 The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1900 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1901
1902 \[
1903 {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1904 {\rho } {(- K_m \pp{V}{z})}
1905 \]
1906
1907 \noindent
1908 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1909 \\
1910
1911
1912 \noindent
1913 { \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1914
1915 \noindent
1916 The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1917 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1918
1919 \noindent
1920 \[
1921 {\bf TTFLUX} = c_p {\rho }
1922 P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1923 = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1924 \]
1925
1926 \noindent
1927 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1928 \\
1929
1930
1931 \noindent
1932 { \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1933
1934 \noindent
1935 The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1936 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1937
1938 \noindent
1939 \[
1940 {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1941 {L {\rho }(- K_h \pp{q}{z})}
1942 \]
1943
1944 \noindent
1945 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1946 \\
1947
1948
1949 \noindent
1950 { \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1951
1952 \noindent
1953 The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1954 \[
1955 {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1956 \]
1957
1958 \noindent
1959 where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1960 $z_0$ is the surface roughness.
1961
1962 \noindent
1963 NOTE: CN is not available through model version 5.3, but is available in subsequent
1964 versions.
1965 \\
1966
1967 \noindent
1968 { \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1969
1970 \noindent
1971 The surface wind speed is calculated for the last internal turbulence time step:
1972 \[
1973 {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1974 \]
1975
1976 \noindent
1977 where the subscript $Nrphys$ refers to the lowest model level.
1978 \\
1979
1980 \noindent
1981 { \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1982
1983 \noindent
1984 The air/surface virtual temperature difference measures the stability of the surface layer:
1985 \[
1986 {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1987 \]
1988 \noindent
1989 where
1990 \[
1991 \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1992 and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1993 \]
1994
1995 \noindent
1996 $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1997 $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1998 and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1999 refers to the surface.
2000 \\
2001
2002
2003 \noindent
2004 { \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
2005
2006 \noindent
2007 The ground temperature equation is solved as part of the turbulence package
2008 using a backward implicit time differencing scheme:
2009 \[
2010 {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2011 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2012 \]
2013
2014 \noindent
2015 where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2016 net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2017 sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2018 flux, and $C_g$ is the total heat capacity of the ground.
2019 $C_g$ is obtained by solving a heat diffusion equation
2020 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
2021 \[
2022 C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2023 { 86400. \over {2 \pi} } } \, \, .
2024 \]
2025 \noindent
2026 Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
2027 {cm \over {^oK}}$,
2028 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2029 by $2 \pi$ $radians/
2030 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2031 is a function of the ground wetness, $W$.
2032 \\
2033
2034 \noindent
2035 { \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
2036
2037 \noindent
2038 The surface temperature estimate is made by assuming that the model's lowest
2039 layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2040 The surface temperature is therefore:
2041 \[
2042 {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2043 \]
2044 \\
2045
2046 \noindent
2047 { \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2048
2049 \noindent
2050 The change in surface temperature from one turbulence time step to the next, solved
2051 using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2052 \[
2053 {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2054 \]
2055
2056 \noindent
2057 where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2058 refers to the value at the previous turbulence time level.
2059 \\
2060
2061 \noindent
2062 { \underline {QG} Ground Specific Humidity ($g/kg$) }
2063
2064 \noindent
2065 The ground specific humidity is obtained by interpolating between the specific
2066 humidity at the lowest model level and the specific humidity of a saturated ground.
2067 The interpolation is performed using the potential evapotranspiration function:
2068 \[
2069 {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2070 \]
2071
2072 \noindent
2073 where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2074 and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2075 pressure.
2076 \\
2077
2078 \noindent
2079 { \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
2080
2081 \noindent
2082 The surface saturation specific humidity is the saturation specific humidity at
2083 the ground temprature and surface pressure:
2084 \[
2085 {\bf QS} = q^*(T_g,P_s)
2086 \]
2087 \\
2088
2089 \noindent
2090 { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2091 radiation subroutine (deg)}
2092 \[
2093 {\bf TGRLW} = T_g(\lambda , \phi ,n)
2094 \]
2095 \noindent
2096 where $T_g$ is the model ground temperature at the current time step $n$.
2097 \\
2098
2099
2100 \noindent
2101 { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2102 \[
2103 {\bf ST4} = \sigma T^4
2104 \]
2105 \noindent
2106 where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2107 \\
2108
2109 \noindent
2110 { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2111 \[
2112 {\bf OLR} = F_{LW,top}^{NET}
2113 \]
2114 \noindent
2115 where top indicates the top of the first model layer.
2116 In the GCM, $p_{top}$ = 0.0 mb.
2117 \\
2118
2119
2120 \noindent
2121 { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2122 \[
2123 {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
2124 \]
2125 \noindent
2126 where top indicates the top of the first model layer.
2127 In the GCM, $p_{top}$ = 0.0 mb.
2128 \\
2129
2130 \noindent
2131 { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2132
2133 \noindent
2134 \begin{eqnarray*}
2135 {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2136 & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2137 \end{eqnarray*}
2138 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2139 $F(clearsky)_{LW}^\uparrow$ is
2140 the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2141 \\
2142
2143 \noindent
2144 { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2145
2146 \noindent
2147 The net longwave heating rate is calculated as the vertical divergence of the
2148 net terrestrial radiative fluxes.
2149 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2150 longwave routine.
2151 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2152 For a given cloud fraction,
2153 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2154 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2155 for the upward and downward radiative fluxes.
2156 (see Section \ref{sec:fizhi:radcloud}).
2157 The cloudy-sky flux is then obtained as:
2158
2159 \noindent
2160 \[
2161 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2162 \]
2163
2164 \noindent
2165 Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2166 vertical divergence of the
2167 clear-sky longwave radiative flux:
2168 \[
2169 \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2170 \]
2171 or
2172 \[
2173 {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2174 \]
2175
2176 \noindent
2177 where $g$ is the accelation due to gravity,
2178 $c_p$ is the heat capacity of air at constant pressure,
2179 and
2180 \[
2181 F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2182 \]
2183 \\
2184
2185
2186 \noindent
2187 { \underline {TLW} Instantaneous temperature used as input to the Longwave
2188 radiation subroutine (deg)}
2189 \[
2190 {\bf TLW} = T(\lambda , \phi ,level, n)
2191 \]
2192 \noindent
2193 where $T$ is the model temperature at the current time step $n$.
2194 \\
2195
2196
2197 \noindent
2198 { \underline {SHLW} Instantaneous specific humidity used as input to
2199 the Longwave radiation subroutine (kg/kg)}
2200 \[
2201 {\bf SHLW} = q(\lambda , \phi , level , n)
2202 \]
2203 \noindent
2204 where $q$ is the model specific humidity at the current time step $n$.
2205 \\
2206
2207
2208 \noindent
2209 { \underline {OZLW} Instantaneous ozone used as input to
2210 the Longwave radiation subroutine (kg/kg)}
2211 \[
2212 {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
2213 \]
2214 \noindent
2215 where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2216 mean zonally averaged ozone data set.
2217 \\
2218
2219
2220 \noindent
2221 { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2222
2223 \noindent
2224 {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2225 Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
2226 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2227 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2228 \[
2229 {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
2230 \]
2231 \\
2232
2233
2234 { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2235
2236 {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2237 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2238 Radiation packages.
2239 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2240 \[
2241 {\bf CLDTOT} = F_{RAS} + F_{LS}
2242 \]
2243 \\
2244 where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2245 time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2246 \\
2247
2248
2249 \noindent
2250 { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2251
2252 \noindent
2253 {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2254 Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
2255 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2256 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2257 \[
2258 {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
2259 \]
2260 \\
2261
2262 \noindent
2263 { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2264
2265 \noindent
2266 {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2267 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2268 Radiation algorithm. These are
2269 convective and large-scale clouds whose radiative characteristics are not
2270 assumed to be correlated in the vertical.
2271 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2272 \[
2273 {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
2274 \]
2275 \\
2276
2277 \noindent
2278 { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2279 \[
2280 {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2281 \]
2282 \noindent
2283 where $S_0$, is the extra-terrestial solar contant,
2284 $R_a$ is the earth-sun distance in Astronomical Units,
2285 and $cos \phi_z$ is the cosine of the zenith angle.
2286 It should be noted that {\bf RADSWT}, as well as
2287 {\bf OSR} and {\bf OSRCLR},
2288 are calculated at the top of the atmosphere (p=0 mb). However, the
2289 {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2290 calculated at $p= p_{top}$ (0.0 mb for the GCM).
2291 \\
2292
2293 \noindent
2294 { \underline {EVAP} Surface Evaporation ($mm/day$) }
2295
2296 \noindent
2297 The surface evaporation is a function of the gradient of moisture, the potential
2298 evapotranspiration fraction and the eddy exchange coefficient:
2299 \[
2300 {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2301 \]
2302 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2303 the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2304 turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2305 $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2306 number 34) and at the bottom model level, respectively.
2307 \\
2308
2309 \noindent
2310 { \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
2311
2312 \noindent
2313 {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2314 and Analysis forcing.
2315 \[
2316 {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2317 \]
2318 \\
2319
2320 \noindent
2321 { \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
2322
2323 \noindent
2324 {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2325 and Analysis forcing.
2326 \[
2327 {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2328 \]
2329 \\
2330
2331 \noindent
2332 { \underline {DTDT} Total Temperature Tendency ($deg/day$) }
2333
2334 \noindent
2335 {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2336 and Analysis forcing.
2337 \begin{eqnarray*}
2338 {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2339 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2340 \end{eqnarray*}
2341 \\
2342
2343 \noindent
2344 { \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
2345
2346 \noindent
2347 {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2348 and Analysis forcing.
2349 \[
2350 {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2351 + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2352 \]
2353 \\
2354
2355 \noindent
2356 { \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
2357
2358 \noindent
2359 The surface stress velocity, or the friction velocity, is the wind speed at
2360 the surface layer top impeded by the surface drag:
2361 \[
2362 {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2363 C_u = {k \over {\psi_m} }
2364 \]
2365
2366 \noindent
2367 $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2368 number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2369
2370 \noindent
2371 { \underline {Z0} Surface Roughness Length ($m$) }
2372
2373 \noindent
2374 Over the land surface, the surface roughness length is interpolated to the local
2375 time from the monthly mean data of \cite{dorsell:89}. Over the ocean,
2376 the roughness length is a function of the surface-stress velocity, $u_*$.
2377 \[
2378 {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2379 \]
2380
2381 \noindent
2382 where the constants are chosen to interpolate between the reciprocal relation of
2383 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
2384 for moderate to large winds.
2385 \\
2386
2387 \noindent
2388 { \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
2389
2390 \noindent
2391 The fraction of time when turbulence is present is defined as the fraction of
2392 time when the turbulent kinetic energy exceeds some minimum value, defined here
2393 to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2394 incremented. The fraction over the averaging interval is reported.
2395 \\
2396
2397 \noindent
2398 { \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
2399
2400 \noindent
2401 The depth of the PBL is defined by the turbulence parameterization to be the
2402 depth at which the turbulent kinetic energy reduces to ten percent of its surface
2403 value.
2404
2405 \[
2406 {\bf PBL} = P_{PBL} - P_{surface}
2407 \]
2408
2409 \noindent
2410 where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2411 reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2412 \\
2413
2414 \noindent
2415 { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2416
2417 \noindent
2418 The net Shortwave heating rate is calculated as the vertical divergence of the
2419 net solar radiative fluxes.
2420 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2421 For the clear-sky case, the shortwave fluxes and heating rates are computed with
2422 both CLMO (maximum overlap cloud fraction) and
2423 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2424 The shortwave routine is then called a second time, for the cloudy-sky case, with the
2425 true time-averaged cloud fractions CLMO
2426 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
2427 input at the top of the atmosphere.
2428
2429 \noindent
2430 The heating rate due to Shortwave Radiation under clear skies is defined as:
2431 \[
2432 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2433 \]
2434 or
2435 \[
2436 {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2437 \]
2438
2439 \noindent
2440 where $g$ is the accelation due to gravity,
2441 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2442 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2443 \[
2444 F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2445 \]
2446 \\
2447
2448 \noindent
2449 { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2450 \[
2451 {\bf OSR} = F_{SW,top}^{NET}
2452 \]
2453 \noindent
2454 where top indicates the top of the first model layer used in the shortwave radiation
2455 routine.
2456 In the GCM, $p_{SW_{top}}$ = 0 mb.
2457 \\
2458
2459 \noindent
2460 { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2461 \[
2462 {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
2463 \]
2464 \noindent
2465 where top indicates the top of the first model layer used in the shortwave radiation
2466 routine.
2467 In the GCM, $p_{SW_{top}}$ = 0 mb.
2468 \\
2469
2470
2471 \noindent
2472 { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2473
2474 \noindent
2475 The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2476 \[
2477 {\bf CLDMAS} = \eta m_B
2478 \]
2479 where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2480 the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2481 description of the convective parameterization.
2482 \\
2483
2484
2485
2486 \noindent
2487 { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2488
2489 \noindent
2490 The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2491 the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
2492 Zonal U-Wind which is archived on the Prognostic Output data stream.
2493 \[
2494 {\bf UAVE} = u(\lambda, \phi, level , t)
2495 \]
2496 \\
2497 Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2498 \\
2499
2500 \noindent
2501 { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2502
2503 \noindent
2504 The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2505 the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
2506 Meridional V-Wind which is archived on the Prognostic Output data stream.
2507 \[
2508 {\bf VAVE} = v(\lambda, \phi, level , t)
2509 \]
2510 \\
2511 Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2512 \\
2513
2514 \noindent
2515 { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2516
2517 \noindent
2518 The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2519 the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
2520 Temperature which is archived on the Prognostic Output data stream.
2521 \[
2522 {\bf TAVE} = T(\lambda, \phi, level , t)
2523 \]
2524 \\
2525
2526 \noindent
2527 { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2528
2529 \noindent
2530 The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2531 the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
2532 Specific Humidity which is archived on the Prognostic Output data stream.
2533 \[
2534 {\bf QAVE} = q(\lambda, \phi, level , t)
2535 \]
2536 \\
2537
2538 \noindent
2539 { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2540
2541 \noindent
2542 The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2543 the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
2544 Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2545 \begin{eqnarray*}
2546 {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
2547 & = & p_s(\lambda, \phi, level , t) - p_T
2548 \end{eqnarray*}
2549 \\
2550
2551
2552 \noindent
2553 { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2554
2555 \noindent
2556 The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2557 produced by the GCM Turbulence parameterization over
2558 the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
2559 Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2560 \[
2561 {\bf QQAVE} = qq(\lambda, \phi, level , t)
2562 \]
2563 \\
2564 Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2565 \\
2566
2567 \noindent
2568 { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2569
2570 \noindent
2571 \begin{eqnarray*}
2572 {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2573 & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2574 \end{eqnarray*}
2575 \noindent
2576 \\
2577 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2578 $F(clearsky){SW}^\downarrow$ is
2579 the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2580 the upward clearsky Shortwave flux.
2581 \\
2582
2583 \noindent
2584 { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2585
2586 \noindent
2587 {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2588 and the Analysis forcing.
2589 \[
2590 {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2591 \]
2592 \\
2593
2594 \noindent
2595 { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2596
2597 \noindent
2598 {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2599 and the Analysis forcing.
2600 \[
2601 {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2602 \]
2603 \\
2604
2605 \noindent
2606 { \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2607
2608 \noindent
2609 {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2610 and the Analysis forcing.
2611 \begin{eqnarray*}
2612 {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2613 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2614 \end{eqnarray*}
2615 \\
2616 If we define the time-tendency of Temperature due to Diabatic processes as
2617 \begin{eqnarray*}
2618 \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2619 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2620 \end{eqnarray*}
2621 then, since there are no surface pressure changes due to Diabatic processes, we may write
2622 \[
2623 \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2624 \]
2625 where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2626 \[
2627 {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2628 \]
2629 \\
2630
2631 \noindent
2632 { \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2633
2634 \noindent
2635 {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2636 and the Analysis forcing.
2637 \[
2638 {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2639 \]
2640 If we define the time-tendency of Specific Humidity due to Diabatic processes as
2641 \[
2642 \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2643 \]
2644 then, since there are no surface pressure changes due to Diabatic processes, we may write
2645 \[
2646 \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2647 \]
2648 Thus, {\bf DIABQ} may be written as
2649 \[
2650 {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2651 \]
2652 \\
2653
2654 \noindent
2655 { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2656
2657 \noindent
2658 The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2659 $u q$ over the depth of the atmosphere at each model timestep,
2660 and dividing by the total mass of the column.
2661 \[
2662 {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2663 \]
2664 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2665 \[
2666 {\bf VINTUQ} = { \int_0^1 u q dp }
2667 \]
2668 \\
2669
2670
2671 \noindent
2672 { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2673
2674 \noindent
2675 The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2676 $v q$ over the depth of the atmosphere at each model timestep,
2677 and dividing by the total mass of the column.
2678 \[
2679 {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2680 \]
2681 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2682 \[
2683 {\bf VINTVQ} = { \int_0^1 v q dp }
2684 \]
2685 \\
2686
2687
2688 \noindent
2689 { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2690
2691 \noindent
2692 The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2693 $u T$ over the depth of the atmosphere at each model timestep,
2694 and dividing by the total mass of the column.
2695 \[
2696 {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2697 \]
2698 Or,
2699 \[
2700 {\bf VINTUT} = { \int_0^1 u T dp }
2701 \]
2702 \\
2703
2704 \noindent
2705 { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2706
2707 \noindent
2708 The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2709 $v T$ over the depth of the atmosphere at each model timestep,
2710 and dividing by the total mass of the column.
2711 \[
2712 {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2713 \]
2714 Using $\rho \delta z = -{\delta p \over g} $, we have
2715 \[
2716 {\bf VINTVT} = { \int_0^1 v T dp }
2717 \]
2718 \\
2719
2720 \noindent
2721 { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2722
2723 If we define the
2724 time-averaged random and maximum overlapped cloudiness as CLRO and
2725 CLMO respectively, then the probability of clear sky associated
2726 with random overlapped clouds at any level is (1-CLRO) while the probability of
2727 clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2728 The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2729 the total cloud fraction at each level may be obtained by
2730 1-(1-CLRO)*(1-CLMO).
2731
2732 At any given level, we may define the clear line-of-site probability by
2733 appropriately accounting for the maximum and random overlap
2734 cloudiness. The clear line-of-site probability is defined to be
2735 equal to the product of the clear line-of-site probabilities
2736 associated with random and maximum overlap cloudiness. The clear
2737 line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2738 from the current pressure $p$
2739 to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2740 is simply 1.0 minus the largest maximum overlap cloud value along the
2741 line-of-site, ie.
2742
2743 $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2744
2745 Thus, even in the time-averaged sense it is assumed that the
2746 maximum overlap clouds are correlated in the vertical. The clear
2747 line-of-site probability associated with random overlap clouds is
2748 defined to be the product of the clear sky probabilities at each
2749 level along the line-of-site, ie.
2750
2751 $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2752
2753 The total cloud fraction at a given level associated with a line-
2754 of-site calculation is given by
2755
2756 $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2757 \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2758
2759
2760 \noindent
2761 The 2-dimensional net cloud fraction as seen from the top of the
2762 atmosphere is given by
2763 \[
2764 {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2765 \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2766 \]
2767 \\
2768 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2769
2770
2771 \noindent
2772 { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2773
2774 \noindent
2775 The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2776 given by:
2777 \begin{eqnarray*}
2778 {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2779 & = & {\pi \over g} \int_0^1 q dp
2780 \end{eqnarray*}
2781 where we have used the hydrostatic relation
2782 $\rho \delta z = -{\delta p \over g} $.
2783 \\
2784
2785
2786 \noindent
2787 { \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2788
2789 \noindent
2790 The u-wind at the 2-meter depth is determined from the similarity theory:
2791 \[
2792 {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2793 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2794 \]
2795
2796 \noindent
2797 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2798 $sl$ refers to the height of the top of the surface layer. If the roughness height
2799 is above two meters, ${\bf U2M}$ is undefined.
2800 \\
2801
2802 \noindent
2803 { \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2804
2805 \noindent
2806 The v-wind at the 2-meter depth is a determined from the similarity theory:
2807 \[
2808 {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2809 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2810 \]
2811
2812 \noindent
2813 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2814 $sl$ refers to the height of the top of the surface layer. If the roughness height
2815 is above two meters, ${\bf V2M}$ is undefined.
2816 \\
2817
2818 \noindent
2819 { \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2820
2821 \noindent
2822 The temperature at the 2-meter depth is a determined from the similarity theory:
2823 \[
2824 {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2825 P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2826 (\theta_{sl} - \theta_{surf}))
2827 \]
2828 where:
2829 \[
2830 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2831 \]
2832
2833 \noindent
2834 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2835 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2836 $sl$ refers to the height of the top of the surface layer. If the roughness height
2837 is above two meters, ${\bf T2M}$ is undefined.
2838 \\
2839
2840 \noindent
2841 { \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2842
2843 \noindent
2844 The specific humidity at the 2-meter depth is determined from the similarity theory:
2845 \[
2846 {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2847 P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2848 (q_{sl} - q_{surf}))
2849 \]
2850 where:
2851 \[
2852 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2853 \]
2854
2855 \noindent
2856 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2857 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2858 $sl$ refers to the height of the top of the surface layer. If the roughness height
2859 is above two meters, ${\bf Q2M}$ is undefined.
2860 \\
2861
2862 \noindent
2863 { \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2864
2865 \noindent
2866 The u-wind at the 10-meter depth is an interpolation between the surface wind
2867 and the model lowest level wind using the ratio of the non-dimensional wind shear
2868 at the two levels:
2869 \[
2870 {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2871 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2872 \]
2873
2874 \noindent
2875 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2876 $sl$ refers to the height of the top of the surface layer.
2877 \\
2878
2879 \noindent
2880 { \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2881
2882 \noindent
2883 The v-wind at the 10-meter depth is an interpolation between the surface wind
2884 and the model lowest level wind using the ratio of the non-dimensional wind shear
2885 at the two levels:
2886 \[
2887 {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2888 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2889 \]
2890
2891 \noindent
2892 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2893 $sl$ refers to the height of the top of the surface layer.
2894 \\
2895
2896 \noindent
2897 { \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2898
2899 \noindent
2900 The temperature at the 10-meter depth is an interpolation between the surface potential
2901 temperature and the model lowest level potential temperature using the ratio of the
2902 non-dimensional temperature gradient at the two levels:
2903 \[
2904 {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2905 P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2906 (\theta_{sl} - \theta_{surf}))
2907 \]
2908 where:
2909 \[
2910 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2911 \]
2912
2913 \noindent
2914 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2915 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2916 $sl$ refers to the height of the top of the surface layer.
2917 \\
2918
2919 \noindent
2920 { \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2921
2922 \noindent
2923 The specific humidity at the 10-meter depth is an interpolation between the surface specific
2924 humidity and the model lowest level specific humidity using the ratio of the
2925 non-dimensional temperature gradient at the two levels:
2926 \[
2927 {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2928 P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2929 (q_{sl} - q_{surf}))
2930 \]
2931 where:
2932 \[
2933 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2934 \]
2935
2936 \noindent
2937 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2938 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2939 $sl$ refers to the height of the top of the surface layer.
2940 \\
2941
2942 \noindent
2943 { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2944
2945 The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2946 \[
2947 {\bf DTRAIN} = \eta_{r_D}m_B
2948 \]
2949 \noindent
2950 where $r_D$ is the detrainment level,
2951 $m_B$ is the cloud base mass flux, and $\eta$
2952 is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2953 \\
2954
2955 \noindent
2956 { \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2957
2958 \noindent
2959 Due to computational errors associated with the numerical scheme used for
2960 the advection of moisture, negative values of specific humidity may be generated. The
2961 specific humidity is checked for negative values after every dynamics timestep. If negative
2962 values have been produced, a filling algorithm is invoked which redistributes moisture from
2963 below. Diagnostic {\bf QFILL} is equal to the net filling needed
2964 to eliminate negative specific humidity, scaled to a per-day rate:
2965 \[
2966 {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2967 \]
2968 where
2969 \[
2970 q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2971 \]
2972
2973
2974 \subsubsection{Key subroutines, parameters and files}
2975
2976 \subsubsection{Dos and donts}
2977
2978 \subsubsection{Fizhi Reference}

  ViewVC Help
Powered by ViewVC 1.1.22