/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.11 - (show annotations) (download) (as text)
Tue Aug 2 15:50:51 2005 UTC (19 years, 11 months ago) by molod
Branch: MAIN
Changes since 1.10: +4 -1 lines
File MIME type: application/x-tex
Add vocabulary referring to GEOS-3.

1 \subsection{Fizhi: High-end Atmospheric Physics}
2 \label{sec:pkg:fizhi}
3 \begin{rawhtml}
4 <!-- CMIREDIR:package_fizhi: -->
5 \end{rawhtml}
6 \input{texinputs/epsf.tex}
7
8 \subsubsection{Introduction}
9 The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10 physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11 boundary layer turbulence, and land surface processes. The collection of atmospheric
12 physics parameterizations were originally used together as part of the GEOS-3
13 (Goddard Earth Observing System-3) GCM developed at the NASA/Goddard Global Modelling
14 and Assimilation Office (GMAO).
15
16 % *************************************************************************
17 % *************************************************************************
18
19 \subsubsection{Equations}
20
21 Moist Convective Processes:
22
23 \paragraph{Sub-grid and Large-scale Convection}
24 \label{sec:fizhi:mc}
25
26 Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
27 Schubert (RAS) scheme of \cite{moorsz:92}, which is a linearized Arakawa Schubert
28 type scheme. RAS predicts the mass flux from an ensemble of clouds. Each subensemble is identified
29 by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.
30
31 The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are
32 the dry static energy, $s=c_pT +gz$, and the moist static energy, $h=c_p T + gz + Lq$.
33 The conceptual model behind RAS depicts each subensemble as a rising plume cloud, entraining
34 mass from the environment during ascent, and detraining all cloud air at the level of neutral
35 buoyancy. RAS assumes that the normalized cloud mass flux, $\eta$, normalized by the cloud base
36 mass flux, is a linear function of height, expressed as:
37 \[
38 \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
39 -{c_p \over {g}}\theta\lambda
40 \]
41 where we have used the hydrostatic equation written in the form:
42 \[
43 \pp{z}{P^{\kappa}} = -{c_p \over {g}}\theta
44 \]
45
46 The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
47 detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral
48 buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal
49 to the saturation moist static energy of the environment, $h^*$. Following \cite{moorsz:92},
50 $\lambda$ may be written as
51 \[
52 \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,
53 \]
54
55 where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.
56
57
58 The convective instability is measured in terms of the cloud work function $A$, defined as the
59 rate of change of cumulus kinetic energy. The cloud work function is
60 related to the buoyancy, or the difference
61 between the moist static energy in the cloud and in the environment:
62 \[
63 A = \int_{P_D}^{P_B} { {\eta \over {1 + \gamma} }
64 \left[ {{h_c-h^*} \over {P^{\kappa}}} \right] dP^{\kappa}}
65 \]
66
67 where $\gamma$ is ${L \over {c_p}}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,
68 and the subscript $c$ refers to the value inside the cloud.
69
70
71 To determine the cloud base mass flux, the rate of change of $A$ in time {\em due to dissipation by
72 the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation
73 by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:
74 \[
75 m_B = {{- \left.{dA \over dt} \right|_{ls}} \over K}
76 \]
77
78 where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per
79 unit cloud base mass flux, and is currently obtained by analytically differentiating the
80 expression for $A$ in time.
81 The rate of change of $A$ due to the generation by the large scale can be written as the
82 difference between the current $A(t+\Delta t)$ and its equillibrated value after the previous
83 convective time step
84 $A(t)$, divided by the time step. $A(t)$ is approximated as some critical $A_{crit}$,
85 computed by Lord (1982) from $in situ$ observations.
86
87
88 The predicted convective mass fluxes are used to solve grid-scale temperature
89 and moisture budget equations to determine the impact of convection on the large scale fields of
90 temperature (through latent heating and compensating subsidence) and moisture (through
91 precipitation and detrainment):
92 \[
93 \left.{\pp{\theta}{t}}\right|_{c} = \alpha { m_B \over {c_p P^{\kappa}}} \eta \pp{s}{p}
94 \]
95 and
96 \[
97 \left.{\pp{q}{t}}\right|_{c} = \alpha { m_B \over {L}} \eta (\pp{h}{p}-\pp{s}{p})
98 \]
99 where $\theta = {T \over P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.
100
101 As an approximation to a full interaction between the different allowable subensembles,
102 many clouds are simulated frequently, each modifying the large scale environment some fraction
103 $\alpha$ of the total adjustment. The parameterization thereby ``relaxes'' the large scale environment
104 towards equillibrium.
105
106 In addition to the RAS cumulus convection scheme, the fizhi package employs a
107 Kessler-type scheme for the re-evaporation of falling rain (\cite{sudm:88}), which
108 correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current
109 formulation assumes that all cloud water is deposited into the detrainment level as rain.
110 All of the rain is available for re-evaporation, which begins in the level below detrainment.
111 The scheme accounts for some microphysics such as
112 the rainfall intensity, the drop size distribution, as well as the temperature,
113 pressure and relative humidity of the surrounding air. The fraction of the moisture deficit
114 in any model layer into which the rain may re-evaporate is controlled by a free parameter,
115 which allows for a relatively efficient re-evaporation of liquid precipitate and larger rainout
116 for frozen precipitation.
117
118 Due to the increased vertical resolution near the surface, the lowest model
119 layers are averaged to provide a 50 mb thick sub-cloud layer for RAS. Each time RAS is
120 invoked (every ten simulated minutes),
121 a number of randomly chosen subensembles are checked for the possibility
122 of convection, from just above cloud base to 10 mb.
123
124 Supersaturation or large-scale precipitation is initiated in the fizhi package whenever
125 the relative humidity in any grid-box exceeds a critical value, currently 100 \%.
126 The large-scale precipitation re-evaporates during descent to partially saturate
127 lower layers in a process identical to the re-evaporation of convective rain.
128
129
130 \paragraph{Cloud Formation}
131 \label{sec:fizhi:clouds}
132
133 Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined
134 diagnostically as part of the cumulus and large-scale parameterizations.
135 Convective cloud fractions produced by RAS are proportional to the
136 detrained liquid water amount given by
137
138 \[
139 F_{RAS} = \min\left[ {l_{RAS}\over l_c}, 1.0 \right]
140 \]
141
142 where $l_c$ is an assigned critical value equal to $1.25$ g/kg.
143 A memory is associated with convective clouds defined by:
144
145 \[
146 F_{RAS}^n = \min\left[ F_{RAS} + (1-{\Delta t_{RAS}\over\tau})F_{RAS}^{n-1}, 1.0 \right]
147 \]
148
149 where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction
150 from the previous RAS timestep. The memory coefficient is computed using a RAS cloud timescale,
151 $\tau$, equal to 1 hour. RAS cloud fractions are cleared when they fall below 5 \%.
152
153 Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative
154 humidity:
155
156 \[
157 F_{LS} = \min\left[ { \left( {RH-RH_c \over 1-RH_c} \right) }^2, 1.0 \right]
158 \]
159
160 where
161
162 \bqa
163 RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\
164 s & = & p/p_{surf} \nonumber \\
165 r & = & \left( {1.0-RH_{min} \over \alpha} \right) \nonumber \\
166 RH_{min} & = & 0.75 \nonumber \\
167 \alpha & = & 0.573285 \nonumber .
168 \eqa
169
170 These cloud fractions are suppressed, however, in regions where the convective
171 sub-cloud layer is conditionally unstable. The functional form of $RH_c$ is shown in
172 Figure (\ref{fig:fizhi:rhcrit}).
173
174 \begin{figure*}[htbp]
175 \vspace{0.4in}
176 \centerline{ \epsfysize=4.0in \epsfbox{part6/rhcrit.ps}}
177 \vspace{0.4in}
178 \caption [Critical Relative Humidity for Clouds.]
179 {Critical Relative Humidity for Clouds.}
180 \label{fig:fizhi:rhcrit}
181 \end{figure*}
182
183 The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:
184
185 \[
186 F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] .
187 \]
188
189 Finally, cloud fractions are time-averaged between calls to the radiation packages.
190
191
192 Radiation:
193
194 The parameterization of radiative heating in the fizhi package includes effects
195 from both shortwave and longwave processes.
196 Radiative fluxes are calculated at each
197 model edge-level in both up and down directions.
198 The heating rates/cooling rates are then obtained
199 from the vertical divergence of the net radiative fluxes.
200
201 The net flux is
202 \[
203 F = F^\uparrow - F^\downarrow
204 \]
205 where $F$ is the net flux, $F^\uparrow$ is the upward flux and $F^\downarrow$ is
206 the downward flux.
207
208 The heating rate due to the divergence of the radiative flux is given by
209 \[
210 \pp{\rho c_p T}{t} = - \pp{F}{z}
211 \]
212 or
213 \[
214 \pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}
215 \]
216 where $g$ is the accelation due to gravity
217 and $c_p$ is the heat capacity of air at constant pressure.
218
219 The time tendency for Longwave
220 Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is updated once
221 every three hours assuming a normalized incident solar radiation, and subsequently modified at
222 every model time step by the true incident radiation.
223 The solar constant value used in the package is equal to 1365 $W/m^2$
224 and a $CO_2$ mixing ratio of 330 ppm.
225 For the ozone mixing ratio, monthly mean zonally averaged
226 climatological values specified as a function
227 of latitude and height (\cite{rosen:87}) are linearly interpolated to the current time.
228
229
230 \paragraph{Shortwave Radiation}
231
232 The shortwave radiation package used in the package computes solar radiative
233 heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen,
234 clouds, and aerosols and due to the
235 scattering by clouds, aerosols, and gases.
236 The shortwave radiative processes are described by
237 \cite{chou:90,chou:92}. This shortwave package
238 uses the Delta-Eddington approximation to compute the
239 bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).
240 The transmittance and reflectance of diffuse radiation
241 follow the procedures of Sagan and Pollock (JGR, 1967) and \cite{lhans:74}.
242
243 Highly accurate heating rate calculations are obtained through the use
244 of an optimal grouping strategy of spectral bands. By grouping the UV and visible regions
245 as indicated in Table \ref{tab:fizhi:solar2}, the Rayleigh scattering and the ozone absorption of solar radiation
246 can be accurately computed in the ultraviolet region and the photosynthetically
247 active radiation (PAR) region.
248 The computation of solar flux in the infrared region is performed with a broadband
249 parameterization using the spectrum regions shown in Table \ref{tab:fizhi:solar1}.
250 The solar radiation algorithm used in the fizhi package can be applied not only for climate studies but
251 also for studies on the photolysis in the upper atmosphere and the photosynthesis in the biosphere.
252
253 \begin{table}[htb]
254 \begin{center}
255 {\bf UV and Visible Spectral Regions} \\
256 \vspace{0.1in}
257 \begin{tabular}{|c|c|c|}
258 \hline
259 Region & Band & Wavelength (micron) \\ \hline
260 \hline
261 UV-C & 1. & .175 - .225 \\
262 & 2. & .225 - .245 \\
263 & & .260 - .280 \\
264 & 3. & .245 - .260 \\ \hline
265 UV-B & 4. & .280 - .295 \\
266 & 5. & .295 - .310 \\
267 & 6. & .310 - .320 \\ \hline
268 UV-A & 7. & .320 - .400 \\ \hline
269 PAR & 8. & .400 - .700 \\
270 \hline
271 \end{tabular}
272 \end{center}
273 \caption{UV and Visible Spectral Regions used in shortwave radiation package.}
274 \label{tab:fizhi:solar2}
275 \end{table}
276
277 \begin{table}[htb]
278 \begin{center}
279 {\bf Infrared Spectral Regions} \\
280 \vspace{0.1in}
281 \begin{tabular}{|c|c|c|}
282 \hline
283 Band & Wavenumber(cm$^{-1}$) & Wavelength (micron) \\ \hline
284 \hline
285 1 & 1000-4400 & 2.27-10.0 \\
286 2 & 4400-8200 & 1.22-2.27 \\
287 3 & 8200-14300 & 0.70-1.22 \\
288 \hline
289 \end{tabular}
290 \end{center}
291 \caption{Infrared Spectral Regions used in shortwave radiation package.}
292 \label{tab:fizhi:solar1}
293 \end{table}
294
295 Within the shortwave radiation package,
296 both ice and liquid cloud particles are allowed to co-exist in any of the model layers.
297 Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles.
298 Cloud parameters are defined as the cloud optical thickness and the effective cloud particle size.
299 In the fizhi package, the effective radius for water droplets is given as 10 microns,
300 while 65 microns is used for ice particles. The absorption due to aerosols is currently
301 set to zero.
302
303 To simplify calculations in a cloudy atmosphere, clouds are
304 grouped into low ($p>700$ mb), middle (700 mb $\ge p > 400$ mb), and high ($p < 400$ mb) cloud regions.
305 Within each of the three regions, clouds are assumed maximally
306 overlapped, and the cloud cover of the group is the maximum
307 cloud cover of all the layers in the group. The optical thickness
308 of a given layer is then scaled for both the direct (as a function of the
309 solar zenith angle) and diffuse beam radiation
310 so that the grouped layer reflectance is the same as the original reflectance.
311 The solar flux is computed for each of the eight cloud realizations possible
312 (see Figure \ref{fig:fizhi:cloud}) within this
313 low/middle/high classification, and appropriately averaged to produce the net solar flux.
314
315 \begin{figure*}[htbp]
316 \vspace{0.4in}
317 \centerline{ \epsfysize=4.0in %\epsfbox{part6/rhcrit.ps}
318 }
319 \vspace{0.4in}
320 \caption {Low-Middle-High Cloud Configurations}
321 \label{fig:fizhi:cloud}
322 \end{figure*}
323
324
325 \paragraph{Longwave Radiation}
326
327 The longwave radiation package used in the fizhi package is thoroughly described by \cite{chsz:94}.
328 As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
329 dioxide, and ozone. The spectral bands together with their absorbers and parameterization methods,
330 configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.
331
332
333 \begin{table}[htb]
334 \begin{center}
335 {\bf IR Spectral Bands} \\
336 \vspace{0.1in}
337 \begin{tabular}{|c|c|l|c| }
338 \hline
339 Band & Spectral Range (cm$^{-1}$) & Absorber & Method \\ \hline
340 \hline
341 1 & 0-340 & H$_2$O line & T \\ \hline
342 2 & 340-540 & H$_2$O line & T \\ \hline
343 3a & 540-620 & H$_2$O line & K \\
344 3b & 620-720 & H$_2$O continuum & S \\
345 3b & 720-800 & CO$_2$ & T \\ \hline
346 4 & 800-980 & H$_2$O line & K \\
347 & & H$_2$O continuum & S \\ \hline
348 & & H$_2$O line & K \\
349 5 & 980-1100 & H$_2$O continuum & S \\
350 & & O$_3$ & T \\ \hline
351 6 & 1100-1380 & H$_2$O line & K \\
352 & & H$_2$O continuum & S \\ \hline
353 7 & 1380-1900 & H$_2$O line & T \\ \hline
354 8 & 1900-3000 & H$_2$O line & K \\ \hline
355 \hline
356 \multicolumn{4}{|l|}{ \quad K: {\em k}-distribution method with linear pressure scaling } \\
357 \multicolumn{4}{|l|}{ \quad T: Table look-up with temperature and pressure scaling } \\
358 \multicolumn{4}{|l|}{ \quad S: One-parameter temperature scaling } \\
359 \hline
360 \end{tabular}
361 \end{center}
362 \vspace{0.1in}
363 \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from \cite{chzs:94})}
364 \label{tab:fizhi:longwave}
365 \end{table}
366
367
368 The longwave radiation package accurately computes cooling rates for the middle and
369 lower atmosphere from 0.01 mb to the surface. Errors are $<$ 0.4 C day$^{-1}$ in cooling
370 rates and $<$ 1\% in fluxes. From Chou and Suarez, it is estimated that the total effect of
371 neglecting all minor absorption bands and the effects of minor infrared absorbers such as
372 nitrous oxide (N$_2$O), methane (CH$_4$), and the chlorofluorocarbons (CFCs), is an underestimate
373 of $\approx$ 5 W/m$^2$ in the downward flux at the surface and an overestimate of $\approx$ 3 W/m$^2$
374 in the upward flux at the top of the atmosphere.
375
376 Similar to the procedure used in the shortwave radiation package, clouds are grouped into
377 three regions catagorized as low/middle/high.
378 The net clear line-of-site probability $(P)$ between any two levels, $p_1$ and $p_2 \quad (p_2 > p_1)$,
379 assuming randomly overlapped cloud groups, is simply the product of the probabilities within each group:
380
381 \[ P_{net} = P_{low} \times P_{mid} \times P_{hi} . \]
382
383 Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within
384 a group is given by:
385
386 \[ P_{group} = 1 - F_{max} , \]
387
388 where $F_{max}$ is the maximum cloud fraction encountered between $p_1$ and $p_2$ within that group.
389 For groups and/or levels outside the range of $p_1$ and $p_2$, a clear line-of-site probability equal to 1 is
390 assigned.
391
392
393 \paragraph{Cloud-Radiation Interaction}
394 \label{sec:fizhi:radcloud}
395
396 The cloud fractions and diagnosed cloud liquid water produced by moist processes
397 within the fizhi package are used in the radiation packages to produce cloud-radiative forcing.
398 The cloud optical thickness associated with large-scale cloudiness is made
399 proportional to the diagnosed large-scale liquid water, $\ell$, detrained due to super-saturation.
400 Two values are used corresponding to cloud ice particles and water droplets.
401 The range of optical thickness for these clouds is given as
402
403 \[ 0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002 \quad\mbox{for}\quad 0 \le \ell \le 2 \quad\mbox{mg/kg} , \]
404 \[ 0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2 \quad\mbox{for}\quad 0 \le \ell \le 10 \quad\mbox{mg/kg} . \]
405
406 The partitioning, $\alpha$, between ice particles and water droplets is achieved through a linear scaling
407 in temperature:
408
409 \[ 0 \le \alpha \le 1 \quad\mbox{for}\quad 233.15 \le T \le 253.15 . \]
410
411 The resulting optical depth associated with large-scale cloudiness is given as
412
413 \[ \tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} . \]
414
415 The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as
416
417 \[ \tau_{RAS} = 0.16 \quad mb^{-1} . \]
418
419 The total optical depth in a given model layer is computed as a weighted average between
420 the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the
421 layer:
422
423 \[ \tau = \left( {F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} \over F_{RAS}+F_{LS} } \right) \Delta p, \]
424
425 where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale
426 processes described in Section \ref{sec:fizhi:clouds}.
427 The optical thickness for the longwave radiative feedback is assumed to be 75 $\%$ of these values.
428
429 The entire Moist Convective Processes Module is called with a frequency of 10 minutes.
430 The cloud fraction values are time-averaged over the period between Radiation calls (every 3
431 hours). Therefore, in a time-averaged sense, both convective and large-scale
432 cloudiness can exist in a given grid-box.
433
434 Turbulence:
435
436 Turbulence is parameterized in the fizhi package to account for its contribution to the
437 vertical exchange of heat, moisture, and momentum.
438 The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
439 time scheme with an internal time step of 5 minutes.
440 The tendencies of atmospheric state variables due to turbulent diffusion are calculated using
441 the diffusion equations:
442
443 \[
444 {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
445 = {\pp{}{z} }{(K_m \pp{u}{z})}
446 \]
447 \[
448 {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
449 = {\pp{}{z} }{(K_m \pp{v}{z})}
450 \]
451 \[
452 {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
453 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
454 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
455 \]
456 \[
457 {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
458 = {\pp{}{z} }{(K_h \pp{q}{z})}
459 \]
460
461 Within the atmosphere, the time evolution
462 of second turbulent moments is explicitly modeled by representing the third moments in terms of
463 the first and second moments. This approach is known as a second-order closure modeling.
464 To simplify and streamline the computation of the second moments, the level 2.5 assumption
465 of Mellor and Yamada (1974) and \cite{yam:77} is employed, in which only the turbulent
466 kinetic energy (TKE),
467
468 \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]
469
470 is solved prognostically and the other second moments are solved diagnostically.
471 The prognostic equation for TKE allows the scheme to simulate
472 some of the transient and diffusive effects in the turbulence. The TKE budget equation
473 is solved numerically using an implicit backward computation of the terms linear in $q^2$
474 and is written:
475
476 \[
477 {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ {5 \over 3} {{\lambda}_1} q { \pp {}{z}
478 ({\h}q^2)} })} =
479 {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
480 { \pp{V}{z} }} + {{g \over {\Theta_0}}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} }
481 - { q^3 \over {{\Lambda} _1} }
482 \]
483
484 where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and
485 ${{\theta}^{\prime}}$ are the fluctuating parts of the velocity components and potential
486 temperature, $U$ and $V$ are the mean velocity components, ${\Theta_0}^{-1}$ is the
487 coefficient of thermal expansion, and ${{\lambda}_1}$ and ${{\Lambda} _1}$ are constant
488 multiples of the master length scale, $\ell$, which is designed to be a characteristic measure
489 of the vertical structure of the turbulent layers.
490
491 The first term on the left-hand side represents the time rate of change of TKE, and
492 the second term is a representation of the triple correlation, or turbulent
493 transport term. The first three terms on the right-hand side represent the sources of
494 TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation
495 of TKE.
496
497 In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the
498 wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and
499 $K_m$, respectively. In the statisically realizable level 2.5 turbulence scheme of
500 \cite{helflab:88}, these diffusion coefficients are expressed as
501
502 \[
503 K_h
504 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
505 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
506 \]
507
508 and
509
510 \[
511 K_m
512 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}
513 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
514 \]
515
516 where the subscript $e$ refers to the value under conditions of local equillibrium
517 (obtained from the Level 2.0 Model), $\ell$ is the master length scale related to the
518 vertical structure of the atmosphere,
519 and $S_M$ and $S_H$ are functions of $G_H$ and $G_M$, the dimensionless buoyancy and
520 wind shear parameters, respectively.
521 Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
522 are functions of the Richardson number:
523
524 \[
525 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
526 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } .
527 \]
528
529 Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)
530 indicate dominantly unstable shear, and large positive values indicate dominantly stable
531 stratification.
532
533 Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer,
534 which corresponds to the lowest GCM level (see \ref{tab:fizhi:sigma}),
535 are calculated using stability-dependant functions based on Monin-Obukhov theory:
536 \[
537 {K_m} (surface) = C_u \times u_* = C_D W_s
538 \]
539 and
540 \[
541 {K_h} (surface) = C_t \times u_* = C_H W_s
542 \]
543 where $u_*=C_uW_s$ is the surface friction velocity,
544 $C_D$ is termed the surface drag coefficient, $C_H$ the heat transfer coefficient,
545 and $W_s$ is the magnitude of the surface layer wind.
546
547 $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
548 similarity functions:
549 \[
550 {C_u} = {u_* \over W_s} = { k \over \psi_{m} }
551 \]
552 where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional
553 wind shear given by
554 \[
555 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} .
556 \]
557 Here $\zeta$ is the non-dimensional stability parameter, and
558 $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of
559 the momentum gradient. The functional form of $\phi_m$ is specified differently for stable and unstable
560 layers.
561
562 $C_t$ is the dimensionless exchange coefficient for heat and
563 moisture from the surface layer similarity functions:
564 \[
565 {C_t} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
566 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
567 { k \over { (\psi_{h} + \psi_{g}) } }
568 \]
569 where $\psi_h$ is the surface layer non-dimensional temperature gradient given by
570 \[
571 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} .
572 \]
573 Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
574 the temperature and moisture gradients, and is specified differently for stable and unstable
575 layers according to \cite{helfschu:95}.
576
577 $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,
578 which is the mosstly laminar region between the surface and the tops of the roughness
579 elements, in which temperature and moisture gradients can be quite large.
580 Based on \cite{yagkad:74}:
581 \[
582 \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
583 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
584 \]
585 where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the
586 surface roughness length, and the subscript {\em ref} refers to a reference value.
587 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
588
589 The surface roughness length over oceans is is a function of the surface-stress velocity,
590 \[
591 {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
592 \]
593 where the constants are chosen to interpolate between the reciprocal relation of
594 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
595 for moderate to large winds. Roughness lengths over land are specified
596 from the climatology of \cite{dorsell:89}.
597
598 For an unstable surface layer, the stability functions, chosen to interpolate between the
599 condition of small values of $\beta$ and the convective limit, are the KEYPS function
600 (\cite{pano:73}) for momentum, and its generalization for heat and moisture:
601 \[
602 {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
603 {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .
604 \]
605 The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind
606 speed approaches zero.
607
608 For a stable surface layer, the stability functions are the observationally
609 based functions of \cite{clarke:70}, slightly modified for
610 the momemtum flux:
611 \[
612 {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}
613 (1+ 5 {{\zeta}_1}) } } \hspace{1cm} ; \hspace{1cm}
614 {\phi_h} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {\zeta}
615 (1+ 5 {{\zeta}_1}) } } .
616 \]
617 The moisture flux also depends on a specified evapotranspiration
618 coefficient, set to unity over oceans and dependant on the climatological ground wetness over
619 land.
620
621 Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically
622 using an implicit backward operator.
623
624 \paragraph{Atmospheric Boundary Layer}
625
626 The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the
627 level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value.
628 The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers.
629
630 \paragraph{Surface Energy Budget}
631
632 The ground temperature equation is solved as part of the turbulence package
633 using a backward implicit time differencing scheme:
634 \[
635 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
636 \]
637 where $R_{sw}$ is the net surface downward shortwave radiative flux and $R_{lw}$ is the
638 net surface upward longwave radiative flux.
639
640 $H$ is the upward sensible heat flux, given by:
641 \[
642 {H} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY})
643 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
644 \]
645 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
646 heat of air at constant pressure, and $\theta$ represents the potential temperature
647 of the surface and of the lowest $\sigma$-level, respectively.
648
649 The upward latent heat flux, $LE$, is given by
650 \[
651 {LE} = \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY})
652 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
653 \]
654 where $\beta$ is the fraction of the potential evapotranspiration actually evaporated,
655 L is the latent heat of evaporation, and $q_{surface}$ and $q_{NLAY}$ are the specific
656 humidity of the surface and of the lowest $\sigma$-level, respectively.
657
658 The heat conduction through sea ice, $Q_{ice}$, is given by
659 \[
660 {Q_{ice}} = {C_{ti} \over {H_i}} (T_i-T_g)
661 \]
662 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
663 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the
664 surface temperature of the ice.
665
666 $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
667 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
668 \[
669 C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
670 {86400 \over 2 \pi} } \, \, .
671 \]
672 Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ ${ly\over{ sec}}
673 {cm \over {^oK}}$,
674 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
675 by $2 \pi$ $radians/
676 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
677 is a function of the ground wetness, $W$.
678
679 Land Surface Processes:
680
681 \paragraph{Surface Type}
682 The fizhi package surface Types are designated using the Koster-Suarez (\cite{ks:91,ks:92})
683 Land Surface Model (LSM) mosaic philosophy which allows multiple ``tiles'', or multiple surface
684 types, in any one grid cell. The Koster-Suarez LSM surface type classifications
685 are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid
686 cell occupied by any surface type were derived from the surface classification of
687 \cite{deftow:94}, and information about the location of permanent
688 ice was obtained from the classifications of \cite{dorsell:89}.
689 The surface type for the \txt GCM grid is shown in Figure \ref{fig:fizhi:surftype}.
690 The determination of the land or sea category of surface type was made from NCAR's
691 10 minute by 10 minute Navy topography
692 dataset, which includes information about the percentage of water-cover at any point.
693 The data were averaged to the model's \fxf and \txt grid resolutions,
694 and any grid-box whose averaged water percentage was $\geq 60 \%$ was
695 defined as a water point. The \fxf grid Land-Water designation was further modified
696 subjectively to ensure sufficient representation from small but isolated land and water regions.
697
698 \begin{table}
699 \begin{center}
700 {\bf Surface Type Designation} \\
701 \vspace{0.1in}
702 \begin{tabular}{ |c|l| }
703 \hline
704 Type & Vegetation Designation \\ \hline
705 \hline
706 1 & Broadleaf Evergreen Trees \\ \hline
707 2 & Broadleaf Deciduous Trees \\ \hline
708 3 & Needleleaf Trees \\ \hline
709 4 & Ground Cover \\ \hline
710 5 & Broadleaf Shrubs \\ \hline
711 6 & Dwarf Trees (Tundra) \\ \hline
712 7 & Bare Soil \\ \hline
713 8 & Desert (Bright) \\ \hline
714 9 & Glacier \\ \hline
715 10 & Desert (Dark) \\ \hline
716 100 & Ocean \\ \hline
717 \end{tabular}
718 \end{center}
719 \caption{Surface type designations used to compute surface roughness (over land)
720 and surface albedo.}
721 \label{tab:fizhi:surftype}
722 \end{table}
723
724
725 \begin{figure*}[htbp]
726 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.ps}}
727 \vspace{0.3in}
728 \caption {Surface Type Compinations at \txt resolution.}
729 \label{fig:fizhi:surftype}
730 \end{figure*}
731
732 \begin{figure*}[htbp]
733 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.descrip.ps}}
734 \vspace{0.3in}
735 \caption {Surface Type Descriptions.}
736 \label{fig:fizhi:surftype.desc}
737 \end{figure*}
738
739
740 \paragraph{Surface Roughness}
741 The surface roughness length over oceans is computed iteratively with the wind
742 stress by the surface layer parameterization (\cite{helfschu:95}).
743 It employs an interpolation between the functions of \cite{larpond:81}
744 for high winds and of \cite{kondo:75} for weak winds.
745
746
747 \paragraph{Albedo}
748 The surface albedo computation, described in \cite{ks:91},
749 employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
750 Model which distinguishes between the direct and diffuse albedos in the visible
751 and in the near infra-red spectral ranges. The albedos are functions of the observed
752 leaf area index (a description of the relative orientation of the leaves to the
753 sun), the greenness fraction, the vegetation type, and the solar zenith angle.
754 Modifications are made to account for the presence of snow, and its depth relative
755 to the height of the vegetation elements.
756
757 Gravity Wave Drag:
758
759 The fizhi package employs the gravity wave drag scheme of \cite{zhouetal:96}).
760 This scheme is a modified version of Vernekar et al. (1992),
761 which was based on Alpert et al. (1988) and Helfand et al. (1987).
762 In this version, the gravity wave stress at the surface is
763 based on that derived by Pierrehumbert (1986) and is given by:
764
765 \bq
766 |\vec{\tau}_{sfc}| = {\rho U^3\over{N \ell^*}} \left(F_r^2 \over{1+F_r^2}\right) \, \, ,
767 \eq
768
769 where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the
770 surface wind speed, $h$ is the standard deviation of the sub-grid scale orography,
771 and $\ell^*$ is the wavelength of the monochromatic gravity wave in the direction of the low-level wind.
772 A modification introduced by Zhou et al. allows for the momentum flux to
773 escape through the top of the model, although this effect is small for the current 70-level model.
774 The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.
775
776 The effects of using this scheme within a GCM are shown in \cite{taksz:96}.
777 Experiments using the gravity wave drag parameterization yielded significant and
778 beneficial impacts on both the time-mean flow and the transient statistics of the
779 a GCM climatology, and have eliminated most of the worst dynamically driven biases
780 in the a GCM simulation.
781 An examination of the angular momentum budget during climate runs indicates that the
782 resulting gravity wave torque is similar to the data-driven torque produced by a data
783 assimilation which was performed without gravity
784 wave drag. It was shown that the inclusion of gravity wave drag results in
785 large changes in both the mean flow and in eddy fluxes.
786 The result is a more
787 accurate simulation of surface stress (through a reduction in the surface wind strength),
788 of mountain torque (through a redistribution of mean sea-level pressure), and of momentum
789 convergence (through a reduction in the flux of westerly momentum by transient flow eddies).
790
791
792 Boundary Conditions and other Input Data:
793
794 Required fields which are not explicitly predicted or diagnosed during model execution must
795 either be prescribed internally or obtained from external data sets. In the fizhi package these
796 fields include: sea surface temperature, sea ice estent, surface geopotential variance,
797 vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,
798 and stratospheric moisture.
799
800 Boundary condition data sets are available at the model's \fxf and \txt
801 resolutions for either climatological or yearly varying conditions.
802 Any frequency of boundary condition data can be used in the fizhi package;
803 however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@.
804 The time mean values are interpolated during each model timestep to the
805 current time. Future model versions will incorporate boundary conditions at
806 higher spatial \mbox{($1^\circ$ x $1^\circ$)} resolutions.
807
808 \begin{table}[htb]
809 \begin{center}
810 {\bf Fizhi Input Datasets} \\
811 \vspace{0.1in}
812 \begin{tabular}{|l|c|r|} \hline
813 \multicolumn{1}{|c}{Variable} & \multicolumn{1}{|c}{Frequency} & \multicolumn{1}{|c|}{Years} \\ \hline\hline
814 Sea Ice Extent & monthly & 1979-current, climatology \\ \hline
815 Sea Ice Extent & weekly & 1982-current, climatology \\ \hline
816 Sea Surface Temperature & monthly & 1979-current, climatology \\ \hline
817 Sea Surface Temperature & weekly & 1982-current, climatology \\ \hline
818 Zonally Averaged Upper-Level Moisture & monthly & climatology \\ \hline
819 Zonally Averaged Ozone Concentration & monthly & climatology \\ \hline
820 \end{tabular}
821 \end{center}
822 \caption{Boundary conditions and other input data used in the fizhi package. Also noted are the
823 current years and frequencies available.}
824 \label{tab:fizhi:bcdata}
825 \end{table}
826
827
828 \paragraph{Topography and Topography Variance}
829
830 Surface geopotential heights are provided from an averaging of the Navy 10 minute
831 by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
832 model's grid resolution. The original topography is first rotated to the proper grid-orientation
833 which is being run, and then averages the data to the model resolution.
834
835 The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute
836 data to the model's resolution and re-interpolating back to the 10 minute by 10 minute resolution.
837 The sub-grid scale variance is constructed based on this smoothed dataset.
838
839
840 \paragraph{Upper Level Moisture}
841 The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas
842 Experiment (SAGE) as input into the model's radiation packages. The SAGE data is archived
843 as monthly zonal means at 5$^\circ$ latitudinal resolution. The data is interpolated to the
844 model's grid location and current time, and blended with the GCM's moisture data. Below 300 mb,
845 the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb,
846 a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
847
848
849 \subsubsection{Fizhi Diagnostics}
850
851 Fizhi Diagnostic Menu:
852 \label{sec:fizhi-diagnostics:menu}
853
854 \begin{tabular}{llll}
855 \hline\hline
856 NAME & UNITS & LEVELS & DESCRIPTION \\
857 \hline
858
859 &\\
860 UFLUX & $Newton/m^2$ & 1
861 &\begin{minipage}[t]{3in}
862 {Surface U-Wind Stress on the atmosphere}
863 \end{minipage}\\
864 VFLUX & $Newton/m^2$ & 1
865 &\begin{minipage}[t]{3in}
866 {Surface V-Wind Stress on the atmosphere}
867 \end{minipage}\\
868 HFLUX & $Watts/m^2$ & 1
869 &\begin{minipage}[t]{3in}
870 {Surface Flux of Sensible Heat}
871 \end{minipage}\\
872 EFLUX & $Watts/m^2$ & 1
873 &\begin{minipage}[t]{3in}
874 {Surface Flux of Latent Heat}
875 \end{minipage}\\
876 QICE & $Watts/m^2$ & 1
877 &\begin{minipage}[t]{3in}
878 {Heat Conduction through Sea-Ice}
879 \end{minipage}\\
880 RADLWG & $Watts/m^2$ & 1
881 &\begin{minipage}[t]{3in}
882 {Net upward LW flux at the ground}
883 \end{minipage}\\
884 RADSWG & $Watts/m^2$ & 1
885 &\begin{minipage}[t]{3in}
886 {Net downward SW flux at the ground}
887 \end{minipage}\\
888 RI & $dimensionless$ & Nrphys
889 &\begin{minipage}[t]{3in}
890 {Richardson Number}
891 \end{minipage}\\
892 CT & $dimensionless$ & 1
893 &\begin{minipage}[t]{3in}
894 {Surface Drag coefficient for T and Q}
895 \end{minipage}\\
896 CU & $dimensionless$ & 1
897 &\begin{minipage}[t]{3in}
898 {Surface Drag coefficient for U and V}
899 \end{minipage}\\
900 ET & $m^2/sec$ & Nrphys
901 &\begin{minipage}[t]{3in}
902 {Diffusivity coefficient for T and Q}
903 \end{minipage}\\
904 EU & $m^2/sec$ & Nrphys
905 &\begin{minipage}[t]{3in}
906 {Diffusivity coefficient for U and V}
907 \end{minipage}\\
908 TURBU & $m/sec/day$ & Nrphys
909 &\begin{minipage}[t]{3in}
910 {U-Momentum Changes due to Turbulence}
911 \end{minipage}\\
912 TURBV & $m/sec/day$ & Nrphys
913 &\begin{minipage}[t]{3in}
914 {V-Momentum Changes due to Turbulence}
915 \end{minipage}\\
916 TURBT & $deg/day$ & Nrphys
917 &\begin{minipage}[t]{3in}
918 {Temperature Changes due to Turbulence}
919 \end{minipage}\\
920 TURBQ & $g/kg/day$ & Nrphys
921 &\begin{minipage}[t]{3in}
922 {Specific Humidity Changes due to Turbulence}
923 \end{minipage}\\
924 MOISTT & $deg/day$ & Nrphys
925 &\begin{minipage}[t]{3in}
926 {Temperature Changes due to Moist Processes}
927 \end{minipage}\\
928 MOISTQ & $g/kg/day$ & Nrphys
929 &\begin{minipage}[t]{3in}
930 {Specific Humidity Changes due to Moist Processes}
931 \end{minipage}\\
932 RADLW & $deg/day$ & Nrphys
933 &\begin{minipage}[t]{3in}
934 {Net Longwave heating rate for each level}
935 \end{minipage}\\
936 RADSW & $deg/day$ & Nrphys
937 &\begin{minipage}[t]{3in}
938 {Net Shortwave heating rate for each level}
939 \end{minipage}\\
940 PREACC & $mm/day$ & 1
941 &\begin{minipage}[t]{3in}
942 {Total Precipitation}
943 \end{minipage}\\
944 PRECON & $mm/day$ & 1
945 &\begin{minipage}[t]{3in}
946 {Convective Precipitation}
947 \end{minipage}\\
948 TUFLUX & $Newton/m^2$ & Nrphys
949 &\begin{minipage}[t]{3in}
950 {Turbulent Flux of U-Momentum}
951 \end{minipage}\\
952 TVFLUX & $Newton/m^2$ & Nrphys
953 &\begin{minipage}[t]{3in}
954 {Turbulent Flux of V-Momentum}
955 \end{minipage}\\
956 TTFLUX & $Watts/m^2$ & Nrphys
957 &\begin{minipage}[t]{3in}
958 {Turbulent Flux of Sensible Heat}
959 \end{minipage}\\
960 \end{tabular}
961
962 \newpage
963 \vspace*{\fill}
964 \begin{tabular}{llll}
965 \hline\hline
966 NAME & UNITS & LEVELS & DESCRIPTION \\
967 \hline
968
969 &\\
970 TQFLUX & $Watts/m^2$ & Nrphys
971 &\begin{minipage}[t]{3in}
972 {Turbulent Flux of Latent Heat}
973 \end{minipage}\\
974 CN & $dimensionless$ & 1
975 &\begin{minipage}[t]{3in}
976 {Neutral Drag Coefficient}
977 \end{minipage}\\
978 WINDS & $m/sec$ & 1
979 &\begin{minipage}[t]{3in}
980 {Surface Wind Speed}
981 \end{minipage}\\
982 DTSRF & $deg$ & 1
983 &\begin{minipage}[t]{3in}
984 {Air/Surface virtual temperature difference}
985 \end{minipage}\\
986 TG & $deg$ & 1
987 &\begin{minipage}[t]{3in}
988 {Ground temperature}
989 \end{minipage}\\
990 TS & $deg$ & 1
991 &\begin{minipage}[t]{3in}
992 {Surface air temperature (Adiabatic from lowest model layer)}
993 \end{minipage}\\
994 DTG & $deg$ & 1
995 &\begin{minipage}[t]{3in}
996 {Ground temperature adjustment}
997 \end{minipage}\\
998
999 QG & $g/kg$ & 1
1000 &\begin{minipage}[t]{3in}
1001 {Ground specific humidity}
1002 \end{minipage}\\
1003 QS & $g/kg$ & 1
1004 &\begin{minipage}[t]{3in}
1005 {Saturation surface specific humidity}
1006 \end{minipage}\\
1007 TGRLW & $deg$ & 1
1008 &\begin{minipage}[t]{3in}
1009 {Instantaneous ground temperature used as input to the
1010 Longwave radiation subroutine}
1011 \end{minipage}\\
1012 ST4 & $Watts/m^2$ & 1
1013 &\begin{minipage}[t]{3in}
1014 {Upward Longwave flux at the ground ($\sigma T^4$)}
1015 \end{minipage}\\
1016 OLR & $Watts/m^2$ & 1
1017 &\begin{minipage}[t]{3in}
1018 {Net upward Longwave flux at the top of the model}
1019 \end{minipage}\\
1020 OLRCLR & $Watts/m^2$ & 1
1021 &\begin{minipage}[t]{3in}
1022 {Net upward clearsky Longwave flux at the top of the model}
1023 \end{minipage}\\
1024 LWGCLR & $Watts/m^2$ & 1
1025 &\begin{minipage}[t]{3in}
1026 {Net upward clearsky Longwave flux at the ground}
1027 \end{minipage}\\
1028 LWCLR & $deg/day$ & Nrphys
1029 &\begin{minipage}[t]{3in}
1030 {Net clearsky Longwave heating rate for each level}
1031 \end{minipage}\\
1032 TLW & $deg$ & Nrphys
1033 &\begin{minipage}[t]{3in}
1034 {Instantaneous temperature used as input to the Longwave radiation
1035 subroutine}
1036 \end{minipage}\\
1037 SHLW & $g/g$ & Nrphys
1038 &\begin{minipage}[t]{3in}
1039 {Instantaneous specific humidity used as input to the Longwave radiation
1040 subroutine}
1041 \end{minipage}\\
1042 OZLW & $g/g$ & Nrphys
1043 &\begin{minipage}[t]{3in}
1044 {Instantaneous ozone used as input to the Longwave radiation
1045 subroutine}
1046 \end{minipage}\\
1047 CLMOLW & $0-1$ & Nrphys
1048 &\begin{minipage}[t]{3in}
1049 {Maximum overlap cloud fraction used in the Longwave radiation
1050 subroutine}
1051 \end{minipage}\\
1052 CLDTOT & $0-1$ & Nrphys
1053 &\begin{minipage}[t]{3in}
1054 {Total cloud fraction used in the Longwave and Shortwave radiation
1055 subroutines}
1056 \end{minipage}\\
1057 LWGDOWN & $Watts/m^2$ & 1
1058 &\begin{minipage}[t]{3in}
1059 {Downwelling Longwave radiation at the ground}
1060 \end{minipage}\\
1061 GWDT & $deg/day$ & Nrphys
1062 &\begin{minipage}[t]{3in}
1063 {Temperature tendency due to Gravity Wave Drag}
1064 \end{minipage}\\
1065 RADSWT & $Watts/m^2$ & 1
1066 &\begin{minipage}[t]{3in}
1067 {Incident Shortwave radiation at the top of the atmosphere}
1068 \end{minipage}\\
1069 TAUCLD & $per 100 mb$ & Nrphys
1070 &\begin{minipage}[t]{3in}
1071 {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1072 \end{minipage}\\
1073 TAUCLDC & $Number$ & Nrphys
1074 &\begin{minipage}[t]{3in}
1075 {Cloud Optical Depth Counter}
1076 \end{minipage}\\
1077 \end{tabular}
1078 \vfill
1079
1080 \newpage
1081 \vspace*{\fill}
1082 \begin{tabular}{llll}
1083 \hline\hline
1084 NAME & UNITS & LEVELS & DESCRIPTION \\
1085 \hline
1086
1087 &\\
1088 CLDLOW & $0-1$ & Nrphys
1089 &\begin{minipage}[t]{3in}
1090 {Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)}
1091 \end{minipage}\\
1092 EVAP & $mm/day$ & 1
1093 &\begin{minipage}[t]{3in}
1094 {Surface evaporation}
1095 \end{minipage}\\
1096 DPDT & $hPa/day$ & 1
1097 &\begin{minipage}[t]{3in}
1098 {Surface Pressure tendency}
1099 \end{minipage}\\
1100 UAVE & $m/sec$ & Nrphys
1101 &\begin{minipage}[t]{3in}
1102 {Average U-Wind}
1103 \end{minipage}\\
1104 VAVE & $m/sec$ & Nrphys
1105 &\begin{minipage}[t]{3in}
1106 {Average V-Wind}
1107 \end{minipage}\\
1108 TAVE & $deg$ & Nrphys
1109 &\begin{minipage}[t]{3in}
1110 {Average Temperature}
1111 \end{minipage}\\
1112 QAVE & $g/kg$ & Nrphys
1113 &\begin{minipage}[t]{3in}
1114 {Average Specific Humidity}
1115 \end{minipage}\\
1116 OMEGA & $hPa/day$ & Nrphys
1117 &\begin{minipage}[t]{3in}
1118 {Vertical Velocity}
1119 \end{minipage}\\
1120 DUDT & $m/sec/day$ & Nrphys
1121 &\begin{minipage}[t]{3in}
1122 {Total U-Wind tendency}
1123 \end{minipage}\\
1124 DVDT & $m/sec/day$ & Nrphys
1125 &\begin{minipage}[t]{3in}
1126 {Total V-Wind tendency}
1127 \end{minipage}\\
1128 DTDT & $deg/day$ & Nrphys
1129 &\begin{minipage}[t]{3in}
1130 {Total Temperature tendency}
1131 \end{minipage}\\
1132 DQDT & $g/kg/day$ & Nrphys
1133 &\begin{minipage}[t]{3in}
1134 {Total Specific Humidity tendency}
1135 \end{minipage}\\
1136 VORT & $10^{-4}/sec$ & Nrphys
1137 &\begin{minipage}[t]{3in}
1138 {Relative Vorticity}
1139 \end{minipage}\\
1140 DTLS & $deg/day$ & Nrphys
1141 &\begin{minipage}[t]{3in}
1142 {Temperature tendency due to Stratiform Cloud Formation}
1143 \end{minipage}\\
1144 DQLS & $g/kg/day$ & Nrphys
1145 &\begin{minipage}[t]{3in}
1146 {Specific Humidity tendency due to Stratiform Cloud Formation}
1147 \end{minipage}\\
1148 USTAR & $m/sec$ & 1
1149 &\begin{minipage}[t]{3in}
1150 {Surface USTAR wind}
1151 \end{minipage}\\
1152 Z0 & $m$ & 1
1153 &\begin{minipage}[t]{3in}
1154 {Surface roughness}
1155 \end{minipage}\\
1156 FRQTRB & $0-1$ & Nrphys-1
1157 &\begin{minipage}[t]{3in}
1158 {Frequency of Turbulence}
1159 \end{minipage}\\
1160 PBL & $mb$ & 1
1161 &\begin{minipage}[t]{3in}
1162 {Planetary Boundary Layer depth}
1163 \end{minipage}\\
1164 SWCLR & $deg/day$ & Nrphys
1165 &\begin{minipage}[t]{3in}
1166 {Net clearsky Shortwave heating rate for each level}
1167 \end{minipage}\\
1168 OSR & $Watts/m^2$ & 1
1169 &\begin{minipage}[t]{3in}
1170 {Net downward Shortwave flux at the top of the model}
1171 \end{minipage}\\
1172 OSRCLR & $Watts/m^2$ & 1
1173 &\begin{minipage}[t]{3in}
1174 {Net downward clearsky Shortwave flux at the top of the model}
1175 \end{minipage}\\
1176 CLDMAS & $kg / m^2$ & Nrphys
1177 &\begin{minipage}[t]{3in}
1178 {Convective cloud mass flux}
1179 \end{minipage}\\
1180 UAVE & $m/sec$ & Nrphys
1181 &\begin{minipage}[t]{3in}
1182 {Time-averaged $u-Wind$}
1183 \end{minipage}\\
1184 \end{tabular}
1185 \vfill
1186
1187 \newpage
1188 \vspace*{\fill}
1189 \begin{tabular}{llll}
1190 \hline\hline
1191 NAME & UNITS & LEVELS & DESCRIPTION \\
1192 \hline
1193
1194 &\\
1195 VAVE & $m/sec$ & Nrphys
1196 &\begin{minipage}[t]{3in}
1197 {Time-averaged $v-Wind$}
1198 \end{minipage}\\
1199 TAVE & $deg$ & Nrphys
1200 &\begin{minipage}[t]{3in}
1201 {Time-averaged $Temperature$}
1202 \end{minipage}\\
1203 QAVE & $g/g$ & Nrphys
1204 &\begin{minipage}[t]{3in}
1205 {Time-averaged $Specific \, \, Humidity$}
1206 \end{minipage}\\
1207 RFT & $deg/day$ & Nrphys
1208 &\begin{minipage}[t]{3in}
1209 {Temperature tendency due Rayleigh Friction}
1210 \end{minipage}\\
1211 PS & $mb$ & 1
1212 &\begin{minipage}[t]{3in}
1213 {Surface Pressure}
1214 \end{minipage}\\
1215 QQAVE & $(m/sec)^2$ & Nrphys
1216 &\begin{minipage}[t]{3in}
1217 {Time-averaged $Turbulent Kinetic Energy$}
1218 \end{minipage}\\
1219 SWGCLR & $Watts/m^2$ & 1
1220 &\begin{minipage}[t]{3in}
1221 {Net downward clearsky Shortwave flux at the ground}
1222 \end{minipage}\\
1223 PAVE & $mb$ & 1
1224 &\begin{minipage}[t]{3in}
1225 {Time-averaged Surface Pressure}
1226 \end{minipage}\\
1227 DIABU & $m/sec/day$ & Nrphys
1228 &\begin{minipage}[t]{3in}
1229 {Total Diabatic forcing on $u-Wind$}
1230 \end{minipage}\\
1231 DIABV & $m/sec/day$ & Nrphys
1232 &\begin{minipage}[t]{3in}
1233 {Total Diabatic forcing on $v-Wind$}
1234 \end{minipage}\\
1235 DIABT & $deg/day$ & Nrphys
1236 &\begin{minipage}[t]{3in}
1237 {Total Diabatic forcing on $Temperature$}
1238 \end{minipage}\\
1239 DIABQ & $g/kg/day$ & Nrphys
1240 &\begin{minipage}[t]{3in}
1241 {Total Diabatic forcing on $Specific \, \, Humidity$}
1242 \end{minipage}\\
1243 RFU & $m/sec/day$ & Nrphys
1244 &\begin{minipage}[t]{3in}
1245 {U-Wind tendency due to Rayleigh Friction}
1246 \end{minipage}\\
1247 RFV & $m/sec/day$ & Nrphys
1248 &\begin{minipage}[t]{3in}
1249 {V-Wind tendency due to Rayleigh Friction}
1250 \end{minipage}\\
1251 GWDU & $m/sec/day$ & Nrphys
1252 &\begin{minipage}[t]{3in}
1253 {U-Wind tendency due to Gravity Wave Drag}
1254 \end{minipage}\\
1255 GWDU & $m/sec/day$ & Nrphys
1256 &\begin{minipage}[t]{3in}
1257 {V-Wind tendency due to Gravity Wave Drag}
1258 \end{minipage}\\
1259 GWDUS & $N/m^2$ & 1
1260 &\begin{minipage}[t]{3in}
1261 {U-Wind Gravity Wave Drag Stress at Surface}
1262 \end{minipage}\\
1263 GWDVS & $N/m^2$ & 1
1264 &\begin{minipage}[t]{3in}
1265 {V-Wind Gravity Wave Drag Stress at Surface}
1266 \end{minipage}\\
1267 GWDUT & $N/m^2$ & 1
1268 &\begin{minipage}[t]{3in}
1269 {U-Wind Gravity Wave Drag Stress at Top}
1270 \end{minipage}\\
1271 GWDVT & $N/m^2$ & 1
1272 &\begin{minipage}[t]{3in}
1273 {V-Wind Gravity Wave Drag Stress at Top}
1274 \end{minipage}\\
1275 LZRAD & $mg/kg$ & Nrphys
1276 &\begin{minipage}[t]{3in}
1277 {Estimated Cloud Liquid Water used in Radiation}
1278 \end{minipage}\\
1279 \end{tabular}
1280 \vfill
1281
1282 \newpage
1283 \vspace*{\fill}
1284 \begin{tabular}{llll}
1285 \hline\hline
1286 NAME & UNITS & LEVELS & DESCRIPTION \\
1287 \hline
1288
1289 &\\
1290 SLP & $mb$ & 1
1291 &\begin{minipage}[t]{3in}
1292 {Time-averaged Sea-level Pressure}
1293 \end{minipage}\\
1294 CLDFRC & $0-1$ & 1
1295 &\begin{minipage}[t]{3in}
1296 {Total Cloud Fraction}
1297 \end{minipage}\\
1298 TPW & $gm/cm^2$ & 1
1299 &\begin{minipage}[t]{3in}
1300 {Precipitable water}
1301 \end{minipage}\\
1302 U2M & $m/sec$ & 1
1303 &\begin{minipage}[t]{3in}
1304 {U-Wind at 2 meters}
1305 \end{minipage}\\
1306 V2M & $m/sec$ & 1
1307 &\begin{minipage}[t]{3in}
1308 {V-Wind at 2 meters}
1309 \end{minipage}\\
1310 T2M & $deg$ & 1
1311 &\begin{minipage}[t]{3in}
1312 {Temperature at 2 meters}
1313 \end{minipage}\\
1314 Q2M & $g/kg$ & 1
1315 &\begin{minipage}[t]{3in}
1316 {Specific Humidity at 2 meters}
1317 \end{minipage}\\
1318 U10M & $m/sec$ & 1
1319 &\begin{minipage}[t]{3in}
1320 {U-Wind at 10 meters}
1321 \end{minipage}\\
1322 V10M & $m/sec$ & 1
1323 &\begin{minipage}[t]{3in}
1324 {V-Wind at 10 meters}
1325 \end{minipage}\\
1326 T10M & $deg$ & 1
1327 &\begin{minipage}[t]{3in}
1328 {Temperature at 10 meters}
1329 \end{minipage}\\
1330 Q10M & $g/kg$ & 1
1331 &\begin{minipage}[t]{3in}
1332 {Specific Humidity at 10 meters}
1333 \end{minipage}\\
1334 DTRAIN & $kg/m^2$ & Nrphys
1335 &\begin{minipage}[t]{3in}
1336 {Detrainment Cloud Mass Flux}
1337 \end{minipage}\\
1338 QFILL & $g/kg/day$ & Nrphys
1339 &\begin{minipage}[t]{3in}
1340 {Filling of negative specific humidity}
1341 \end{minipage}\\
1342 \end{tabular}
1343 \vspace{1.5in}
1344 \vfill
1345
1346 \newpage
1347 \vspace*{\fill}
1348 \begin{tabular}{llll}
1349 \hline\hline
1350 NAME & UNITS & LEVELS & DESCRIPTION \\
1351 \hline
1352
1353 &\\
1354 DTCONV & $deg/sec$ & Nr
1355 &\begin{minipage}[t]{3in}
1356 {Temp Change due to Convection}
1357 \end{minipage}\\
1358 DQCONV & $g/kg/sec$ & Nr
1359 &\begin{minipage}[t]{3in}
1360 {Specific Humidity Change due to Convection}
1361 \end{minipage}\\
1362 RELHUM & $percent$ & Nr
1363 &\begin{minipage}[t]{3in}
1364 {Relative Humidity}
1365 \end{minipage}\\
1366 PRECLS & $g/m^2/sec$ & 1
1367 &\begin{minipage}[t]{3in}
1368 {Large Scale Precipitation}
1369 \end{minipage}\\
1370 ENPREC & $J/g$ & 1
1371 &\begin{minipage}[t]{3in}
1372 {Energy of Precipitation (snow, rain Temp)}
1373 \end{minipage}\\
1374 \end{tabular}
1375 \vspace{1.5in}
1376 \vfill
1377
1378 \newpage
1379
1380 Fizhi Diagnostic Description:
1381
1382 In this section we list and describe the diagnostic quantities available within the
1383 GCM. The diagnostics are listed in the order that they appear in the
1384 Diagnostic Menu, Section \ref{sec:fizhi-diagnostics:menu}.
1385 In all cases, each diagnostic as currently archived on the output datasets
1386 is time-averaged over its diagnostic output frequency:
1387
1388 \[
1389 {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1390 \]
1391 where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1392 output frequency of the diagnostic, and $\Delta t$ is
1393 the timestep over which the diagnostic is updated.
1394
1395 { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1396
1397 The zonal wind stress is the turbulent flux of zonal momentum from
1398 the surface.
1399 \[
1400 {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1401 \]
1402 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1403 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1404 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1405 the zonal wind in the lowest model layer.
1406 \\
1407
1408
1409 { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1410
1411 The meridional wind stress is the turbulent flux of meridional momentum from
1412 the surface.
1413 \[
1414 {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1415 \]
1416 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1417 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1418 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1419 the meridional wind in the lowest model layer.
1420 \\
1421
1422 { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1423
1424 The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1425 gradient of virtual potential temperature and the eddy exchange coefficient:
1426 \[
1427 {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1428 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1429 \]
1430 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1431 heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1432 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1433 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1434 for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1435 at the surface and at the bottom model level.
1436 \\
1437
1438
1439 { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1440
1441 The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1442 gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1443 \[
1444 {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1445 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1446 \]
1447 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1448 the potential evapotranspiration actually evaporated, L is the latent
1449 heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1450 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1451 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1452 for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1453 humidity at the surface and at the bottom model level, respectively.
1454 \\
1455
1456 { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1457
1458 Over sea ice there is an additional source of energy at the surface due to the heat
1459 conduction from the relatively warm ocean through the sea ice. The heat conduction
1460 through sea ice represents an additional energy source term for the ground temperature equation.
1461
1462 \[
1463 {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1464 \]
1465
1466 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1467 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1468 $T_g$ is the temperature of the sea ice.
1469
1470 NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1471 \\
1472
1473
1474 { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1475
1476 \begin{eqnarray*}
1477 {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
1478 & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1479 \end{eqnarray*}
1480 \\
1481 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1482 $F_{LW}^\uparrow$ is
1483 the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1484 \\
1485
1486 { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1487
1488 \begin{eqnarray*}
1489 {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
1490 & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1491 \end{eqnarray*}
1492 \\
1493 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1494 $F_{SW}^\downarrow$ is
1495 the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1496 \\
1497
1498
1499 \noindent
1500 { \underline {RI} Richardson Number} ($dimensionless$)
1501
1502 \noindent
1503 The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1504 \[
1505 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1506 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1507 \]
1508 \\
1509 where we used the hydrostatic equation:
1510 \[
1511 {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1512 \]
1513 Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1514 indicate dominantly unstable shear, and large positive values indicate dominantly stable
1515 stratification.
1516 \\
1517
1518 \noindent
1519 { \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1520
1521 \noindent
1522 The surface exchange coefficient is obtained from the similarity functions for the stability
1523 dependant flux profile relationships:
1524 \[
1525 {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1526 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1527 { k \over { (\psi_{h} + \psi_{g}) } }
1528 \]
1529 where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1530 viscous sublayer non-dimensional temperature or moisture change:
1531 \[
1532 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1533 \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1534 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1535 \]
1536 and:
1537 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1538
1539 \noindent
1540 $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1541 the temperature and moisture gradients, specified differently for stable and unstable
1542 layers according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1543 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1544 viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1545 (see diagnostic number 67), and the subscript ref refers to a reference value.
1546 \\
1547
1548 \noindent
1549 { \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
1550
1551 \noindent
1552 The surface exchange coefficient is obtained from the similarity functions for the stability
1553 dependant flux profile relationships:
1554 \[
1555 {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1556 \]
1557 where $\psi_m$ is the surface layer non-dimensional wind shear:
1558 \[
1559 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1560 \]
1561 \noindent
1562 $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1563 the temperature and moisture gradients, specified differently for stable and unstable layers
1564 according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1565 non-dimensional stability parameter, $u_*$ is the surface stress velocity
1566 (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1567 \\
1568
1569 \noindent
1570 { \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1571
1572 \noindent
1573 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1574 moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1575 diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1576 or moisture. In the \cite{helflab:88} adaptation of this closure, $K_h$
1577 takes the form:
1578 \[
1579 {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1580 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1581 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1582 \]
1583 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1584 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1585 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1586 depth,
1587 $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1588 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1589 dimensionless buoyancy and wind shear
1590 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1591 are functions of the Richardson number.
1592
1593 \noindent
1594 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1595 see \cite{helflab:88}.
1596
1597 \noindent
1598 In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1599 in units of $m/sec$, given by:
1600 \[
1601 {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
1602 \]
1603 \noindent
1604 where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1605 surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1606 friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1607 and $W_s$ is the magnitude of the surface layer wind.
1608 \\
1609
1610 \noindent
1611 { \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
1612
1613 \noindent
1614 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1615 momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1616 diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1617 In the \cite{helflab:88} adaptation of this closure, $K_m$
1618 takes the form:
1619 \[
1620 {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1621 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1622 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1623 \]
1624 \noindent
1625 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1626 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1627 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1628 depth,
1629 $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1630 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1631 dimensionless buoyancy and wind shear
1632 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1633 are functions of the Richardson number.
1634
1635 \noindent
1636 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1637 see \cite{helflab:88}.
1638
1639 \noindent
1640 In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1641 in units of $m/sec$, given by:
1642 \[
1643 {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1644 \]
1645 \noindent
1646 where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1647 similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1648 (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1649 magnitude of the surface layer wind.
1650 \\
1651
1652 \noindent
1653 { \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1654
1655 \noindent
1656 The tendency of U-Momentum due to turbulence is written:
1657 \[
1658 {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1659 = {\pp{}{z} }{(K_m \pp{u}{z})}
1660 \]
1661
1662 \noindent
1663 The Helfand and Labraga level 2.5 scheme models the turbulent
1664 flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1665 equation.
1666
1667 \noindent
1668 { \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1669
1670 \noindent
1671 The tendency of V-Momentum due to turbulence is written:
1672 \[
1673 {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1674 = {\pp{}{z} }{(K_m \pp{v}{z})}
1675 \]
1676
1677 \noindent
1678 The Helfand and Labraga level 2.5 scheme models the turbulent
1679 flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1680 equation.
1681 \\
1682
1683 \noindent
1684 { \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1685
1686 \noindent
1687 The tendency of temperature due to turbulence is written:
1688 \[
1689 {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1690 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1691 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1692 \]
1693
1694 \noindent
1695 The Helfand and Labraga level 2.5 scheme models the turbulent
1696 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1697 equation.
1698 \\
1699
1700 \noindent
1701 { \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1702
1703 \noindent
1704 The tendency of specific humidity due to turbulence is written:
1705 \[
1706 {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1707 = {\pp{}{z} }{(K_h \pp{q}{z})}
1708 \]
1709
1710 \noindent
1711 The Helfand and Labraga level 2.5 scheme models the turbulent
1712 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1713 equation.
1714 \\
1715
1716 \noindent
1717 { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1718
1719 \noindent
1720 \[
1721 {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1722 \]
1723 where:
1724 \[
1725 \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1726 \hspace{.4cm} and
1727 \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1728 \]
1729 and
1730 \[
1731 \Gamma_s = g \eta \pp{s}{p}
1732 \]
1733
1734 \noindent
1735 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1736 precipitation processes, or supersaturation rain.
1737 The summation refers to contributions from each cloud type called by RAS.
1738 The dry static energy is given
1739 as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1740 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1741 the description of the convective parameterization. The fractional adjustment, or relaxation
1742 parameter, for each cloud type is given as $\alpha$, while
1743 $R$ is the rain re-evaporation adjustment.
1744 \\
1745
1746 \noindent
1747 { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1748
1749 \noindent
1750 \[
1751 {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1752 \]
1753 where:
1754 \[
1755 \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1756 \hspace{.4cm} and
1757 \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1758 \]
1759 and
1760 \[
1761 \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1762 \]
1763 \noindent
1764 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1765 precipitation processes, or supersaturation rain.
1766 The summation refers to contributions from each cloud type called by RAS.
1767 The dry static energy is given as $s$,
1768 the moist static energy is given as $h$,
1769 the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1770 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1771 the description of the convective parameterization. The fractional adjustment, or relaxation
1772 parameter, for each cloud type is given as $\alpha$, while
1773 $R$ is the rain re-evaporation adjustment.
1774 \\
1775
1776 \noindent
1777 { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1778
1779 \noindent
1780 The net longwave heating rate is calculated as the vertical divergence of the
1781 net terrestrial radiative fluxes.
1782 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1783 longwave routine.
1784 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1785 For a given cloud fraction,
1786 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1787 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1788 for the upward and downward radiative fluxes.
1789 (see Section \ref{sec:fizhi:radcloud}).
1790 The cloudy-sky flux is then obtained as:
1791
1792 \noindent
1793 \[
1794 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1795 \]
1796
1797 \noindent
1798 Finally, the net longwave heating rate is calculated as the vertical divergence of the
1799 net terrestrial radiative fluxes:
1800 \[
1801 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1802 \]
1803 or
1804 \[
1805 {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1806 \]
1807
1808 \noindent
1809 where $g$ is the accelation due to gravity,
1810 $c_p$ is the heat capacity of air at constant pressure,
1811 and
1812 \[
1813 F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1814 \]
1815 \\
1816
1817
1818 \noindent
1819 { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1820
1821 \noindent
1822 The net Shortwave heating rate is calculated as the vertical divergence of the
1823 net solar radiative fluxes.
1824 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1825 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1826 both CLMO (maximum overlap cloud fraction) and
1827 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1828 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1829 true time-averaged cloud fractions CLMO
1830 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1831 input at the top of the atmosphere.
1832
1833 \noindent
1834 The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1835 \[
1836 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1837 \]
1838 or
1839 \[
1840 {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1841 \]
1842
1843 \noindent
1844 where $g$ is the accelation due to gravity,
1845 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1846 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1847 \[
1848 F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1849 \]
1850 \\
1851
1852 \noindent
1853 { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1854
1855 \noindent
1856 For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1857 the vertical integral or total precipitable amount is given by:
1858 \[
1859 {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1860 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1861 \]
1862 \\
1863
1864 \noindent
1865 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1866 time step, scaled to $mm/day$.
1867 \\
1868
1869 \noindent
1870 { \underline {PRECON} Convective Precipition ($mm/day$) }
1871
1872 \noindent
1873 For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1874 the vertical integral or total precipitable amount is given by:
1875 \[
1876 {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1877 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1878 \]
1879 \\
1880
1881 \noindent
1882 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1883 time step, scaled to $mm/day$.
1884 \\
1885
1886 \noindent
1887 { \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1888
1889 \noindent
1890 The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1891 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1892
1893 \[
1894 {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1895 {\rho } {(- K_m \pp{U}{z})}
1896 \]
1897
1898 \noindent
1899 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1900 \\
1901
1902 \noindent
1903 { \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1904
1905 \noindent
1906 The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1907 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1908
1909 \[
1910 {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1911 {\rho } {(- K_m \pp{V}{z})}
1912 \]
1913
1914 \noindent
1915 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1916 \\
1917
1918
1919 \noindent
1920 { \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1921
1922 \noindent
1923 The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1924 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1925
1926 \noindent
1927 \[
1928 {\bf TTFLUX} = c_p {\rho }
1929 P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1930 = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1931 \]
1932
1933 \noindent
1934 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1935 \\
1936
1937
1938 \noindent
1939 { \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1940
1941 \noindent
1942 The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1943 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1944
1945 \noindent
1946 \[
1947 {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1948 {L {\rho }(- K_h \pp{q}{z})}
1949 \]
1950
1951 \noindent
1952 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1953 \\
1954
1955
1956 \noindent
1957 { \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1958
1959 \noindent
1960 The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1961 \[
1962 {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1963 \]
1964
1965 \noindent
1966 where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1967 $z_0$ is the surface roughness.
1968
1969 \noindent
1970 NOTE: CN is not available through model version 5.3, but is available in subsequent
1971 versions.
1972 \\
1973
1974 \noindent
1975 { \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1976
1977 \noindent
1978 The surface wind speed is calculated for the last internal turbulence time step:
1979 \[
1980 {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1981 \]
1982
1983 \noindent
1984 where the subscript $Nrphys$ refers to the lowest model level.
1985 \\
1986
1987 \noindent
1988 { \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1989
1990 \noindent
1991 The air/surface virtual temperature difference measures the stability of the surface layer:
1992 \[
1993 {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1994 \]
1995 \noindent
1996 where
1997 \[
1998 \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1999 and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2000 \]
2001
2002 \noindent
2003 $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2004 $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
2005 and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
2006 refers to the surface.
2007 \\
2008
2009
2010 \noindent
2011 { \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
2012
2013 \noindent
2014 The ground temperature equation is solved as part of the turbulence package
2015 using a backward implicit time differencing scheme:
2016 \[
2017 {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2018 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2019 \]
2020
2021 \noindent
2022 where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2023 net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2024 sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2025 flux, and $C_g$ is the total heat capacity of the ground.
2026 $C_g$ is obtained by solving a heat diffusion equation
2027 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
2028 \[
2029 C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2030 { 86400. \over {2 \pi} } } \, \, .
2031 \]
2032 \noindent
2033 Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
2034 {cm \over {^oK}}$,
2035 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2036 by $2 \pi$ $radians/
2037 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2038 is a function of the ground wetness, $W$.
2039 \\
2040
2041 \noindent
2042 { \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
2043
2044 \noindent
2045 The surface temperature estimate is made by assuming that the model's lowest
2046 layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2047 The surface temperature is therefore:
2048 \[
2049 {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2050 \]
2051 \\
2052
2053 \noindent
2054 { \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2055
2056 \noindent
2057 The change in surface temperature from one turbulence time step to the next, solved
2058 using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2059 \[
2060 {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2061 \]
2062
2063 \noindent
2064 where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2065 refers to the value at the previous turbulence time level.
2066 \\
2067
2068 \noindent
2069 { \underline {QG} Ground Specific Humidity ($g/kg$) }
2070
2071 \noindent
2072 The ground specific humidity is obtained by interpolating between the specific
2073 humidity at the lowest model level and the specific humidity of a saturated ground.
2074 The interpolation is performed using the potential evapotranspiration function:
2075 \[
2076 {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2077 \]
2078
2079 \noindent
2080 where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2081 and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2082 pressure.
2083 \\
2084
2085 \noindent
2086 { \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
2087
2088 \noindent
2089 The surface saturation specific humidity is the saturation specific humidity at
2090 the ground temprature and surface pressure:
2091 \[
2092 {\bf QS} = q^*(T_g,P_s)
2093 \]
2094 \\
2095
2096 \noindent
2097 { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2098 radiation subroutine (deg)}
2099 \[
2100 {\bf TGRLW} = T_g(\lambda , \phi ,n)
2101 \]
2102 \noindent
2103 where $T_g$ is the model ground temperature at the current time step $n$.
2104 \\
2105
2106
2107 \noindent
2108 { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2109 \[
2110 {\bf ST4} = \sigma T^4
2111 \]
2112 \noindent
2113 where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2114 \\
2115
2116 \noindent
2117 { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2118 \[
2119 {\bf OLR} = F_{LW,top}^{NET}
2120 \]
2121 \noindent
2122 where top indicates the top of the first model layer.
2123 In the GCM, $p_{top}$ = 0.0 mb.
2124 \\
2125
2126
2127 \noindent
2128 { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2129 \[
2130 {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
2131 \]
2132 \noindent
2133 where top indicates the top of the first model layer.
2134 In the GCM, $p_{top}$ = 0.0 mb.
2135 \\
2136
2137 \noindent
2138 { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2139
2140 \noindent
2141 \begin{eqnarray*}
2142 {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2143 & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2144 \end{eqnarray*}
2145 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2146 $F(clearsky)_{LW}^\uparrow$ is
2147 the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2148 \\
2149
2150 \noindent
2151 { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2152
2153 \noindent
2154 The net longwave heating rate is calculated as the vertical divergence of the
2155 net terrestrial radiative fluxes.
2156 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2157 longwave routine.
2158 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2159 For a given cloud fraction,
2160 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2161 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2162 for the upward and downward radiative fluxes.
2163 (see Section \ref{sec:fizhi:radcloud}).
2164 The cloudy-sky flux is then obtained as:
2165
2166 \noindent
2167 \[
2168 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2169 \]
2170
2171 \noindent
2172 Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2173 vertical divergence of the
2174 clear-sky longwave radiative flux:
2175 \[
2176 \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2177 \]
2178 or
2179 \[
2180 {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2181 \]
2182
2183 \noindent
2184 where $g$ is the accelation due to gravity,
2185 $c_p$ is the heat capacity of air at constant pressure,
2186 and
2187 \[
2188 F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2189 \]
2190 \\
2191
2192
2193 \noindent
2194 { \underline {TLW} Instantaneous temperature used as input to the Longwave
2195 radiation subroutine (deg)}
2196 \[
2197 {\bf TLW} = T(\lambda , \phi ,level, n)
2198 \]
2199 \noindent
2200 where $T$ is the model temperature at the current time step $n$.
2201 \\
2202
2203
2204 \noindent
2205 { \underline {SHLW} Instantaneous specific humidity used as input to
2206 the Longwave radiation subroutine (kg/kg)}
2207 \[
2208 {\bf SHLW} = q(\lambda , \phi , level , n)
2209 \]
2210 \noindent
2211 where $q$ is the model specific humidity at the current time step $n$.
2212 \\
2213
2214
2215 \noindent
2216 { \underline {OZLW} Instantaneous ozone used as input to
2217 the Longwave radiation subroutine (kg/kg)}
2218 \[
2219 {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
2220 \]
2221 \noindent
2222 where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2223 mean zonally averaged ozone data set.
2224 \\
2225
2226
2227 \noindent
2228 { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2229
2230 \noindent
2231 {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2232 Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
2233 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2234 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2235 \[
2236 {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
2237 \]
2238 \\
2239
2240
2241 { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2242
2243 {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2244 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2245 Radiation packages.
2246 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2247 \[
2248 {\bf CLDTOT} = F_{RAS} + F_{LS}
2249 \]
2250 \\
2251 where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2252 time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2253 \\
2254
2255
2256 \noindent
2257 { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2258
2259 \noindent
2260 {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2261 Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
2262 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2263 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2264 \[
2265 {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
2266 \]
2267 \\
2268
2269 \noindent
2270 { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2271
2272 \noindent
2273 {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2274 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2275 Radiation algorithm. These are
2276 convective and large-scale clouds whose radiative characteristics are not
2277 assumed to be correlated in the vertical.
2278 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2279 \[
2280 {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
2281 \]
2282 \\
2283
2284 \noindent
2285 { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2286 \[
2287 {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2288 \]
2289 \noindent
2290 where $S_0$, is the extra-terrestial solar contant,
2291 $R_a$ is the earth-sun distance in Astronomical Units,
2292 and $cos \phi_z$ is the cosine of the zenith angle.
2293 It should be noted that {\bf RADSWT}, as well as
2294 {\bf OSR} and {\bf OSRCLR},
2295 are calculated at the top of the atmosphere (p=0 mb). However, the
2296 {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2297 calculated at $p= p_{top}$ (0.0 mb for the GCM).
2298 \\
2299
2300 \noindent
2301 { \underline {EVAP} Surface Evaporation ($mm/day$) }
2302
2303 \noindent
2304 The surface evaporation is a function of the gradient of moisture, the potential
2305 evapotranspiration fraction and the eddy exchange coefficient:
2306 \[
2307 {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2308 \]
2309 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2310 the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2311 turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2312 $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2313 number 34) and at the bottom model level, respectively.
2314 \\
2315
2316 \noindent
2317 { \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
2318
2319 \noindent
2320 {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2321 and Analysis forcing.
2322 \[
2323 {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2324 \]
2325 \\
2326
2327 \noindent
2328 { \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
2329
2330 \noindent
2331 {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2332 and Analysis forcing.
2333 \[
2334 {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2335 \]
2336 \\
2337
2338 \noindent
2339 { \underline {DTDT} Total Temperature Tendency ($deg/day$) }
2340
2341 \noindent
2342 {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2343 and Analysis forcing.
2344 \begin{eqnarray*}
2345 {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2346 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2347 \end{eqnarray*}
2348 \\
2349
2350 \noindent
2351 { \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
2352
2353 \noindent
2354 {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2355 and Analysis forcing.
2356 \[
2357 {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2358 + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2359 \]
2360 \\
2361
2362 \noindent
2363 { \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
2364
2365 \noindent
2366 The surface stress velocity, or the friction velocity, is the wind speed at
2367 the surface layer top impeded by the surface drag:
2368 \[
2369 {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2370 C_u = {k \over {\psi_m} }
2371 \]
2372
2373 \noindent
2374 $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2375 number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2376
2377 \noindent
2378 { \underline {Z0} Surface Roughness Length ($m$) }
2379
2380 \noindent
2381 Over the land surface, the surface roughness length is interpolated to the local
2382 time from the monthly mean data of \cite{dorsell:89}. Over the ocean,
2383 the roughness length is a function of the surface-stress velocity, $u_*$.
2384 \[
2385 {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2386 \]
2387
2388 \noindent
2389 where the constants are chosen to interpolate between the reciprocal relation of
2390 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
2391 for moderate to large winds.
2392 \\
2393
2394 \noindent
2395 { \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
2396
2397 \noindent
2398 The fraction of time when turbulence is present is defined as the fraction of
2399 time when the turbulent kinetic energy exceeds some minimum value, defined here
2400 to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2401 incremented. The fraction over the averaging interval is reported.
2402 \\
2403
2404 \noindent
2405 { \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
2406
2407 \noindent
2408 The depth of the PBL is defined by the turbulence parameterization to be the
2409 depth at which the turbulent kinetic energy reduces to ten percent of its surface
2410 value.
2411
2412 \[
2413 {\bf PBL} = P_{PBL} - P_{surface}
2414 \]
2415
2416 \noindent
2417 where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2418 reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2419 \\
2420
2421 \noindent
2422 { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2423
2424 \noindent
2425 The net Shortwave heating rate is calculated as the vertical divergence of the
2426 net solar radiative fluxes.
2427 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2428 For the clear-sky case, the shortwave fluxes and heating rates are computed with
2429 both CLMO (maximum overlap cloud fraction) and
2430 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2431 The shortwave routine is then called a second time, for the cloudy-sky case, with the
2432 true time-averaged cloud fractions CLMO
2433 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
2434 input at the top of the atmosphere.
2435
2436 \noindent
2437 The heating rate due to Shortwave Radiation under clear skies is defined as:
2438 \[
2439 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2440 \]
2441 or
2442 \[
2443 {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2444 \]
2445
2446 \noindent
2447 where $g$ is the accelation due to gravity,
2448 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2449 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2450 \[
2451 F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2452 \]
2453 \\
2454
2455 \noindent
2456 { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2457 \[
2458 {\bf OSR} = F_{SW,top}^{NET}
2459 \]
2460 \noindent
2461 where top indicates the top of the first model layer used in the shortwave radiation
2462 routine.
2463 In the GCM, $p_{SW_{top}}$ = 0 mb.
2464 \\
2465
2466 \noindent
2467 { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2468 \[
2469 {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
2470 \]
2471 \noindent
2472 where top indicates the top of the first model layer used in the shortwave radiation
2473 routine.
2474 In the GCM, $p_{SW_{top}}$ = 0 mb.
2475 \\
2476
2477
2478 \noindent
2479 { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2480
2481 \noindent
2482 The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2483 \[
2484 {\bf CLDMAS} = \eta m_B
2485 \]
2486 where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2487 the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2488 description of the convective parameterization.
2489 \\
2490
2491
2492
2493 \noindent
2494 { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2495
2496 \noindent
2497 The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2498 the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
2499 Zonal U-Wind which is archived on the Prognostic Output data stream.
2500 \[
2501 {\bf UAVE} = u(\lambda, \phi, level , t)
2502 \]
2503 \\
2504 Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2505 \\
2506
2507 \noindent
2508 { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2509
2510 \noindent
2511 The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2512 the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
2513 Meridional V-Wind which is archived on the Prognostic Output data stream.
2514 \[
2515 {\bf VAVE} = v(\lambda, \phi, level , t)
2516 \]
2517 \\
2518 Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2519 \\
2520
2521 \noindent
2522 { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2523
2524 \noindent
2525 The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2526 the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
2527 Temperature which is archived on the Prognostic Output data stream.
2528 \[
2529 {\bf TAVE} = T(\lambda, \phi, level , t)
2530 \]
2531 \\
2532
2533 \noindent
2534 { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2535
2536 \noindent
2537 The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2538 the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
2539 Specific Humidity which is archived on the Prognostic Output data stream.
2540 \[
2541 {\bf QAVE} = q(\lambda, \phi, level , t)
2542 \]
2543 \\
2544
2545 \noindent
2546 { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2547
2548 \noindent
2549 The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2550 the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
2551 Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2552 \begin{eqnarray*}
2553 {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
2554 & = & p_s(\lambda, \phi, level , t) - p_T
2555 \end{eqnarray*}
2556 \\
2557
2558
2559 \noindent
2560 { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2561
2562 \noindent
2563 The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2564 produced by the GCM Turbulence parameterization over
2565 the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
2566 Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2567 \[
2568 {\bf QQAVE} = qq(\lambda, \phi, level , t)
2569 \]
2570 \\
2571 Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2572 \\
2573
2574 \noindent
2575 { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2576
2577 \noindent
2578 \begin{eqnarray*}
2579 {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2580 & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2581 \end{eqnarray*}
2582 \noindent
2583 \\
2584 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2585 $F(clearsky){SW}^\downarrow$ is
2586 the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2587 the upward clearsky Shortwave flux.
2588 \\
2589
2590 \noindent
2591 { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2592
2593 \noindent
2594 {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2595 and the Analysis forcing.
2596 \[
2597 {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2598 \]
2599 \\
2600
2601 \noindent
2602 { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2603
2604 \noindent
2605 {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2606 and the Analysis forcing.
2607 \[
2608 {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2609 \]
2610 \\
2611
2612 \noindent
2613 { \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2614
2615 \noindent
2616 {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2617 and the Analysis forcing.
2618 \begin{eqnarray*}
2619 {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2620 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2621 \end{eqnarray*}
2622 \\
2623 If we define the time-tendency of Temperature due to Diabatic processes as
2624 \begin{eqnarray*}
2625 \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2626 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2627 \end{eqnarray*}
2628 then, since there are no surface pressure changes due to Diabatic processes, we may write
2629 \[
2630 \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2631 \]
2632 where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2633 \[
2634 {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2635 \]
2636 \\
2637
2638 \noindent
2639 { \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2640
2641 \noindent
2642 {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2643 and the Analysis forcing.
2644 \[
2645 {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2646 \]
2647 If we define the time-tendency of Specific Humidity due to Diabatic processes as
2648 \[
2649 \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2650 \]
2651 then, since there are no surface pressure changes due to Diabatic processes, we may write
2652 \[
2653 \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2654 \]
2655 Thus, {\bf DIABQ} may be written as
2656 \[
2657 {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2658 \]
2659 \\
2660
2661 \noindent
2662 { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2663
2664 \noindent
2665 The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2666 $u q$ over the depth of the atmosphere at each model timestep,
2667 and dividing by the total mass of the column.
2668 \[
2669 {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2670 \]
2671 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2672 \[
2673 {\bf VINTUQ} = { \int_0^1 u q dp }
2674 \]
2675 \\
2676
2677
2678 \noindent
2679 { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2680
2681 \noindent
2682 The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2683 $v q$ over the depth of the atmosphere at each model timestep,
2684 and dividing by the total mass of the column.
2685 \[
2686 {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2687 \]
2688 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2689 \[
2690 {\bf VINTVQ} = { \int_0^1 v q dp }
2691 \]
2692 \\
2693
2694
2695 \noindent
2696 { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2697
2698 \noindent
2699 The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2700 $u T$ over the depth of the atmosphere at each model timestep,
2701 and dividing by the total mass of the column.
2702 \[
2703 {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2704 \]
2705 Or,
2706 \[
2707 {\bf VINTUT} = { \int_0^1 u T dp }
2708 \]
2709 \\
2710
2711 \noindent
2712 { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2713
2714 \noindent
2715 The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2716 $v T$ over the depth of the atmosphere at each model timestep,
2717 and dividing by the total mass of the column.
2718 \[
2719 {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2720 \]
2721 Using $\rho \delta z = -{\delta p \over g} $, we have
2722 \[
2723 {\bf VINTVT} = { \int_0^1 v T dp }
2724 \]
2725 \\
2726
2727 \noindent
2728 { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2729
2730 If we define the
2731 time-averaged random and maximum overlapped cloudiness as CLRO and
2732 CLMO respectively, then the probability of clear sky associated
2733 with random overlapped clouds at any level is (1-CLRO) while the probability of
2734 clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2735 The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2736 the total cloud fraction at each level may be obtained by
2737 1-(1-CLRO)*(1-CLMO).
2738
2739 At any given level, we may define the clear line-of-site probability by
2740 appropriately accounting for the maximum and random overlap
2741 cloudiness. The clear line-of-site probability is defined to be
2742 equal to the product of the clear line-of-site probabilities
2743 associated with random and maximum overlap cloudiness. The clear
2744 line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2745 from the current pressure $p$
2746 to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2747 is simply 1.0 minus the largest maximum overlap cloud value along the
2748 line-of-site, ie.
2749
2750 $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2751
2752 Thus, even in the time-averaged sense it is assumed that the
2753 maximum overlap clouds are correlated in the vertical. The clear
2754 line-of-site probability associated with random overlap clouds is
2755 defined to be the product of the clear sky probabilities at each
2756 level along the line-of-site, ie.
2757
2758 $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2759
2760 The total cloud fraction at a given level associated with a line-
2761 of-site calculation is given by
2762
2763 $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2764 \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2765
2766
2767 \noindent
2768 The 2-dimensional net cloud fraction as seen from the top of the
2769 atmosphere is given by
2770 \[
2771 {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2772 \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2773 \]
2774 \\
2775 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2776
2777
2778 \noindent
2779 { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2780
2781 \noindent
2782 The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2783 given by:
2784 \begin{eqnarray*}
2785 {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2786 & = & {\pi \over g} \int_0^1 q dp
2787 \end{eqnarray*}
2788 where we have used the hydrostatic relation
2789 $\rho \delta z = -{\delta p \over g} $.
2790 \\
2791
2792
2793 \noindent
2794 { \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2795
2796 \noindent
2797 The u-wind at the 2-meter depth is determined from the similarity theory:
2798 \[
2799 {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2800 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2801 \]
2802
2803 \noindent
2804 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2805 $sl$ refers to the height of the top of the surface layer. If the roughness height
2806 is above two meters, ${\bf U2M}$ is undefined.
2807 \\
2808
2809 \noindent
2810 { \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2811
2812 \noindent
2813 The v-wind at the 2-meter depth is a determined from the similarity theory:
2814 \[
2815 {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2816 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2817 \]
2818
2819 \noindent
2820 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2821 $sl$ refers to the height of the top of the surface layer. If the roughness height
2822 is above two meters, ${\bf V2M}$ is undefined.
2823 \\
2824
2825 \noindent
2826 { \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2827
2828 \noindent
2829 The temperature at the 2-meter depth is a determined from the similarity theory:
2830 \[
2831 {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2832 P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2833 (\theta_{sl} - \theta_{surf}))
2834 \]
2835 where:
2836 \[
2837 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2838 \]
2839
2840 \noindent
2841 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2842 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2843 $sl$ refers to the height of the top of the surface layer. If the roughness height
2844 is above two meters, ${\bf T2M}$ is undefined.
2845 \\
2846
2847 \noindent
2848 { \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2849
2850 \noindent
2851 The specific humidity at the 2-meter depth is determined from the similarity theory:
2852 \[
2853 {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2854 P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2855 (q_{sl} - q_{surf}))
2856 \]
2857 where:
2858 \[
2859 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2860 \]
2861
2862 \noindent
2863 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2864 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2865 $sl$ refers to the height of the top of the surface layer. If the roughness height
2866 is above two meters, ${\bf Q2M}$ is undefined.
2867 \\
2868
2869 \noindent
2870 { \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2871
2872 \noindent
2873 The u-wind at the 10-meter depth is an interpolation between the surface wind
2874 and the model lowest level wind using the ratio of the non-dimensional wind shear
2875 at the two levels:
2876 \[
2877 {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2878 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2879 \]
2880
2881 \noindent
2882 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2883 $sl$ refers to the height of the top of the surface layer.
2884 \\
2885
2886 \noindent
2887 { \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2888
2889 \noindent
2890 The v-wind at the 10-meter depth is an interpolation between the surface wind
2891 and the model lowest level wind using the ratio of the non-dimensional wind shear
2892 at the two levels:
2893 \[
2894 {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2895 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2896 \]
2897
2898 \noindent
2899 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2900 $sl$ refers to the height of the top of the surface layer.
2901 \\
2902
2903 \noindent
2904 { \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2905
2906 \noindent
2907 The temperature at the 10-meter depth is an interpolation between the surface potential
2908 temperature and the model lowest level potential temperature using the ratio of the
2909 non-dimensional temperature gradient at the two levels:
2910 \[
2911 {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2912 P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2913 (\theta_{sl} - \theta_{surf}))
2914 \]
2915 where:
2916 \[
2917 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2918 \]
2919
2920 \noindent
2921 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2922 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2923 $sl$ refers to the height of the top of the surface layer.
2924 \\
2925
2926 \noindent
2927 { \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2928
2929 \noindent
2930 The specific humidity at the 10-meter depth is an interpolation between the surface specific
2931 humidity and the model lowest level specific humidity using the ratio of the
2932 non-dimensional temperature gradient at the two levels:
2933 \[
2934 {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2935 P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2936 (q_{sl} - q_{surf}))
2937 \]
2938 where:
2939 \[
2940 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2941 \]
2942
2943 \noindent
2944 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2945 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2946 $sl$ refers to the height of the top of the surface layer.
2947 \\
2948
2949 \noindent
2950 { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2951
2952 The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2953 \[
2954 {\bf DTRAIN} = \eta_{r_D}m_B
2955 \]
2956 \noindent
2957 where $r_D$ is the detrainment level,
2958 $m_B$ is the cloud base mass flux, and $\eta$
2959 is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2960 \\
2961
2962 \noindent
2963 { \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2964
2965 \noindent
2966 Due to computational errors associated with the numerical scheme used for
2967 the advection of moisture, negative values of specific humidity may be generated. The
2968 specific humidity is checked for negative values after every dynamics timestep. If negative
2969 values have been produced, a filling algorithm is invoked which redistributes moisture from
2970 below. Diagnostic {\bf QFILL} is equal to the net filling needed
2971 to eliminate negative specific humidity, scaled to a per-day rate:
2972 \[
2973 {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2974 \]
2975 where
2976 \[
2977 q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2978 \]
2979
2980
2981 \subsubsection{Key subroutines, parameters and files}
2982
2983 \subsubsection{Dos and donts}
2984
2985 \subsubsection{Fizhi Reference}

  ViewVC Help
Powered by ViewVC 1.1.22