/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.10 - (show annotations) (download) (as text)
Tue Aug 2 15:43:59 2005 UTC (19 years, 11 months ago) by molod
Branch: MAIN
Changes since 1.9: +41 -93 lines
File MIME type: application/x-tex
Use bibtex references

1 \subsection{Fizhi: High-end Atmospheric Physics}
2 \label{sec:pkg:fizhi}
3 \begin{rawhtml}
4 <!-- CMIREDIR:package_fizhi: -->
5 \end{rawhtml}
6 \input{texinputs/epsf.tex}
7
8 \subsubsection{Introduction}
9 The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10 physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11 boundary layer turbulence, and land surface processes.
12
13 % *************************************************************************
14 % *************************************************************************
15
16 \subsubsection{Equations}
17
18 Moist Convective Processes:
19
20 \paragraph{Sub-grid and Large-scale Convection}
21 \label{sec:fizhi:mc}
22
23 Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
24 Schubert (RAS) scheme of \cite{moorsz:92}, which is a linearized Arakawa Schubert
25 type scheme. RAS predicts the mass flux from an ensemble of clouds. Each subensemble is identified
26 by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.
27
28 The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are
29 the dry static energy, $s=c_pT +gz$, and the moist static energy, $h=c_p T + gz + Lq$.
30 The conceptual model behind RAS depicts each subensemble as a rising plume cloud, entraining
31 mass from the environment during ascent, and detraining all cloud air at the level of neutral
32 buoyancy. RAS assumes that the normalized cloud mass flux, $\eta$, normalized by the cloud base
33 mass flux, is a linear function of height, expressed as:
34 \[
35 \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
36 -{c_p \over {g}}\theta\lambda
37 \]
38 where we have used the hydrostatic equation written in the form:
39 \[
40 \pp{z}{P^{\kappa}} = -{c_p \over {g}}\theta
41 \]
42
43 The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
44 detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral
45 buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal
46 to the saturation moist static energy of the environment, $h^*$. Following \cite{moorsz:92},
47 $\lambda$ may be written as
48 \[
49 \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,
50 \]
51
52 where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.
53
54
55 The convective instability is measured in terms of the cloud work function $A$, defined as the
56 rate of change of cumulus kinetic energy. The cloud work function is
57 related to the buoyancy, or the difference
58 between the moist static energy in the cloud and in the environment:
59 \[
60 A = \int_{P_D}^{P_B} { {\eta \over {1 + \gamma} }
61 \left[ {{h_c-h^*} \over {P^{\kappa}}} \right] dP^{\kappa}}
62 \]
63
64 where $\gamma$ is ${L \over {c_p}}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,
65 and the subscript $c$ refers to the value inside the cloud.
66
67
68 To determine the cloud base mass flux, the rate of change of $A$ in time {\em due to dissipation by
69 the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation
70 by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:
71 \[
72 m_B = {{- \left.{dA \over dt} \right|_{ls}} \over K}
73 \]
74
75 where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per
76 unit cloud base mass flux, and is currently obtained by analytically differentiating the
77 expression for $A$ in time.
78 The rate of change of $A$ due to the generation by the large scale can be written as the
79 difference between the current $A(t+\Delta t)$ and its equillibrated value after the previous
80 convective time step
81 $A(t)$, divided by the time step. $A(t)$ is approximated as some critical $A_{crit}$,
82 computed by Lord (1982) from $in situ$ observations.
83
84
85 The predicted convective mass fluxes are used to solve grid-scale temperature
86 and moisture budget equations to determine the impact of convection on the large scale fields of
87 temperature (through latent heating and compensating subsidence) and moisture (through
88 precipitation and detrainment):
89 \[
90 \left.{\pp{\theta}{t}}\right|_{c} = \alpha { m_B \over {c_p P^{\kappa}}} \eta \pp{s}{p}
91 \]
92 and
93 \[
94 \left.{\pp{q}{t}}\right|_{c} = \alpha { m_B \over {L}} \eta (\pp{h}{p}-\pp{s}{p})
95 \]
96 where $\theta = {T \over P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.
97
98 As an approximation to a full interaction between the different allowable subensembles,
99 many clouds are simulated frequently, each modifying the large scale environment some fraction
100 $\alpha$ of the total adjustment. The parameterization thereby ``relaxes'' the large scale environment
101 towards equillibrium.
102
103 In addition to the RAS cumulus convection scheme, the fizhi package employs a
104 Kessler-type scheme for the re-evaporation of falling rain (\cite{sudm:88}), which
105 correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current
106 formulation assumes that all cloud water is deposited into the detrainment level as rain.
107 All of the rain is available for re-evaporation, which begins in the level below detrainment.
108 The scheme accounts for some microphysics such as
109 the rainfall intensity, the drop size distribution, as well as the temperature,
110 pressure and relative humidity of the surrounding air. The fraction of the moisture deficit
111 in any model layer into which the rain may re-evaporate is controlled by a free parameter,
112 which allows for a relatively efficient re-evaporation of liquid precipitate and larger rainout
113 for frozen precipitation.
114
115 Due to the increased vertical resolution near the surface, the lowest model
116 layers are averaged to provide a 50 mb thick sub-cloud layer for RAS. Each time RAS is
117 invoked (every ten simulated minutes),
118 a number of randomly chosen subensembles are checked for the possibility
119 of convection, from just above cloud base to 10 mb.
120
121 Supersaturation or large-scale precipitation is initiated in the fizhi package whenever
122 the relative humidity in any grid-box exceeds a critical value, currently 100 \%.
123 The large-scale precipitation re-evaporates during descent to partially saturate
124 lower layers in a process identical to the re-evaporation of convective rain.
125
126
127 \paragraph{Cloud Formation}
128 \label{sec:fizhi:clouds}
129
130 Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined
131 diagnostically as part of the cumulus and large-scale parameterizations.
132 Convective cloud fractions produced by RAS are proportional to the
133 detrained liquid water amount given by
134
135 \[
136 F_{RAS} = \min\left[ {l_{RAS}\over l_c}, 1.0 \right]
137 \]
138
139 where $l_c$ is an assigned critical value equal to $1.25$ g/kg.
140 A memory is associated with convective clouds defined by:
141
142 \[
143 F_{RAS}^n = \min\left[ F_{RAS} + (1-{\Delta t_{RAS}\over\tau})F_{RAS}^{n-1}, 1.0 \right]
144 \]
145
146 where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction
147 from the previous RAS timestep. The memory coefficient is computed using a RAS cloud timescale,
148 $\tau$, equal to 1 hour. RAS cloud fractions are cleared when they fall below 5 \%.
149
150 Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative
151 humidity:
152
153 \[
154 F_{LS} = \min\left[ { \left( {RH-RH_c \over 1-RH_c} \right) }^2, 1.0 \right]
155 \]
156
157 where
158
159 \bqa
160 RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\
161 s & = & p/p_{surf} \nonumber \\
162 r & = & \left( {1.0-RH_{min} \over \alpha} \right) \nonumber \\
163 RH_{min} & = & 0.75 \nonumber \\
164 \alpha & = & 0.573285 \nonumber .
165 \eqa
166
167 These cloud fractions are suppressed, however, in regions where the convective
168 sub-cloud layer is conditionally unstable. The functional form of $RH_c$ is shown in
169 Figure (\ref{fig:fizhi:rhcrit}).
170
171 \begin{figure*}[htbp]
172 \vspace{0.4in}
173 \centerline{ \epsfysize=4.0in \epsfbox{part6/rhcrit.ps}}
174 \vspace{0.4in}
175 \caption [Critical Relative Humidity for Clouds.]
176 {Critical Relative Humidity for Clouds.}
177 \label{fig:fizhi:rhcrit}
178 \end{figure*}
179
180 The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:
181
182 \[
183 F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] .
184 \]
185
186 Finally, cloud fractions are time-averaged between calls to the radiation packages.
187
188
189 Radiation:
190
191 The parameterization of radiative heating in the fizhi package includes effects
192 from both shortwave and longwave processes.
193 Radiative fluxes are calculated at each
194 model edge-level in both up and down directions.
195 The heating rates/cooling rates are then obtained
196 from the vertical divergence of the net radiative fluxes.
197
198 The net flux is
199 \[
200 F = F^\uparrow - F^\downarrow
201 \]
202 where $F$ is the net flux, $F^\uparrow$ is the upward flux and $F^\downarrow$ is
203 the downward flux.
204
205 The heating rate due to the divergence of the radiative flux is given by
206 \[
207 \pp{\rho c_p T}{t} = - \pp{F}{z}
208 \]
209 or
210 \[
211 \pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}
212 \]
213 where $g$ is the accelation due to gravity
214 and $c_p$ is the heat capacity of air at constant pressure.
215
216 The time tendency for Longwave
217 Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is updated once
218 every three hours assuming a normalized incident solar radiation, and subsequently modified at
219 every model time step by the true incident radiation.
220 The solar constant value used in the package is equal to 1365 $W/m^2$
221 and a $CO_2$ mixing ratio of 330 ppm.
222 For the ozone mixing ratio, monthly mean zonally averaged
223 climatological values specified as a function
224 of latitude and height (\cite{rosen:87}) are linearly interpolated to the current time.
225
226
227 \paragraph{Shortwave Radiation}
228
229 The shortwave radiation package used in the package computes solar radiative
230 heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen,
231 clouds, and aerosols and due to the
232 scattering by clouds, aerosols, and gases.
233 The shortwave radiative processes are described by
234 \cite{chou:90,chou:92}. This shortwave package
235 uses the Delta-Eddington approximation to compute the
236 bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).
237 The transmittance and reflectance of diffuse radiation
238 follow the procedures of Sagan and Pollock (JGR, 1967) and \cite{lhans:74}.
239
240 Highly accurate heating rate calculations are obtained through the use
241 of an optimal grouping strategy of spectral bands. By grouping the UV and visible regions
242 as indicated in Table \ref{tab:fizhi:solar2}, the Rayleigh scattering and the ozone absorption of solar radiation
243 can be accurately computed in the ultraviolet region and the photosynthetically
244 active radiation (PAR) region.
245 The computation of solar flux in the infrared region is performed with a broadband
246 parameterization using the spectrum regions shown in Table \ref{tab:fizhi:solar1}.
247 The solar radiation algorithm used in the fizhi package can be applied not only for climate studies but
248 also for studies on the photolysis in the upper atmosphere and the photosynthesis in the biosphere.
249
250 \begin{table}[htb]
251 \begin{center}
252 {\bf UV and Visible Spectral Regions} \\
253 \vspace{0.1in}
254 \begin{tabular}{|c|c|c|}
255 \hline
256 Region & Band & Wavelength (micron) \\ \hline
257 \hline
258 UV-C & 1. & .175 - .225 \\
259 & 2. & .225 - .245 \\
260 & & .260 - .280 \\
261 & 3. & .245 - .260 \\ \hline
262 UV-B & 4. & .280 - .295 \\
263 & 5. & .295 - .310 \\
264 & 6. & .310 - .320 \\ \hline
265 UV-A & 7. & .320 - .400 \\ \hline
266 PAR & 8. & .400 - .700 \\
267 \hline
268 \end{tabular}
269 \end{center}
270 \caption{UV and Visible Spectral Regions used in shortwave radiation package.}
271 \label{tab:fizhi:solar2}
272 \end{table}
273
274 \begin{table}[htb]
275 \begin{center}
276 {\bf Infrared Spectral Regions} \\
277 \vspace{0.1in}
278 \begin{tabular}{|c|c|c|}
279 \hline
280 Band & Wavenumber(cm$^{-1}$) & Wavelength (micron) \\ \hline
281 \hline
282 1 & 1000-4400 & 2.27-10.0 \\
283 2 & 4400-8200 & 1.22-2.27 \\
284 3 & 8200-14300 & 0.70-1.22 \\
285 \hline
286 \end{tabular}
287 \end{center}
288 \caption{Infrared Spectral Regions used in shortwave radiation package.}
289 \label{tab:fizhi:solar1}
290 \end{table}
291
292 Within the shortwave radiation package,
293 both ice and liquid cloud particles are allowed to co-exist in any of the model layers.
294 Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles.
295 Cloud parameters are defined as the cloud optical thickness and the effective cloud particle size.
296 In the fizhi package, the effective radius for water droplets is given as 10 microns,
297 while 65 microns is used for ice particles. The absorption due to aerosols is currently
298 set to zero.
299
300 To simplify calculations in a cloudy atmosphere, clouds are
301 grouped into low ($p>700$ mb), middle (700 mb $\ge p > 400$ mb), and high ($p < 400$ mb) cloud regions.
302 Within each of the three regions, clouds are assumed maximally
303 overlapped, and the cloud cover of the group is the maximum
304 cloud cover of all the layers in the group. The optical thickness
305 of a given layer is then scaled for both the direct (as a function of the
306 solar zenith angle) and diffuse beam radiation
307 so that the grouped layer reflectance is the same as the original reflectance.
308 The solar flux is computed for each of the eight cloud realizations possible
309 (see Figure \ref{fig:fizhi:cloud}) within this
310 low/middle/high classification, and appropriately averaged to produce the net solar flux.
311
312 \begin{figure*}[htbp]
313 \vspace{0.4in}
314 \centerline{ \epsfysize=4.0in %\epsfbox{part6/rhcrit.ps}
315 }
316 \vspace{0.4in}
317 \caption {Low-Middle-High Cloud Configurations}
318 \label{fig:fizhi:cloud}
319 \end{figure*}
320
321
322 \paragraph{Longwave Radiation}
323
324 The longwave radiation package used in the fizhi package is thoroughly described by \cite{chsz:94}.
325 As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
326 dioxide, and ozone. The spectral bands together with their absorbers and parameterization methods,
327 configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.
328
329
330 \begin{table}[htb]
331 \begin{center}
332 {\bf IR Spectral Bands} \\
333 \vspace{0.1in}
334 \begin{tabular}{|c|c|l|c| }
335 \hline
336 Band & Spectral Range (cm$^{-1}$) & Absorber & Method \\ \hline
337 \hline
338 1 & 0-340 & H$_2$O line & T \\ \hline
339 2 & 340-540 & H$_2$O line & T \\ \hline
340 3a & 540-620 & H$_2$O line & K \\
341 3b & 620-720 & H$_2$O continuum & S \\
342 3b & 720-800 & CO$_2$ & T \\ \hline
343 4 & 800-980 & H$_2$O line & K \\
344 & & H$_2$O continuum & S \\ \hline
345 & & H$_2$O line & K \\
346 5 & 980-1100 & H$_2$O continuum & S \\
347 & & O$_3$ & T \\ \hline
348 6 & 1100-1380 & H$_2$O line & K \\
349 & & H$_2$O continuum & S \\ \hline
350 7 & 1380-1900 & H$_2$O line & T \\ \hline
351 8 & 1900-3000 & H$_2$O line & K \\ \hline
352 \hline
353 \multicolumn{4}{|l|}{ \quad K: {\em k}-distribution method with linear pressure scaling } \\
354 \multicolumn{4}{|l|}{ \quad T: Table look-up with temperature and pressure scaling } \\
355 \multicolumn{4}{|l|}{ \quad S: One-parameter temperature scaling } \\
356 \hline
357 \end{tabular}
358 \end{center}
359 \vspace{0.1in}
360 \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from \cite{chzs:94})}
361 \label{tab:fizhi:longwave}
362 \end{table}
363
364
365 The longwave radiation package accurately computes cooling rates for the middle and
366 lower atmosphere from 0.01 mb to the surface. Errors are $<$ 0.4 C day$^{-1}$ in cooling
367 rates and $<$ 1\% in fluxes. From Chou and Suarez, it is estimated that the total effect of
368 neglecting all minor absorption bands and the effects of minor infrared absorbers such as
369 nitrous oxide (N$_2$O), methane (CH$_4$), and the chlorofluorocarbons (CFCs), is an underestimate
370 of $\approx$ 5 W/m$^2$ in the downward flux at the surface and an overestimate of $\approx$ 3 W/m$^2$
371 in the upward flux at the top of the atmosphere.
372
373 Similar to the procedure used in the shortwave radiation package, clouds are grouped into
374 three regions catagorized as low/middle/high.
375 The net clear line-of-site probability $(P)$ between any two levels, $p_1$ and $p_2 \quad (p_2 > p_1)$,
376 assuming randomly overlapped cloud groups, is simply the product of the probabilities within each group:
377
378 \[ P_{net} = P_{low} \times P_{mid} \times P_{hi} . \]
379
380 Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within
381 a group is given by:
382
383 \[ P_{group} = 1 - F_{max} , \]
384
385 where $F_{max}$ is the maximum cloud fraction encountered between $p_1$ and $p_2$ within that group.
386 For groups and/or levels outside the range of $p_1$ and $p_2$, a clear line-of-site probability equal to 1 is
387 assigned.
388
389
390 \paragraph{Cloud-Radiation Interaction}
391 \label{sec:fizhi:radcloud}
392
393 The cloud fractions and diagnosed cloud liquid water produced by moist processes
394 within the fizhi package are used in the radiation packages to produce cloud-radiative forcing.
395 The cloud optical thickness associated with large-scale cloudiness is made
396 proportional to the diagnosed large-scale liquid water, $\ell$, detrained due to super-saturation.
397 Two values are used corresponding to cloud ice particles and water droplets.
398 The range of optical thickness for these clouds is given as
399
400 \[ 0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002 \quad\mbox{for}\quad 0 \le \ell \le 2 \quad\mbox{mg/kg} , \]
401 \[ 0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2 \quad\mbox{for}\quad 0 \le \ell \le 10 \quad\mbox{mg/kg} . \]
402
403 The partitioning, $\alpha$, between ice particles and water droplets is achieved through a linear scaling
404 in temperature:
405
406 \[ 0 \le \alpha \le 1 \quad\mbox{for}\quad 233.15 \le T \le 253.15 . \]
407
408 The resulting optical depth associated with large-scale cloudiness is given as
409
410 \[ \tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} . \]
411
412 The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as
413
414 \[ \tau_{RAS} = 0.16 \quad mb^{-1} . \]
415
416 The total optical depth in a given model layer is computed as a weighted average between
417 the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the
418 layer:
419
420 \[ \tau = \left( {F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} \over F_{RAS}+F_{LS} } \right) \Delta p, \]
421
422 where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale
423 processes described in Section \ref{sec:fizhi:clouds}.
424 The optical thickness for the longwave radiative feedback is assumed to be 75 $\%$ of these values.
425
426 The entire Moist Convective Processes Module is called with a frequency of 10 minutes.
427 The cloud fraction values are time-averaged over the period between Radiation calls (every 3
428 hours). Therefore, in a time-averaged sense, both convective and large-scale
429 cloudiness can exist in a given grid-box.
430
431 Turbulence:
432
433 Turbulence is parameterized in the fizhi package to account for its contribution to the
434 vertical exchange of heat, moisture, and momentum.
435 The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
436 time scheme with an internal time step of 5 minutes.
437 The tendencies of atmospheric state variables due to turbulent diffusion are calculated using
438 the diffusion equations:
439
440 \[
441 {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
442 = {\pp{}{z} }{(K_m \pp{u}{z})}
443 \]
444 \[
445 {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
446 = {\pp{}{z} }{(K_m \pp{v}{z})}
447 \]
448 \[
449 {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
450 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
451 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
452 \]
453 \[
454 {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
455 = {\pp{}{z} }{(K_h \pp{q}{z})}
456 \]
457
458 Within the atmosphere, the time evolution
459 of second turbulent moments is explicitly modeled by representing the third moments in terms of
460 the first and second moments. This approach is known as a second-order closure modeling.
461 To simplify and streamline the computation of the second moments, the level 2.5 assumption
462 of Mellor and Yamada (1974) and \cite{yam:77} is employed, in which only the turbulent
463 kinetic energy (TKE),
464
465 \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]
466
467 is solved prognostically and the other second moments are solved diagnostically.
468 The prognostic equation for TKE allows the scheme to simulate
469 some of the transient and diffusive effects in the turbulence. The TKE budget equation
470 is solved numerically using an implicit backward computation of the terms linear in $q^2$
471 and is written:
472
473 \[
474 {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ {5 \over 3} {{\lambda}_1} q { \pp {}{z}
475 ({\h}q^2)} })} =
476 {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
477 { \pp{V}{z} }} + {{g \over {\Theta_0}}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} }
478 - { q^3 \over {{\Lambda} _1} }
479 \]
480
481 where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and
482 ${{\theta}^{\prime}}$ are the fluctuating parts of the velocity components and potential
483 temperature, $U$ and $V$ are the mean velocity components, ${\Theta_0}^{-1}$ is the
484 coefficient of thermal expansion, and ${{\lambda}_1}$ and ${{\Lambda} _1}$ are constant
485 multiples of the master length scale, $\ell$, which is designed to be a characteristic measure
486 of the vertical structure of the turbulent layers.
487
488 The first term on the left-hand side represents the time rate of change of TKE, and
489 the second term is a representation of the triple correlation, or turbulent
490 transport term. The first three terms on the right-hand side represent the sources of
491 TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation
492 of TKE.
493
494 In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the
495 wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and
496 $K_m$, respectively. In the statisically realizable level 2.5 turbulence scheme of
497 \cite{helflab:88}, these diffusion coefficients are expressed as
498
499 \[
500 K_h
501 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
502 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
503 \]
504
505 and
506
507 \[
508 K_m
509 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}
510 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
511 \]
512
513 where the subscript $e$ refers to the value under conditions of local equillibrium
514 (obtained from the Level 2.0 Model), $\ell$ is the master length scale related to the
515 vertical structure of the atmosphere,
516 and $S_M$ and $S_H$ are functions of $G_H$ and $G_M$, the dimensionless buoyancy and
517 wind shear parameters, respectively.
518 Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
519 are functions of the Richardson number:
520
521 \[
522 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
523 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } .
524 \]
525
526 Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)
527 indicate dominantly unstable shear, and large positive values indicate dominantly stable
528 stratification.
529
530 Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer,
531 which corresponds to the lowest GCM level (see \ref{tab:fizhi:sigma}),
532 are calculated using stability-dependant functions based on Monin-Obukhov theory:
533 \[
534 {K_m} (surface) = C_u \times u_* = C_D W_s
535 \]
536 and
537 \[
538 {K_h} (surface) = C_t \times u_* = C_H W_s
539 \]
540 where $u_*=C_uW_s$ is the surface friction velocity,
541 $C_D$ is termed the surface drag coefficient, $C_H$ the heat transfer coefficient,
542 and $W_s$ is the magnitude of the surface layer wind.
543
544 $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
545 similarity functions:
546 \[
547 {C_u} = {u_* \over W_s} = { k \over \psi_{m} }
548 \]
549 where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional
550 wind shear given by
551 \[
552 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} .
553 \]
554 Here $\zeta$ is the non-dimensional stability parameter, and
555 $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of
556 the momentum gradient. The functional form of $\phi_m$ is specified differently for stable and unstable
557 layers.
558
559 $C_t$ is the dimensionless exchange coefficient for heat and
560 moisture from the surface layer similarity functions:
561 \[
562 {C_t} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
563 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
564 { k \over { (\psi_{h} + \psi_{g}) } }
565 \]
566 where $\psi_h$ is the surface layer non-dimensional temperature gradient given by
567 \[
568 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} .
569 \]
570 Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
571 the temperature and moisture gradients, and is specified differently for stable and unstable
572 layers according to \cite{helfschu:95}.
573
574 $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,
575 which is the mosstly laminar region between the surface and the tops of the roughness
576 elements, in which temperature and moisture gradients can be quite large.
577 Based on \cite{yagkad:74}:
578 \[
579 \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
580 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
581 \]
582 where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the
583 surface roughness length, and the subscript {\em ref} refers to a reference value.
584 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
585
586 The surface roughness length over oceans is is a function of the surface-stress velocity,
587 \[
588 {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
589 \]
590 where the constants are chosen to interpolate between the reciprocal relation of
591 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
592 for moderate to large winds. Roughness lengths over land are specified
593 from the climatology of \cite{dorsell:89}.
594
595 For an unstable surface layer, the stability functions, chosen to interpolate between the
596 condition of small values of $\beta$ and the convective limit, are the KEYPS function
597 (\cite{pano:73}) for momentum, and its generalization for heat and moisture:
598 \[
599 {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
600 {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .
601 \]
602 The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind
603 speed approaches zero.
604
605 For a stable surface layer, the stability functions are the observationally
606 based functions of \cite{clarke:70}, slightly modified for
607 the momemtum flux:
608 \[
609 {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}
610 (1+ 5 {{\zeta}_1}) } } \hspace{1cm} ; \hspace{1cm}
611 {\phi_h} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {\zeta}
612 (1+ 5 {{\zeta}_1}) } } .
613 \]
614 The moisture flux also depends on a specified evapotranspiration
615 coefficient, set to unity over oceans and dependant on the climatological ground wetness over
616 land.
617
618 Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically
619 using an implicit backward operator.
620
621 \paragraph{Atmospheric Boundary Layer}
622
623 The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the
624 level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value.
625 The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers.
626
627 \paragraph{Surface Energy Budget}
628
629 The ground temperature equation is solved as part of the turbulence package
630 using a backward implicit time differencing scheme:
631 \[
632 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
633 \]
634 where $R_{sw}$ is the net surface downward shortwave radiative flux and $R_{lw}$ is the
635 net surface upward longwave radiative flux.
636
637 $H$ is the upward sensible heat flux, given by:
638 \[
639 {H} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY})
640 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
641 \]
642 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
643 heat of air at constant pressure, and $\theta$ represents the potential temperature
644 of the surface and of the lowest $\sigma$-level, respectively.
645
646 The upward latent heat flux, $LE$, is given by
647 \[
648 {LE} = \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY})
649 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
650 \]
651 where $\beta$ is the fraction of the potential evapotranspiration actually evaporated,
652 L is the latent heat of evaporation, and $q_{surface}$ and $q_{NLAY}$ are the specific
653 humidity of the surface and of the lowest $\sigma$-level, respectively.
654
655 The heat conduction through sea ice, $Q_{ice}$, is given by
656 \[
657 {Q_{ice}} = {C_{ti} \over {H_i}} (T_i-T_g)
658 \]
659 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
660 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the
661 surface temperature of the ice.
662
663 $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
664 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
665 \[
666 C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
667 {86400 \over 2 \pi} } \, \, .
668 \]
669 Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ ${ly\over{ sec}}
670 {cm \over {^oK}}$,
671 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
672 by $2 \pi$ $radians/
673 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
674 is a function of the ground wetness, $W$.
675
676 Land Surface Processes:
677
678 \paragraph{Surface Type}
679 The fizhi package surface Types are designated using the Koster-Suarez (\cite{ks:91,ks:92})
680 Land Surface Model (LSM) mosaic philosophy which allows multiple ``tiles'', or multiple surface
681 types, in any one grid cell. The Koster-Suarez LSM surface type classifications
682 are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid
683 cell occupied by any surface type were derived from the surface classification of
684 \cite{deftow:94}, and information about the location of permanent
685 ice was obtained from the classifications of \cite{dorsell:89}.
686 The surface type for the \txt GCM grid is shown in Figure \ref{fig:fizhi:surftype}.
687 The determination of the land or sea category of surface type was made from NCAR's
688 10 minute by 10 minute Navy topography
689 dataset, which includes information about the percentage of water-cover at any point.
690 The data were averaged to the model's \fxf and \txt grid resolutions,
691 and any grid-box whose averaged water percentage was $\geq 60 \%$ was
692 defined as a water point. The \fxf grid Land-Water designation was further modified
693 subjectively to ensure sufficient representation from small but isolated land and water regions.
694
695 \begin{table}
696 \begin{center}
697 {\bf Surface Type Designation} \\
698 \vspace{0.1in}
699 \begin{tabular}{ |c|l| }
700 \hline
701 Type & Vegetation Designation \\ \hline
702 \hline
703 1 & Broadleaf Evergreen Trees \\ \hline
704 2 & Broadleaf Deciduous Trees \\ \hline
705 3 & Needleleaf Trees \\ \hline
706 4 & Ground Cover \\ \hline
707 5 & Broadleaf Shrubs \\ \hline
708 6 & Dwarf Trees (Tundra) \\ \hline
709 7 & Bare Soil \\ \hline
710 8 & Desert (Bright) \\ \hline
711 9 & Glacier \\ \hline
712 10 & Desert (Dark) \\ \hline
713 100 & Ocean \\ \hline
714 \end{tabular}
715 \end{center}
716 \caption{Surface type designations used to compute surface roughness (over land)
717 and surface albedo.}
718 \label{tab:fizhi:surftype}
719 \end{table}
720
721
722 \begin{figure*}[htbp]
723 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.ps}}
724 \vspace{0.3in}
725 \caption {Surface Type Compinations at \txt resolution.}
726 \label{fig:fizhi:surftype}
727 \end{figure*}
728
729 \begin{figure*}[htbp]
730 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.descrip.ps}}
731 \vspace{0.3in}
732 \caption {Surface Type Descriptions.}
733 \label{fig:fizhi:surftype.desc}
734 \end{figure*}
735
736
737 \paragraph{Surface Roughness}
738 The surface roughness length over oceans is computed iteratively with the wind
739 stress by the surface layer parameterization (\cite{helfschu:95}).
740 It employs an interpolation between the functions of \cite{larpond:81}
741 for high winds and of \cite{kondo:75} for weak winds.
742
743
744 \paragraph{Albedo}
745 The surface albedo computation, described in \cite{ks:91},
746 employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
747 Model which distinguishes between the direct and diffuse albedos in the visible
748 and in the near infra-red spectral ranges. The albedos are functions of the observed
749 leaf area index (a description of the relative orientation of the leaves to the
750 sun), the greenness fraction, the vegetation type, and the solar zenith angle.
751 Modifications are made to account for the presence of snow, and its depth relative
752 to the height of the vegetation elements.
753
754 Gravity Wave Drag:
755
756 The fizhi package employs the gravity wave drag scheme of \cite{zhouetal:96}).
757 This scheme is a modified version of Vernekar et al. (1992),
758 which was based on Alpert et al. (1988) and Helfand et al. (1987).
759 In this version, the gravity wave stress at the surface is
760 based on that derived by Pierrehumbert (1986) and is given by:
761
762 \bq
763 |\vec{\tau}_{sfc}| = {\rho U^3\over{N \ell^*}} \left(F_r^2 \over{1+F_r^2}\right) \, \, ,
764 \eq
765
766 where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the
767 surface wind speed, $h$ is the standard deviation of the sub-grid scale orography,
768 and $\ell^*$ is the wavelength of the monochromatic gravity wave in the direction of the low-level wind.
769 A modification introduced by Zhou et al. allows for the momentum flux to
770 escape through the top of the model, although this effect is small for the current 70-level model.
771 The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.
772
773 The effects of using this scheme within a GCM are shown in \cite{taksz:96}.
774 Experiments using the gravity wave drag parameterization yielded significant and
775 beneficial impacts on both the time-mean flow and the transient statistics of the
776 a GCM climatology, and have eliminated most of the worst dynamically driven biases
777 in the a GCM simulation.
778 An examination of the angular momentum budget during climate runs indicates that the
779 resulting gravity wave torque is similar to the data-driven torque produced by a data
780 assimilation which was performed without gravity
781 wave drag. It was shown that the inclusion of gravity wave drag results in
782 large changes in both the mean flow and in eddy fluxes.
783 The result is a more
784 accurate simulation of surface stress (through a reduction in the surface wind strength),
785 of mountain torque (through a redistribution of mean sea-level pressure), and of momentum
786 convergence (through a reduction in the flux of westerly momentum by transient flow eddies).
787
788
789 Boundary Conditions and other Input Data:
790
791 Required fields which are not explicitly predicted or diagnosed during model execution must
792 either be prescribed internally or obtained from external data sets. In the fizhi package these
793 fields include: sea surface temperature, sea ice estent, surface geopotential variance,
794 vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,
795 and stratospheric moisture.
796
797 Boundary condition data sets are available at the model's \fxf and \txt
798 resolutions for either climatological or yearly varying conditions.
799 Any frequency of boundary condition data can be used in the fizhi package;
800 however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@.
801 The time mean values are interpolated during each model timestep to the
802 current time. Future model versions will incorporate boundary conditions at
803 higher spatial \mbox{($1^\circ$ x $1^\circ$)} resolutions.
804
805 \begin{table}[htb]
806 \begin{center}
807 {\bf Fizhi Input Datasets} \\
808 \vspace{0.1in}
809 \begin{tabular}{|l|c|r|} \hline
810 \multicolumn{1}{|c}{Variable} & \multicolumn{1}{|c}{Frequency} & \multicolumn{1}{|c|}{Years} \\ \hline\hline
811 Sea Ice Extent & monthly & 1979-current, climatology \\ \hline
812 Sea Ice Extent & weekly & 1982-current, climatology \\ \hline
813 Sea Surface Temperature & monthly & 1979-current, climatology \\ \hline
814 Sea Surface Temperature & weekly & 1982-current, climatology \\ \hline
815 Zonally Averaged Upper-Level Moisture & monthly & climatology \\ \hline
816 Zonally Averaged Ozone Concentration & monthly & climatology \\ \hline
817 \end{tabular}
818 \end{center}
819 \caption{Boundary conditions and other input data used in the fizhi package. Also noted are the
820 current years and frequencies available.}
821 \label{tab:fizhi:bcdata}
822 \end{table}
823
824
825 \paragraph{Topography and Topography Variance}
826
827 Surface geopotential heights are provided from an averaging of the Navy 10 minute
828 by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
829 model's grid resolution. The original topography is first rotated to the proper grid-orientation
830 which is being run, and then averages the data to the model resolution.
831
832 The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute
833 data to the model's resolution and re-interpolating back to the 10 minute by 10 minute resolution.
834 The sub-grid scale variance is constructed based on this smoothed dataset.
835
836
837 \paragraph{Upper Level Moisture}
838 The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas
839 Experiment (SAGE) as input into the model's radiation packages. The SAGE data is archived
840 as monthly zonal means at 5$^\circ$ latitudinal resolution. The data is interpolated to the
841 model's grid location and current time, and blended with the GCM's moisture data. Below 300 mb,
842 the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb,
843 a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
844
845
846 \subsubsection{Fizhi Diagnostics}
847
848 Fizhi Diagnostic Menu:
849 \label{sec:fizhi-diagnostics:menu}
850
851 \begin{tabular}{llll}
852 \hline\hline
853 NAME & UNITS & LEVELS & DESCRIPTION \\
854 \hline
855
856 &\\
857 UFLUX & $Newton/m^2$ & 1
858 &\begin{minipage}[t]{3in}
859 {Surface U-Wind Stress on the atmosphere}
860 \end{minipage}\\
861 VFLUX & $Newton/m^2$ & 1
862 &\begin{minipage}[t]{3in}
863 {Surface V-Wind Stress on the atmosphere}
864 \end{minipage}\\
865 HFLUX & $Watts/m^2$ & 1
866 &\begin{minipage}[t]{3in}
867 {Surface Flux of Sensible Heat}
868 \end{minipage}\\
869 EFLUX & $Watts/m^2$ & 1
870 &\begin{minipage}[t]{3in}
871 {Surface Flux of Latent Heat}
872 \end{minipage}\\
873 QICE & $Watts/m^2$ & 1
874 &\begin{minipage}[t]{3in}
875 {Heat Conduction through Sea-Ice}
876 \end{minipage}\\
877 RADLWG & $Watts/m^2$ & 1
878 &\begin{minipage}[t]{3in}
879 {Net upward LW flux at the ground}
880 \end{minipage}\\
881 RADSWG & $Watts/m^2$ & 1
882 &\begin{minipage}[t]{3in}
883 {Net downward SW flux at the ground}
884 \end{minipage}\\
885 RI & $dimensionless$ & Nrphys
886 &\begin{minipage}[t]{3in}
887 {Richardson Number}
888 \end{minipage}\\
889 CT & $dimensionless$ & 1
890 &\begin{minipage}[t]{3in}
891 {Surface Drag coefficient for T and Q}
892 \end{minipage}\\
893 CU & $dimensionless$ & 1
894 &\begin{minipage}[t]{3in}
895 {Surface Drag coefficient for U and V}
896 \end{minipage}\\
897 ET & $m^2/sec$ & Nrphys
898 &\begin{minipage}[t]{3in}
899 {Diffusivity coefficient for T and Q}
900 \end{minipage}\\
901 EU & $m^2/sec$ & Nrphys
902 &\begin{minipage}[t]{3in}
903 {Diffusivity coefficient for U and V}
904 \end{minipage}\\
905 TURBU & $m/sec/day$ & Nrphys
906 &\begin{minipage}[t]{3in}
907 {U-Momentum Changes due to Turbulence}
908 \end{minipage}\\
909 TURBV & $m/sec/day$ & Nrphys
910 &\begin{minipage}[t]{3in}
911 {V-Momentum Changes due to Turbulence}
912 \end{minipage}\\
913 TURBT & $deg/day$ & Nrphys
914 &\begin{minipage}[t]{3in}
915 {Temperature Changes due to Turbulence}
916 \end{minipage}\\
917 TURBQ & $g/kg/day$ & Nrphys
918 &\begin{minipage}[t]{3in}
919 {Specific Humidity Changes due to Turbulence}
920 \end{minipage}\\
921 MOISTT & $deg/day$ & Nrphys
922 &\begin{minipage}[t]{3in}
923 {Temperature Changes due to Moist Processes}
924 \end{minipage}\\
925 MOISTQ & $g/kg/day$ & Nrphys
926 &\begin{minipage}[t]{3in}
927 {Specific Humidity Changes due to Moist Processes}
928 \end{minipage}\\
929 RADLW & $deg/day$ & Nrphys
930 &\begin{minipage}[t]{3in}
931 {Net Longwave heating rate for each level}
932 \end{minipage}\\
933 RADSW & $deg/day$ & Nrphys
934 &\begin{minipage}[t]{3in}
935 {Net Shortwave heating rate for each level}
936 \end{minipage}\\
937 PREACC & $mm/day$ & 1
938 &\begin{minipage}[t]{3in}
939 {Total Precipitation}
940 \end{minipage}\\
941 PRECON & $mm/day$ & 1
942 &\begin{minipage}[t]{3in}
943 {Convective Precipitation}
944 \end{minipage}\\
945 TUFLUX & $Newton/m^2$ & Nrphys
946 &\begin{minipage}[t]{3in}
947 {Turbulent Flux of U-Momentum}
948 \end{minipage}\\
949 TVFLUX & $Newton/m^2$ & Nrphys
950 &\begin{minipage}[t]{3in}
951 {Turbulent Flux of V-Momentum}
952 \end{minipage}\\
953 TTFLUX & $Watts/m^2$ & Nrphys
954 &\begin{minipage}[t]{3in}
955 {Turbulent Flux of Sensible Heat}
956 \end{minipage}\\
957 \end{tabular}
958
959 \newpage
960 \vspace*{\fill}
961 \begin{tabular}{llll}
962 \hline\hline
963 NAME & UNITS & LEVELS & DESCRIPTION \\
964 \hline
965
966 &\\
967 TQFLUX & $Watts/m^2$ & Nrphys
968 &\begin{minipage}[t]{3in}
969 {Turbulent Flux of Latent Heat}
970 \end{minipage}\\
971 CN & $dimensionless$ & 1
972 &\begin{minipage}[t]{3in}
973 {Neutral Drag Coefficient}
974 \end{minipage}\\
975 WINDS & $m/sec$ & 1
976 &\begin{minipage}[t]{3in}
977 {Surface Wind Speed}
978 \end{minipage}\\
979 DTSRF & $deg$ & 1
980 &\begin{minipage}[t]{3in}
981 {Air/Surface virtual temperature difference}
982 \end{minipage}\\
983 TG & $deg$ & 1
984 &\begin{minipage}[t]{3in}
985 {Ground temperature}
986 \end{minipage}\\
987 TS & $deg$ & 1
988 &\begin{minipage}[t]{3in}
989 {Surface air temperature (Adiabatic from lowest model layer)}
990 \end{minipage}\\
991 DTG & $deg$ & 1
992 &\begin{minipage}[t]{3in}
993 {Ground temperature adjustment}
994 \end{minipage}\\
995
996 QG & $g/kg$ & 1
997 &\begin{minipage}[t]{3in}
998 {Ground specific humidity}
999 \end{minipage}\\
1000 QS & $g/kg$ & 1
1001 &\begin{minipage}[t]{3in}
1002 {Saturation surface specific humidity}
1003 \end{minipage}\\
1004 TGRLW & $deg$ & 1
1005 &\begin{minipage}[t]{3in}
1006 {Instantaneous ground temperature used as input to the
1007 Longwave radiation subroutine}
1008 \end{minipage}\\
1009 ST4 & $Watts/m^2$ & 1
1010 &\begin{minipage}[t]{3in}
1011 {Upward Longwave flux at the ground ($\sigma T^4$)}
1012 \end{minipage}\\
1013 OLR & $Watts/m^2$ & 1
1014 &\begin{minipage}[t]{3in}
1015 {Net upward Longwave flux at the top of the model}
1016 \end{minipage}\\
1017 OLRCLR & $Watts/m^2$ & 1
1018 &\begin{minipage}[t]{3in}
1019 {Net upward clearsky Longwave flux at the top of the model}
1020 \end{minipage}\\
1021 LWGCLR & $Watts/m^2$ & 1
1022 &\begin{minipage}[t]{3in}
1023 {Net upward clearsky Longwave flux at the ground}
1024 \end{minipage}\\
1025 LWCLR & $deg/day$ & Nrphys
1026 &\begin{minipage}[t]{3in}
1027 {Net clearsky Longwave heating rate for each level}
1028 \end{minipage}\\
1029 TLW & $deg$ & Nrphys
1030 &\begin{minipage}[t]{3in}
1031 {Instantaneous temperature used as input to the Longwave radiation
1032 subroutine}
1033 \end{minipage}\\
1034 SHLW & $g/g$ & Nrphys
1035 &\begin{minipage}[t]{3in}
1036 {Instantaneous specific humidity used as input to the Longwave radiation
1037 subroutine}
1038 \end{minipage}\\
1039 OZLW & $g/g$ & Nrphys
1040 &\begin{minipage}[t]{3in}
1041 {Instantaneous ozone used as input to the Longwave radiation
1042 subroutine}
1043 \end{minipage}\\
1044 CLMOLW & $0-1$ & Nrphys
1045 &\begin{minipage}[t]{3in}
1046 {Maximum overlap cloud fraction used in the Longwave radiation
1047 subroutine}
1048 \end{minipage}\\
1049 CLDTOT & $0-1$ & Nrphys
1050 &\begin{minipage}[t]{3in}
1051 {Total cloud fraction used in the Longwave and Shortwave radiation
1052 subroutines}
1053 \end{minipage}\\
1054 LWGDOWN & $Watts/m^2$ & 1
1055 &\begin{minipage}[t]{3in}
1056 {Downwelling Longwave radiation at the ground}
1057 \end{minipage}\\
1058 GWDT & $deg/day$ & Nrphys
1059 &\begin{minipage}[t]{3in}
1060 {Temperature tendency due to Gravity Wave Drag}
1061 \end{minipage}\\
1062 RADSWT & $Watts/m^2$ & 1
1063 &\begin{minipage}[t]{3in}
1064 {Incident Shortwave radiation at the top of the atmosphere}
1065 \end{minipage}\\
1066 TAUCLD & $per 100 mb$ & Nrphys
1067 &\begin{minipage}[t]{3in}
1068 {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1069 \end{minipage}\\
1070 TAUCLDC & $Number$ & Nrphys
1071 &\begin{minipage}[t]{3in}
1072 {Cloud Optical Depth Counter}
1073 \end{minipage}\\
1074 \end{tabular}
1075 \vfill
1076
1077 \newpage
1078 \vspace*{\fill}
1079 \begin{tabular}{llll}
1080 \hline\hline
1081 NAME & UNITS & LEVELS & DESCRIPTION \\
1082 \hline
1083
1084 &\\
1085 CLDLOW & $0-1$ & Nrphys
1086 &\begin{minipage}[t]{3in}
1087 {Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)}
1088 \end{minipage}\\
1089 EVAP & $mm/day$ & 1
1090 &\begin{minipage}[t]{3in}
1091 {Surface evaporation}
1092 \end{minipage}\\
1093 DPDT & $hPa/day$ & 1
1094 &\begin{minipage}[t]{3in}
1095 {Surface Pressure tendency}
1096 \end{minipage}\\
1097 UAVE & $m/sec$ & Nrphys
1098 &\begin{minipage}[t]{3in}
1099 {Average U-Wind}
1100 \end{minipage}\\
1101 VAVE & $m/sec$ & Nrphys
1102 &\begin{minipage}[t]{3in}
1103 {Average V-Wind}
1104 \end{minipage}\\
1105 TAVE & $deg$ & Nrphys
1106 &\begin{minipage}[t]{3in}
1107 {Average Temperature}
1108 \end{minipage}\\
1109 QAVE & $g/kg$ & Nrphys
1110 &\begin{minipage}[t]{3in}
1111 {Average Specific Humidity}
1112 \end{minipage}\\
1113 OMEGA & $hPa/day$ & Nrphys
1114 &\begin{minipage}[t]{3in}
1115 {Vertical Velocity}
1116 \end{minipage}\\
1117 DUDT & $m/sec/day$ & Nrphys
1118 &\begin{minipage}[t]{3in}
1119 {Total U-Wind tendency}
1120 \end{minipage}\\
1121 DVDT & $m/sec/day$ & Nrphys
1122 &\begin{minipage}[t]{3in}
1123 {Total V-Wind tendency}
1124 \end{minipage}\\
1125 DTDT & $deg/day$ & Nrphys
1126 &\begin{minipage}[t]{3in}
1127 {Total Temperature tendency}
1128 \end{minipage}\\
1129 DQDT & $g/kg/day$ & Nrphys
1130 &\begin{minipage}[t]{3in}
1131 {Total Specific Humidity tendency}
1132 \end{minipage}\\
1133 VORT & $10^{-4}/sec$ & Nrphys
1134 &\begin{minipage}[t]{3in}
1135 {Relative Vorticity}
1136 \end{minipage}\\
1137 DTLS & $deg/day$ & Nrphys
1138 &\begin{minipage}[t]{3in}
1139 {Temperature tendency due to Stratiform Cloud Formation}
1140 \end{minipage}\\
1141 DQLS & $g/kg/day$ & Nrphys
1142 &\begin{minipage}[t]{3in}
1143 {Specific Humidity tendency due to Stratiform Cloud Formation}
1144 \end{minipage}\\
1145 USTAR & $m/sec$ & 1
1146 &\begin{minipage}[t]{3in}
1147 {Surface USTAR wind}
1148 \end{minipage}\\
1149 Z0 & $m$ & 1
1150 &\begin{minipage}[t]{3in}
1151 {Surface roughness}
1152 \end{minipage}\\
1153 FRQTRB & $0-1$ & Nrphys-1
1154 &\begin{minipage}[t]{3in}
1155 {Frequency of Turbulence}
1156 \end{minipage}\\
1157 PBL & $mb$ & 1
1158 &\begin{minipage}[t]{3in}
1159 {Planetary Boundary Layer depth}
1160 \end{minipage}\\
1161 SWCLR & $deg/day$ & Nrphys
1162 &\begin{minipage}[t]{3in}
1163 {Net clearsky Shortwave heating rate for each level}
1164 \end{minipage}\\
1165 OSR & $Watts/m^2$ & 1
1166 &\begin{minipage}[t]{3in}
1167 {Net downward Shortwave flux at the top of the model}
1168 \end{minipage}\\
1169 OSRCLR & $Watts/m^2$ & 1
1170 &\begin{minipage}[t]{3in}
1171 {Net downward clearsky Shortwave flux at the top of the model}
1172 \end{minipage}\\
1173 CLDMAS & $kg / m^2$ & Nrphys
1174 &\begin{minipage}[t]{3in}
1175 {Convective cloud mass flux}
1176 \end{minipage}\\
1177 UAVE & $m/sec$ & Nrphys
1178 &\begin{minipage}[t]{3in}
1179 {Time-averaged $u-Wind$}
1180 \end{minipage}\\
1181 \end{tabular}
1182 \vfill
1183
1184 \newpage
1185 \vspace*{\fill}
1186 \begin{tabular}{llll}
1187 \hline\hline
1188 NAME & UNITS & LEVELS & DESCRIPTION \\
1189 \hline
1190
1191 &\\
1192 VAVE & $m/sec$ & Nrphys
1193 &\begin{minipage}[t]{3in}
1194 {Time-averaged $v-Wind$}
1195 \end{minipage}\\
1196 TAVE & $deg$ & Nrphys
1197 &\begin{minipage}[t]{3in}
1198 {Time-averaged $Temperature$}
1199 \end{minipage}\\
1200 QAVE & $g/g$ & Nrphys
1201 &\begin{minipage}[t]{3in}
1202 {Time-averaged $Specific \, \, Humidity$}
1203 \end{minipage}\\
1204 RFT & $deg/day$ & Nrphys
1205 &\begin{minipage}[t]{3in}
1206 {Temperature tendency due Rayleigh Friction}
1207 \end{minipage}\\
1208 PS & $mb$ & 1
1209 &\begin{minipage}[t]{3in}
1210 {Surface Pressure}
1211 \end{minipage}\\
1212 QQAVE & $(m/sec)^2$ & Nrphys
1213 &\begin{minipage}[t]{3in}
1214 {Time-averaged $Turbulent Kinetic Energy$}
1215 \end{minipage}\\
1216 SWGCLR & $Watts/m^2$ & 1
1217 &\begin{minipage}[t]{3in}
1218 {Net downward clearsky Shortwave flux at the ground}
1219 \end{minipage}\\
1220 PAVE & $mb$ & 1
1221 &\begin{minipage}[t]{3in}
1222 {Time-averaged Surface Pressure}
1223 \end{minipage}\\
1224 DIABU & $m/sec/day$ & Nrphys
1225 &\begin{minipage}[t]{3in}
1226 {Total Diabatic forcing on $u-Wind$}
1227 \end{minipage}\\
1228 DIABV & $m/sec/day$ & Nrphys
1229 &\begin{minipage}[t]{3in}
1230 {Total Diabatic forcing on $v-Wind$}
1231 \end{minipage}\\
1232 DIABT & $deg/day$ & Nrphys
1233 &\begin{minipage}[t]{3in}
1234 {Total Diabatic forcing on $Temperature$}
1235 \end{minipage}\\
1236 DIABQ & $g/kg/day$ & Nrphys
1237 &\begin{minipage}[t]{3in}
1238 {Total Diabatic forcing on $Specific \, \, Humidity$}
1239 \end{minipage}\\
1240 RFU & $m/sec/day$ & Nrphys
1241 &\begin{minipage}[t]{3in}
1242 {U-Wind tendency due to Rayleigh Friction}
1243 \end{minipage}\\
1244 RFV & $m/sec/day$ & Nrphys
1245 &\begin{minipage}[t]{3in}
1246 {V-Wind tendency due to Rayleigh Friction}
1247 \end{minipage}\\
1248 GWDU & $m/sec/day$ & Nrphys
1249 &\begin{minipage}[t]{3in}
1250 {U-Wind tendency due to Gravity Wave Drag}
1251 \end{minipage}\\
1252 GWDU & $m/sec/day$ & Nrphys
1253 &\begin{minipage}[t]{3in}
1254 {V-Wind tendency due to Gravity Wave Drag}
1255 \end{minipage}\\
1256 GWDUS & $N/m^2$ & 1
1257 &\begin{minipage}[t]{3in}
1258 {U-Wind Gravity Wave Drag Stress at Surface}
1259 \end{minipage}\\
1260 GWDVS & $N/m^2$ & 1
1261 &\begin{minipage}[t]{3in}
1262 {V-Wind Gravity Wave Drag Stress at Surface}
1263 \end{minipage}\\
1264 GWDUT & $N/m^2$ & 1
1265 &\begin{minipage}[t]{3in}
1266 {U-Wind Gravity Wave Drag Stress at Top}
1267 \end{minipage}\\
1268 GWDVT & $N/m^2$ & 1
1269 &\begin{minipage}[t]{3in}
1270 {V-Wind Gravity Wave Drag Stress at Top}
1271 \end{minipage}\\
1272 LZRAD & $mg/kg$ & Nrphys
1273 &\begin{minipage}[t]{3in}
1274 {Estimated Cloud Liquid Water used in Radiation}
1275 \end{minipage}\\
1276 \end{tabular}
1277 \vfill
1278
1279 \newpage
1280 \vspace*{\fill}
1281 \begin{tabular}{llll}
1282 \hline\hline
1283 NAME & UNITS & LEVELS & DESCRIPTION \\
1284 \hline
1285
1286 &\\
1287 SLP & $mb$ & 1
1288 &\begin{minipage}[t]{3in}
1289 {Time-averaged Sea-level Pressure}
1290 \end{minipage}\\
1291 CLDFRC & $0-1$ & 1
1292 &\begin{minipage}[t]{3in}
1293 {Total Cloud Fraction}
1294 \end{minipage}\\
1295 TPW & $gm/cm^2$ & 1
1296 &\begin{minipage}[t]{3in}
1297 {Precipitable water}
1298 \end{minipage}\\
1299 U2M & $m/sec$ & 1
1300 &\begin{minipage}[t]{3in}
1301 {U-Wind at 2 meters}
1302 \end{minipage}\\
1303 V2M & $m/sec$ & 1
1304 &\begin{minipage}[t]{3in}
1305 {V-Wind at 2 meters}
1306 \end{minipage}\\
1307 T2M & $deg$ & 1
1308 &\begin{minipage}[t]{3in}
1309 {Temperature at 2 meters}
1310 \end{minipage}\\
1311 Q2M & $g/kg$ & 1
1312 &\begin{minipage}[t]{3in}
1313 {Specific Humidity at 2 meters}
1314 \end{minipage}\\
1315 U10M & $m/sec$ & 1
1316 &\begin{minipage}[t]{3in}
1317 {U-Wind at 10 meters}
1318 \end{minipage}\\
1319 V10M & $m/sec$ & 1
1320 &\begin{minipage}[t]{3in}
1321 {V-Wind at 10 meters}
1322 \end{minipage}\\
1323 T10M & $deg$ & 1
1324 &\begin{minipage}[t]{3in}
1325 {Temperature at 10 meters}
1326 \end{minipage}\\
1327 Q10M & $g/kg$ & 1
1328 &\begin{minipage}[t]{3in}
1329 {Specific Humidity at 10 meters}
1330 \end{minipage}\\
1331 DTRAIN & $kg/m^2$ & Nrphys
1332 &\begin{minipage}[t]{3in}
1333 {Detrainment Cloud Mass Flux}
1334 \end{minipage}\\
1335 QFILL & $g/kg/day$ & Nrphys
1336 &\begin{minipage}[t]{3in}
1337 {Filling of negative specific humidity}
1338 \end{minipage}\\
1339 \end{tabular}
1340 \vspace{1.5in}
1341 \vfill
1342
1343 \newpage
1344 \vspace*{\fill}
1345 \begin{tabular}{llll}
1346 \hline\hline
1347 NAME & UNITS & LEVELS & DESCRIPTION \\
1348 \hline
1349
1350 &\\
1351 DTCONV & $deg/sec$ & Nr
1352 &\begin{minipage}[t]{3in}
1353 {Temp Change due to Convection}
1354 \end{minipage}\\
1355 DQCONV & $g/kg/sec$ & Nr
1356 &\begin{minipage}[t]{3in}
1357 {Specific Humidity Change due to Convection}
1358 \end{minipage}\\
1359 RELHUM & $percent$ & Nr
1360 &\begin{minipage}[t]{3in}
1361 {Relative Humidity}
1362 \end{minipage}\\
1363 PRECLS & $g/m^2/sec$ & 1
1364 &\begin{minipage}[t]{3in}
1365 {Large Scale Precipitation}
1366 \end{minipage}\\
1367 ENPREC & $J/g$ & 1
1368 &\begin{minipage}[t]{3in}
1369 {Energy of Precipitation (snow, rain Temp)}
1370 \end{minipage}\\
1371 \end{tabular}
1372 \vspace{1.5in}
1373 \vfill
1374
1375 \newpage
1376
1377 Fizhi Diagnostic Description:
1378
1379 In this section we list and describe the diagnostic quantities available within the
1380 GCM. The diagnostics are listed in the order that they appear in the
1381 Diagnostic Menu, Section \ref{sec:fizhi-diagnostics:menu}.
1382 In all cases, each diagnostic as currently archived on the output datasets
1383 is time-averaged over its diagnostic output frequency:
1384
1385 \[
1386 {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1387 \]
1388 where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1389 output frequency of the diagnostic, and $\Delta t$ is
1390 the timestep over which the diagnostic is updated.
1391
1392 { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1393
1394 The zonal wind stress is the turbulent flux of zonal momentum from
1395 the surface.
1396 \[
1397 {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1398 \]
1399 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1400 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1401 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1402 the zonal wind in the lowest model layer.
1403 \\
1404
1405
1406 { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1407
1408 The meridional wind stress is the turbulent flux of meridional momentum from
1409 the surface.
1410 \[
1411 {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1412 \]
1413 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1414 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1415 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1416 the meridional wind in the lowest model layer.
1417 \\
1418
1419 { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1420
1421 The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1422 gradient of virtual potential temperature and the eddy exchange coefficient:
1423 \[
1424 {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1425 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1426 \]
1427 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1428 heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1429 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1430 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1431 for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1432 at the surface and at the bottom model level.
1433 \\
1434
1435
1436 { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1437
1438 The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1439 gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1440 \[
1441 {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1442 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1443 \]
1444 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1445 the potential evapotranspiration actually evaporated, L is the latent
1446 heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1447 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1448 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1449 for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1450 humidity at the surface and at the bottom model level, respectively.
1451 \\
1452
1453 { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1454
1455 Over sea ice there is an additional source of energy at the surface due to the heat
1456 conduction from the relatively warm ocean through the sea ice. The heat conduction
1457 through sea ice represents an additional energy source term for the ground temperature equation.
1458
1459 \[
1460 {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1461 \]
1462
1463 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1464 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1465 $T_g$ is the temperature of the sea ice.
1466
1467 NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1468 \\
1469
1470
1471 { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1472
1473 \begin{eqnarray*}
1474 {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
1475 & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1476 \end{eqnarray*}
1477 \\
1478 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1479 $F_{LW}^\uparrow$ is
1480 the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1481 \\
1482
1483 { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1484
1485 \begin{eqnarray*}
1486 {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
1487 & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1488 \end{eqnarray*}
1489 \\
1490 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1491 $F_{SW}^\downarrow$ is
1492 the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1493 \\
1494
1495
1496 \noindent
1497 { \underline {RI} Richardson Number} ($dimensionless$)
1498
1499 \noindent
1500 The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1501 \[
1502 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1503 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1504 \]
1505 \\
1506 where we used the hydrostatic equation:
1507 \[
1508 {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1509 \]
1510 Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1511 indicate dominantly unstable shear, and large positive values indicate dominantly stable
1512 stratification.
1513 \\
1514
1515 \noindent
1516 { \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1517
1518 \noindent
1519 The surface exchange coefficient is obtained from the similarity functions for the stability
1520 dependant flux profile relationships:
1521 \[
1522 {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1523 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1524 { k \over { (\psi_{h} + \psi_{g}) } }
1525 \]
1526 where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1527 viscous sublayer non-dimensional temperature or moisture change:
1528 \[
1529 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1530 \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1531 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1532 \]
1533 and:
1534 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1535
1536 \noindent
1537 $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1538 the temperature and moisture gradients, specified differently for stable and unstable
1539 layers according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1540 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1541 viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1542 (see diagnostic number 67), and the subscript ref refers to a reference value.
1543 \\
1544
1545 \noindent
1546 { \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
1547
1548 \noindent
1549 The surface exchange coefficient is obtained from the similarity functions for the stability
1550 dependant flux profile relationships:
1551 \[
1552 {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1553 \]
1554 where $\psi_m$ is the surface layer non-dimensional wind shear:
1555 \[
1556 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1557 \]
1558 \noindent
1559 $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1560 the temperature and moisture gradients, specified differently for stable and unstable layers
1561 according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1562 non-dimensional stability parameter, $u_*$ is the surface stress velocity
1563 (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1564 \\
1565
1566 \noindent
1567 { \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1568
1569 \noindent
1570 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1571 moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1572 diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1573 or moisture. In the \cite{helflab:88} adaptation of this closure, $K_h$
1574 takes the form:
1575 \[
1576 {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1577 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1578 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1579 \]
1580 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1581 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1582 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1583 depth,
1584 $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1585 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1586 dimensionless buoyancy and wind shear
1587 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1588 are functions of the Richardson number.
1589
1590 \noindent
1591 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1592 see \cite{helflab:88}.
1593
1594 \noindent
1595 In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1596 in units of $m/sec$, given by:
1597 \[
1598 {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
1599 \]
1600 \noindent
1601 where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1602 surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1603 friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1604 and $W_s$ is the magnitude of the surface layer wind.
1605 \\
1606
1607 \noindent
1608 { \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
1609
1610 \noindent
1611 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1612 momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1613 diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1614 In the \cite{helflab:88} adaptation of this closure, $K_m$
1615 takes the form:
1616 \[
1617 {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1618 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1619 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1620 \]
1621 \noindent
1622 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1623 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1624 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1625 depth,
1626 $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1627 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1628 dimensionless buoyancy and wind shear
1629 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1630 are functions of the Richardson number.
1631
1632 \noindent
1633 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1634 see \cite{helflab:88}.
1635
1636 \noindent
1637 In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1638 in units of $m/sec$, given by:
1639 \[
1640 {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1641 \]
1642 \noindent
1643 where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1644 similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1645 (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1646 magnitude of the surface layer wind.
1647 \\
1648
1649 \noindent
1650 { \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1651
1652 \noindent
1653 The tendency of U-Momentum due to turbulence is written:
1654 \[
1655 {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1656 = {\pp{}{z} }{(K_m \pp{u}{z})}
1657 \]
1658
1659 \noindent
1660 The Helfand and Labraga level 2.5 scheme models the turbulent
1661 flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1662 equation.
1663
1664 \noindent
1665 { \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1666
1667 \noindent
1668 The tendency of V-Momentum due to turbulence is written:
1669 \[
1670 {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1671 = {\pp{}{z} }{(K_m \pp{v}{z})}
1672 \]
1673
1674 \noindent
1675 The Helfand and Labraga level 2.5 scheme models the turbulent
1676 flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1677 equation.
1678 \\
1679
1680 \noindent
1681 { \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1682
1683 \noindent
1684 The tendency of temperature due to turbulence is written:
1685 \[
1686 {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1687 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1688 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1689 \]
1690
1691 \noindent
1692 The Helfand and Labraga level 2.5 scheme models the turbulent
1693 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1694 equation.
1695 \\
1696
1697 \noindent
1698 { \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1699
1700 \noindent
1701 The tendency of specific humidity due to turbulence is written:
1702 \[
1703 {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1704 = {\pp{}{z} }{(K_h \pp{q}{z})}
1705 \]
1706
1707 \noindent
1708 The Helfand and Labraga level 2.5 scheme models the turbulent
1709 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1710 equation.
1711 \\
1712
1713 \noindent
1714 { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1715
1716 \noindent
1717 \[
1718 {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1719 \]
1720 where:
1721 \[
1722 \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1723 \hspace{.4cm} and
1724 \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1725 \]
1726 and
1727 \[
1728 \Gamma_s = g \eta \pp{s}{p}
1729 \]
1730
1731 \noindent
1732 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1733 precipitation processes, or supersaturation rain.
1734 The summation refers to contributions from each cloud type called by RAS.
1735 The dry static energy is given
1736 as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1737 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1738 the description of the convective parameterization. The fractional adjustment, or relaxation
1739 parameter, for each cloud type is given as $\alpha$, while
1740 $R$ is the rain re-evaporation adjustment.
1741 \\
1742
1743 \noindent
1744 { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1745
1746 \noindent
1747 \[
1748 {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1749 \]
1750 where:
1751 \[
1752 \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1753 \hspace{.4cm} and
1754 \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1755 \]
1756 and
1757 \[
1758 \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1759 \]
1760 \noindent
1761 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1762 precipitation processes, or supersaturation rain.
1763 The summation refers to contributions from each cloud type called by RAS.
1764 The dry static energy is given as $s$,
1765 the moist static energy is given as $h$,
1766 the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1767 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1768 the description of the convective parameterization. The fractional adjustment, or relaxation
1769 parameter, for each cloud type is given as $\alpha$, while
1770 $R$ is the rain re-evaporation adjustment.
1771 \\
1772
1773 \noindent
1774 { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1775
1776 \noindent
1777 The net longwave heating rate is calculated as the vertical divergence of the
1778 net terrestrial radiative fluxes.
1779 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1780 longwave routine.
1781 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1782 For a given cloud fraction,
1783 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1784 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1785 for the upward and downward radiative fluxes.
1786 (see Section \ref{sec:fizhi:radcloud}).
1787 The cloudy-sky flux is then obtained as:
1788
1789 \noindent
1790 \[
1791 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1792 \]
1793
1794 \noindent
1795 Finally, the net longwave heating rate is calculated as the vertical divergence of the
1796 net terrestrial radiative fluxes:
1797 \[
1798 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1799 \]
1800 or
1801 \[
1802 {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1803 \]
1804
1805 \noindent
1806 where $g$ is the accelation due to gravity,
1807 $c_p$ is the heat capacity of air at constant pressure,
1808 and
1809 \[
1810 F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1811 \]
1812 \\
1813
1814
1815 \noindent
1816 { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1817
1818 \noindent
1819 The net Shortwave heating rate is calculated as the vertical divergence of the
1820 net solar radiative fluxes.
1821 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1822 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1823 both CLMO (maximum overlap cloud fraction) and
1824 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1825 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1826 true time-averaged cloud fractions CLMO
1827 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1828 input at the top of the atmosphere.
1829
1830 \noindent
1831 The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1832 \[
1833 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1834 \]
1835 or
1836 \[
1837 {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1838 \]
1839
1840 \noindent
1841 where $g$ is the accelation due to gravity,
1842 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1843 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1844 \[
1845 F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1846 \]
1847 \\
1848
1849 \noindent
1850 { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1851
1852 \noindent
1853 For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1854 the vertical integral or total precipitable amount is given by:
1855 \[
1856 {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1857 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1858 \]
1859 \\
1860
1861 \noindent
1862 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1863 time step, scaled to $mm/day$.
1864 \\
1865
1866 \noindent
1867 { \underline {PRECON} Convective Precipition ($mm/day$) }
1868
1869 \noindent
1870 For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1871 the vertical integral or total precipitable amount is given by:
1872 \[
1873 {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1874 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1875 \]
1876 \\
1877
1878 \noindent
1879 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1880 time step, scaled to $mm/day$.
1881 \\
1882
1883 \noindent
1884 { \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1885
1886 \noindent
1887 The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1888 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1889
1890 \[
1891 {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1892 {\rho } {(- K_m \pp{U}{z})}
1893 \]
1894
1895 \noindent
1896 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1897 \\
1898
1899 \noindent
1900 { \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1901
1902 \noindent
1903 The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1904 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1905
1906 \[
1907 {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1908 {\rho } {(- K_m \pp{V}{z})}
1909 \]
1910
1911 \noindent
1912 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1913 \\
1914
1915
1916 \noindent
1917 { \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1918
1919 \noindent
1920 The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1921 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1922
1923 \noindent
1924 \[
1925 {\bf TTFLUX} = c_p {\rho }
1926 P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1927 = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1928 \]
1929
1930 \noindent
1931 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1932 \\
1933
1934
1935 \noindent
1936 { \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1937
1938 \noindent
1939 The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1940 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1941
1942 \noindent
1943 \[
1944 {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1945 {L {\rho }(- K_h \pp{q}{z})}
1946 \]
1947
1948 \noindent
1949 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1950 \\
1951
1952
1953 \noindent
1954 { \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1955
1956 \noindent
1957 The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1958 \[
1959 {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1960 \]
1961
1962 \noindent
1963 where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1964 $z_0$ is the surface roughness.
1965
1966 \noindent
1967 NOTE: CN is not available through model version 5.3, but is available in subsequent
1968 versions.
1969 \\
1970
1971 \noindent
1972 { \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1973
1974 \noindent
1975 The surface wind speed is calculated for the last internal turbulence time step:
1976 \[
1977 {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1978 \]
1979
1980 \noindent
1981 where the subscript $Nrphys$ refers to the lowest model level.
1982 \\
1983
1984 \noindent
1985 { \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1986
1987 \noindent
1988 The air/surface virtual temperature difference measures the stability of the surface layer:
1989 \[
1990 {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1991 \]
1992 \noindent
1993 where
1994 \[
1995 \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1996 and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1997 \]
1998
1999 \noindent
2000 $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2001 $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
2002 and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
2003 refers to the surface.
2004 \\
2005
2006
2007 \noindent
2008 { \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
2009
2010 \noindent
2011 The ground temperature equation is solved as part of the turbulence package
2012 using a backward implicit time differencing scheme:
2013 \[
2014 {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2015 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2016 \]
2017
2018 \noindent
2019 where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2020 net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2021 sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2022 flux, and $C_g$ is the total heat capacity of the ground.
2023 $C_g$ is obtained by solving a heat diffusion equation
2024 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
2025 \[
2026 C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2027 { 86400. \over {2 \pi} } } \, \, .
2028 \]
2029 \noindent
2030 Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
2031 {cm \over {^oK}}$,
2032 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2033 by $2 \pi$ $radians/
2034 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2035 is a function of the ground wetness, $W$.
2036 \\
2037
2038 \noindent
2039 { \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
2040
2041 \noindent
2042 The surface temperature estimate is made by assuming that the model's lowest
2043 layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2044 The surface temperature is therefore:
2045 \[
2046 {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2047 \]
2048 \\
2049
2050 \noindent
2051 { \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2052
2053 \noindent
2054 The change in surface temperature from one turbulence time step to the next, solved
2055 using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2056 \[
2057 {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2058 \]
2059
2060 \noindent
2061 where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2062 refers to the value at the previous turbulence time level.
2063 \\
2064
2065 \noindent
2066 { \underline {QG} Ground Specific Humidity ($g/kg$) }
2067
2068 \noindent
2069 The ground specific humidity is obtained by interpolating between the specific
2070 humidity at the lowest model level and the specific humidity of a saturated ground.
2071 The interpolation is performed using the potential evapotranspiration function:
2072 \[
2073 {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2074 \]
2075
2076 \noindent
2077 where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2078 and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2079 pressure.
2080 \\
2081
2082 \noindent
2083 { \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
2084
2085 \noindent
2086 The surface saturation specific humidity is the saturation specific humidity at
2087 the ground temprature and surface pressure:
2088 \[
2089 {\bf QS} = q^*(T_g,P_s)
2090 \]
2091 \\
2092
2093 \noindent
2094 { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2095 radiation subroutine (deg)}
2096 \[
2097 {\bf TGRLW} = T_g(\lambda , \phi ,n)
2098 \]
2099 \noindent
2100 where $T_g$ is the model ground temperature at the current time step $n$.
2101 \\
2102
2103
2104 \noindent
2105 { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2106 \[
2107 {\bf ST4} = \sigma T^4
2108 \]
2109 \noindent
2110 where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2111 \\
2112
2113 \noindent
2114 { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2115 \[
2116 {\bf OLR} = F_{LW,top}^{NET}
2117 \]
2118 \noindent
2119 where top indicates the top of the first model layer.
2120 In the GCM, $p_{top}$ = 0.0 mb.
2121 \\
2122
2123
2124 \noindent
2125 { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2126 \[
2127 {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
2128 \]
2129 \noindent
2130 where top indicates the top of the first model layer.
2131 In the GCM, $p_{top}$ = 0.0 mb.
2132 \\
2133
2134 \noindent
2135 { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2136
2137 \noindent
2138 \begin{eqnarray*}
2139 {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2140 & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2141 \end{eqnarray*}
2142 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2143 $F(clearsky)_{LW}^\uparrow$ is
2144 the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2145 \\
2146
2147 \noindent
2148 { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2149
2150 \noindent
2151 The net longwave heating rate is calculated as the vertical divergence of the
2152 net terrestrial radiative fluxes.
2153 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2154 longwave routine.
2155 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2156 For a given cloud fraction,
2157 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2158 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2159 for the upward and downward radiative fluxes.
2160 (see Section \ref{sec:fizhi:radcloud}).
2161 The cloudy-sky flux is then obtained as:
2162
2163 \noindent
2164 \[
2165 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2166 \]
2167
2168 \noindent
2169 Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2170 vertical divergence of the
2171 clear-sky longwave radiative flux:
2172 \[
2173 \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2174 \]
2175 or
2176 \[
2177 {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2178 \]
2179
2180 \noindent
2181 where $g$ is the accelation due to gravity,
2182 $c_p$ is the heat capacity of air at constant pressure,
2183 and
2184 \[
2185 F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2186 \]
2187 \\
2188
2189
2190 \noindent
2191 { \underline {TLW} Instantaneous temperature used as input to the Longwave
2192 radiation subroutine (deg)}
2193 \[
2194 {\bf TLW} = T(\lambda , \phi ,level, n)
2195 \]
2196 \noindent
2197 where $T$ is the model temperature at the current time step $n$.
2198 \\
2199
2200
2201 \noindent
2202 { \underline {SHLW} Instantaneous specific humidity used as input to
2203 the Longwave radiation subroutine (kg/kg)}
2204 \[
2205 {\bf SHLW} = q(\lambda , \phi , level , n)
2206 \]
2207 \noindent
2208 where $q$ is the model specific humidity at the current time step $n$.
2209 \\
2210
2211
2212 \noindent
2213 { \underline {OZLW} Instantaneous ozone used as input to
2214 the Longwave radiation subroutine (kg/kg)}
2215 \[
2216 {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
2217 \]
2218 \noindent
2219 where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2220 mean zonally averaged ozone data set.
2221 \\
2222
2223
2224 \noindent
2225 { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2226
2227 \noindent
2228 {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2229 Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
2230 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2231 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2232 \[
2233 {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
2234 \]
2235 \\
2236
2237
2238 { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2239
2240 {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2241 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2242 Radiation packages.
2243 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2244 \[
2245 {\bf CLDTOT} = F_{RAS} + F_{LS}
2246 \]
2247 \\
2248 where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2249 time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2250 \\
2251
2252
2253 \noindent
2254 { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2255
2256 \noindent
2257 {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2258 Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
2259 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2260 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2261 \[
2262 {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
2263 \]
2264 \\
2265
2266 \noindent
2267 { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2268
2269 \noindent
2270 {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2271 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2272 Radiation algorithm. These are
2273 convective and large-scale clouds whose radiative characteristics are not
2274 assumed to be correlated in the vertical.
2275 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2276 \[
2277 {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
2278 \]
2279 \\
2280
2281 \noindent
2282 { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2283 \[
2284 {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2285 \]
2286 \noindent
2287 where $S_0$, is the extra-terrestial solar contant,
2288 $R_a$ is the earth-sun distance in Astronomical Units,
2289 and $cos \phi_z$ is the cosine of the zenith angle.
2290 It should be noted that {\bf RADSWT}, as well as
2291 {\bf OSR} and {\bf OSRCLR},
2292 are calculated at the top of the atmosphere (p=0 mb). However, the
2293 {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2294 calculated at $p= p_{top}$ (0.0 mb for the GCM).
2295 \\
2296
2297 \noindent
2298 { \underline {EVAP} Surface Evaporation ($mm/day$) }
2299
2300 \noindent
2301 The surface evaporation is a function of the gradient of moisture, the potential
2302 evapotranspiration fraction and the eddy exchange coefficient:
2303 \[
2304 {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2305 \]
2306 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2307 the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2308 turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2309 $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2310 number 34) and at the bottom model level, respectively.
2311 \\
2312
2313 \noindent
2314 { \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
2315
2316 \noindent
2317 {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2318 and Analysis forcing.
2319 \[
2320 {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2321 \]
2322 \\
2323
2324 \noindent
2325 { \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
2326
2327 \noindent
2328 {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2329 and Analysis forcing.
2330 \[
2331 {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2332 \]
2333 \\
2334
2335 \noindent
2336 { \underline {DTDT} Total Temperature Tendency ($deg/day$) }
2337
2338 \noindent
2339 {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2340 and Analysis forcing.
2341 \begin{eqnarray*}
2342 {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2343 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2344 \end{eqnarray*}
2345 \\
2346
2347 \noindent
2348 { \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
2349
2350 \noindent
2351 {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2352 and Analysis forcing.
2353 \[
2354 {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2355 + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2356 \]
2357 \\
2358
2359 \noindent
2360 { \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
2361
2362 \noindent
2363 The surface stress velocity, or the friction velocity, is the wind speed at
2364 the surface layer top impeded by the surface drag:
2365 \[
2366 {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2367 C_u = {k \over {\psi_m} }
2368 \]
2369
2370 \noindent
2371 $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2372 number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2373
2374 \noindent
2375 { \underline {Z0} Surface Roughness Length ($m$) }
2376
2377 \noindent
2378 Over the land surface, the surface roughness length is interpolated to the local
2379 time from the monthly mean data of \cite{dorsell:89}. Over the ocean,
2380 the roughness length is a function of the surface-stress velocity, $u_*$.
2381 \[
2382 {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2383 \]
2384
2385 \noindent
2386 where the constants are chosen to interpolate between the reciprocal relation of
2387 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
2388 for moderate to large winds.
2389 \\
2390
2391 \noindent
2392 { \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
2393
2394 \noindent
2395 The fraction of time when turbulence is present is defined as the fraction of
2396 time when the turbulent kinetic energy exceeds some minimum value, defined here
2397 to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2398 incremented. The fraction over the averaging interval is reported.
2399 \\
2400
2401 \noindent
2402 { \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
2403
2404 \noindent
2405 The depth of the PBL is defined by the turbulence parameterization to be the
2406 depth at which the turbulent kinetic energy reduces to ten percent of its surface
2407 value.
2408
2409 \[
2410 {\bf PBL} = P_{PBL} - P_{surface}
2411 \]
2412
2413 \noindent
2414 where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2415 reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2416 \\
2417
2418 \noindent
2419 { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2420
2421 \noindent
2422 The net Shortwave heating rate is calculated as the vertical divergence of the
2423 net solar radiative fluxes.
2424 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2425 For the clear-sky case, the shortwave fluxes and heating rates are computed with
2426 both CLMO (maximum overlap cloud fraction) and
2427 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2428 The shortwave routine is then called a second time, for the cloudy-sky case, with the
2429 true time-averaged cloud fractions CLMO
2430 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
2431 input at the top of the atmosphere.
2432
2433 \noindent
2434 The heating rate due to Shortwave Radiation under clear skies is defined as:
2435 \[
2436 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2437 \]
2438 or
2439 \[
2440 {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2441 \]
2442
2443 \noindent
2444 where $g$ is the accelation due to gravity,
2445 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2446 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2447 \[
2448 F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2449 \]
2450 \\
2451
2452 \noindent
2453 { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2454 \[
2455 {\bf OSR} = F_{SW,top}^{NET}
2456 \]
2457 \noindent
2458 where top indicates the top of the first model layer used in the shortwave radiation
2459 routine.
2460 In the GCM, $p_{SW_{top}}$ = 0 mb.
2461 \\
2462
2463 \noindent
2464 { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2465 \[
2466 {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
2467 \]
2468 \noindent
2469 where top indicates the top of the first model layer used in the shortwave radiation
2470 routine.
2471 In the GCM, $p_{SW_{top}}$ = 0 mb.
2472 \\
2473
2474
2475 \noindent
2476 { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2477
2478 \noindent
2479 The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2480 \[
2481 {\bf CLDMAS} = \eta m_B
2482 \]
2483 where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2484 the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2485 description of the convective parameterization.
2486 \\
2487
2488
2489
2490 \noindent
2491 { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2492
2493 \noindent
2494 The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2495 the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
2496 Zonal U-Wind which is archived on the Prognostic Output data stream.
2497 \[
2498 {\bf UAVE} = u(\lambda, \phi, level , t)
2499 \]
2500 \\
2501 Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2502 \\
2503
2504 \noindent
2505 { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2506
2507 \noindent
2508 The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2509 the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
2510 Meridional V-Wind which is archived on the Prognostic Output data stream.
2511 \[
2512 {\bf VAVE} = v(\lambda, \phi, level , t)
2513 \]
2514 \\
2515 Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2516 \\
2517
2518 \noindent
2519 { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2520
2521 \noindent
2522 The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2523 the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
2524 Temperature which is archived on the Prognostic Output data stream.
2525 \[
2526 {\bf TAVE} = T(\lambda, \phi, level , t)
2527 \]
2528 \\
2529
2530 \noindent
2531 { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2532
2533 \noindent
2534 The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2535 the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
2536 Specific Humidity which is archived on the Prognostic Output data stream.
2537 \[
2538 {\bf QAVE} = q(\lambda, \phi, level , t)
2539 \]
2540 \\
2541
2542 \noindent
2543 { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2544
2545 \noindent
2546 The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2547 the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
2548 Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2549 \begin{eqnarray*}
2550 {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
2551 & = & p_s(\lambda, \phi, level , t) - p_T
2552 \end{eqnarray*}
2553 \\
2554
2555
2556 \noindent
2557 { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2558
2559 \noindent
2560 The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2561 produced by the GCM Turbulence parameterization over
2562 the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
2563 Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2564 \[
2565 {\bf QQAVE} = qq(\lambda, \phi, level , t)
2566 \]
2567 \\
2568 Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2569 \\
2570
2571 \noindent
2572 { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2573
2574 \noindent
2575 \begin{eqnarray*}
2576 {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2577 & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2578 \end{eqnarray*}
2579 \noindent
2580 \\
2581 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2582 $F(clearsky){SW}^\downarrow$ is
2583 the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2584 the upward clearsky Shortwave flux.
2585 \\
2586
2587 \noindent
2588 { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2589
2590 \noindent
2591 {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2592 and the Analysis forcing.
2593 \[
2594 {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2595 \]
2596 \\
2597
2598 \noindent
2599 { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2600
2601 \noindent
2602 {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2603 and the Analysis forcing.
2604 \[
2605 {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2606 \]
2607 \\
2608
2609 \noindent
2610 { \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2611
2612 \noindent
2613 {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2614 and the Analysis forcing.
2615 \begin{eqnarray*}
2616 {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2617 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2618 \end{eqnarray*}
2619 \\
2620 If we define the time-tendency of Temperature due to Diabatic processes as
2621 \begin{eqnarray*}
2622 \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2623 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2624 \end{eqnarray*}
2625 then, since there are no surface pressure changes due to Diabatic processes, we may write
2626 \[
2627 \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2628 \]
2629 where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2630 \[
2631 {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2632 \]
2633 \\
2634
2635 \noindent
2636 { \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2637
2638 \noindent
2639 {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2640 and the Analysis forcing.
2641 \[
2642 {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2643 \]
2644 If we define the time-tendency of Specific Humidity due to Diabatic processes as
2645 \[
2646 \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2647 \]
2648 then, since there are no surface pressure changes due to Diabatic processes, we may write
2649 \[
2650 \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2651 \]
2652 Thus, {\bf DIABQ} may be written as
2653 \[
2654 {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2655 \]
2656 \\
2657
2658 \noindent
2659 { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2660
2661 \noindent
2662 The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2663 $u q$ over the depth of the atmosphere at each model timestep,
2664 and dividing by the total mass of the column.
2665 \[
2666 {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2667 \]
2668 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2669 \[
2670 {\bf VINTUQ} = { \int_0^1 u q dp }
2671 \]
2672 \\
2673
2674
2675 \noindent
2676 { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2677
2678 \noindent
2679 The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2680 $v q$ over the depth of the atmosphere at each model timestep,
2681 and dividing by the total mass of the column.
2682 \[
2683 {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2684 \]
2685 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2686 \[
2687 {\bf VINTVQ} = { \int_0^1 v q dp }
2688 \]
2689 \\
2690
2691
2692 \noindent
2693 { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2694
2695 \noindent
2696 The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2697 $u T$ over the depth of the atmosphere at each model timestep,
2698 and dividing by the total mass of the column.
2699 \[
2700 {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2701 \]
2702 Or,
2703 \[
2704 {\bf VINTUT} = { \int_0^1 u T dp }
2705 \]
2706 \\
2707
2708 \noindent
2709 { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2710
2711 \noindent
2712 The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2713 $v T$ over the depth of the atmosphere at each model timestep,
2714 and dividing by the total mass of the column.
2715 \[
2716 {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2717 \]
2718 Using $\rho \delta z = -{\delta p \over g} $, we have
2719 \[
2720 {\bf VINTVT} = { \int_0^1 v T dp }
2721 \]
2722 \\
2723
2724 \noindent
2725 { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2726
2727 If we define the
2728 time-averaged random and maximum overlapped cloudiness as CLRO and
2729 CLMO respectively, then the probability of clear sky associated
2730 with random overlapped clouds at any level is (1-CLRO) while the probability of
2731 clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2732 The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2733 the total cloud fraction at each level may be obtained by
2734 1-(1-CLRO)*(1-CLMO).
2735
2736 At any given level, we may define the clear line-of-site probability by
2737 appropriately accounting for the maximum and random overlap
2738 cloudiness. The clear line-of-site probability is defined to be
2739 equal to the product of the clear line-of-site probabilities
2740 associated with random and maximum overlap cloudiness. The clear
2741 line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2742 from the current pressure $p$
2743 to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2744 is simply 1.0 minus the largest maximum overlap cloud value along the
2745 line-of-site, ie.
2746
2747 $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2748
2749 Thus, even in the time-averaged sense it is assumed that the
2750 maximum overlap clouds are correlated in the vertical. The clear
2751 line-of-site probability associated with random overlap clouds is
2752 defined to be the product of the clear sky probabilities at each
2753 level along the line-of-site, ie.
2754
2755 $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2756
2757 The total cloud fraction at a given level associated with a line-
2758 of-site calculation is given by
2759
2760 $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2761 \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2762
2763
2764 \noindent
2765 The 2-dimensional net cloud fraction as seen from the top of the
2766 atmosphere is given by
2767 \[
2768 {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2769 \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2770 \]
2771 \\
2772 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2773
2774
2775 \noindent
2776 { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2777
2778 \noindent
2779 The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2780 given by:
2781 \begin{eqnarray*}
2782 {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2783 & = & {\pi \over g} \int_0^1 q dp
2784 \end{eqnarray*}
2785 where we have used the hydrostatic relation
2786 $\rho \delta z = -{\delta p \over g} $.
2787 \\
2788
2789
2790 \noindent
2791 { \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2792
2793 \noindent
2794 The u-wind at the 2-meter depth is determined from the similarity theory:
2795 \[
2796 {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2797 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2798 \]
2799
2800 \noindent
2801 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2802 $sl$ refers to the height of the top of the surface layer. If the roughness height
2803 is above two meters, ${\bf U2M}$ is undefined.
2804 \\
2805
2806 \noindent
2807 { \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2808
2809 \noindent
2810 The v-wind at the 2-meter depth is a determined from the similarity theory:
2811 \[
2812 {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2813 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2814 \]
2815
2816 \noindent
2817 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2818 $sl$ refers to the height of the top of the surface layer. If the roughness height
2819 is above two meters, ${\bf V2M}$ is undefined.
2820 \\
2821
2822 \noindent
2823 { \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2824
2825 \noindent
2826 The temperature at the 2-meter depth is a determined from the similarity theory:
2827 \[
2828 {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2829 P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2830 (\theta_{sl} - \theta_{surf}))
2831 \]
2832 where:
2833 \[
2834 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2835 \]
2836
2837 \noindent
2838 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2839 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2840 $sl$ refers to the height of the top of the surface layer. If the roughness height
2841 is above two meters, ${\bf T2M}$ is undefined.
2842 \\
2843
2844 \noindent
2845 { \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2846
2847 \noindent
2848 The specific humidity at the 2-meter depth is determined from the similarity theory:
2849 \[
2850 {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2851 P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2852 (q_{sl} - q_{surf}))
2853 \]
2854 where:
2855 \[
2856 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2857 \]
2858
2859 \noindent
2860 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2861 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2862 $sl$ refers to the height of the top of the surface layer. If the roughness height
2863 is above two meters, ${\bf Q2M}$ is undefined.
2864 \\
2865
2866 \noindent
2867 { \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2868
2869 \noindent
2870 The u-wind at the 10-meter depth is an interpolation between the surface wind
2871 and the model lowest level wind using the ratio of the non-dimensional wind shear
2872 at the two levels:
2873 \[
2874 {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2875 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2876 \]
2877
2878 \noindent
2879 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2880 $sl$ refers to the height of the top of the surface layer.
2881 \\
2882
2883 \noindent
2884 { \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2885
2886 \noindent
2887 The v-wind at the 10-meter depth is an interpolation between the surface wind
2888 and the model lowest level wind using the ratio of the non-dimensional wind shear
2889 at the two levels:
2890 \[
2891 {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2892 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2893 \]
2894
2895 \noindent
2896 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2897 $sl$ refers to the height of the top of the surface layer.
2898 \\
2899
2900 \noindent
2901 { \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2902
2903 \noindent
2904 The temperature at the 10-meter depth is an interpolation between the surface potential
2905 temperature and the model lowest level potential temperature using the ratio of the
2906 non-dimensional temperature gradient at the two levels:
2907 \[
2908 {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2909 P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2910 (\theta_{sl} - \theta_{surf}))
2911 \]
2912 where:
2913 \[
2914 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2915 \]
2916
2917 \noindent
2918 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2919 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2920 $sl$ refers to the height of the top of the surface layer.
2921 \\
2922
2923 \noindent
2924 { \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2925
2926 \noindent
2927 The specific humidity at the 10-meter depth is an interpolation between the surface specific
2928 humidity and the model lowest level specific humidity using the ratio of the
2929 non-dimensional temperature gradient at the two levels:
2930 \[
2931 {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2932 P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2933 (q_{sl} - q_{surf}))
2934 \]
2935 where:
2936 \[
2937 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2938 \]
2939
2940 \noindent
2941 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2942 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2943 $sl$ refers to the height of the top of the surface layer.
2944 \\
2945
2946 \noindent
2947 { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2948
2949 The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2950 \[
2951 {\bf DTRAIN} = \eta_{r_D}m_B
2952 \]
2953 \noindent
2954 where $r_D$ is the detrainment level,
2955 $m_B$ is the cloud base mass flux, and $\eta$
2956 is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2957 \\
2958
2959 \noindent
2960 { \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2961
2962 \noindent
2963 Due to computational errors associated with the numerical scheme used for
2964 the advection of moisture, negative values of specific humidity may be generated. The
2965 specific humidity is checked for negative values after every dynamics timestep. If negative
2966 values have been produced, a filling algorithm is invoked which redistributes moisture from
2967 below. Diagnostic {\bf QFILL} is equal to the net filling needed
2968 to eliminate negative specific humidity, scaled to a per-day rate:
2969 \[
2970 {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2971 \]
2972 where
2973 \[
2974 q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2975 \]
2976
2977
2978 \subsubsection{Key subroutines, parameters and files}
2979
2980 \subsubsection{Dos and donts}
2981
2982 \subsubsection{Fizhi Reference}

  ViewVC Help
Powered by ViewVC 1.1.22