/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by edhill, Tue Oct 12 18:16:03 2004 UTC revision 1.9 by molod, Mon Jul 18 20:45:27 2005 UTC
# Line 1  Line 1 
1  \section{Fizhi: High-end Atmospheric Physics}  \subsection{Fizhi: High-end Atmospheric Physics}
2  \label{sec:pkg:fizhi}  \label{sec:pkg:fizhi}
3  \begin{rawhtml}  \begin{rawhtml}
4  <!-- CMIREDIR:package_fizhi: -->  <!-- CMIREDIR:package_fizhi: -->
5  \end{rawhtml}  \end{rawhtml}
6  \input{texinputs/epsf.tex}  \input{texinputs/epsf.tex}
7    
8  \subsection{Introduction}  \subsubsection{Introduction}
9  The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art  The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10  physical parameterizations for atmospheric radiation, cumulus convection, atmospheric  physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11  boundary layer turbulence, and land surface processes.  boundary layer turbulence, and land surface processes.
# Line 13  boundary layer turbulence, and land surf Line 13  boundary layer turbulence, and land surf
13  % *************************************************************************  % *************************************************************************
14  % *************************************************************************  % *************************************************************************
15    
16  \subsection{Equations}  \subsubsection{Equations}
17    
18  \subsubsection{Moist Convective Processes}  Moist Convective Processes:
19    
20  \paragraph{Sub-grid and Large-scale Convection}  \paragraph{Sub-grid and Large-scale Convection}
21  \label{sec:fizhi:mc}  \label{sec:fizhi:mc}
# Line 186  F_{CLD} = \max \left[ F_{RAS},F_{LS} \ri Line 186  F_{CLD} = \max \left[ F_{RAS},F_{LS} \ri
186  Finally, cloud fractions are time-averaged between calls to the radiation packages.  Finally, cloud fractions are time-averaged between calls to the radiation packages.
187    
188    
189  \subsubsection{Radiation}  Radiation:
190    
191  The parameterization of radiative heating in the fizhi package includes effects  The parameterization of radiative heating in the fizhi package includes effects
192  from both shortwave and longwave processes.  from both shortwave and longwave processes.
# Line 428  The cloud fraction values are time-avera Line 428  The cloud fraction values are time-avera
428  hours).  Therefore, in a time-averaged sense, both convective and large-scale  hours).  Therefore, in a time-averaged sense, both convective and large-scale
429  cloudiness can exist in a given grid-box.    cloudiness can exist in a given grid-box.  
430    
431  \subsubsection{Turbulence}  Turbulence:
432    
433  Turbulence is parameterized in the fizhi package to account for its contribution to the  Turbulence is parameterized in the fizhi package to account for its contribution to the
434  vertical exchange of heat, moisture, and momentum.    vertical exchange of heat, moisture, and momentum.  
435  The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative  The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
# Line 672  by $2 \pi$ $radians/ Line 673  by $2 \pi$ $radians/
673  day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,  day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
674  is a function of the ground wetness, $W$.  is a function of the ground wetness, $W$.
675    
676  \subsubsection{Land Surface Processes}  Land Surface Processes:
677    
678  \paragraph{Surface Type}  \paragraph{Surface Type}
679  The fizhi package surface Types are designated using the Koster-Suarez (1992) mosaic  The fizhi package surface Types are designated using the Koster-Suarez (1992) mosaic
# Line 750  sun), the greenness fraction, the vegeta Line 751  sun), the greenness fraction, the vegeta
751  Modifications are made to account for the presence of snow, and its depth relative  Modifications are made to account for the presence of snow, and its depth relative
752  to the height of the vegetation elements.  to the height of the vegetation elements.
753    
754  \subsubsection{Gravity Wave Drag}  Gravity Wave Drag:
755    
756  The fizhi package employs the gravity wave drag scheme of Zhou et al. (1996).  The fizhi package employs the gravity wave drag scheme of Zhou et al. (1996).
757  This scheme is a modified version of Vernekar et al. (1992),  This scheme is a modified version of Vernekar et al. (1992),
758  which was based on Alpert et al. (1988) and Helfand et al. (1987).    which was based on Alpert et al. (1988) and Helfand et al. (1987).  
# Line 784  of mountain torque (through a redistribu Line 786  of mountain torque (through a redistribu
786  convergence (through a reduction in the flux of westerly momentum by transient flow eddies).    convergence (through a reduction in the flux of westerly momentum by transient flow eddies).  
787    
788    
789  \subsubsection{Boundary Conditions and other Input Data}  Boundary Conditions and other Input Data:
790    
791  Required fields which are not explicitly predicted or diagnosed during model execution must  Required fields which are not explicitly predicted or diagnosed during model execution must
792  either be prescribed internally or obtained from external data sets.  In the fizhi package these  either be prescribed internally or obtained from external data sets.  In the fizhi package these
# Line 892  model's grid location and current time, Line 894  model's grid location and current time,
894  the model's moisture data is used.  Above 100 mb, the SAGE data is used.  Between 100 and 300 mb,  the model's moisture data is used.  Above 100 mb, the SAGE data is used.  Between 100 and 300 mb,
895  a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.  a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
896    
 \subsection{Key subroutines, parameters and files}  
897    
898  \subsection{Dos and donts}  \subsubsection{Fizhi Diagnostics}
899    
900    Fizhi Diagnostic Menu:
901    \label{sec:fizhi-diagnostics:menu}
902    
903    \begin{tabular}{llll}
904    \hline\hline
905     NAME & UNITS & LEVELS & DESCRIPTION \\
906    \hline
907    
908    &\\
909     UFLUX    &   $Newton/m^2$  &    1  
910             &\begin{minipage}[t]{3in}
911              {Surface U-Wind Stress on the atmosphere}
912             \end{minipage}\\
913     VFLUX    &   $Newton/m^2$  &    1  
914             &\begin{minipage}[t]{3in}
915              {Surface V-Wind Stress on the atmosphere}
916             \end{minipage}\\
917     HFLUX    &   $Watts/m^2$  &    1  
918             &\begin{minipage}[t]{3in}
919              {Surface Flux of Sensible Heat}
920             \end{minipage}\\
921     EFLUX    &   $Watts/m^2$  &    1  
922             &\begin{minipage}[t]{3in}
923              {Surface Flux of Latent Heat}
924             \end{minipage}\\
925     QICE     &   $Watts/m^2$  &    1  
926             &\begin{minipage}[t]{3in}
927              {Heat Conduction through Sea-Ice}
928             \end{minipage}\\
929     RADLWG   &   $Watts/m^2$ &    1  
930             &\begin{minipage}[t]{3in}
931              {Net upward LW flux at the ground}
932             \end{minipage}\\
933     RADSWG   &   $Watts/m^2$  &    1
934             &\begin{minipage}[t]{3in}
935              {Net downward SW flux at the ground}
936             \end{minipage}\\
937     RI       &  $dimensionless$ &  Nrphys
938             &\begin{minipage}[t]{3in}
939              {Richardson Number}
940             \end{minipage}\\
941     CT       &  $dimensionless$ &  1
942             &\begin{minipage}[t]{3in}
943              {Surface Drag coefficient for T and Q}
944             \end{minipage}\\
945     CU       & $dimensionless$ &  1
946         &\begin{minipage}[t]{3in}
947          {Surface Drag coefficient for U and V}
948         \end{minipage}\\
949     ET       &  $m^2/sec$ &  Nrphys
950         &\begin{minipage}[t]{3in}
951          {Diffusivity coefficient for T and Q}
952         \end{minipage}\\
953     EU       &  $m^2/sec$ &  Nrphys
954         &\begin{minipage}[t]{3in}
955          {Diffusivity coefficient for U and V}
956         \end{minipage}\\
957     TURBU    &  $m/sec/day$ &  Nrphys
958         &\begin{minipage}[t]{3in}
959          {U-Momentum Changes due to Turbulence}
960         \end{minipage}\\
961     TURBV    &  $m/sec/day$ &  Nrphys
962         &\begin{minipage}[t]{3in}
963          {V-Momentum Changes due to Turbulence}
964         \end{minipage}\\
965     TURBT    &  $deg/day$ &  Nrphys
966         &\begin{minipage}[t]{3in}
967          {Temperature Changes due to Turbulence}
968         \end{minipage}\\
969     TURBQ    &  $g/kg/day$ &  Nrphys
970         &\begin{minipage}[t]{3in}
971          {Specific Humidity Changes due to Turbulence}
972         \end{minipage}\\
973     MOISTT   &   $deg/day$ &  Nrphys
974         &\begin{minipage}[t]{3in}
975          {Temperature Changes due to Moist Processes}
976         \end{minipage}\\
977     MOISTQ   &  $g/kg/day$ &  Nrphys
978         &\begin{minipage}[t]{3in}
979          {Specific Humidity Changes due to Moist Processes}
980         \end{minipage}\\
981     RADLW    &  $deg/day$ &  Nrphys
982         &\begin{minipage}[t]{3in}
983          {Net Longwave heating rate for each level}
984         \end{minipage}\\
985     RADSW    &  $deg/day$ &  Nrphys
986         &\begin{minipage}[t]{3in}
987          {Net Shortwave heating rate for each level}
988         \end{minipage}\\
989     PREACC   &  $mm/day$ &  1
990         &\begin{minipage}[t]{3in}
991          {Total Precipitation}
992         \end{minipage}\\
993     PRECON   &  $mm/day$ &  1
994         &\begin{minipage}[t]{3in}
995          {Convective Precipitation}
996         \end{minipage}\\
997     TUFLUX   &  $Newton/m^2$ &  Nrphys
998         &\begin{minipage}[t]{3in}
999          {Turbulent Flux of U-Momentum}
1000         \end{minipage}\\
1001     TVFLUX   &  $Newton/m^2$ &  Nrphys
1002         &\begin{minipage}[t]{3in}
1003          {Turbulent Flux of V-Momentum}
1004         \end{minipage}\\
1005     TTFLUX   &  $Watts/m^2$ &  Nrphys
1006         &\begin{minipage}[t]{3in}
1007          {Turbulent Flux of Sensible Heat}
1008         \end{minipage}\\
1009    \end{tabular}
1010    
1011    \newpage
1012    \vspace*{\fill}
1013    \begin{tabular}{llll}
1014    \hline\hline
1015     NAME & UNITS & LEVELS & DESCRIPTION \\
1016    \hline
1017    
1018    &\\
1019     TQFLUX   &  $Watts/m^2$ &  Nrphys
1020         &\begin{minipage}[t]{3in}
1021          {Turbulent Flux of Latent Heat}
1022         \end{minipage}\\
1023     CN       &  $dimensionless$ &  1
1024         &\begin{minipage}[t]{3in}
1025          {Neutral Drag Coefficient}
1026         \end{minipage}\\
1027     WINDS     &  $m/sec$ &  1
1028         &\begin{minipage}[t]{3in}
1029          {Surface Wind Speed}
1030         \end{minipage}\\
1031     DTSRF     &  $deg$ &  1
1032         &\begin{minipage}[t]{3in}
1033          {Air/Surface virtual temperature difference}
1034         \end{minipage}\\
1035     TG        &  $deg$ &  1
1036         &\begin{minipage}[t]{3in}
1037          {Ground temperature}
1038         \end{minipage}\\
1039     TS        &  $deg$ &  1
1040         &\begin{minipage}[t]{3in}
1041          {Surface air temperature (Adiabatic from lowest model layer)}
1042         \end{minipage}\\
1043     DTG       &  $deg$ &  1
1044         &\begin{minipage}[t]{3in}
1045          {Ground temperature adjustment}
1046         \end{minipage}\\
1047    
1048     QG        &  $g/kg$ &  1
1049         &\begin{minipage}[t]{3in}
1050          {Ground specific humidity}
1051         \end{minipage}\\
1052     QS        &  $g/kg$ &  1
1053         &\begin{minipage}[t]{3in}
1054          {Saturation surface specific humidity}
1055         \end{minipage}\\
1056     TGRLW    &    $deg$   &    1  
1057         &\begin{minipage}[t]{3in}
1058          {Instantaneous ground temperature used as input to the
1059           Longwave radiation subroutine}
1060         \end{minipage}\\
1061     ST4      &   $Watts/m^2$  &    1  
1062         &\begin{minipage}[t]{3in}
1063          {Upward Longwave flux at the ground ($\sigma T^4$)}
1064         \end{minipage}\\
1065     OLR      &   $Watts/m^2$  &    1  
1066         &\begin{minipage}[t]{3in}
1067          {Net upward Longwave flux at the top of the model}
1068         \end{minipage}\\
1069     OLRCLR   &   $Watts/m^2$  &    1  
1070         &\begin{minipage}[t]{3in}
1071          {Net upward clearsky Longwave flux at the top of the model}
1072         \end{minipage}\\
1073     LWGCLR   &   $Watts/m^2$  &    1  
1074         &\begin{minipage}[t]{3in}
1075          {Net upward clearsky Longwave flux at the ground}
1076         \end{minipage}\\
1077     LWCLR    &  $deg/day$ &  Nrphys
1078         &\begin{minipage}[t]{3in}
1079          {Net clearsky Longwave heating rate for each level}
1080         \end{minipage}\\
1081     TLW      &    $deg$   &  Nrphys
1082         &\begin{minipage}[t]{3in}
1083          {Instantaneous temperature used as input to the Longwave radiation
1084          subroutine}
1085         \end{minipage}\\
1086     SHLW     &    $g/g$   &  Nrphys
1087         &\begin{minipage}[t]{3in}
1088          {Instantaneous specific humidity used as input to the Longwave radiation
1089          subroutine}
1090         \end{minipage}\\
1091     OZLW     &    $g/g$   &  Nrphys
1092         &\begin{minipage}[t]{3in}
1093          {Instantaneous ozone used as input to the Longwave radiation
1094          subroutine}
1095         \end{minipage}\\
1096     CLMOLW   &    $0-1$   &  Nrphys
1097         &\begin{minipage}[t]{3in}
1098          {Maximum overlap cloud fraction used in the Longwave radiation
1099          subroutine}
1100         \end{minipage}\\
1101     CLDTOT   &    $0-1$   &  Nrphys
1102         &\begin{minipage}[t]{3in}
1103          {Total cloud fraction used in the Longwave and Shortwave radiation
1104          subroutines}
1105         \end{minipage}\\
1106     LWGDOWN  &    $Watts/m^2$   &  1
1107         &\begin{minipage}[t]{3in}
1108          {Downwelling Longwave radiation at the ground}
1109         \end{minipage}\\
1110     GWDT     &    $deg/day$ &  Nrphys
1111         &\begin{minipage}[t]{3in}
1112          {Temperature tendency due to Gravity Wave Drag}
1113         \end{minipage}\\
1114     RADSWT   &    $Watts/m^2$   &  1
1115         &\begin{minipage}[t]{3in}
1116          {Incident Shortwave radiation at the top of the atmosphere}
1117         \end{minipage}\\
1118     TAUCLD   &    $per 100 mb$   &  Nrphys
1119         &\begin{minipage}[t]{3in}
1120          {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1121         \end{minipage}\\
1122     TAUCLDC  &    $Number$   &  Nrphys
1123         &\begin{minipage}[t]{3in}
1124          {Cloud Optical Depth Counter}
1125         \end{minipage}\\
1126    \end{tabular}
1127    \vfill
1128    
1129    \newpage
1130    \vspace*{\fill}
1131    \begin{tabular}{llll}
1132    \hline\hline
1133     NAME & UNITS & LEVELS & DESCRIPTION \\
1134    \hline
1135    
1136    &\\
1137     CLDLOW   &    $0-1$   &  Nrphys
1138         &\begin{minipage}[t]{3in}
1139          {Low-Level ( 1000-700 hPa) Cloud Fraction  (0-1)}
1140         \end{minipage}\\
1141     EVAP     &    $mm/day$   &  1
1142         &\begin{minipage}[t]{3in}
1143          {Surface evaporation}
1144         \end{minipage}\\
1145     DPDT     &    $hPa/day$ &  1
1146         &\begin{minipage}[t]{3in}
1147          {Surface Pressure tendency}
1148         \end{minipage}\\
1149     UAVE     &    $m/sec$ &  Nrphys
1150         &\begin{minipage}[t]{3in}
1151          {Average U-Wind}
1152         \end{minipage}\\
1153     VAVE     &    $m/sec$ &  Nrphys
1154         &\begin{minipage}[t]{3in}
1155          {Average V-Wind}
1156         \end{minipage}\\
1157     TAVE     &    $deg$ &  Nrphys
1158         &\begin{minipage}[t]{3in}
1159          {Average Temperature}
1160         \end{minipage}\\
1161     QAVE     &    $g/kg$ &  Nrphys
1162         &\begin{minipage}[t]{3in}
1163          {Average Specific Humidity}
1164         \end{minipage}\\
1165     OMEGA    &    $hPa/day$ &  Nrphys
1166         &\begin{minipage}[t]{3in}
1167          {Vertical Velocity}
1168         \end{minipage}\\
1169     DUDT     &    $m/sec/day$ &  Nrphys
1170         &\begin{minipage}[t]{3in}
1171          {Total U-Wind tendency}
1172         \end{minipage}\\
1173     DVDT     &    $m/sec/day$ &  Nrphys
1174         &\begin{minipage}[t]{3in}
1175          {Total V-Wind tendency}
1176         \end{minipage}\\
1177     DTDT     &    $deg/day$ &  Nrphys
1178         &\begin{minipage}[t]{3in}
1179          {Total Temperature tendency}
1180         \end{minipage}\\
1181     DQDT     &    $g/kg/day$ &  Nrphys
1182         &\begin{minipage}[t]{3in}
1183          {Total Specific Humidity tendency}
1184         \end{minipage}\\
1185     VORT     &    $10^{-4}/sec$ &  Nrphys
1186         &\begin{minipage}[t]{3in}
1187          {Relative Vorticity}
1188         \end{minipage}\\
1189     DTLS     &    $deg/day$ &  Nrphys
1190         &\begin{minipage}[t]{3in}
1191          {Temperature tendency due to Stratiform Cloud Formation}
1192         \end{minipage}\\
1193     DQLS     &    $g/kg/day$ &  Nrphys
1194         &\begin{minipage}[t]{3in}
1195          {Specific Humidity tendency due to Stratiform Cloud Formation}
1196         \end{minipage}\\
1197     USTAR    &    $m/sec$ &  1
1198         &\begin{minipage}[t]{3in}
1199          {Surface USTAR wind}
1200         \end{minipage}\\
1201     Z0       &    $m$ &  1
1202         &\begin{minipage}[t]{3in}
1203          {Surface roughness}
1204         \end{minipage}\\
1205     FRQTRB   &    $0-1$ &  Nrphys-1
1206         &\begin{minipage}[t]{3in}
1207          {Frequency of Turbulence}
1208         \end{minipage}\\
1209     PBL      &    $mb$ &  1
1210         &\begin{minipage}[t]{3in}
1211          {Planetary Boundary Layer depth}
1212         \end{minipage}\\
1213     SWCLR    &  $deg/day$ &  Nrphys
1214         &\begin{minipage}[t]{3in}
1215          {Net clearsky Shortwave heating rate for each level}
1216         \end{minipage}\\
1217     OSR      &   $Watts/m^2$  &    1
1218         &\begin{minipage}[t]{3in}
1219          {Net downward Shortwave flux at the top of the model}
1220         \end{minipage}\\
1221     OSRCLR   &   $Watts/m^2$  &    1  
1222         &\begin{minipage}[t]{3in}
1223          {Net downward clearsky Shortwave flux at the top of the model}
1224         \end{minipage}\\
1225     CLDMAS   &   $kg / m^2$  &    Nrphys
1226         &\begin{minipage}[t]{3in}
1227          {Convective cloud mass flux}
1228         \end{minipage}\\
1229     UAVE     &   $m/sec$  &    Nrphys
1230         &\begin{minipage}[t]{3in}
1231          {Time-averaged $u-Wind$}
1232         \end{minipage}\\
1233    \end{tabular}
1234    \vfill
1235    
1236    \newpage
1237    \vspace*{\fill}
1238    \begin{tabular}{llll}
1239    \hline\hline
1240     NAME & UNITS & LEVELS & DESCRIPTION \\
1241    \hline
1242    
1243    &\\
1244     VAVE     &   $m/sec$  &    Nrphys
1245         &\begin{minipage}[t]{3in}
1246          {Time-averaged $v-Wind$}
1247         \end{minipage}\\
1248     TAVE     &   $deg$  &    Nrphys
1249         &\begin{minipage}[t]{3in}
1250          {Time-averaged $Temperature$}
1251         \end{minipage}\\
1252     QAVE     &   $g/g$  &    Nrphys
1253         &\begin{minipage}[t]{3in}
1254          {Time-averaged $Specific \, \, Humidity$}
1255         \end{minipage}\\
1256     RFT      &    $deg/day$ &  Nrphys
1257         &\begin{minipage}[t]{3in}
1258          {Temperature tendency due Rayleigh Friction}
1259         \end{minipage}\\
1260     PS       &   $mb$  &    1
1261         &\begin{minipage}[t]{3in}
1262          {Surface Pressure}
1263         \end{minipage}\\
1264     QQAVE    &   $(m/sec)^2$  &    Nrphys
1265         &\begin{minipage}[t]{3in}
1266          {Time-averaged $Turbulent Kinetic Energy$}
1267         \end{minipage}\\
1268     SWGCLR   &   $Watts/m^2$  &    1  
1269         &\begin{minipage}[t]{3in}
1270          {Net downward clearsky Shortwave flux at the ground}
1271         \end{minipage}\\
1272     PAVE     &   $mb$  &    1
1273         &\begin{minipage}[t]{3in}
1274          {Time-averaged Surface Pressure}
1275         \end{minipage}\\
1276     DIABU    & $m/sec/day$ &    Nrphys
1277         &\begin{minipage}[t]{3in}
1278          {Total Diabatic forcing on $u-Wind$}
1279         \end{minipage}\\
1280     DIABV    & $m/sec/day$ &    Nrphys
1281         &\begin{minipage}[t]{3in}
1282          {Total Diabatic forcing on $v-Wind$}
1283         \end{minipage}\\
1284     DIABT    & $deg/day$ &    Nrphys
1285         &\begin{minipage}[t]{3in}
1286          {Total Diabatic forcing on $Temperature$}
1287         \end{minipage}\\
1288     DIABQ    & $g/kg/day$ &    Nrphys
1289         &\begin{minipage}[t]{3in}
1290          {Total Diabatic forcing on $Specific \, \, Humidity$}
1291         \end{minipage}\\
1292     RFU      &    $m/sec/day$ &  Nrphys
1293         &\begin{minipage}[t]{3in}
1294          {U-Wind tendency due to Rayleigh Friction}
1295         \end{minipage}\\
1296     RFV      &    $m/sec/day$ &  Nrphys
1297         &\begin{minipage}[t]{3in}
1298          {V-Wind tendency due to Rayleigh Friction}
1299         \end{minipage}\\
1300     GWDU     &    $m/sec/day$ &  Nrphys
1301         &\begin{minipage}[t]{3in}
1302          {U-Wind tendency due to Gravity Wave Drag}
1303         \end{minipage}\\
1304     GWDU     &    $m/sec/day$ &  Nrphys
1305         &\begin{minipage}[t]{3in}
1306          {V-Wind tendency due to Gravity Wave Drag}
1307         \end{minipage}\\
1308     GWDUS    &    $N/m^2$ &  1
1309         &\begin{minipage}[t]{3in}
1310          {U-Wind Gravity Wave Drag Stress at Surface}
1311         \end{minipage}\\
1312     GWDVS    &    $N/m^2$ &  1
1313         &\begin{minipage}[t]{3in}
1314          {V-Wind Gravity Wave Drag Stress at Surface}
1315         \end{minipage}\\
1316     GWDUT    &    $N/m^2$ &  1
1317         &\begin{minipage}[t]{3in}
1318          {U-Wind Gravity Wave Drag Stress at Top}
1319         \end{minipage}\\
1320     GWDVT    &    $N/m^2$ &  1
1321         &\begin{minipage}[t]{3in}
1322          {V-Wind Gravity Wave Drag Stress at Top}
1323         \end{minipage}\\
1324     LZRAD    &    $mg/kg$ &  Nrphys
1325             &\begin{minipage}[t]{3in}
1326              {Estimated Cloud Liquid Water used in Radiation}
1327             \end{minipage}\\
1328    \end{tabular}
1329    \vfill
1330    
1331    \newpage
1332    \vspace*{\fill}
1333    \begin{tabular}{llll}
1334    \hline\hline
1335     NAME & UNITS & LEVELS & DESCRIPTION \\
1336    \hline
1337    
1338    &\\
1339     SLP      &   $mb$  &    1
1340             &\begin{minipage}[t]{3in}
1341              {Time-averaged Sea-level Pressure}
1342             \end{minipage}\\
1343     CLDFRC  & $0-1$ &    1
1344             &\begin{minipage}[t]{3in}
1345              {Total Cloud Fraction}
1346             \end{minipage}\\
1347     TPW     & $gm/cm^2$ &    1
1348             &\begin{minipage}[t]{3in}
1349              {Precipitable water}
1350             \end{minipage}\\
1351     U2M     & $m/sec$ &    1
1352             &\begin{minipage}[t]{3in}
1353              {U-Wind at 2 meters}
1354             \end{minipage}\\
1355     V2M     & $m/sec$ &    1
1356             &\begin{minipage}[t]{3in}
1357              {V-Wind at 2 meters}
1358             \end{minipage}\\
1359     T2M     & $deg$ &    1
1360             &\begin{minipage}[t]{3in}
1361              {Temperature at 2 meters}
1362             \end{minipage}\\
1363     Q2M     & $g/kg$ &    1
1364             &\begin{minipage}[t]{3in}
1365              {Specific Humidity at 2 meters}
1366             \end{minipage}\\
1367     U10M    & $m/sec$ &    1
1368             &\begin{minipage}[t]{3in}
1369              {U-Wind at 10 meters}
1370             \end{minipage}\\
1371     V10M    & $m/sec$ &    1
1372             &\begin{minipage}[t]{3in}
1373              {V-Wind at 10 meters}
1374             \end{minipage}\\
1375     T10M    & $deg$ &    1
1376             &\begin{minipage}[t]{3in}
1377              {Temperature at 10 meters}
1378             \end{minipage}\\
1379     Q10M    & $g/kg$ &    1
1380             &\begin{minipage}[t]{3in}
1381              {Specific Humidity at 10 meters}
1382             \end{minipage}\\
1383     DTRAIN  & $kg/m^2$ &    Nrphys
1384             &\begin{minipage}[t]{3in}
1385              {Detrainment Cloud Mass Flux}
1386             \end{minipage}\\
1387     QFILL   & $g/kg/day$ &    Nrphys
1388             &\begin{minipage}[t]{3in}
1389              {Filling of negative specific humidity}
1390             \end{minipage}\\
1391    \end{tabular}
1392    \vspace{1.5in}
1393    \vfill
1394    
1395    \newpage
1396    \vspace*{\fill}
1397    \begin{tabular}{llll}
1398    \hline\hline
1399     NAME & UNITS & LEVELS & DESCRIPTION \\
1400    \hline
1401    
1402    &\\
1403     DTCONV   & $deg/sec$ & Nr
1404             &\begin{minipage}[t]{3in}
1405              {Temp Change due to Convection}
1406             \end{minipage}\\
1407     DQCONV   & $g/kg/sec$ & Nr
1408             &\begin{minipage}[t]{3in}
1409              {Specific Humidity Change due to Convection}
1410             \end{minipage}\\
1411     RELHUM   & $percent$ & Nr
1412             &\begin{minipage}[t]{3in}
1413              {Relative Humidity}
1414             \end{minipage}\\
1415     PRECLS   & $g/m^2/sec$ & 1
1416             &\begin{minipage}[t]{3in}
1417              {Large Scale Precipitation}
1418             \end{minipage}\\
1419     ENPREC   & $J/g$ & 1
1420             &\begin{minipage}[t]{3in}
1421              {Energy of Precipitation (snow, rain Temp)}
1422             \end{minipage}\\
1423    \end{tabular}
1424    \vspace{1.5in}
1425    \vfill
1426    
1427    \newpage
1428    
1429    Fizhi Diagnostic Description:
1430    
1431    In this section we list and describe the diagnostic quantities available within the
1432    GCM.  The diagnostics are listed in the order that they appear in the
1433    Diagnostic Menu, Section \ref{sec:fizhi-diagnostics:menu}.
1434    In all cases, each diagnostic as currently archived on the output datasets
1435    is time-averaged over its diagnostic output frequency:
1436    
1437    \[
1438    {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1439    \]
1440    where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1441    output frequency of the diagnostic, and $\Delta t$ is
1442    the timestep over which the diagnostic is updated.  
1443    
1444    { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1445    
1446    The zonal wind stress is the turbulent flux of zonal momentum from
1447    the surface.
1448    \[
1449    {\bf UFLUX} =  - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1450    \]
1451    where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1452    drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1453    (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1454    the zonal wind in the lowest model layer.
1455    \\
1456    
1457    
1458    { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1459    
1460    The meridional wind stress is the turbulent flux of meridional momentum from
1461    the surface.
1462    \[
1463    {\bf VFLUX} =  - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1464    \]
1465    where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1466    drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1467    (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1468    the meridional wind in the lowest model layer.
1469    \\
1470    
1471    { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1472    
1473    The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1474    gradient of virtual potential temperature and the eddy exchange coefficient:
1475    \[
1476    {\bf HFLUX} =  P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1477    \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1478    \]
1479    where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1480    heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1481    magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1482    for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1483    for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1484    at the surface and at the bottom model level.
1485    \\
1486    
1487    
1488    { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1489    
1490    The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1491    gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1492    \[
1493    {\bf EFLUX} =  \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1494    \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1495    \]
1496    where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1497    the potential evapotranspiration actually evaporated, L is the latent
1498    heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1499    magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1500    for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1501    for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1502    humidity at the surface and at the bottom model level, respectively.
1503    \\
1504    
1505    { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1506    
1507    Over sea ice there is an additional source of energy at the surface due to the heat
1508    conduction from the relatively warm ocean through the sea ice. The heat conduction
1509    through sea ice represents an additional energy source term for the ground temperature equation.
1510    
1511    \[
1512    {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1513    \]
1514    
1515    where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1516    be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1517    $T_g$ is the temperature of the sea ice.
1518    
1519    NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1520    \\
1521    
1522    
1523    { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1524    
1525    \begin{eqnarray*}
1526    {\bf RADLWG} & =  & F_{LW,Nrphys+1}^{Net} \\
1527                 & =  & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1528    \end{eqnarray*}
1529    \\
1530    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1531    $F_{LW}^\uparrow$ is
1532    the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1533    \\
1534    
1535    { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1536    
1537    \begin{eqnarray*}
1538    {\bf RADSWG} & =  & F_{SW,Nrphys+1}^{Net} \\
1539                 & =  & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1540    \end{eqnarray*}
1541    \\
1542    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1543    $F_{SW}^\downarrow$ is
1544    the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1545    \\
1546    
1547    
1548    \noindent
1549    { \underline {RI} Richardson Number} ($dimensionless$)
1550    
1551    \noindent
1552    The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1553    \[
1554    {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1555     =  {  {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1556    \]
1557    \\
1558    where we used the hydrostatic equation:
1559    \[
1560    {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1561    \]
1562    Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1563    indicate dominantly unstable shear, and large positive values indicate dominantly stable
1564    stratification.
1565    \\
1566    
1567    \noindent
1568    { \underline {CT}  Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1569    
1570    \noindent
1571    The surface exchange coefficient is obtained from the similarity functions for the stability
1572     dependant flux profile relationships:
1573    \[
1574    {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1575    -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1576    { k \over { (\psi_{h} + \psi_{g}) } }
1577    \]
1578    where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1579    viscous sublayer non-dimensional temperature or moisture change:
1580    \[
1581    \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1582    \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1583    (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1584    \]
1585    and:
1586    $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1587    
1588    \noindent
1589    $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1590    the temperature and moisture gradients, specified differently for stable and unstable
1591    layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1592    non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1593    viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1594    (see diagnostic number 67), and the subscript ref refers to a reference value.
1595    \\
1596    
1597    \noindent
1598    { \underline {CU}  Surface Exchange Coefficient for Momentum ($dimensionless$) }
1599    
1600    \noindent
1601    The surface exchange coefficient is obtained from the similarity functions for the stability
1602     dependant flux profile relationships:
1603    \[
1604    {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1605    \]
1606    where $\psi_m$ is the surface layer non-dimensional wind shear:
1607    \[
1608    \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1609    \]
1610    \noindent
1611    $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1612    the temperature and moisture gradients, specified differently for stable and unstable layers
1613    according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1614    non-dimensional stability parameter, $u_*$ is the surface stress velocity
1615    (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1616    \\
1617    
1618    \noindent
1619    { \underline {ET}  Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1620    
1621    \noindent
1622    In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1623    moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1624    diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1625    or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
1626    takes the form:
1627    \[
1628    {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1629     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1630    \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1631    \]
1632    where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1633    energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1634    which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1635    depth,
1636    $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1637    wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1638    dimensionless buoyancy and wind shear
1639    parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1640    are functions of the Richardson number.
1641    
1642    \noindent
1643    For the detailed equations and derivations of the modified level 2.5 closure scheme,
1644    see Helfand and Labraga, 1988.
1645    
1646    \noindent
1647    In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1648    in units of $m/sec$, given by:
1649    \[
1650    {\bf ET_{Nrphys}} =  C_t * u_* = C_H W_s
1651    \]
1652    \noindent
1653    where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1654    surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1655    friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1656    and $W_s$ is the magnitude of the surface layer wind.
1657    \\
1658    
1659    \noindent
1660    { \underline {EU}  Diffusivity Coefficient for Momentum ($m^2/sec$) }
1661    
1662    \noindent  
1663    In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1664    momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1665    diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1666    In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
1667    takes the form:
1668    \[
1669    {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1670     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1671    \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1672    \]
1673    \noindent
1674    where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1675    energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1676    which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1677    depth,
1678    $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1679    wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1680    dimensionless buoyancy and wind shear
1681    parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1682    are functions of the Richardson number.
1683    
1684    \noindent
1685    For the detailed equations and derivations of the modified level 2.5 closure scheme,
1686    see Helfand and Labraga, 1988.
1687    
1688    \noindent
1689    In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1690    in units of $m/sec$, given by:
1691    \[
1692    {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1693    \]
1694    \noindent
1695    where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1696    similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1697    (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1698    magnitude of the surface layer wind.
1699    \\
1700    
1701    \noindent
1702    { \underline {TURBU}  Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1703    
1704    \noindent
1705    The tendency of U-Momentum due to turbulence is written:
1706    \[
1707    {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1708     = {\pp{}{z} }{(K_m \pp{u}{z})}
1709    \]
1710    
1711    \noindent
1712    The Helfand and Labraga level 2.5 scheme models the turbulent
1713    flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1714    equation.
1715    
1716    \noindent
1717    { \underline {TURBV}  Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1718    
1719    \noindent
1720    The tendency of V-Momentum due to turbulence is written:
1721    \[
1722    {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1723     = {\pp{}{z} }{(K_m \pp{v}{z})}
1724    \]
1725    
1726    \noindent
1727    The Helfand and Labraga level 2.5 scheme models the turbulent
1728    flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1729    equation.
1730    \\
1731    
1732    \noindent
1733    { \underline {TURBT}  Temperature changes due to Turbulence ($deg/day$) }
1734    
1735    \noindent
1736    The tendency of temperature due to turbulence is written:
1737    \[
1738    {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1739    P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1740     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1741    \]
1742    
1743    \noindent
1744    The Helfand and Labraga level 2.5 scheme models the turbulent
1745    flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1746    equation.
1747    \\
1748    
1749    \noindent
1750    { \underline {TURBQ}  Specific Humidity changes due to Turbulence ($g/kg/day$) }
1751    
1752    \noindent
1753    The tendency of specific humidity due to turbulence is written:
1754    \[
1755    {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1756     = {\pp{}{z} }{(K_h \pp{q}{z})}
1757    \]
1758    
1759    \noindent
1760    The Helfand and Labraga level 2.5 scheme models the turbulent
1761    flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1762    equation.
1763    \\
1764    
1765    \noindent
1766    { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1767    
1768    \noindent
1769    \[
1770    {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1771    \]
1772    where:
1773    \[
1774    \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1775    \hspace{.4cm} and
1776    \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1777    \]
1778    and
1779    \[
1780    \Gamma_s = g \eta \pp{s}{p}
1781    \]
1782    
1783    \noindent
1784    The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1785    precipitation processes, or supersaturation rain.
1786    The summation refers to contributions from each cloud type called by RAS.  
1787    The dry static energy is given
1788    as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1789    given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1790    the description of the convective parameterization.  The fractional adjustment, or relaxation
1791    parameter, for each cloud type is given as $\alpha$, while
1792    $R$ is the rain re-evaporation adjustment.
1793    \\
1794    
1795    \noindent
1796    { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1797    
1798    \noindent
1799    \[
1800    {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1801    \]
1802    where:
1803    \[
1804    \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1805    \hspace{.4cm} and
1806    \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1807    \]
1808    and
1809    \[
1810    \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1811    \]
1812    \noindent
1813    The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1814    precipitation processes, or supersaturation rain.
1815    The summation refers to contributions from each cloud type called by RAS.  
1816    The dry static energy is given as $s$,
1817    the moist static energy is given as $h$,
1818    the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1819    given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1820    the description of the convective parameterization.  The fractional adjustment, or relaxation
1821    parameter, for each cloud type is given as $\alpha$, while
1822    $R$ is the rain re-evaporation adjustment.
1823    \\
1824    
1825    \noindent
1826    { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1827    
1828    \noindent
1829    The net longwave heating rate is calculated as the vertical divergence of the
1830    net terrestrial radiative fluxes.
1831    Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1832    longwave routine.
1833    The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1834    For a given cloud fraction,
1835    the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1836    to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1837    for the upward and downward radiative fluxes.
1838    (see Section \ref{sec:fizhi:radcloud}).
1839    The cloudy-sky flux is then obtained as:
1840      
1841    \noindent
1842    \[
1843    F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1844    \]
1845    
1846    \noindent
1847    Finally, the net longwave heating rate is calculated as the vertical divergence of the
1848    net terrestrial radiative fluxes:
1849    \[
1850    \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1851    \]
1852    or
1853    \[
1854    {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1855    \]
1856    
1857    \noindent
1858    where $g$ is the accelation due to gravity,
1859    $c_p$ is the heat capacity of air at constant pressure,
1860    and
1861    \[
1862    F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1863    \]
1864    \\
1865    
1866    
1867    \noindent
1868    { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1869    
1870    \noindent
1871    The net Shortwave heating rate is calculated as the vertical divergence of the
1872    net solar radiative fluxes.
1873    The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1874    For the clear-sky case, the shortwave fluxes and heating rates are computed with
1875    both CLMO (maximum overlap cloud fraction) and
1876    CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1877    The shortwave routine is then called a second time, for the cloudy-sky case, with the
1878    true time-averaged cloud fractions CLMO
1879    and CLRO being used.  In all cases, a normalized incident shortwave flux is used as
1880    input at the top of the atmosphere.
1881    
1882    \noindent
1883    The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1884    \[
1885    \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1886    \]
1887    or
1888    \[
1889    {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1890    \]
1891    
1892    \noindent
1893    where $g$ is the accelation due to gravity,
1894    $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1895    shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1896    \[
1897    F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1898    \]
1899    \\
1900    
1901    \noindent
1902    { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1903    
1904    \noindent
1905    For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1906    the vertical integral or total precipitable amount is given by:  
1907    \[
1908    {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta  q_{moist}
1909    {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1910    \]
1911    \\
1912    
1913    \noindent
1914    A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1915    time step, scaled to $mm/day$.
1916    \\
1917    
1918    \noindent
1919    { \underline {PRECON} Convective Precipition ($mm/day$) }
1920    
1921    \noindent
1922    For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1923    the vertical integral or total precipitable amount is given by:  
1924    \[
1925    {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta  q_{cum}
1926    {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1927    \]
1928    \\
1929    
1930    \noindent
1931    A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1932    time step, scaled to $mm/day$.
1933    \\
1934    
1935    \noindent
1936    { \underline {TUFLUX}  Turbulent Flux of U-Momentum ($Newton/m^2$) }
1937    
1938    \noindent
1939    The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1940     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1941    
1942    \[
1943    {\bf TUFLUX} =  {\rho } {(\overline{u^{\prime}w^{\prime}})} =  
1944    {\rho } {(- K_m \pp{U}{z})}
1945    \]
1946    
1947    \noindent
1948    where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1949    \\
1950    
1951    \noindent
1952    { \underline {TVFLUX}  Turbulent Flux of V-Momentum ($Newton/m^2$) }
1953    
1954    \noindent
1955    The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1956    \hspace{.2cm} only$ from the eddy coefficient for momentum:
1957    
1958    \[
1959    {\bf TVFLUX} =  {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1960     {\rho } {(- K_m \pp{V}{z})}
1961    \]
1962    
1963    \noindent
1964    where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1965    \\
1966    
1967    
1968    \noindent
1969    { \underline {TTFLUX}  Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1970    
1971    \noindent
1972    The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1973    \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1974    
1975    \noindent
1976    \[
1977    {\bf TTFLUX} = c_p {\rho }  
1978    P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1979     = c_p  {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1980    \]
1981    
1982    \noindent
1983    where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1984    \\
1985    
1986    
1987    \noindent
1988    { \underline {TQFLUX}  Turbulent Flux of Latent Heat ($Watts/m^2$) }
1989    
1990    \noindent
1991    The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1992    \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1993    
1994    \noindent
1995    \[
1996    {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1997    {L {\rho }(- K_h \pp{q}{z})}
1998    \]
1999    
2000    \noindent
2001    where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
2002    \\
2003    
2004    
2005    \noindent
2006    { \underline {CN}  Neutral Drag Coefficient ($dimensionless$) }
2007    
2008    \noindent
2009    The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
2010    \[
2011    {\bf CN} = { k \over { \ln({h \over {z_0}})} }
2012    \]
2013    
2014    \noindent
2015    where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
2016    $z_0$ is the surface roughness.
2017    
2018    \noindent
2019    NOTE: CN is not available through model version 5.3, but is available in subsequent
2020    versions.
2021    \\
2022    
2023    \noindent
2024    { \underline {WINDS}  Surface Wind Speed ($meter/sec$) }
2025    
2026    \noindent
2027    The surface wind speed is calculated for the last internal turbulence time step:
2028    \[
2029    {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
2030    \]
2031    
2032    \noindent
2033    where the subscript $Nrphys$ refers to the lowest model level.
2034    \\
2035    
2036    \noindent
2037    { \underline {DTSRF}  Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
2038    
2039    \noindent
2040    The air/surface virtual temperature difference measures the stability of the surface layer:
2041    \[
2042    {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
2043    \]
2044    \noindent
2045    where
2046    \[
2047    \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
2048    and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2049    \]
2050    
2051    \noindent
2052    $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2053    $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
2054    and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
2055    refers to the surface.
2056    \\
2057    
2058    
2059    \noindent
2060    { \underline {TG}  Ground Temperature ($deg \hspace{.1cm} K$) }
2061    
2062    \noindent
2063    The ground temperature equation is solved as part of the turbulence package
2064    using a backward implicit time differencing scheme:
2065    \[
2066    {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2067    C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2068    \]
2069    
2070    \noindent
2071    where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2072    net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2073    sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2074    flux, and $C_g$ is the total heat capacity of the ground.
2075    $C_g$ is obtained by solving a heat diffusion equation
2076    for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
2077    \[
2078    C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2079    { 86400. \over {2 \pi} } } \, \, .
2080    \]
2081    \noindent
2082    Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
2083    {cm \over {^oK}}$,
2084    the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2085    by $2 \pi$ $radians/
2086    day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2087    is a function of the ground wetness, $W$.
2088    \\
2089    
2090    \noindent
2091    { \underline {TS}  Surface Temperature ($deg \hspace{.1cm} K$) }
2092    
2093    \noindent
2094    The surface temperature estimate is made by assuming that the model's lowest
2095    layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2096    The surface temperature is therefore:
2097    \[
2098    {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2099    \]
2100    \\
2101    
2102    \noindent
2103    { \underline {DTG}  Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2104    
2105    \noindent
2106    The change in surface temperature from one turbulence time step to the next, solved
2107    using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2108    \[
2109    {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2110    \]
2111    
2112    \noindent
2113    where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2114    refers to the value at the previous turbulence time level.
2115    \\
2116    
2117    \noindent
2118    { \underline {QG}  Ground Specific Humidity ($g/kg$) }
2119    
2120    \noindent
2121    The ground specific humidity is obtained by interpolating between the specific
2122    humidity at the lowest model level and the specific humidity of a saturated ground.
2123    The interpolation is performed using the potential evapotranspiration function:
2124    \[
2125    {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2126    \]
2127    
2128    \noindent
2129    where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2130    and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2131    pressure.
2132    \\
2133    
2134    \noindent
2135    { \underline {QS}  Saturation Surface Specific Humidity ($g/kg$) }
2136    
2137    \noindent
2138    The surface saturation specific humidity is the saturation specific humidity at
2139    the ground temprature and surface pressure:
2140    \[
2141    {\bf QS} = q^*(T_g,P_s)
2142    \]
2143    \\
2144    
2145    \noindent
2146    { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2147     radiation subroutine (deg)}
2148    \[
2149    {\bf TGRLW}  = T_g(\lambda , \phi ,n)
2150    \]
2151    \noindent
2152    where $T_g$ is the model ground temperature at the current time step $n$.
2153    \\
2154    
2155    
2156    \noindent
2157    { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2158    \[
2159    {\bf ST4} = \sigma T^4
2160    \]
2161    \noindent
2162    where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2163    \\
2164    
2165    \noindent
2166    { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2167    \[
2168    {\bf OLR}  =  F_{LW,top}^{NET}
2169    \]
2170    \noindent
2171    where top indicates the top of the first model layer.
2172    In the GCM, $p_{top}$ = 0.0 mb.
2173    \\
2174    
2175    
2176    \noindent
2177    { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2178    \[
2179    {\bf OLRCLR}  =  F(clearsky)_{LW,top}^{NET}
2180    \]
2181    \noindent
2182    where top indicates the top of the first model layer.
2183    In the GCM, $p_{top}$ = 0.0 mb.
2184    \\
2185    
2186    \noindent
2187    { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2188    
2189    \noindent
2190    \begin{eqnarray*}
2191    {\bf LWGCLR} & =  & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2192                 & =  & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2193    \end{eqnarray*}
2194    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2195    $F(clearsky)_{LW}^\uparrow$ is
2196    the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2197    \\
2198    
2199    \noindent
2200    { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2201    
2202    \noindent
2203    The net longwave heating rate is calculated as the vertical divergence of the
2204    net terrestrial radiative fluxes.
2205    Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2206    longwave routine.
2207    The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2208    For a given cloud fraction,
2209    the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2210    to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2211    for the upward and downward radiative fluxes.
2212    (see Section \ref{sec:fizhi:radcloud}).
2213    The cloudy-sky flux is then obtained as:
2214      
2215    \noindent
2216    \[
2217    F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2218    \]
2219    
2220    \noindent
2221    Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2222    vertical divergence of the
2223    clear-sky longwave radiative flux:
2224    \[
2225    \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2226    \]
2227    or
2228    \[
2229    {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2230    \]
2231    
2232    \noindent
2233    where $g$ is the accelation due to gravity,
2234    $c_p$ is the heat capacity of air at constant pressure,
2235    and
2236    \[
2237    F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2238    \]
2239    \\
2240    
2241    
2242    \noindent
2243    { \underline {TLW} Instantaneous temperature used as input to the Longwave
2244     radiation subroutine (deg)}
2245    \[
2246    {\bf TLW}  = T(\lambda , \phi ,level, n)
2247    \]
2248    \noindent
2249    where $T$ is the model temperature at the current time step $n$.
2250    \\
2251    
2252    
2253    \noindent
2254    { \underline {SHLW} Instantaneous specific humidity used as input to
2255     the Longwave radiation subroutine (kg/kg)}
2256    \[
2257    {\bf SHLW}  = q(\lambda , \phi , level , n)
2258    \]
2259    \noindent
2260    where $q$ is the model specific humidity at the current time step $n$.
2261    \\
2262    
2263    
2264    \noindent
2265    { \underline {OZLW} Instantaneous ozone used as input to
2266     the Longwave radiation subroutine (kg/kg)}
2267    \[
2268    {\bf OZLW}  = {\rm OZ}(\lambda , \phi , level , n)
2269    \]
2270    \noindent
2271    where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2272    mean zonally averaged ozone data set.
2273    \\
2274    
2275    
2276    \noindent
2277    { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2278    
2279    \noindent
2280    {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2281    Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm.  These are
2282    convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2283    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2284    \[
2285    {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi,  level )
2286    \]
2287    \\
2288    
2289    
2290    { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2291    
2292    {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2293    Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2294    Radiation packages.
2295    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2296    \[
2297    {\bf CLDTOT} = F_{RAS} + F_{LS}
2298    \]
2299    \\
2300    where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2301    time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2302    \\
2303    
2304    
2305    \noindent
2306    { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2307    
2308    \noindent
2309    {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2310    Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm.  These are
2311    convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2312    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2313    \[
2314    {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi,  level )
2315    \]
2316    \\
2317    
2318    \noindent
2319    { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2320    
2321    \noindent
2322    {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2323    Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2324    Radiation algorithm.  These are
2325    convective and large-scale clouds whose radiative characteristics are not
2326    assumed to be correlated in the vertical.
2327    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2328    \[
2329    {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi,  level )
2330    \]
2331    \\
2332    
2333    \noindent
2334    { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2335    \[
2336    {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2337    \]
2338    \noindent
2339    where $S_0$, is the extra-terrestial solar contant,
2340    $R_a$ is the earth-sun distance in Astronomical Units,
2341    and $cos \phi_z$ is the cosine of the zenith angle.
2342    It should be noted that {\bf RADSWT}, as well as
2343    {\bf OSR} and {\bf OSRCLR},
2344    are calculated at the top of the atmosphere (p=0 mb).  However, the
2345    {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2346    calculated at $p= p_{top}$ (0.0 mb for the GCM).
2347    \\
2348      
2349    \noindent
2350    { \underline {EVAP}  Surface Evaporation ($mm/day$) }
2351    
2352    \noindent
2353    The surface evaporation is a function of the gradient of moisture, the potential
2354    evapotranspiration fraction and the eddy exchange coefficient:
2355    \[
2356    {\bf EVAP} =  \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2357    \]
2358    where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2359    the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2360    turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2361    $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2362    number 34) and at the bottom model level, respectively.
2363    \\
2364    
2365    \noindent
2366    { \underline {DUDT} Total Zonal U-Wind Tendency  ($m/sec/day$) }
2367    
2368    \noindent
2369    {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2370    and Analysis forcing.
2371    \[
2372    {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2373    \]
2374    \\
2375    
2376    \noindent
2377    { \underline {DVDT} Total Zonal V-Wind Tendency  ($m/sec/day$) }
2378    
2379    \noindent
2380    {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2381    and Analysis forcing.
2382    \[
2383    {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2384    \]
2385    \\
2386    
2387    \noindent
2388    { \underline {DTDT} Total Temperature Tendency  ($deg/day$) }
2389    
2390    \noindent
2391    {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2392    and Analysis forcing.
2393    \begin{eqnarray*}
2394    {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2395               & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2396    \end{eqnarray*}
2397    \\
2398    
2399    \noindent
2400    { \underline {DQDT} Total Specific Humidity Tendency  ($g/kg/day$) }
2401    
2402    \noindent
2403    {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2404    and Analysis forcing.
2405    \[
2406    {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2407    + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2408    \]
2409    \\
2410      
2411    \noindent
2412    { \underline {USTAR}  Surface-Stress Velocity ($m/sec$) }
2413    
2414    \noindent
2415    The surface stress velocity, or the friction velocity, is the wind speed at
2416    the surface layer top impeded by the surface drag:
2417    \[
2418    {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2419    C_u = {k \over {\psi_m} }
2420    \]
2421    
2422    \noindent
2423    $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2424    number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2425    
2426    \noindent
2427    { \underline {Z0}  Surface Roughness Length ($m$) }
2428    
2429    \noindent
2430    Over the land surface, the surface roughness length is interpolated to the local
2431    time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
2432    the roughness length is a function of the surface-stress velocity, $u_*$.
2433    \[
2434    {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2435    \]
2436    
2437    \noindent
2438    where the constants are chosen to interpolate between the reciprocal relation of
2439    Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
2440    for moderate to large winds.
2441    \\
2442    
2443    \noindent
2444    { \underline {FRQTRB}  Frequency of Turbulence ($0-1$) }
2445    
2446    \noindent
2447    The fraction of time when turbulence is present is defined as the fraction of
2448    time when the turbulent kinetic energy exceeds some minimum value, defined here
2449    to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2450    incremented. The fraction over the averaging interval is reported.
2451    \\
2452    
2453    \noindent
2454    { \underline {PBL}  Planetary Boundary Layer Depth ($mb$) }
2455    
2456    \noindent
2457    The depth of the PBL is defined by the turbulence parameterization to be the
2458    depth at which the turbulent kinetic energy reduces to ten percent of its surface
2459    value.
2460    
2461    \[
2462    {\bf PBL} = P_{PBL} - P_{surface}
2463    \]
2464    
2465    \noindent
2466    where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2467    reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2468    \\
2469    
2470    \noindent
2471    { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2472    
2473    \noindent
2474    The net Shortwave heating rate is calculated as the vertical divergence of the
2475    net solar radiative fluxes.
2476    The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2477    For the clear-sky case, the shortwave fluxes and heating rates are computed with
2478    both CLMO (maximum overlap cloud fraction) and
2479    CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2480    The shortwave routine is then called a second time, for the cloudy-sky case, with the
2481    true time-averaged cloud fractions CLMO
2482    and CLRO being used.  In all cases, a normalized incident shortwave flux is used as
2483    input at the top of the atmosphere.
2484    
2485    \noindent
2486    The heating rate due to Shortwave Radiation under clear skies is defined as:
2487    \[
2488    \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2489    \]
2490    or
2491    \[
2492    {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2493    \]
2494    
2495    \noindent
2496    where $g$ is the accelation due to gravity,
2497    $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2498    shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2499    \[
2500    F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2501    \]
2502    \\
2503    
2504    \noindent
2505    { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2506    \[
2507    {\bf OSR}  =  F_{SW,top}^{NET}
2508    \]                                                                                      
2509    \noindent
2510    where top indicates the top of the first model layer used in the shortwave radiation
2511    routine.
2512    In the GCM, $p_{SW_{top}}$ = 0 mb.
2513    \\
2514    
2515    \noindent
2516    { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2517    \[
2518    {\bf OSRCLR}  =  F(clearsky)_{SW,top}^{NET}
2519    \]
2520    \noindent
2521    where top indicates the top of the first model layer used in the shortwave radiation
2522    routine.
2523    In the GCM, $p_{SW_{top}}$ = 0 mb.
2524    \\
2525    
2526    
2527    \noindent
2528    { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2529    
2530    \noindent
2531    The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2532    \[
2533    {\bf CLDMAS} = \eta m_B
2534    \]
2535    where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2536    the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2537    description of the convective parameterization.
2538    \\
2539    
2540    
2541    
2542    \noindent
2543    { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2544    
2545    \noindent
2546    The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2547    the {\bf NUAVE} output frequency.  This is contrasted to the instantaneous
2548    Zonal U-Wind which is archived on the Prognostic Output data stream.
2549    \[
2550    {\bf UAVE} = u(\lambda, \phi, level , t)
2551    \]
2552    \\
2553    Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2554    \\
2555    
2556    \noindent
2557    { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2558    
2559    \noindent
2560    The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2561    the {\bf NVAVE} output frequency.  This is contrasted to the instantaneous
2562    Meridional V-Wind which is archived on the Prognostic Output data stream.
2563    \[
2564    {\bf VAVE} = v(\lambda, \phi, level , t)
2565    \]
2566    \\
2567    Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2568    \\
2569    
2570    \noindent
2571    { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2572    
2573    \noindent
2574    The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2575    the {\bf NTAVE} output frequency.  This is contrasted to the instantaneous
2576    Temperature which is archived on the Prognostic Output data stream.
2577    \[
2578    {\bf TAVE} = T(\lambda, \phi, level , t)
2579    \]
2580    \\
2581    
2582    \noindent
2583    { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2584    
2585    \noindent
2586    The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2587    the {\bf NQAVE} output frequency.  This is contrasted to the instantaneous
2588    Specific Humidity which is archived on the Prognostic Output data stream.
2589    \[
2590    {\bf QAVE} = q(\lambda, \phi, level , t)
2591    \]
2592    \\
2593    
2594    \noindent
2595    { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2596    
2597    \noindent
2598    The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2599    the {\bf NPAVE} output frequency.  This is contrasted to the instantaneous
2600    Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2601    \begin{eqnarray*}
2602    {\bf PAVE} & =  & \pi(\lambda, \phi, level , t) \\
2603               & =  & p_s(\lambda, \phi, level , t) - p_T
2604    \end{eqnarray*}
2605    \\
2606    
2607    
2608    \noindent
2609    { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2610    
2611    \noindent
2612    The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2613    produced by the GCM Turbulence parameterization over
2614    the {\bf NQQAVE} output frequency.  This is contrasted to the instantaneous
2615    Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2616    \[
2617    {\bf QQAVE} = qq(\lambda, \phi, level , t)
2618    \]
2619    \\
2620    Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2621    \\
2622    
2623    \noindent
2624    { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2625    
2626    \noindent
2627    \begin{eqnarray*}
2628    {\bf SWGCLR} & =  & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2629                 & =  & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2630    \end{eqnarray*}
2631    \noindent
2632    \\
2633    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2634    $F(clearsky){SW}^\downarrow$ is
2635    the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2636    the upward clearsky Shortwave flux.
2637    \\
2638    
2639    \noindent
2640    { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency  ($m/sec/day$) }
2641    
2642    \noindent
2643    {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2644    and the Analysis forcing.
2645    \[
2646    {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2647    \]
2648    \\
2649    
2650    \noindent
2651    { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency  ($m/sec/day$) }
2652    
2653    \noindent
2654    {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2655    and the Analysis forcing.
2656    \[
2657    {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2658    \]
2659    \\
2660    
2661    \noindent
2662    { \underline {DIABT} Total Diabatic Temperature Tendency  ($deg/day$) }
2663    
2664    \noindent
2665    {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2666    and the Analysis forcing.
2667    \begin{eqnarray*}
2668    {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2669               & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2670    \end{eqnarray*}
2671    \\
2672    If we define the time-tendency of Temperature due to Diabatic processes as
2673    \begin{eqnarray*}
2674    \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2675                         & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2676    \end{eqnarray*}
2677    then, since there are no surface pressure changes due to Diabatic processes, we may write
2678    \[
2679    \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2680    \]
2681    where $\theta = T/p^\kappa$.  Thus, {\bf DIABT} may be written as
2682    \[
2683    {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2684    \]
2685    \\
2686    
2687    \noindent
2688    { \underline {DIABQ} Total Diabatic Specific Humidity Tendency  ($g/kg/day$) }
2689    
2690    \noindent
2691    {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2692    and the Analysis forcing.
2693    \[
2694    {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2695    \]
2696    If we define the time-tendency of Specific Humidity due to Diabatic processes as
2697    \[
2698    \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2699    \]
2700    then, since there are no surface pressure changes due to Diabatic processes, we may write
2701    \[
2702    \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2703    \]
2704    Thus, {\bf DIABQ} may be written as
2705    \[
2706    {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2707    \]
2708    \\
2709    
2710    \noindent
2711    { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2712    
2713    \noindent
2714    The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2715    $u q$ over the depth of the atmosphere at each model timestep,
2716    and dividing by the total mass of the column.
2717    \[
2718    {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz  } { \int_{surf}^{top} \rho dz  }
2719    \]
2720    Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2721    \[
2722    {\bf VINTUQ} = { \int_0^1 u q dp  }
2723    \]
2724    \\
2725    
2726    
2727    \noindent
2728    { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2729    
2730    \noindent
2731    The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2732    $v q$ over the depth of the atmosphere at each model timestep,
2733    and dividing by the total mass of the column.
2734    \[
2735    {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz  } { \int_{surf}^{top} \rho dz  }
2736    \]
2737    Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2738    \[
2739    {\bf VINTVQ} = { \int_0^1 v q dp  }
2740    \]
2741    \\
2742    
2743    
2744    \noindent
2745    { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2746    
2747    \noindent
2748    The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2749    $u T$ over the depth of the atmosphere at each model timestep,
2750    and dividing by the total mass of the column.
2751    \[
2752    {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz  } { \int_{surf}^{top} \rho dz  }
2753    \]
2754    Or,
2755    \[
2756    {\bf VINTUT} = { \int_0^1 u T dp  }
2757    \]
2758    \\
2759    
2760    \noindent
2761    { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2762    
2763    \noindent
2764    The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2765    $v T$ over the depth of the atmosphere at each model timestep,
2766    and dividing by the total mass of the column.
2767    \[
2768    {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz  } { \int_{surf}^{top} \rho dz  }
2769    \]
2770    Using $\rho \delta z = -{\delta p \over g} $, we have
2771    \[
2772    {\bf VINTVT} = { \int_0^1 v T dp  }
2773    \]
2774    \\
2775    
2776    \noindent
2777    { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2778    
2779    If we define the
2780    time-averaged random and maximum overlapped cloudiness as CLRO and
2781    CLMO respectively, then the probability of clear sky associated
2782    with random overlapped clouds at any level is (1-CLRO) while the probability of
2783    clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2784    The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2785    the total cloud fraction at each  level may be obtained by
2786    1-(1-CLRO)*(1-CLMO).
2787    
2788    At any given level, we may define the clear line-of-site probability by
2789    appropriately accounting for the maximum and random overlap
2790    cloudiness.  The clear line-of-site probability is defined to be
2791    equal to the product of the clear line-of-site probabilities
2792    associated with random and maximum overlap cloudiness.  The clear
2793    line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2794    from the current pressure $p$
2795    to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2796    is simply 1.0 minus the largest maximum overlap cloud value along  the
2797    line-of-site, ie.
2798    
2799    $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2800    
2801    Thus, even in the time-averaged sense it is assumed that the
2802    maximum overlap clouds are correlated in the vertical.  The clear
2803    line-of-site probability associated with random overlap clouds is
2804    defined to be the product of the clear sky probabilities at each
2805    level along the line-of-site, ie.
2806    
2807    $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2808    
2809    The total cloud fraction at a given level associated with a line-
2810    of-site calculation is given by
2811    
2812    $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2813        \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2814    
2815    
2816    \noindent
2817    The 2-dimensional net cloud fraction as seen from the top of the
2818    atmosphere is given by
2819    \[
2820    {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2821        \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2822    \]
2823    \\
2824    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2825    
2826    
2827    \noindent
2828    { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2829    
2830    \noindent
2831    The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2832    given by:
2833    \begin{eqnarray*}
2834    {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2835               & = & {\pi \over g} \int_0^1 q dp
2836    \end{eqnarray*}
2837    where we have used the hydrostatic relation
2838    $\rho \delta z = -{\delta p \over g} $.
2839    \\
2840    
2841    
2842    \noindent
2843    { \underline {U2M}  Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2844    
2845    \noindent
2846    The u-wind at the 2-meter depth is determined from the similarity theory:
2847    \[
2848    {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2849    { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2850    \]
2851    
2852    \noindent
2853    where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2854    $sl$ refers to the height of the top of the surface layer. If the roughness height
2855    is above two meters, ${\bf U2M}$ is undefined.
2856    \\
2857    
2858    \noindent
2859    { \underline {V2M}  Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2860    
2861    \noindent
2862    The v-wind at the 2-meter depth is a determined from the similarity theory:
2863    \[
2864    {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2865    { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2866    \]
2867    
2868    \noindent
2869    where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2870    $sl$ refers to the height of the top of the surface layer. If the roughness height
2871    is above two meters, ${\bf V2M}$ is undefined.
2872    \\
2873    
2874    \noindent
2875    { \underline {T2M}  Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2876    
2877    \noindent
2878    The temperature at the 2-meter depth is a determined from the similarity theory:
2879    \[
2880    {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2881    P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2882    (\theta_{sl} - \theta_{surf}))
2883    \]
2884    where:
2885    \[
2886    \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2887    \]
2888    
2889    \noindent
2890    where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2891    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2892    $sl$ refers to the height of the top of the surface layer. If the roughness height
2893    is above two meters, ${\bf T2M}$ is undefined.
2894    \\
2895    
2896    \noindent
2897    { \underline {Q2M}  Specific Humidity at 2 Meter Depth ($g/kg$) }
2898    
2899    \noindent
2900    The specific humidity at the 2-meter depth is determined from the similarity theory:
2901    \[
2902    {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2903    P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2904    (q_{sl} - q_{surf}))
2905    \]
2906    where:
2907    \[
2908    q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2909    \]
2910    
2911    \noindent
2912    where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2913    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2914    $sl$ refers to the height of the top of the surface layer. If the roughness height
2915    is above two meters, ${\bf Q2M}$ is undefined.
2916    \\
2917    
2918    \noindent
2919    { \underline {U10M}  Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2920    
2921    \noindent
2922    The u-wind at the 10-meter depth is an interpolation between the surface wind
2923    and the model lowest level wind using the ratio of the non-dimensional wind shear
2924    at the two levels:
2925    \[
2926    {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2927    { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2928    \]
2929    
2930    \noindent
2931    where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2932    $sl$ refers to the height of the top of the surface layer.
2933    \\
2934    
2935    \noindent
2936    { \underline {V10M}  Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2937    
2938    \noindent
2939    The v-wind at the 10-meter depth is an interpolation between the surface wind
2940    and the model lowest level wind using the ratio of the non-dimensional wind shear
2941    at the two levels:
2942    \[
2943    {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2944    { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2945    \]
2946    
2947    \noindent
2948    where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2949    $sl$ refers to the height of the top of the surface layer.
2950    \\
2951    
2952    \noindent
2953    { \underline {T10M}  Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2954    
2955    \noindent
2956    The temperature at the 10-meter depth is an interpolation between the surface potential
2957    temperature and the model lowest level potential temperature using the ratio of the
2958    non-dimensional temperature gradient at the two levels:
2959    \[
2960    {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2961    P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2962    (\theta_{sl} - \theta_{surf}))
2963    \]
2964    where:
2965    \[
2966    \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2967    \]
2968    
2969    \noindent
2970    where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2971    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2972    $sl$ refers to the height of the top of the surface layer.
2973    \\
2974    
2975    \noindent
2976    { \underline {Q10M}  Specific Humidity at 10 Meter Depth ($g/kg$) }
2977    
2978    \noindent
2979    The specific humidity at the 10-meter depth is an interpolation between the surface specific
2980    humidity and the model lowest level specific humidity using the ratio of the
2981    non-dimensional temperature gradient at the two levels:
2982    \[
2983    {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2984    P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2985    (q_{sl} - q_{surf}))
2986    \]
2987    where:
2988    \[
2989    q_* =  - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2990    \]
2991    
2992    \noindent
2993    where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2994    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2995    $sl$ refers to the height of the top of the surface layer.
2996    \\
2997    
2998    \noindent
2999    { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
3000    
3001    The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
3002    \[
3003    {\bf DTRAIN} = \eta_{r_D}m_B
3004    \]
3005    \noindent
3006    where $r_D$ is the detrainment level,
3007    $m_B$ is the cloud base mass flux, and $\eta$
3008    is the entrainment, defined in Section \ref{sec:fizhi:mc}.
3009    \\
3010    
3011    \noindent
3012    { \underline {QFILL}  Filling of negative Specific Humidity ($g/kg/day$) }
3013    
3014    \noindent
3015    Due to computational errors associated with the numerical scheme used for
3016    the advection of moisture, negative values of specific humidity may be generated.  The
3017    specific humidity is checked for negative values after every dynamics timestep.  If negative
3018    values have been produced, a filling algorithm is invoked which redistributes moisture from
3019    below.  Diagnostic {\bf QFILL} is equal to the net filling needed
3020    to eliminate negative specific humidity, scaled to a per-day rate:
3021    \[
3022    {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
3023    \]
3024    where
3025    \[
3026    q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
3027    \]
3028    
3029    
3030    \subsubsection{Key subroutines, parameters and files}
3031    
3032    \subsubsection{Dos and donts}
3033    
3034  \subsection{Fizhi Reference}  \subsubsection{Fizhi Reference}

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.9

  ViewVC Help
Powered by ViewVC 1.1.22