--- manual/s_phys_pkgs/text/fizhi.tex 2005/07/14 19:18:02 1.8 +++ manual/s_phys_pkgs/text/fizhi.tex 2010/08/30 23:09:21 1.19 @@ -1,27 +1,30 @@ -\section{Fizhi: High-end Atmospheric Physics} +\subsection{Fizhi: High-end Atmospheric Physics} \label{sec:pkg:fizhi} \begin{rawhtml} \end{rawhtml} \input{texinputs/epsf.tex} -\subsection{Introduction} +\subsubsection{Introduction} The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art physical parameterizations for atmospheric radiation, cumulus convection, atmospheric -boundary layer turbulence, and land surface processes. +boundary layer turbulence, and land surface processes. The collection of atmospheric +physics parameterizations were originally used together as part of the GEOS-3 +(Goddard Earth Observing System-3) GCM developed at the NASA/Goddard Global Modelling +and Assimilation Office (GMAO). % ************************************************************************* % ************************************************************************* -\subsection{Equations} +\subsubsection{Equations} -\subsubsection{Moist Convective Processes} +Moist Convective Processes: \paragraph{Sub-grid and Large-scale Convection} \label{sec:fizhi:mc} Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa -Schubert (RAS) scheme of Moorthi and Suarez (1992), which is a linearized Arakawa Schubert +Schubert (RAS) scheme of \cite{moorsz:92}, which is a linearized Arakawa Schubert type scheme. RAS predicts the mass flux from an ensemble of clouds. Each subensemble is identified by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties. @@ -33,20 +36,20 @@ mass flux, is a linear function of height, expressed as: \[ \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} = --{c_p \over {g}}\theta\lambda +-\frac{c_p}{g}\theta\lambda \] where we have used the hydrostatic equation written in the form: \[ -\pp{z}{P^{\kappa}} = -{c_p \over {g}}\theta +\pp{z}{P^{\kappa}} = -\frac{c_p}{g}\theta \] The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal -to the saturation moist static energy of the environment, $h^*$. Following Moorthi and Suarez (1992), +to the saturation moist static energy of the environment, $h^*$. Following \cite{moorsz:92}, $\lambda$ may be written as \[ -\lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } , +\lambda = \frac{h_B - h^*_D}{ \frac{c_p}{g} \int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}, \] where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level. @@ -57,11 +60,11 @@ related to the buoyancy, or the difference between the moist static energy in the cloud and in the environment: \[ -A = \int_{P_D}^{P_B} { {\eta \over {1 + \gamma} } -\left[ {{h_c-h^*} \over {P^{\kappa}}} \right] dP^{\kappa}} +A = \int_{P_D}^{P_B} \frac{\eta}{1 + \gamma} +\left[ \frac{h_c-h^*}{P^{\kappa}} \right] dP^{\kappa} \] -where $\gamma$ is ${L \over {c_p}}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation, +where $\gamma$ is $\frac{L}{c_p}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation, and the subscript $c$ refers to the value inside the cloud. @@ -69,7 +72,7 @@ the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$: \[ -m_B = {{- \left.{dA \over dt} \right|_{ls}} \over K} +m_B = \frac{- \left. \frac{dA}{dt} \right|_{ls}}{K} \] where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per @@ -87,13 +90,13 @@ temperature (through latent heating and compensating subsidence) and moisture (through precipitation and detrainment): \[ -\left.{\pp{\theta}{t}}\right|_{c} = \alpha { m_B \over {c_p P^{\kappa}}} \eta \pp{s}{p} +\left.{\pp{\theta}{t}}\right|_{c} = \alpha \frac{ m_B}{c_p P^{\kappa}} \eta \pp{s}{p} \] and \[ -\left.{\pp{q}{t}}\right|_{c} = \alpha { m_B \over {L}} \eta (\pp{h}{p}-\pp{s}{p}) +\left.{\pp{q}{t}}\right|_{c} = \alpha \frac{ m_B}{L} \eta (\pp{h}{p}-\pp{s}{p}) \] -where $\theta = {T \over P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter. +where $\theta = \frac{T}{P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter. As an approximation to a full interaction between the different allowable subensembles, many clouds are simulated frequently, each modifying the large scale environment some fraction @@ -101,7 +104,7 @@ towards equillibrium. In addition to the RAS cumulus convection scheme, the fizhi package employs a -Kessler-type scheme for the re-evaporation of falling rain (Sud and Molod, 1988), which +Kessler-type scheme for the re-evaporation of falling rain (\cite{sudm:88}), which correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current formulation assumes that all cloud water is deposited into the detrainment level as rain. All of the rain is available for re-evaporation, which begins in the level below detrainment. @@ -133,14 +136,14 @@ detrained liquid water amount given by \[ -F_{RAS} = \min\left[ {l_{RAS}\over l_c}, 1.0 \right] +F_{RAS} = \min\left[ \frac{l_{RAS}}{l_c}, 1.0 \right] \] where $l_c$ is an assigned critical value equal to $1.25$ g/kg. A memory is associated with convective clouds defined by: \[ -F_{RAS}^n = \min\left[ F_{RAS} + (1-{\Delta t_{RAS}\over\tau})F_{RAS}^{n-1}, 1.0 \right] +F_{RAS}^n = \min\left[ F_{RAS} + (1-\frac{\Delta t_{RAS}}{\tau})F_{RAS}^{n-1}, 1.0 \right] \] where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction @@ -151,7 +154,7 @@ humidity: \[ -F_{LS} = \min\left[ { \left( {RH-RH_c \over 1-RH_c} \right) }^2, 1.0 \right] +F_{LS} = \min\left[ { \left( \frac{RH-RH_c}{1-RH_c} \right) }^2, 1.0 \right] \] where @@ -159,22 +162,22 @@ \bqa RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\ s & = & p/p_{surf} \nonumber \\ - r & = & \left( {1.0-RH_{min} \over \alpha} \right) \nonumber \\ + r & = & \left( \frac{1.0-RH_{min}}{\alpha} \right) \nonumber \\ RH_{min} & = & 0.75 \nonumber \\ \alpha & = & 0.573285 \nonumber . \eqa These cloud fractions are suppressed, however, in regions where the convective sub-cloud layer is conditionally unstable. The functional form of $RH_c$ is shown in -Figure (\ref{fig:fizhi:rhcrit}). +Figure (\ref{fig.rhcrit}). \begin{figure*}[htbp] \vspace{0.4in} - \centerline{ \epsfysize=4.0in \epsfbox{part6/rhcrit.ps}} + \centerline{ \epsfysize=4.0in \epsfbox{s_phys_pkgs/figs/rhcrit.ps}} \vspace{0.4in} - \caption [Critical Relative Humidity for Clouds.] - {Critical Relative Humidity for Clouds.} - \label{fig:fizhi:rhcrit} + \caption [Critical Relative Humidity for Clouds.] + {Critical Relative Humidity for Clouds.} + \label{fig.rhcrit} \end{figure*} The total cloud fraction in a grid box is determined by the larger of the two cloud fractions: @@ -186,7 +189,7 @@ Finally, cloud fractions are time-averaged between calls to the radiation packages. -\subsubsection{Radiation} +Radiation: The parameterization of radiative heating in the fizhi package includes effects from both shortwave and longwave processes. @@ -221,7 +224,7 @@ and a $CO_2$ mixing ratio of 330 ppm. For the ozone mixing ratio, monthly mean zonally averaged climatological values specified as a function -of latitude and height (Rosenfield, et al., 1987) are linearly interpolated to the current time. +of latitude and height (\cite{rosen:87}) are linearly interpolated to the current time. \paragraph{Shortwave Radiation} @@ -231,11 +234,11 @@ clouds, and aerosols and due to the scattering by clouds, aerosols, and gases. The shortwave radiative processes are described by -Chou (1990,1992). This shortwave package +\cite{chou:90,chou:92}. This shortwave package uses the Delta-Eddington approximation to compute the bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986). The transmittance and reflectance of diffuse radiation -follow the procedures of Sagan and Pollock (JGR, 1967) and Lacis and Hansen (JAS, 1974). +follow the procedures of Sagan and Pollock (JGR, 1967) and \cite{lhans:74}. Highly accurate heating rate calculations are obtained through the use of an optimal grouping strategy of spectral bands. By grouping the UV and visible regions @@ -305,23 +308,12 @@ of a given layer is then scaled for both the direct (as a function of the solar zenith angle) and diffuse beam radiation so that the grouped layer reflectance is the same as the original reflectance. -The solar flux is computed for each of the eight cloud realizations possible -(see Figure \ref{fig:fizhi:cloud}) within this +The solar flux is computed for each of eight cloud realizations possible within this low/middle/high classification, and appropriately averaged to produce the net solar flux. -\begin{figure*}[htbp] - \vspace{0.4in} - \centerline{ \epsfysize=4.0in %\epsfbox{part6/rhcrit.ps} - } - \vspace{0.4in} - \caption {Low-Middle-High Cloud Configurations} - \label{fig:fizhi:cloud} -\end{figure*} - - \paragraph{Longwave Radiation} -The longwave radiation package used in the fizhi package is thoroughly described by Chou and Suarez (1994). +The longwave radiation package used in the fizhi package is thoroughly described by \cite{chsz:94}. As described in that document, IR fluxes are computed due to absorption by water vapor, carbon dioxide, and ozone. The spectral bands together with their absorbers and parameterization methods, configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}. @@ -357,7 +349,7 @@ \end{tabular} \end{center} \vspace{0.1in} -\caption{IR Spectral Bands, Absorbers, and Parameterization Method (from Chou and Suarez, 1994)} +\caption{IR Spectral Bands, Absorbers, and Parameterization Method (from \cite{chsz:94})} \label{tab:fizhi:longwave} \end{table} @@ -417,7 +409,7 @@ the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the layer: -\[ \tau = \left( {F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} \over F_{RAS}+F_{LS} } \right) \Delta p, \] +\[ \tau = \left( \frac{F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} }{ F_{RAS}+F_{LS} } \right) \Delta p, \] where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale processes described in Section \ref{sec:fizhi:clouds}. @@ -428,7 +420,8 @@ hours). Therefore, in a time-averaged sense, both convective and large-scale cloudiness can exist in a given grid-box. -\subsubsection{Turbulence} +\paragraph{Turbulence}: + Turbulence is parameterized in the fizhi package to account for its contribution to the vertical exchange of heat, moisture, and momentum. The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative @@ -458,7 +451,7 @@ of second turbulent moments is explicitly modeled by representing the third moments in terms of the first and second moments. This approach is known as a second-order closure modeling. To simplify and streamline the computation of the second moments, the level 2.5 assumption -of Mellor and Yamada (1974) and Yamada (1977) is employed, in which only the turbulent +of Mellor and Yamada (1974) and \cite{yam:77} is employed, in which only the turbulent kinetic energy (TKE), \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \] @@ -470,11 +463,11 @@ and is written: \[ -{\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ {5 \over 3} {{\lambda}_1} q { \pp {}{z} +{\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ \frac{5}{3} {{\lambda}_1} q { \pp {}{z} ({\h}q^2)} })} = {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}} -{ \pp{V}{z} }} + {{g \over {\Theta_0}}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} } -- { q^3 \over {{\Lambda} _1} } +{ \pp{V}{z} }} + {\frac{g}{\Theta_0}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} +- \frac{ q^3}{{\Lambda}_1} } \] where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and @@ -492,13 +485,13 @@ In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and -$K_m$, respectively. In the statisically realizable level 2.5 turbulence scheme of Helfand -and Labraga (1988), these diffusion coefficients are expressed as +$K_m$, respectively. In the statisically realizable level 2.5 turbulence scheme of +\cite{helflab:88}, these diffusion coefficients are expressed as \[ K_h = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence} -\\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right. +\\ \frac{ q^2 }{ q_e } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right. \] and @@ -506,7 +499,7 @@ \[ K_m = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence} -\\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right. +\\ \frac{ q^2 }{ q_e } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right. \] where the subscript $e$ refers to the value under conditions of local equillibrium @@ -518,16 +511,18 @@ are functions of the Richardson number: \[ -{\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } - = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } . +{\bf RI} = \frac{ \frac{g}{\theta_v} \pp{\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 } + = \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 } . \] Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$) indicate dominantly unstable shear, and large positive values indicate dominantly stable stratification. -Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer, -which corresponds to the lowest GCM level (see \ref{tab:fizhi:sigma}), +Turbulent eddy diffusion coefficients of momentum, heat and moisture in the +surface layer, which corresponds to the lowest GCM level +(see {\it --- missing table ---}%\ref{tab:fizhi:sigma} +), are calculated using stability-dependant functions based on Monin-Obukhov theory: \[ {K_m} (surface) = C_u \times u_* = C_D W_s @@ -543,12 +538,12 @@ $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer similarity functions: \[ -{C_u} = {u_* \over W_s} = { k \over \psi_{m} } +{C_u} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} } \] where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional wind shear given by \[ -\psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} . +\psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta} . \] Here $\zeta$ is the non-dimensional stability parameter, and $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of @@ -558,24 +553,24 @@ $C_t$ is the dimensionless exchange coefficient for heat and moisture from the surface layer similarity functions: \[ -{C_t} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} = --{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} = -{ k \over { (\psi_{h} + \psi_{g}) } } +{C_t} = -\frac{( \overline{w^{\prime}\theta^{\prime}}) }{ u_* \Delta \theta } = +-\frac{( \overline{w^{\prime}q^{\prime}}) }{ u_* \Delta q } = +\frac{ k }{ (\psi_{h} + \psi_{g}) } \] where $\psi_h$ is the surface layer non-dimensional temperature gradient given by \[ -\psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} . +\psi_{h} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta} . \] Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of the temperature and moisture gradients, and is specified differently for stable and unstable -layers according to Helfand and Schubert, 1995. +layers according to \cite{helfschu:95}. $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer, which is the mosstly laminar region between the surface and the tops of the roughness elements, in which temperature and moisture gradients can be quite large. -Based on Yaglom and Kader (1974): +Based on \cite{yagkad:74}: \[ -\psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} } +\psi_{g} = \frac{ 0.55 (Pr^{2/3} - 0.2) }{ \nu^{1/2} } (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2} \] where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the @@ -584,16 +579,16 @@ The surface roughness length over oceans is is a function of the surface-stress velocity, \[ -{z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}} +{z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + \frac{c_5 }{ u_*} \] where the constants are chosen to interpolate between the reciprocal relation of -Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981) +\cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81} for moderate to large winds. Roughness lengths over land are specified -from the climatology of Dorman and Sellers (1989). +from the climatology of \cite{dorsell:89}. For an unstable surface layer, the stability functions, chosen to interpolate between the condition of small values of $\beta$ and the convective limit, are the KEYPS function -(Panofsky, 1973) for momentum, and its generalization for heat and moisture: +(\cite{pano:73}) for momentum, and its generalization for heat and moisture: \[ {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm} {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} . @@ -602,13 +597,13 @@ speed approaches zero. For a stable surface layer, the stability functions are the observationally -based functions of Clarke (1970), slightly modified for +based functions of \cite{clarke:70}, slightly modified for the momemtum flux: \[ -{\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1} -(1+ 5 {{\zeta}_1}) } } \hspace{1cm} ; \hspace{1cm} -{\phi_h} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {\zeta} -(1+ 5 {{\zeta}_1}) } } . +{\phi_m} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta}_1 +(1+ 5 {\zeta}_1) } \hspace{1cm} ; \hspace{1cm} +{\phi_h} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta} +(1+ 5 {{\zeta}_1}) } . \] The moisture flux also depends on a specified evapotranspiration coefficient, set to unity over oceans and dependant on the climatological ground wetness over @@ -653,42 +648,42 @@ The heat conduction through sea ice, $Q_{ice}$, is given by \[ -{Q_{ice}} = {C_{ti} \over {H_i}} (T_i-T_g) +{Q_{ice}} = \frac{C_{ti} }{ H_i} (T_i-T_g) \] where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the surface temperature of the ice. $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation -for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by: +for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by: \[ -C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3} -{86400 \over 2 \pi} } \, \, . +C_g = \sqrt{ \frac{\lambda C_s }{ 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3} +\frac{86400}{2\pi} } \, \, . \] -Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ ${ly\over{ sec}} -{cm \over {^oK}}$, +Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ $\frac{ly}{sec} +\frac{cm}{K}$, the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided by $2 \pi$ $radians/ day$, and the expression for $C_s$, the heat capacity per unit volume at the surface, is a function of the ground wetness, $W$. -\subsubsection{Land Surface Processes} +Land Surface Processes: \paragraph{Surface Type} -The fizhi package surface Types are designated using the Koster-Suarez (1992) mosaic -philosophy which allows multiple ``tiles'', or multiple surface types, in any one -grid cell. The Koster-Suarez Land Surface Model (LSM) surface type classifications +The fizhi package surface Types are designated using the Koster-Suarez (\cite{ks:91,ks:92}) +Land Surface Model (LSM) mosaic philosophy which allows multiple ``tiles'', or multiple surface +types, in any one grid cell. The Koster-Suarez LSM surface type classifications are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid cell occupied by any surface type were derived from the surface classification of -Defries and Townshend (1994), and information about the location of permanent -ice was obtained from the classifications of Dorman and Sellers (1989). -The surface type for the \txt GCM grid is shown in Figure \ref{fig:fizhi:surftype}. +\cite{deftow:94}, and information about the location of permanent +ice was obtained from the classifications of \cite{dorsell:89}. +The surface type map for a $1^\circ$ grid is shown in Figure \ref{fig:fizhi:surftype}. The determination of the land or sea category of surface type was made from NCAR's 10 minute by 10 minute Navy topography dataset, which includes information about the percentage of water-cover at any point. -The data were averaged to the model's \fxf and \txt grid resolutions, +The data were averaged to the model's grid resolutions, and any grid-box whose averaged water percentage was $\geq 60 \%$ was -defined as a water point. The \fxf grid Land-Water designation was further modified +defined as a water point. The Land-Water designation was further modified subjectively to ensure sufficient representation from small but isolated land and water regions. \begin{table} @@ -712,36 +707,36 @@ 100 & Ocean \\ \hline \end{tabular} \end{center} -\caption{Surface type designations used to compute surface roughness (over land) -and surface albedo.} +\caption{Surface type designations.} \label{tab:fizhi:surftype} \end{table} - \begin{figure*}[htbp] - \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.ps}} - \vspace{0.3in} - \caption {Surface Type Compinations at \txt resolution.} + \centerline{ \epsfysize=4.0in \epsfbox{s_phys_pkgs/figs/surftype.eps}} + \vspace{0.2in} + \caption {Surface Type Combinations.} \label{fig:fizhi:surftype} \end{figure*} -\begin{figure*}[htbp] - \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.descrip.ps}} - \vspace{0.3in} - \caption {Surface Type Descriptions.} - \label{fig:fizhi:surftype.desc} -\end{figure*} +% \rotatebox{270}{\centerline{ \epsfysize=4in \epsfbox{s_phys_pkgs/figs/surftypes.eps}}} +% \rotatebox{270}{\centerline{ \epsfysize=4in \epsfbox{s_phys_pkgs/figs/surftypes.descrip.eps}}} +%\begin{figure*}[htbp] +% \centerline{ \epsfysize=4in \epsfbox{s_phys_pkgs/figs/surftypes.descrip.ps}} +% \vspace{0.3in} +% \caption {Surface Type Descriptions.} +% \label{fig:fizhi:surftype.desc} +%\end{figure*} \paragraph{Surface Roughness} The surface roughness length over oceans is computed iteratively with the wind -stress by the surface layer parameterization (Helfand and Schubert, 1991). -It employs an interpolation between the functions of Large and Pond (1981) -for high winds and of Kondo (1975) for weak winds. +stress by the surface layer parameterization (\cite{helfschu:95}). +It employs an interpolation between the functions of \cite{larpond:81} +for high winds and of \cite{kondo:75} for weak winds. \paragraph{Albedo} -The surface albedo computation, described in Koster and Suarez (1991), +The surface albedo computation, described in \cite{ks:91}, employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB) Model which distinguishes between the direct and diffuse albedos in the visible and in the near infra-red spectral ranges. The albedos are functions of the observed @@ -750,15 +745,16 @@ Modifications are made to account for the presence of snow, and its depth relative to the height of the vegetation elements. -\subsubsection{Gravity Wave Drag} -The fizhi package employs the gravity wave drag scheme of Zhou et al. (1996). +\paragraph{Gravity Wave Drag} + +The fizhi package employs the gravity wave drag scheme of \cite{zhouetal:95}). This scheme is a modified version of Vernekar et al. (1992), which was based on Alpert et al. (1988) and Helfand et al. (1987). In this version, the gravity wave stress at the surface is based on that derived by Pierrehumbert (1986) and is given by: \bq -|\vec{\tau}_{sfc}| = {\rho U^3\over{N \ell^*}} \left(F_r^2 \over{1+F_r^2}\right) \, \, , +|\vec{\tau}_{sfc}| = \frac{\rho U^3}{N \ell^*} \left( \frac{F_r^2}{1+F_r^2}\right) \, \, , \eq where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the @@ -768,7 +764,7 @@ escape through the top of the model, although this effect is small for the current 70-level model. The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m. -The effects of using this scheme within a GCM are shown in Takacs and Suarez (1996). +The effects of using this scheme within a GCM are shown in \cite{taksz:96}. Experiments using the gravity wave drag parameterization yielded significant and beneficial impacts on both the time-mean flow and the transient statistics of the a GCM climatology, and have eliminated most of the worst dynamically driven biases @@ -784,7 +780,7 @@ convergence (through a reduction in the flux of westerly momentum by transient flow eddies). -\subsubsection{Boundary Conditions and other Input Data} +Boundary Conditions and other Input Data: Required fields which are not explicitly predicted or diagnosed during model execution must either be prescribed internally or obtained from external data sets. In the fizhi package these @@ -792,13 +788,12 @@ vegetation index, and the radiation-related background levels of: ozone, carbon dioxide, and stratospheric moisture. -Boundary condition data sets are available at the model's \fxf and \txt +Boundary condition data sets are available at the model's resolutions for either climatological or yearly varying conditions. Any frequency of boundary condition data can be used in the fizhi package; however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@. The time mean values are interpolated during each model timestep to the -current time. Future model versions will incorporate boundary conditions at -higher spatial \mbox{($1^\circ$ x $1^\circ$)} resolutions. +current time. \begin{table}[htb] \begin{center} @@ -825,78 +820,26 @@ Surface geopotential heights are provided from an averaging of the Navy 10 minute by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the model's grid resolution. The original topography is first rotated to the proper grid-orientation -which is being run, and then -averages the data to the model resolution. -The averaged topography is then passed through a Lanczos (1966) filter in both dimensions -which removes the smallest -scales while inhibiting Gibbs phenomena. - -In one dimension, we may define a cyclic function in $x$ as: -\begin{equation} -f(x) = {a_0 \over 2} + \sum_{k=1}^N \left( a_k \cos(kx) + b_k \sin(kx) \right) -\label{eq:fizhi:filt} -\end{equation} -where $N = { {\rm IM} \over 2 }$ and ${\rm IM}$ is the total number of points in the $x$ direction. -Defining $\Delta x = { 2 \pi \over {\rm IM}}$, we may define the average of $f(x)$ over a -$2 \Delta x$ region as: - -\begin{equation} -\overline {f(x)} = {1 \over {2 \Delta x}} \int_{x-\Delta x}^{x+\Delta x} f(x^{\prime}) dx^{\prime} -\label{eq:fizhi:fave1} -\end{equation} - -Using equation (\ref{eq:fizhi:filt}) in equation (\ref{eq:fizhi:fave1}) and integrating, we may write: - -\begin{equation} -\overline {f(x)} = {a_0 \over 2} + {1 \over {2 \Delta x}} -\sum_{k=1}^N \left [ -\left. a_k { \sin(kx^{\prime}) \over k } \right /_{x-\Delta x}^{x+\Delta x} - -\left. b_k { \cos(kx^{\prime}) \over k } \right /_{x-\Delta x}^{x+\Delta x} -\right] -\end{equation} -or - -\begin{equation} -\overline {f(x)} = {a_0 \over 2} + \sum_{k=1}^N {\sin(k \Delta x) \over {k \Delta x}} -\left( a_k \cos(kx) + b_k \sin(kx) \right) -\label{eq:fizhi:fave2} -\end{equation} - -Thus, the Fourier wave amplitudes are simply modified by the Lanczos filter response -function ${\sin(k\Delta x) \over {k \Delta x}}$. This may be compared with an $mth$-order -Shapiro (1970) filter response function, defined as $1-\sin^m({k \Delta x \over 2})$, -shown in Figure \ref{fig:fizhi:lanczos}. -It should be noted that negative values in the topography resulting from -the filtering procedure are {\em not} filled. - -\begin{figure*}[htbp] - \centerline{ \epsfysize=7.0in \epsfbox{part6/lanczos.ps}} - \caption{ \label{fig:fizhi:lanczos} Comparison between the Lanczos and $mth$-order Shapiro filter - response functions for $m$ = 2, 4, and 8. } -\end{figure*} +which is being run, and then averages the data to the model resolution. -The standard deviation of the subgrid-scale topography -is computed from a modified version of the the Navy 10 minute by 10 minute dataset. -The 10 minute by 10 minute topography is passed through a wavelet -filter in both dimensions which removes the scale smaller than 20 minutes. -The topography is then averaged to $1^\circ x 1^\circ$ grid resolution, and then -re-interpolated back to the 10 minute by 10 minute resolution. +The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute +data to the model's resolution and re-interpolating back to the 10 minute by 10 minute resolution. The sub-grid scale variance is constructed based on this smoothed dataset. \paragraph{Upper Level Moisture} The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas Experiment (SAGE) as input into the model's radiation packages. The SAGE data is archived -as monthly zonal means at 5$^\circ$ latitudinal resolution. The data is interpolated to the +as monthly zonal means at $5^\circ$ latitudinal resolution. The data is interpolated to the model's grid location and current time, and blended with the GCM's moisture data. Below 300 mb, the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb, a linear interpolation (in pressure) is performed using the data from SAGE and the GCM. -\subsection{Fizhi Diagnostics} +\subsubsection{Fizhi Diagnostics} -\subsubsection{Fizhi Diagnostic Menu} -\label{sec:fizhi-diagnostics:menu} +Fizhi Diagnostic Menu: +\label{sec:pkg:fizhi:diagnostics} \begin{tabular}{llll} \hline\hline @@ -1424,18 +1367,18 @@ \newpage -\subsubsection{Fizhi Diagnostic Description} +Fizhi Diagnostic Description: In this section we list and describe the diagnostic quantities available within the GCM. The diagnostics are listed in the order that they appear in the -Diagnostic Menu, Section \ref{sec:fizhi-diagnostics:menu}. +Diagnostic Menu, Section \ref{sec:pkg:fizhi:diagnostics}. In all cases, each diagnostic as currently archived on the output datasets is time-averaged over its diagnostic output frequency: \[ -{\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t) +{\bf DIAGNOSTIC} = \frac{1}{TTOT} \sum_{t=1}^{t=TTOT} diag(t) \] -where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the +where $TTOT = \frac{ {\bf NQDIAG} }{\Delta t}$, {\bf NQDIAG} is the output frequency of the diagnostic, and $\Delta t$ is the timestep over which the diagnostic is updated. @@ -1507,7 +1450,7 @@ through sea ice represents an additional energy source term for the ground temperature equation. \[ -{\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g) +{\bf QICE} = \frac{C_{ti}}{H_i} (T_i-T_g) \] where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to @@ -1549,8 +1492,8 @@ \noindent The non-dimensional stability indicator is the ratio of the buoyancy to the shear: \[ -{\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } - = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } +{\bf RI} = \frac{ \frac{g}{\theta_v} \pp {\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 } + = \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 } \] \\ where we used the hydrostatic equation: @@ -1569,15 +1512,15 @@ The surface exchange coefficient is obtained from the similarity functions for the stability dependant flux profile relationships: \[ -{\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} = --{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} = -{ k \over { (\psi_{h} + \psi_{g}) } } +{\bf CT} = -\frac{( \overline{w^{\prime}\theta^{\prime}} ) }{ u_* \Delta \theta } = +-\frac{( \overline{w^{\prime}q^{\prime}} ) }{ u_* \Delta q } = +\frac{ k }{ (\psi_{h} + \psi_{g}) } \] where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the viscous sublayer non-dimensional temperature or moisture change: \[ -\psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and -\hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} } +\psi_{h} = \int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta \hspace{1cm} and +\hspace{1cm} \psi_{g} = \frac{ 0.55 (Pr^{2/3} - 0.2) }{ \nu^{1/2} } (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2} \] and: @@ -1586,7 +1529,7 @@ \noindent $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of the temperature and moisture gradients, specified differently for stable and unstable -layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the +layers according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity (see diagnostic number 67), and the subscript ref refers to a reference value. @@ -1599,16 +1542,16 @@ The surface exchange coefficient is obtained from the similarity functions for the stability dependant flux profile relationships: \[ -{\bf CU} = {u_* \over W_s} = { k \over \psi_{m} } +{\bf CU} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} } \] where $\psi_m$ is the surface layer non-dimensional wind shear: \[ -\psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} +\psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta} \] \noindent $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of the temperature and moisture gradients, specified differently for stable and unstable layers -according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the +according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the non-dimensional stability parameter, $u_*$ is the surface stress velocity (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind. \\ @@ -1620,12 +1563,12 @@ In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or moisture flux for the atmosphere above the surface layer can be expressed as a turbulent diffusion coefficient $K_h$ times the negative of the gradient of potential temperature -or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$ +or moisture. In the \cite{helflab:88} adaptation of this closure, $K_h$ takes the form: \[ -{\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} } +{\bf ET} = K_h = -\frac{( \overline{w^{\prime}\theta_v^{\prime}}) }{ \pp{\theta_v}{z} } = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence} -\\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right. +\\ \frac{ q^2 }{ q_e } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right. \] where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm} energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model, @@ -1639,7 +1582,7 @@ \noindent For the detailed equations and derivations of the modified level 2.5 closure scheme, -see Helfand and Labraga, 1988. +see \cite{helflab:88}. \noindent In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture, @@ -1661,12 +1604,12 @@ In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat momentum flux for the atmosphere above the surface layer can be expressed as a turbulent diffusion coefficient $K_m$ times the negative of the gradient of the u-wind. -In the Helfand and Labraga (1988) adaptation of this closure, $K_m$ +In the \cite{helflab:88} adaptation of this closure, $K_m$ takes the form: \[ -{\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} } +{\bf EU} = K_m = -\frac{( \overline{u^{\prime}w^{\prime}} ) }{ \pp{U}{z} } = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence} -\\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right. +\\ \frac{ q^2 }{ q_e } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right. \] \noindent where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm} @@ -1681,7 +1624,7 @@ \noindent For the detailed equations and derivations of the modified level 2.5 closure scheme, -see Helfand and Labraga, 1988. +see \cite{helflab:88}. \noindent In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum, @@ -1769,9 +1712,9 @@ \] where: \[ -\left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i +\left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{c_p} \Gamma_s \right)_i \hspace{.4cm} and -\hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q) +\hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = \frac{L}{c_p} (q^*-q) \] and \[ @@ -1799,7 +1742,7 @@ \] where: \[ -\left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i +\left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{L}(\Gamma_h-\Gamma_s) \right)_i \hspace{.4cm} and \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q) \] @@ -1845,11 +1788,11 @@ Finally, the net longwave heating rate is calculated as the vertical divergence of the net terrestrial radiative fluxes: \[ -\pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} , +\pp{\rho c_p T}{t} = - \p{z} F_{LW}^{NET} , \] or \[ -{\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} . +{\bf RADLW} = \frac{g}{c_p \pi} \p{\sigma} F_{LW}^{NET} . \] \noindent @@ -1880,11 +1823,11 @@ \noindent The heating rate due to Shortwave Radiation under cloudy skies is defined as: \[ -\pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT}, +\pp{\rho c_p T}{t} = - \p{z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT}, \] or \[ -{\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} . +{\bf RADSW} = \frac{g}{c_p \pi} \p{\sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} . \] \noindent @@ -1904,7 +1847,7 @@ the vertical integral or total precipitable amount is given by: \[ {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist} -{dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp +\frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{moist} dp \] \\ @@ -1921,7 +1864,7 @@ the vertical integral or total precipitable amount is given by: \[ {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum} -{dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp +\frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{cum} dp \] \\ @@ -2006,7 +1949,7 @@ \noindent The drag coefficient for momentum obtained by assuming a neutrally stable surface layer: \[ -{\bf CN} = { k \over { \ln({h \over {z_0}})} } +{\bf CN} = \frac{ k }{ \ln(\frac{h }{z_0}) } \] \noindent @@ -2042,7 +1985,7 @@ \noindent where \[ -\theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm} +\theta_{v{Nrphys+1}} = \frac{ T_g }{ P^{\kappa}_{surf} } (1 + .609 q_{Nrphys+1}) \hspace{1cm} and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys}) \] @@ -2071,14 +2014,14 @@ sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat flux, and $C_g$ is the total heat capacity of the ground. $C_g$ is obtained by solving a heat diffusion equation -for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by: +for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by: \[ -C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3} -{ 86400. \over {2 \pi} } } \, \, . +C_g = \sqrt{ \frac{\lambda C_s }{ 2 \omega } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3} +\frac{86400.}{2\pi} } \, \, . \] \noindent -Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}} -{cm \over {^oK}}$, +Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ $\frac{ly}{sec} +\frac{cm}{K}$, the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided by $2 \pi$ $radians/ day$, and the expression for $C_s$, the heat capacity per unit volume at the surface, @@ -2220,11 +2163,11 @@ vertical divergence of the clear-sky longwave radiative flux: \[ -\pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} , +\pp{\rho c_p T}{t}_{clearsky} = - \p{z} F(clearsky)_{LW}^{NET} , \] or \[ -{\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} . +{\bf LWCLR} = \frac{g}{c_p \pi} \p{\sigma} F(clearsky)_{LW}^{NET} . \] \noindent @@ -2414,7 +2357,7 @@ the surface layer top impeded by the surface drag: \[ {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm} -C_u = {k \over {\psi_m} } +C_u = \frac{k}{\psi_m} \] \noindent @@ -2426,15 +2369,15 @@ \noindent Over the land surface, the surface roughness length is interpolated to the local -time from the monthly mean data of Dorman and Sellers (1989). Over the ocean, +time from the monthly mean data of \cite{dorsell:89}. Over the ocean, the roughness length is a function of the surface-stress velocity, $u_*$. \[ -{\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}} +{\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5}{u_*} \] \noindent where the constants are chosen to interpolate between the reciprocal relation of -Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981) +\cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81} for moderate to large winds. \\ @@ -2483,11 +2426,11 @@ \noindent The heating rate due to Shortwave Radiation under clear skies is defined as: \[ -\pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT}, +\pp{\rho c_p T}{t} = - \p{z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT}, \] or \[ -{\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} . +{\bf SWCLR} = \frac{g}{c_p } \p{p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} . \] \noindent @@ -2674,11 +2617,11 @@ \end{eqnarray*} then, since there are no surface pressure changes due to Diabatic processes, we may write \[ -\pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic} +\pp{T}{t}_{Diabatic} = \frac{p^\kappa}{\pi}\pp{\pi \theta}{t}_{Diabatic} \] where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as \[ -{\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right) +{\bf DIABT} = \frac{p^\kappa}{\pi} \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right) \] \\ @@ -2697,11 +2640,11 @@ \] then, since there are no surface pressure changes due to Diabatic processes, we may write \[ -\pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic} +\pp{q}{t}_{Diabatic} = \frac{1}{\pi}\pp{\pi q}{t}_{Diabatic} \] Thus, {\bf DIABQ} may be written as \[ -{\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right) +{\bf DIABQ} = \frac{1}{\pi} \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right) \] \\ @@ -2715,7 +2658,7 @@ \[ {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz } \] -Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have +Using $\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p$, we have \[ {\bf VINTUQ} = { \int_0^1 u q dp } \] @@ -2732,7 +2675,7 @@ \[ {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz } \] -Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have +Using $\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p$, we have \[ {\bf VINTVQ} = { \int_0^1 v q dp } \] @@ -2765,7 +2708,7 @@ \[ {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz } \] -Using $\rho \delta z = -{\delta p \over g} $, we have +Using $\rho \delta z = -\frac{\delta p}{g} $, we have \[ {\bf VINTVT} = { \int_0^1 v T dp } \] @@ -2830,10 +2773,10 @@ given by: \begin{eqnarray*} {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\ - & = & {\pi \over g} \int_0^1 q dp + & = & \frac{\pi}{g} \int_0^1 q dp \end{eqnarray*} where we have used the hydrostatic relation -$\rho \delta z = -{\delta p \over g} $. +$\rho \delta z = -\frac{\delta p}{g} $. \\ @@ -2843,8 +2786,8 @@ \noindent The u-wind at the 2-meter depth is determined from the similarity theory: \[ -{\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} = -{ \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl} +{\bf U2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{u_{sl}}{W_s} = +\frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }u_{sl} \] \noindent @@ -2859,8 +2802,8 @@ \noindent The v-wind at the 2-meter depth is a determined from the similarity theory: \[ -{\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} = -{ \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl} +{\bf V2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{v_{sl}}{W_s} = +\frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }v_{sl} \] \noindent @@ -2875,13 +2818,13 @@ \noindent The temperature at the 2-meter depth is a determined from the similarity theory: \[ -{\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) = -P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } -(\theta_{sl} - \theta_{surf})) +{\bf T2M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) = +P^{\kappa}(\theta_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g } +(\theta_{sl} - \theta_{surf}) ) \] where: \[ -\theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} } +\theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* } \] \noindent @@ -2897,13 +2840,13 @@ \noindent The specific humidity at the 2-meter depth is determined from the similarity theory: \[ -{\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) = -P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } +{\bf Q2M} = P^{\kappa} \frac({q_*}{k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) = +P^{\kappa}(q_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g } (q_{sl} - q_{surf})) \] where: \[ -q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} } +q_* = - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* } \] \noindent @@ -2921,8 +2864,8 @@ and the model lowest level wind using the ratio of the non-dimensional wind shear at the two levels: \[ -{\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} = -{ \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl} +{\bf U10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{u_{sl}}{W_s} = +\frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }u_{sl} \] \noindent @@ -2938,8 +2881,8 @@ and the model lowest level wind using the ratio of the non-dimensional wind shear at the two levels: \[ -{\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} = -{ \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl} +{\bf V10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{v_{sl}}{W_s} = +\frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }v_{sl} \] \noindent @@ -2955,13 +2898,13 @@ temperature and the model lowest level potential temperature using the ratio of the non-dimensional temperature gradient at the two levels: \[ -{\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) = -P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } +{\bf T10M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) = +P^{\kappa}(\theta_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g} (\theta_{sl} - \theta_{surf})) \] where: \[ -\theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} } +\theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* } \] \noindent @@ -2978,13 +2921,13 @@ humidity and the model lowest level specific humidity using the ratio of the non-dimensional temperature gradient at the two levels: \[ -{\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) = -P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } +{\bf Q10M} = P^{\kappa} (\frac{q_*}{k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) = +P^{\kappa}(q_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g} (q_{sl} - q_{surf})) \] where: \[ -q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} } +q_* = - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* } \] \noindent @@ -3025,8 +2968,17 @@ \] -\subsection{Key subroutines, parameters and files} +\subsubsection{Key subroutines, parameters and files} + +\subsubsection{Dos and donts} + +\subsubsection{Fizhi Reference} + +\subsubsection{Experiments and tutorials that use fizhi} +\label{sec:pkg:fizhi:experiments} -\subsection{Dos and donts} +\begin{itemize} +\item{Global atmosphere experiment with realistic SST and topography in fizhi-cs-32x32x10 verification directory. } +\item{Global atmosphere aqua planet experiment in fizhi-cs-aqualev20 verification directory. } +\end{itemize} -\subsection{Fizhi Reference}