/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by molod, Mon Feb 2 22:00:18 2004 UTC revision 1.19 by jmc, Mon Aug 30 23:09:21 2010 UTC
# Line 1  Line 1 
1  \section{Fizhi: High-end Atmospheric Physics}  \subsection{Fizhi: High-end Atmospheric Physics}
2    \label{sec:pkg:fizhi}
3    \begin{rawhtml}
4    <!-- CMIREDIR:package_fizhi: -->
5    \end{rawhtml}
6  \input{texinputs/epsf.tex}  \input{texinputs/epsf.tex}
7    
8  \subsection{Introduction}  \subsubsection{Introduction}
9  The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art  The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10  physical parameterizations for atmospheric radiation, cumulus convection, atmospheric  physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11  boundary layer turbulence, and land surface processes.  boundary layer turbulence, and land surface processes. The collection of atmospheric
12    physics parameterizations were originally used together as part of the GEOS-3
13    (Goddard Earth Observing System-3) GCM developed at the NASA/Goddard Global Modelling
14    and Assimilation Office (GMAO).
15    
16  % *************************************************************************  % *************************************************************************
17  % *************************************************************************  % *************************************************************************
18    
19  \subsection{Equations}  \subsubsection{Equations}
20    
21  \subsubsection{Moist Convective Processes}  Moist Convective Processes:
22    
23  \paragraph{Sub-grid and Large-scale Convection}  \paragraph{Sub-grid and Large-scale Convection}
24  \label{sec:fizhi:mc}  \label{sec:fizhi:mc}
25    
26  Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa  Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
27  Schubert (RAS) scheme of Moorthi and Suarez (1992), which is a linearized Arakawa Schubert  Schubert (RAS) scheme of \cite{moorsz:92}, which is a linearized Arakawa Schubert
28  type scheme.  RAS predicts the mass flux from an ensemble of clouds.  Each subensemble is identified  type scheme.  RAS predicts the mass flux from an ensemble of clouds.  Each subensemble is identified
29  by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.  by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.
30    
# Line 29  buoyancy. RAS assumes that the normalize Line 36  buoyancy. RAS assumes that the normalize
36  mass flux, is a linear function of height, expressed as:  mass flux, is a linear function of height, expressed as:
37  \[  \[
38  \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =  \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
39  -{c_p \over {g}}\theta\lambda  -\frac{c_p}{g}\theta\lambda
40  \]  \]
41  where we have used the hydrostatic equation written in the form:  where we have used the hydrostatic equation written in the form:
42  \[  \[
43  \pp{z}{P^{\kappa}} = -{c_p \over {g}}\theta  \pp{z}{P^{\kappa}} = -\frac{c_p}{g}\theta
44  \]  \]
45    
46  The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its  The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
47  detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral  detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral
48  buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal  buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal
49  to the saturation moist static energy of the environment, $h^*$.  Following Moorthi and Suarez (1992),  to the saturation moist static energy of the environment, $h^*$.  Following \cite{moorsz:92},
50  $\lambda$ may be written as  $\lambda$ may be written as
51  \[  \[
52  \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,  \lambda = \frac{h_B - h^*_D}{ \frac{c_p}{g} \int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}},
53  \]  \]
54    
55  where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.  where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.
# Line 53  rate of change of cumulus kinetic energy Line 60  rate of change of cumulus kinetic energy
60  related to the buoyancy, or the difference  related to the buoyancy, or the difference
61  between the moist static energy in the cloud and in the environment:  between the moist static energy in the cloud and in the environment:
62  \[  \[
63  A = \int_{P_D}^{P_B} { {\eta \over {1 + \gamma} }  A = \int_{P_D}^{P_B} \frac{\eta}{1 + \gamma}
64  \left[ {{h_c-h^*} \over {P^{\kappa}}} \right] dP^{\kappa}}  \left[ \frac{h_c-h^*}{P^{\kappa}} \right] dP^{\kappa}
65  \]  \]
66    
67  where $\gamma$ is ${L \over {c_p}}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,  where $\gamma$ is $\frac{L}{c_p}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,
68  and the subscript $c$ refers to the value inside the cloud.  and the subscript $c$ refers to the value inside the cloud.
69    
70    
# Line 65  To determine the cloud base mass flux, t Line 72  To determine the cloud base mass flux, t
72  the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation  the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation
73  by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:  by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:
74  \[  \[
75  m_B = {{- \left.{dA \over dt} \right|_{ls}} \over K}  m_B = \frac{- \left. \frac{dA}{dt} \right|_{ls}}{K}
76  \]  \]
77    
78  where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per  where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per
# Line 83  and moisture budget equations to determi Line 90  and moisture budget equations to determi
90  temperature (through latent heating and compensating subsidence) and moisture (through  temperature (through latent heating and compensating subsidence) and moisture (through
91  precipitation and detrainment):  precipitation and detrainment):
92  \[  \[
93  \left.{\pp{\theta}{t}}\right|_{c} = \alpha { m_B \over {c_p P^{\kappa}}} \eta \pp{s}{p}  \left.{\pp{\theta}{t}}\right|_{c} = \alpha \frac{ m_B}{c_p P^{\kappa}} \eta \pp{s}{p}
94  \]  \]
95  and  and
96  \[  \[
97  \left.{\pp{q}{t}}\right|_{c} = \alpha { m_B \over {L}} \eta (\pp{h}{p}-\pp{s}{p})  \left.{\pp{q}{t}}\right|_{c} = \alpha \frac{ m_B}{L} \eta (\pp{h}{p}-\pp{s}{p})
98  \]  \]
99  where $\theta = {T \over P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.  where $\theta = \frac{T}{P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.
100    
101  As an approximation to a full interaction between the different allowable subensembles,  As an approximation to a full interaction between the different allowable subensembles,
102  many clouds are simulated frequently, each modifying the large scale environment some fraction  many clouds are simulated frequently, each modifying the large scale environment some fraction
# Line 97  $\alpha$ of the total adjustment. The pa Line 104  $\alpha$ of the total adjustment. The pa
104  towards equillibrium.    towards equillibrium.  
105    
106  In addition to the RAS cumulus convection scheme, the fizhi package employs a  In addition to the RAS cumulus convection scheme, the fizhi package employs a
107  Kessler-type scheme for the re-evaporation of falling rain (Sud and Molod, 1988), which  Kessler-type scheme for the re-evaporation of falling rain (\cite{sudm:88}), which
108  correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current  correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current
109  formulation assumes that all cloud water is deposited into the detrainment level as rain.  formulation assumes that all cloud water is deposited into the detrainment level as rain.
110  All of the rain is available for re-evaporation, which begins in the level below detrainment.  All of the rain is available for re-evaporation, which begins in the level below detrainment.
# Line 129  Convective cloud fractions produced by R Line 136  Convective cloud fractions produced by R
136  detrained liquid water amount given by  detrained liquid water amount given by
137    
138  \[  \[
139  F_{RAS} = \min\left[ {l_{RAS}\over l_c}, 1.0 \right]  F_{RAS} = \min\left[ \frac{l_{RAS}}{l_c}, 1.0 \right]
140  \]  \]
141    
142  where $l_c$ is an assigned critical value equal to $1.25$ g/kg.  where $l_c$ is an assigned critical value equal to $1.25$ g/kg.
143  A memory is associated with convective clouds defined by:  A memory is associated with convective clouds defined by:
144    
145  \[  \[
146  F_{RAS}^n = \min\left[ F_{RAS} + (1-{\Delta t_{RAS}\over\tau})F_{RAS}^{n-1}, 1.0 \right]  F_{RAS}^n = \min\left[ F_{RAS} + (1-\frac{\Delta t_{RAS}}{\tau})F_{RAS}^{n-1}, 1.0 \right]
147  \]  \]
148    
149  where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction  where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction
# Line 147  Large-scale cloudiness is defined, follo Line 154  Large-scale cloudiness is defined, follo
154  humidity:  humidity:
155    
156  \[  \[
157  F_{LS} = \min\left[ { \left( {RH-RH_c \over 1-RH_c} \right) }^2, 1.0 \right]  F_{LS} = \min\left[ { \left( \frac{RH-RH_c}{1-RH_c} \right) }^2, 1.0 \right]
158  \]  \]
159    
160  where  where
# Line 155  where Line 162  where
162  \bqa  \bqa
163  RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\  RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\
164     s & = & p/p_{surf} \nonumber \\     s & = & p/p_{surf} \nonumber \\
165     r & = & \left( {1.0-RH_{min} \over \alpha} \right) \nonumber \\     r & = & \left( \frac{1.0-RH_{min}}{\alpha} \right) \nonumber \\
166  RH_{min} & = & 0.75 \nonumber \\  RH_{min} & = & 0.75 \nonumber \\
167  \alpha & = & 0.573285 \nonumber  .  \alpha & = & 0.573285 \nonumber  .
168  \eqa  \eqa
169    
170  These cloud fractions are suppressed, however, in regions where the convective  These cloud fractions are suppressed, however, in regions where the convective
171  sub-cloud layer is conditionally unstable.  The functional form of $RH_c$ is shown in  sub-cloud layer is conditionally unstable.  The functional form of $RH_c$ is shown in
172  Figure (\ref{fig:fizhi:rhcrit}).  Figure (\ref{fig.rhcrit}).
173    
174  \begin{figure*}[htbp]  \begin{figure*}[htbp]
175    \vspace{0.4in}    \vspace{0.4in}
176    \centerline{  \epsfysize=4.0in  \epsfbox{part6/rhcrit.ps}}    \centerline{  \epsfysize=4.0in  \epsfbox{s_phys_pkgs/figs/rhcrit.ps}}
177    \vspace{0.4in}    \vspace{0.4in}
178    \caption  [Critical Relative Humidity for Clouds.]    \caption  [Critical Relative Humidity for Clouds.]
179              {Critical Relative Humidity for Clouds.}              {Critical Relative Humidity for Clouds.}
180    \label{fig:fizhi:rhcrit}    \label{fig.rhcrit}
181  \end{figure*}  \end{figure*}
182    
183  The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:  The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:
# Line 182  F_{CLD} = \max \left[ F_{RAS},F_{LS} \ri Line 189  F_{CLD} = \max \left[ F_{RAS},F_{LS} \ri
189  Finally, cloud fractions are time-averaged between calls to the radiation packages.  Finally, cloud fractions are time-averaged between calls to the radiation packages.
190    
191    
192  \subsubsection{Radiation}  Radiation:
193    
194  The parameterization of radiative heating in the fizhi package includes effects  The parameterization of radiative heating in the fizhi package includes effects
195  from both shortwave and longwave processes.  from both shortwave and longwave processes.
# Line 217  The solar constant value used in the pac Line 224  The solar constant value used in the pac
224  and a $CO_2$ mixing ratio of 330 ppm.  and a $CO_2$ mixing ratio of 330 ppm.
225  For the ozone mixing ratio, monthly mean zonally averaged  For the ozone mixing ratio, monthly mean zonally averaged
226  climatological values specified as a function  climatological values specified as a function
227  of latitude and height (Rosenfield, et al., 1987) are linearly interpolated to the current time.  of latitude and height (\cite{rosen:87}) are linearly interpolated to the current time.
228    
229    
230  \paragraph{Shortwave Radiation}  \paragraph{Shortwave Radiation}
# Line 227  heating due to the absoption by water va Line 234  heating due to the absoption by water va
234  clouds, and aerosols and due to the  clouds, and aerosols and due to the
235  scattering by clouds, aerosols, and gases.  scattering by clouds, aerosols, and gases.
236  The shortwave radiative processes are described by  The shortwave radiative processes are described by
237  Chou (1990,1992). This shortwave package  \cite{chou:90,chou:92}. This shortwave package
238  uses the Delta-Eddington approximation to compute the  uses the Delta-Eddington approximation to compute the
239  bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).  bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).
240  The transmittance and reflectance of diffuse radiation  The transmittance and reflectance of diffuse radiation
241  follow the procedures of Sagan and Pollock (JGR, 1967) and Lacis and Hansen (JAS, 1974).  follow the procedures of Sagan and Pollock (JGR, 1967) and \cite{lhans:74}.
242    
243  Highly accurate heating rate calculations are obtained through the use  Highly accurate heating rate calculations are obtained through the use
244  of an optimal grouping strategy of spectral bands.  By grouping the UV and visible regions  of an optimal grouping strategy of spectral bands.  By grouping the UV and visible regions
# Line 301  cloud cover of all the layers in the gro Line 308  cloud cover of all the layers in the gro
308  of a given layer is then scaled for both the direct (as a function of the  of a given layer is then scaled for both the direct (as a function of the
309  solar zenith angle) and diffuse beam radiation  solar zenith angle) and diffuse beam radiation
310  so that the grouped layer reflectance is the same as the original reflectance.  so that the grouped layer reflectance is the same as the original reflectance.
311  The solar flux is computed for each of the eight cloud realizations possible  The solar flux is computed for each of eight cloud realizations possible within this
 (see Figure \ref{fig:fizhi:cloud}) within this  
312  low/middle/high classification, and appropriately averaged to produce the net solar flux.  low/middle/high classification, and appropriately averaged to produce the net solar flux.
313    
 \begin{figure*}[htbp]  
   \vspace{0.4in}  
   \centerline{  \epsfysize=4.0in  %\epsfbox{part6/rhcrit.ps}  
              }  
   \vspace{0.4in}  
   \caption  {Low-Middle-High Cloud Configurations}  
   \label{fig:fizhi:cloud}  
 \end{figure*}  
   
   
314  \paragraph{Longwave Radiation}  \paragraph{Longwave Radiation}
315    
316  The longwave radiation package used in the fizhi package is thoroughly described by Chou and Suarez (1994).  The longwave radiation package used in the fizhi package is thoroughly described by \cite{chsz:94}.
317  As described in that document, IR fluxes are computed due to absorption by water vapor, carbon  As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
318  dioxide, and ozone.  The spectral bands together with their absorbers and parameterization methods,  dioxide, and ozone.  The spectral bands together with their absorbers and parameterization methods,
319  configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.  configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.
# Line 353  Band & Spectral Range (cm$^{-1}$) & Abso Line 349  Band & Spectral Range (cm$^{-1}$) & Abso
349  \end{tabular}  \end{tabular}
350  \end{center}  \end{center}
351  \vspace{0.1in}  \vspace{0.1in}
352  \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from Chou and Suarez, 1994)}  \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from \cite{chsz:94})}
353  \label{tab:fizhi:longwave}  \label{tab:fizhi:longwave}
354  \end{table}  \end{table}
355    
# Line 413  The total optical depth in a given model Line 409  The total optical depth in a given model
409  the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the  the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the
410  layer:  layer:
411    
412  \[ \tau = \left( {F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} \over F_{RAS}+F_{LS} } \right) \Delta p, \]  \[ \tau = \left( \frac{F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} }{ F_{RAS}+F_{LS} } \right) \Delta p, \]
413    
414  where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale  where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale
415  processes described in Section \ref{sec:fizhi:clouds}.  processes described in Section \ref{sec:fizhi:clouds}.
# Line 424  The cloud fraction values are time-avera Line 420  The cloud fraction values are time-avera
420  hours).  Therefore, in a time-averaged sense, both convective and large-scale  hours).  Therefore, in a time-averaged sense, both convective and large-scale
421  cloudiness can exist in a given grid-box.    cloudiness can exist in a given grid-box.  
422    
423  \subsubsection{Turbulence}  \paragraph{Turbulence}:
424    
425  Turbulence is parameterized in the fizhi package to account for its contribution to the  Turbulence is parameterized in the fizhi package to account for its contribution to the
426  vertical exchange of heat, moisture, and momentum.    vertical exchange of heat, moisture, and momentum.  
427  The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative  The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
# Line 454  Within the atmosphere, the time evolutio Line 451  Within the atmosphere, the time evolutio
451  of second turbulent moments is explicitly modeled by representing the third moments in terms of  of second turbulent moments is explicitly modeled by representing the third moments in terms of
452  the first and second moments.  This approach is known as a second-order closure modeling.  the first and second moments.  This approach is known as a second-order closure modeling.
453  To simplify and streamline the computation of the second moments, the level 2.5 assumption  To simplify and streamline the computation of the second moments, the level 2.5 assumption
454  of Mellor and Yamada (1974) and Yamada (1977) is employed, in which only the turbulent  of Mellor and Yamada (1974) and \cite{yam:77} is employed, in which only the turbulent
455  kinetic energy (TKE),  kinetic energy (TKE),
456    
457  \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]  \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]
# Line 466  is solved numerically using an implicit Line 463  is solved numerically using an implicit
463  and is written:  and is written:
464    
465  \[  \[
466  {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ {5 \over 3} {{\lambda}_1} q { \pp {}{z}  {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ \frac{5}{3} {{\lambda}_1} q { \pp {}{z}
467  ({\h}q^2)} })} =  ({\h}q^2)} })} =
468  {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}  {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
469  { \pp{V}{z} }} + {{g \over {\Theta_0}}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} }  { \pp{V}{z} }} + {\frac{g}{\Theta_0}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}}
470  - { q^3 \over {{\Lambda} _1} }  - \frac{ q^3}{{\Lambda}_1} }
471  \]  \]
472    
473  where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and  where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and
# Line 488  of TKE. Line 485  of TKE.
485    
486  In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the  In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the
487  wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and  wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and
488  $K_m$, respectively.  In the statisically realizable level 2.5 turbulence scheme of Helfand  $K_m$, respectively.  In the statisically realizable level 2.5 turbulence scheme of
489  and Labraga (1988), these diffusion coefficients are expressed as  \cite{helflab:88}, these diffusion coefficients are expressed as
490    
491  \[  \[
492  K_h  K_h
493   = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}   = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
494  \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.  \\ \frac{ q^2 }{ q_e } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
495  \]  \]
496    
497  and  and
# Line 502  and Line 499  and
499  \[  \[
500  K_m  K_m
501   = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}                   = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}                
502  \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.  \\ \frac{ q^2 }{ q_e } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
503  \]  \]
504    
505  where the subscript $e$ refers to the value under conditions of local equillibrium  where the subscript $e$ refers to the value under conditions of local equillibrium
# Line 514  Both $G_H$ and $G_M$, and their equilibr Line 511  Both $G_H$ and $G_M$, and their equilibr
511  are functions of the Richardson number:  are functions of the Richardson number:
512    
513  \[  \[
514  {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }  {\bf RI} = \frac{ \frac{g}{\theta_v} \pp{\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
515   =  {  {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } .   =  \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 } .
516  \]  \]
517    
518  Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)  Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)
519  indicate dominantly unstable shear, and large positive values indicate dominantly stable  indicate dominantly unstable shear, and large positive values indicate dominantly stable
520  stratification.  stratification.
521    
522  Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer,  Turbulent eddy diffusion coefficients of momentum, heat and moisture in the
523  which corresponds to the lowest GCM level (see \ref{tab:fizhi:sigma}),  surface layer, which corresponds to the lowest GCM level
524    (see {\it --- missing table ---}%\ref{tab:fizhi:sigma}
525    ),
526  are calculated using stability-dependant functions based on Monin-Obukhov theory:  are calculated using stability-dependant functions based on Monin-Obukhov theory:
527  \[  \[
528  {K_m} (surface) = C_u \times u_* = C_D W_s  {K_m} (surface) = C_u \times u_* = C_D W_s
# Line 539  and $W_s$ is the magnitude of the surfac Line 538  and $W_s$ is the magnitude of the surfac
538  $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer  $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
539  similarity functions:  similarity functions:
540  \[  \[
541  {C_u} = {u_* \over W_s} = { k \over \psi_{m} }  {C_u} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} }
542  \]  \]
543  where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional  where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional
544  wind shear given by  wind shear given by
545  \[  \[
546  \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} .  \psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta} .
547  \]  \]
548  Here $\zeta$ is the non-dimensional stability parameter, and  Here $\zeta$ is the non-dimensional stability parameter, and
549  $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of  $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of
# Line 554  layers. Line 553  layers.
553  $C_t$ is the dimensionless exchange coefficient for heat and  $C_t$ is the dimensionless exchange coefficient for heat and
554  moisture from the surface layer similarity functions:  moisture from the surface layer similarity functions:
555  \[  \[
556  {C_t} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =  {C_t} = -\frac{( \overline{w^{\prime}\theta^{\prime}}) }{ u_* \Delta \theta } =
557  -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =  -\frac{( \overline{w^{\prime}q^{\prime}}) }{ u_* \Delta q } =
558  { k \over { (\psi_{h} + \psi_{g}) } }  \frac{ k }{ (\psi_{h} + \psi_{g}) }
559  \]  \]
560  where $\psi_h$ is the surface layer non-dimensional temperature gradient given by  where $\psi_h$ is the surface layer non-dimensional temperature gradient given by
561  \[  \[
562  \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} .  \psi_{h} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta} .
563  \]  \]
564  Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of  Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
565  the temperature and moisture gradients, and is specified differently for stable and unstable  the temperature and moisture gradients, and is specified differently for stable and unstable
566  layers according to Helfand and Schubert, 1995.  layers according to \cite{helfschu:95}.
567    
568  $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,  $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,
569  which is the mosstly laminar region between the surface and the tops of the roughness  which is the mosstly laminar region between the surface and the tops of the roughness
570  elements, in which temperature and moisture gradients can be quite large.  elements, in which temperature and moisture gradients can be quite large.
571  Based on Yaglom and Kader (1974):  Based on \cite{yagkad:74}:
572  \[  \[
573  \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }  \psi_{g} = \frac{ 0.55 (Pr^{2/3} - 0.2) }{ \nu^{1/2} }
574  (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}  (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
575  \]  \]
576  where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the  where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the
# Line 580  $h_{0} = 30z_{0}$ with a maximum value o Line 579  $h_{0} = 30z_{0}$ with a maximum value o
579    
580  The surface roughness length over oceans is is a function of the surface-stress velocity,  The surface roughness length over oceans is is a function of the surface-stress velocity,
581  \[  \[
582  {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}  {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + \frac{c_5 }{ u_*}
583  \]  \]
584  where the constants are chosen to interpolate between the reciprocal relation of  where the constants are chosen to interpolate between the reciprocal relation of
585  Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)  \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
586  for moderate to large winds.  Roughness lengths over land are specified  for moderate to large winds.  Roughness lengths over land are specified
587  from the climatology of Dorman and Sellers (1989).  from the climatology of \cite{dorsell:89}.
588    
589  For an unstable surface layer, the stability functions, chosen to interpolate between the  For an unstable surface layer, the stability functions, chosen to interpolate between the
590  condition of small values of $\beta$ and the convective limit, are the KEYPS function  condition of small values of $\beta$ and the convective limit, are the KEYPS function
591  (Panofsky, 1973) for momentum, and its generalization for heat and moisture:    (\cite{pano:73}) for momentum, and its generalization for heat and moisture:  
592  \[  \[
593  {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}  {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
594  {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .  {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .
# Line 598  The function for heat and moisture assur Line 597  The function for heat and moisture assur
597  speed approaches zero.  speed approaches zero.
598    
599  For a stable surface layer, the stability functions are the observationally  For a stable surface layer, the stability functions are the observationally
600  based functions of Clarke (1970),  slightly modified for  based functions of \cite{clarke:70},  slightly modified for
601  the momemtum flux:    the momemtum flux:  
602  \[  \[
603  {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}  {\phi_m} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta}_1
604  (1+ 5 {{\zeta}_1}) } } \hspace{1cm} ; \hspace{1cm}  (1+ 5 {\zeta}_1) } \hspace{1cm} ; \hspace{1cm}
605  {\phi_h} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {\zeta}  {\phi_h} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta}
606  (1+ 5 {{\zeta}_1}) } } .  (1+ 5 {{\zeta}_1}) } .
607  \]  \]
608  The moisture flux also depends on a specified evapotranspiration  The moisture flux also depends on a specified evapotranspiration
609  coefficient, set to unity over oceans and dependant on the climatological ground wetness over  coefficient, set to unity over oceans and dependant on the climatological ground wetness over
# Line 649  humidity of the surface and of the lowes Line 648  humidity of the surface and of the lowes
648    
649  The heat conduction through sea ice, $Q_{ice}$, is given by  The heat conduction through sea ice, $Q_{ice}$, is given by
650  \[  \[
651  {Q_{ice}} = {C_{ti} \over {H_i}} (T_i-T_g)  {Q_{ice}} = \frac{C_{ti} }{ H_i} (T_i-T_g)
652  \]  \]
653  where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to  where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
654  be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the  be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the
655  surface temperature of the ice.  surface temperature of the ice.
656    
657  $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation  $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
658  for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:  for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
659  \[  \[
660  C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}  C_g = \sqrt{ \frac{\lambda C_s }{ 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
661  {86400 \over 2 \pi} } \, \, .  \frac{86400}{2\pi} } \, \, .
662  \]  \]
663  Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ ${ly\over{ sec}}  Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ $\frac{ly}{sec}
664  {cm \over {^oK}}$,      \frac{cm}{K}$,
665  the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided  the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
666  by $2 \pi$ $radians/    by $2 \pi$ $radians/  
667  day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,  day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
668  is a function of the ground wetness, $W$.  is a function of the ground wetness, $W$.
669    
670  \subsubsection{Land Surface Processes}  Land Surface Processes:
671    
672  \paragraph{Surface Type}  \paragraph{Surface Type}
673  The fizhi package surface Types are designated using the Koster-Suarez (1992) mosaic  The fizhi package surface Types are designated using the Koster-Suarez (\cite{ks:91,ks:92})
674  philosophy which allows multiple ``tiles'', or multiple surface types, in any one  Land Surface Model (LSM) mosaic philosophy which allows multiple ``tiles'', or multiple surface
675  grid cell. The Koster-Suarez Land Surface Model (LSM) surface type classifications  types, in any one grid cell. The Koster-Suarez LSM surface type classifications
676  are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid  are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid
677  cell occupied by any surface type were derived from the surface classification of  cell occupied by any surface type were derived from the surface classification of
678  Defries and Townshend (1994), and information about the location of permanent  \cite{deftow:94}, and information about the location of permanent
679  ice was obtained from the classifications of Dorman and Sellers (1989).  ice was obtained from the classifications of \cite{dorsell:89}.
680  The surface type for the \txt GCM grid is shown in Figure \ref{fig:fizhi:surftype}.  The surface type map for a $1^\circ$ grid is shown in Figure \ref{fig:fizhi:surftype}.
681  The determination of the land or sea category of surface type was made from NCAR's  The determination of the land or sea category of surface type was made from NCAR's
682  10 minute by 10 minute Navy topography  10 minute by 10 minute Navy topography
683  dataset, which includes information about the percentage of water-cover at any point.  dataset, which includes information about the percentage of water-cover at any point.
684  The data were averaged to the model's \fxf and \txt grid resolutions,  The data were averaged to the model's grid resolutions,
685  and any grid-box whose averaged water percentage was $\geq 60 \%$ was  and any grid-box whose averaged water percentage was $\geq 60 \%$ was
686  defined as a water point. The \fxf grid Land-Water designation was further modified  defined as a water point. The Land-Water designation was further modified
687  subjectively to ensure sufficient representation from small but isolated land and water regions.  subjectively to ensure sufficient representation from small but isolated land and water regions.
688    
689  \begin{table}  \begin{table}
# Line 708  Type & Vegetation Designation \\ \hline Line 707  Type & Vegetation Designation \\ \hline
707  100 & Ocean \\ \hline  100 & Ocean \\ \hline
708  \end{tabular}  \end{tabular}
709  \end{center}  \end{center}
710  \caption{Surface type designations used to compute surface roughness (over land)  \caption{Surface type designations.}
 and surface albedo.}  
711  \label{tab:fizhi:surftype}  \label{tab:fizhi:surftype}
712  \end{table}  \end{table}
713    
   
714  \begin{figure*}[htbp]  \begin{figure*}[htbp]
715    \centerline{  \epsfysize=7in  \epsfbox{part6/surftypes.ps}}    \centerline{  \epsfysize=4.0in  \epsfbox{s_phys_pkgs/figs/surftype.eps}}
716    \vspace{0.3in}    \vspace{0.2in}
717    \caption  {Surface Type Compinations at \txt resolution.}    \caption  {Surface Type Combinations.}
718    \label{fig:fizhi:surftype}    \label{fig:fizhi:surftype}
719  \end{figure*}  \end{figure*}
720    
721  \begin{figure*}[htbp]  % \rotatebox{270}{\centerline{  \epsfysize=4in  \epsfbox{s_phys_pkgs/figs/surftypes.eps}}}
722    \centerline{  \epsfysize=7in  \epsfbox{part6/surftypes.descrip.ps}}  % \rotatebox{270}{\centerline{  \epsfysize=4in  \epsfbox{s_phys_pkgs/figs/surftypes.descrip.eps}}}
723    \vspace{0.3in}  %\begin{figure*}[htbp]
724    \caption  {Surface Type Descriptions.}  %  \centerline{  \epsfysize=4in  \epsfbox{s_phys_pkgs/figs/surftypes.descrip.ps}}
725    \label{fig:fizhi:surftype.desc}  %  \vspace{0.3in}
726  \end{figure*}  %  \caption  {Surface Type Descriptions.}
727    %  \label{fig:fizhi:surftype.desc}
728    %\end{figure*}
729    
730    
731  \paragraph{Surface Roughness}  \paragraph{Surface Roughness}
732  The surface roughness length over oceans is computed iteratively with the wind  The surface roughness length over oceans is computed iteratively with the wind
733  stress by the surface layer parameterization (Helfand and Schubert, 1991).  stress by the surface layer parameterization (\cite{helfschu:95}).
734  It employs an interpolation between the functions of Large and Pond (1981)  It employs an interpolation between the functions of \cite{larpond:81}
735  for high winds and of Kondo (1975) for weak winds.  for high winds and of \cite{kondo:75} for weak winds.
736    
737    
738  \paragraph{Albedo}  \paragraph{Albedo}
739  The surface albedo computation, described in Koster and Suarez (1991),  The surface albedo computation, described in \cite{ks:91},
740  employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)  employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
741  Model which distinguishes between the direct and diffuse albedos in the visible  Model which distinguishes between the direct and diffuse albedos in the visible
742  and in the near infra-red spectral ranges. The albedos are functions of the observed  and in the near infra-red spectral ranges. The albedos are functions of the observed
# Line 746  sun), the greenness fraction, the vegeta Line 745  sun), the greenness fraction, the vegeta
745  Modifications are made to account for the presence of snow, and its depth relative  Modifications are made to account for the presence of snow, and its depth relative
746  to the height of the vegetation elements.  to the height of the vegetation elements.
747    
748  \subsubsection{Gravity Wave Drag}  \paragraph{Gravity Wave Drag}
749  The fizhi package employs the gravity wave drag scheme of Zhou et al. (1996).  
750    The fizhi package employs the gravity wave drag scheme of \cite{zhouetal:95}).
751  This scheme is a modified version of Vernekar et al. (1992),  This scheme is a modified version of Vernekar et al. (1992),
752  which was based on Alpert et al. (1988) and Helfand et al. (1987).    which was based on Alpert et al. (1988) and Helfand et al. (1987).  
753  In this version, the gravity wave stress at the surface is  In this version, the gravity wave stress at the surface is
754  based on that derived by Pierrehumbert (1986) and is given by:  based on that derived by Pierrehumbert (1986) and is given by:
755    
756  \bq  \bq
757  |\vec{\tau}_{sfc}| = {\rho U^3\over{N \ell^*}} \left(F_r^2 \over{1+F_r^2}\right) \, \, ,  |\vec{\tau}_{sfc}| = \frac{\rho U^3}{N \ell^*} \left( \frac{F_r^2}{1+F_r^2}\right) \, \, ,
758  \eq  \eq
759    
760  where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the  where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the
# Line 764  A modification introduced by Zhou et al. Line 764  A modification introduced by Zhou et al.
764  escape through the top of the model, although this effect is small for the current 70-level model.    escape through the top of the model, although this effect is small for the current 70-level model.  
765  The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.  The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.
766    
767  The effects of using this scheme within a GCM are shown in Takacs and Suarez (1996).  The effects of using this scheme within a GCM are shown in \cite{taksz:96}.
768  Experiments using the gravity wave drag parameterization yielded significant and  Experiments using the gravity wave drag parameterization yielded significant and
769  beneficial impacts on both the time-mean flow and the transient statistics of the  beneficial impacts on both the time-mean flow and the transient statistics of the
770  a GCM climatology, and have eliminated most of the worst dynamically driven biases  a GCM climatology, and have eliminated most of the worst dynamically driven biases
# Line 780  of mountain torque (through a redistribu Line 780  of mountain torque (through a redistribu
780  convergence (through a reduction in the flux of westerly momentum by transient flow eddies).    convergence (through a reduction in the flux of westerly momentum by transient flow eddies).  
781    
782    
783  \subsubsection{Boundary Conditions and other Input Data}  Boundary Conditions and other Input Data:
784    
785  Required fields which are not explicitly predicted or diagnosed during model execution must  Required fields which are not explicitly predicted or diagnosed during model execution must
786  either be prescribed internally or obtained from external data sets.  In the fizhi package these  either be prescribed internally or obtained from external data sets.  In the fizhi package these
# Line 788  fields include:  sea surface temperature Line 788  fields include:  sea surface temperature
788  vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,  vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,
789  and stratospheric moisture.  and stratospheric moisture.
790    
791  Boundary condition data sets are available at the model's \fxf and \txt  Boundary condition data sets are available at the model's
792  resolutions for either climatological or yearly varying conditions.  resolutions for either climatological or yearly varying conditions.
793  Any frequency of boundary condition data can be used in the fizhi package;  Any frequency of boundary condition data can be used in the fizhi package;
794  however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@.  however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@.
795  The time mean values are interpolated during each model timestep to the  The time mean values are interpolated during each model timestep to the
796  current time. Future model versions will incorporate boundary conditions at  current time.
 higher spatial \mbox{($1^\circ$ x $1^\circ$)} resolutions.  
797    
798  \begin{table}[htb]  \begin{table}[htb]
799  \begin{center}  \begin{center}
# Line 821  current years and frequencies available. Line 820  current years and frequencies available.
820  Surface geopotential heights are provided from an averaging of the Navy 10 minute  Surface geopotential heights are provided from an averaging of the Navy 10 minute
821  by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the  by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
822  model's grid resolution. The original topography is first rotated to the proper grid-orientation  model's grid resolution. The original topography is first rotated to the proper grid-orientation
823  which is being run, and then    which is being run, and then  averages the data to the model resolution.  
 averages the data to the model resolution.    
 The averaged topography is then passed through a Lanczos (1966) filter in both dimensions  
 which removes the smallest  
 scales while inhibiting Gibbs phenomena.    
   
 In one dimension, we may define a cyclic function in $x$ as:  
 \begin{equation}  
 f(x) = {a_0 \over 2} + \sum_{k=1}^N \left( a_k \cos(kx) + b_k \sin(kx) \right)  
 \label{eq:fizhi:filt}  
 \end{equation}  
 where $N = { {\rm IM} \over 2 }$ and ${\rm IM}$ is the total number of points in the $x$ direction.  
 Defining $\Delta x = { 2 \pi \over {\rm IM}}$, we may define the average of $f(x)$ over a  
 $2 \Delta x$ region as:  
   
 \begin{equation}  
 \overline {f(x)} = {1 \over {2 \Delta x}} \int_{x-\Delta x}^{x+\Delta x} f(x^{\prime}) dx^{\prime}  
 \label{eq:fizhi:fave1}  
 \end{equation}  
   
 Using equation (\ref{eq:fizhi:filt}) in equation (\ref{eq:fizhi:fave1}) and integrating, we may write:  
   
 \begin{equation}  
 \overline {f(x)} = {a_0 \over 2} + {1 \over {2 \Delta x}}  
 \sum_{k=1}^N \left [  
 \left. a_k { \sin(kx^{\prime}) \over k } \right /_{x-\Delta x}^{x+\Delta x} -  
 \left. b_k { \cos(kx^{\prime}) \over k } \right /_{x-\Delta x}^{x+\Delta x}  
 \right]  
 \end{equation}  
 or  
   
 \begin{equation}  
 \overline {f(x)} = {a_0 \over 2} + \sum_{k=1}^N {\sin(k \Delta x) \over {k \Delta x}}  
 \left( a_k \cos(kx) + b_k \sin(kx) \right)  
 \label{eq:fizhi:fave2}  
 \end{equation}  
   
 Thus, the Fourier wave amplitudes are simply modified by the Lanczos filter response  
 function ${\sin(k\Delta x) \over {k \Delta x}}$.  This may be compared with an $mth$-order  
 Shapiro (1970) filter response function, defined as $1-\sin^m({k \Delta x \over 2})$,  
 shown in Figure \ref{fig:fizhi:lanczos}.  
 It should be noted that negative values in the topography resulting from  
 the filtering procedure are {\em not} filled.  
   
 \begin{figure*}[htbp]  
   \centerline{  \epsfysize=7.0in  \epsfbox{part6/lanczos.ps}}  
   \caption{ \label{fig:fizhi:lanczos} Comparison between the Lanczos and $mth$-order Shapiro filter  
   response functions for $m$ = 2, 4, and 8. }  
 \end{figure*}  
824    
825  The standard deviation of the subgrid-scale topography  The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute
826  is computed from a modified version of the the Navy 10 minute by 10 minute dataset.  data to the model's resolution and re-interpolating back to the 10 minute by 10 minute resolution.
 The 10 minute by 10 minute topography is passed through a wavelet  
 filter in both dimensions which removes the scale smaller than 20 minutes.  
 The topography is then averaged to $1^\circ x 1^\circ$ grid resolution, and then  
 re-interpolated back to the 10 minute by 10 minute resolution.  
827  The sub-grid scale variance is constructed based on this smoothed dataset.  The sub-grid scale variance is constructed based on this smoothed dataset.
828    
829    
830  \paragraph{Upper Level Moisture}  \paragraph{Upper Level Moisture}
831  The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas  The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas
832  Experiment (SAGE) as input into the model's radiation packages.  The SAGE data is archived  Experiment (SAGE) as input into the model's radiation packages.  The SAGE data is archived
833  as monthly zonal means at 5$^\circ$ latitudinal resolution.  The data is interpolated to the  as monthly zonal means at $5^\circ$ latitudinal resolution.  The data is interpolated to the
834  model's grid location and current time, and blended with the GCM's moisture data.  Below 300 mb,  model's grid location and current time, and blended with the GCM's moisture data.  Below 300 mb,
835  the model's moisture data is used.  Above 100 mb, the SAGE data is used.  Between 100 and 300 mb,  the model's moisture data is used.  Above 100 mb, the SAGE data is used.  Between 100 and 300 mb,
836  a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.  a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
837    
 \subsection{Key subroutines, parameters and files}  
838    
839  \subsection{Dos and donts}  \subsubsection{Fizhi Diagnostics}
840    
841    Fizhi Diagnostic Menu:
842    \label{sec:pkg:fizhi:diagnostics}
843    
844    \begin{tabular}{llll}
845    \hline\hline
846     NAME & UNITS & LEVELS & DESCRIPTION \\
847    \hline
848    
849    &\\
850     UFLUX    &   $Newton/m^2$  &    1  
851             &\begin{minipage}[t]{3in}
852              {Surface U-Wind Stress on the atmosphere}
853             \end{minipage}\\
854     VFLUX    &   $Newton/m^2$  &    1  
855             &\begin{minipage}[t]{3in}
856              {Surface V-Wind Stress on the atmosphere}
857             \end{minipage}\\
858     HFLUX    &   $Watts/m^2$  &    1  
859             &\begin{minipage}[t]{3in}
860              {Surface Flux of Sensible Heat}
861             \end{minipage}\\
862     EFLUX    &   $Watts/m^2$  &    1  
863             &\begin{minipage}[t]{3in}
864              {Surface Flux of Latent Heat}
865             \end{minipage}\\
866     QICE     &   $Watts/m^2$  &    1  
867             &\begin{minipage}[t]{3in}
868              {Heat Conduction through Sea-Ice}
869             \end{minipage}\\
870     RADLWG   &   $Watts/m^2$ &    1  
871             &\begin{minipage}[t]{3in}
872              {Net upward LW flux at the ground}
873             \end{minipage}\\
874     RADSWG   &   $Watts/m^2$  &    1
875             &\begin{minipage}[t]{3in}
876              {Net downward SW flux at the ground}
877             \end{minipage}\\
878     RI       &  $dimensionless$ &  Nrphys
879             &\begin{minipage}[t]{3in}
880              {Richardson Number}
881             \end{minipage}\\
882     CT       &  $dimensionless$ &  1
883             &\begin{minipage}[t]{3in}
884              {Surface Drag coefficient for T and Q}
885             \end{minipage}\\
886     CU       & $dimensionless$ &  1
887         &\begin{minipage}[t]{3in}
888          {Surface Drag coefficient for U and V}
889         \end{minipage}\\
890     ET       &  $m^2/sec$ &  Nrphys
891         &\begin{minipage}[t]{3in}
892          {Diffusivity coefficient for T and Q}
893         \end{minipage}\\
894     EU       &  $m^2/sec$ &  Nrphys
895         &\begin{minipage}[t]{3in}
896          {Diffusivity coefficient for U and V}
897         \end{minipage}\\
898     TURBU    &  $m/sec/day$ &  Nrphys
899         &\begin{minipage}[t]{3in}
900          {U-Momentum Changes due to Turbulence}
901         \end{minipage}\\
902     TURBV    &  $m/sec/day$ &  Nrphys
903         &\begin{minipage}[t]{3in}
904          {V-Momentum Changes due to Turbulence}
905         \end{minipage}\\
906     TURBT    &  $deg/day$ &  Nrphys
907         &\begin{minipage}[t]{3in}
908          {Temperature Changes due to Turbulence}
909         \end{minipage}\\
910     TURBQ    &  $g/kg/day$ &  Nrphys
911         &\begin{minipage}[t]{3in}
912          {Specific Humidity Changes due to Turbulence}
913         \end{minipage}\\
914     MOISTT   &   $deg/day$ &  Nrphys
915         &\begin{minipage}[t]{3in}
916          {Temperature Changes due to Moist Processes}
917         \end{minipage}\\
918     MOISTQ   &  $g/kg/day$ &  Nrphys
919         &\begin{minipage}[t]{3in}
920          {Specific Humidity Changes due to Moist Processes}
921         \end{minipage}\\
922     RADLW    &  $deg/day$ &  Nrphys
923         &\begin{minipage}[t]{3in}
924          {Net Longwave heating rate for each level}
925         \end{minipage}\\
926     RADSW    &  $deg/day$ &  Nrphys
927         &\begin{minipage}[t]{3in}
928          {Net Shortwave heating rate for each level}
929         \end{minipage}\\
930     PREACC   &  $mm/day$ &  1
931         &\begin{minipage}[t]{3in}
932          {Total Precipitation}
933         \end{minipage}\\
934     PRECON   &  $mm/day$ &  1
935         &\begin{minipage}[t]{3in}
936          {Convective Precipitation}
937         \end{minipage}\\
938     TUFLUX   &  $Newton/m^2$ &  Nrphys
939         &\begin{minipage}[t]{3in}
940          {Turbulent Flux of U-Momentum}
941         \end{minipage}\\
942     TVFLUX   &  $Newton/m^2$ &  Nrphys
943         &\begin{minipage}[t]{3in}
944          {Turbulent Flux of V-Momentum}
945         \end{minipage}\\
946     TTFLUX   &  $Watts/m^2$ &  Nrphys
947         &\begin{minipage}[t]{3in}
948          {Turbulent Flux of Sensible Heat}
949         \end{minipage}\\
950    \end{tabular}
951    
952    \newpage
953    \vspace*{\fill}
954    \begin{tabular}{llll}
955    \hline\hline
956     NAME & UNITS & LEVELS & DESCRIPTION \\
957    \hline
958    
959    &\\
960     TQFLUX   &  $Watts/m^2$ &  Nrphys
961         &\begin{minipage}[t]{3in}
962          {Turbulent Flux of Latent Heat}
963         \end{minipage}\\
964     CN       &  $dimensionless$ &  1
965         &\begin{minipage}[t]{3in}
966          {Neutral Drag Coefficient}
967         \end{minipage}\\
968     WINDS     &  $m/sec$ &  1
969         &\begin{minipage}[t]{3in}
970          {Surface Wind Speed}
971         \end{minipage}\\
972     DTSRF     &  $deg$ &  1
973         &\begin{minipage}[t]{3in}
974          {Air/Surface virtual temperature difference}
975         \end{minipage}\\
976     TG        &  $deg$ &  1
977         &\begin{minipage}[t]{3in}
978          {Ground temperature}
979         \end{minipage}\\
980     TS        &  $deg$ &  1
981         &\begin{minipage}[t]{3in}
982          {Surface air temperature (Adiabatic from lowest model layer)}
983         \end{minipage}\\
984     DTG       &  $deg$ &  1
985         &\begin{minipage}[t]{3in}
986          {Ground temperature adjustment}
987         \end{minipage}\\
988    
989     QG        &  $g/kg$ &  1
990         &\begin{minipage}[t]{3in}
991          {Ground specific humidity}
992         \end{minipage}\\
993     QS        &  $g/kg$ &  1
994         &\begin{minipage}[t]{3in}
995          {Saturation surface specific humidity}
996         \end{minipage}\\
997     TGRLW    &    $deg$   &    1  
998         &\begin{minipage}[t]{3in}
999          {Instantaneous ground temperature used as input to the
1000           Longwave radiation subroutine}
1001         \end{minipage}\\
1002     ST4      &   $Watts/m^2$  &    1  
1003         &\begin{minipage}[t]{3in}
1004          {Upward Longwave flux at the ground ($\sigma T^4$)}
1005         \end{minipage}\\
1006     OLR      &   $Watts/m^2$  &    1  
1007         &\begin{minipage}[t]{3in}
1008          {Net upward Longwave flux at the top of the model}
1009         \end{minipage}\\
1010     OLRCLR   &   $Watts/m^2$  &    1  
1011         &\begin{minipage}[t]{3in}
1012          {Net upward clearsky Longwave flux at the top of the model}
1013         \end{minipage}\\
1014     LWGCLR   &   $Watts/m^2$  &    1  
1015         &\begin{minipage}[t]{3in}
1016          {Net upward clearsky Longwave flux at the ground}
1017         \end{minipage}\\
1018     LWCLR    &  $deg/day$ &  Nrphys
1019         &\begin{minipage}[t]{3in}
1020          {Net clearsky Longwave heating rate for each level}
1021         \end{minipage}\\
1022     TLW      &    $deg$   &  Nrphys
1023         &\begin{minipage}[t]{3in}
1024          {Instantaneous temperature used as input to the Longwave radiation
1025          subroutine}
1026         \end{minipage}\\
1027     SHLW     &    $g/g$   &  Nrphys
1028         &\begin{minipage}[t]{3in}
1029          {Instantaneous specific humidity used as input to the Longwave radiation
1030          subroutine}
1031         \end{minipage}\\
1032     OZLW     &    $g/g$   &  Nrphys
1033         &\begin{minipage}[t]{3in}
1034          {Instantaneous ozone used as input to the Longwave radiation
1035          subroutine}
1036         \end{minipage}\\
1037     CLMOLW   &    $0-1$   &  Nrphys
1038         &\begin{minipage}[t]{3in}
1039          {Maximum overlap cloud fraction used in the Longwave radiation
1040          subroutine}
1041         \end{minipage}\\
1042     CLDTOT   &    $0-1$   &  Nrphys
1043         &\begin{minipage}[t]{3in}
1044          {Total cloud fraction used in the Longwave and Shortwave radiation
1045          subroutines}
1046         \end{minipage}\\
1047     LWGDOWN  &    $Watts/m^2$   &  1
1048         &\begin{minipage}[t]{3in}
1049          {Downwelling Longwave radiation at the ground}
1050         \end{minipage}\\
1051     GWDT     &    $deg/day$ &  Nrphys
1052         &\begin{minipage}[t]{3in}
1053          {Temperature tendency due to Gravity Wave Drag}
1054         \end{minipage}\\
1055     RADSWT   &    $Watts/m^2$   &  1
1056         &\begin{minipage}[t]{3in}
1057          {Incident Shortwave radiation at the top of the atmosphere}
1058         \end{minipage}\\
1059     TAUCLD   &    $per 100 mb$   &  Nrphys
1060         &\begin{minipage}[t]{3in}
1061          {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1062         \end{minipage}\\
1063     TAUCLDC  &    $Number$   &  Nrphys
1064         &\begin{minipage}[t]{3in}
1065          {Cloud Optical Depth Counter}
1066         \end{minipage}\\
1067    \end{tabular}
1068    \vfill
1069    
1070    \newpage
1071    \vspace*{\fill}
1072    \begin{tabular}{llll}
1073    \hline\hline
1074     NAME & UNITS & LEVELS & DESCRIPTION \\
1075    \hline
1076    
1077    &\\
1078     CLDLOW   &    $0-1$   &  Nrphys
1079         &\begin{minipage}[t]{3in}
1080          {Low-Level ( 1000-700 hPa) Cloud Fraction  (0-1)}
1081         \end{minipage}\\
1082     EVAP     &    $mm/day$   &  1
1083         &\begin{minipage}[t]{3in}
1084          {Surface evaporation}
1085         \end{minipage}\\
1086     DPDT     &    $hPa/day$ &  1
1087         &\begin{minipage}[t]{3in}
1088          {Surface Pressure tendency}
1089         \end{minipage}\\
1090     UAVE     &    $m/sec$ &  Nrphys
1091         &\begin{minipage}[t]{3in}
1092          {Average U-Wind}
1093         \end{minipage}\\
1094     VAVE     &    $m/sec$ &  Nrphys
1095         &\begin{minipage}[t]{3in}
1096          {Average V-Wind}
1097         \end{minipage}\\
1098     TAVE     &    $deg$ &  Nrphys
1099         &\begin{minipage}[t]{3in}
1100          {Average Temperature}
1101         \end{minipage}\\
1102     QAVE     &    $g/kg$ &  Nrphys
1103         &\begin{minipage}[t]{3in}
1104          {Average Specific Humidity}
1105         \end{minipage}\\
1106     OMEGA    &    $hPa/day$ &  Nrphys
1107         &\begin{minipage}[t]{3in}
1108          {Vertical Velocity}
1109         \end{minipage}\\
1110     DUDT     &    $m/sec/day$ &  Nrphys
1111         &\begin{minipage}[t]{3in}
1112          {Total U-Wind tendency}
1113         \end{minipage}\\
1114     DVDT     &    $m/sec/day$ &  Nrphys
1115         &\begin{minipage}[t]{3in}
1116          {Total V-Wind tendency}
1117         \end{minipage}\\
1118     DTDT     &    $deg/day$ &  Nrphys
1119         &\begin{minipage}[t]{3in}
1120          {Total Temperature tendency}
1121         \end{minipage}\\
1122     DQDT     &    $g/kg/day$ &  Nrphys
1123         &\begin{minipage}[t]{3in}
1124          {Total Specific Humidity tendency}
1125         \end{minipage}\\
1126     VORT     &    $10^{-4}/sec$ &  Nrphys
1127         &\begin{minipage}[t]{3in}
1128          {Relative Vorticity}
1129         \end{minipage}\\
1130     DTLS     &    $deg/day$ &  Nrphys
1131         &\begin{minipage}[t]{3in}
1132          {Temperature tendency due to Stratiform Cloud Formation}
1133         \end{minipage}\\
1134     DQLS     &    $g/kg/day$ &  Nrphys
1135         &\begin{minipage}[t]{3in}
1136          {Specific Humidity tendency due to Stratiform Cloud Formation}
1137         \end{minipage}\\
1138     USTAR    &    $m/sec$ &  1
1139         &\begin{minipage}[t]{3in}
1140          {Surface USTAR wind}
1141         \end{minipage}\\
1142     Z0       &    $m$ &  1
1143         &\begin{minipage}[t]{3in}
1144          {Surface roughness}
1145         \end{minipage}\\
1146     FRQTRB   &    $0-1$ &  Nrphys-1
1147         &\begin{minipage}[t]{3in}
1148          {Frequency of Turbulence}
1149         \end{minipage}\\
1150     PBL      &    $mb$ &  1
1151         &\begin{minipage}[t]{3in}
1152          {Planetary Boundary Layer depth}
1153         \end{minipage}\\
1154     SWCLR    &  $deg/day$ &  Nrphys
1155         &\begin{minipage}[t]{3in}
1156          {Net clearsky Shortwave heating rate for each level}
1157         \end{minipage}\\
1158     OSR      &   $Watts/m^2$  &    1
1159         &\begin{minipage}[t]{3in}
1160          {Net downward Shortwave flux at the top of the model}
1161         \end{minipage}\\
1162     OSRCLR   &   $Watts/m^2$  &    1  
1163         &\begin{minipage}[t]{3in}
1164          {Net downward clearsky Shortwave flux at the top of the model}
1165         \end{minipage}\\
1166     CLDMAS   &   $kg / m^2$  &    Nrphys
1167         &\begin{minipage}[t]{3in}
1168          {Convective cloud mass flux}
1169         \end{minipage}\\
1170     UAVE     &   $m/sec$  &    Nrphys
1171         &\begin{minipage}[t]{3in}
1172          {Time-averaged $u-Wind$}
1173         \end{minipage}\\
1174    \end{tabular}
1175    \vfill
1176    
1177    \newpage
1178    \vspace*{\fill}
1179    \begin{tabular}{llll}
1180    \hline\hline
1181     NAME & UNITS & LEVELS & DESCRIPTION \\
1182    \hline
1183    
1184    &\\
1185     VAVE     &   $m/sec$  &    Nrphys
1186         &\begin{minipage}[t]{3in}
1187          {Time-averaged $v-Wind$}
1188         \end{minipage}\\
1189     TAVE     &   $deg$  &    Nrphys
1190         &\begin{minipage}[t]{3in}
1191          {Time-averaged $Temperature$}
1192         \end{minipage}\\
1193     QAVE     &   $g/g$  &    Nrphys
1194         &\begin{minipage}[t]{3in}
1195          {Time-averaged $Specific \, \, Humidity$}
1196         \end{minipage}\\
1197     RFT      &    $deg/day$ &  Nrphys
1198         &\begin{minipage}[t]{3in}
1199          {Temperature tendency due Rayleigh Friction}
1200         \end{minipage}\\
1201     PS       &   $mb$  &    1
1202         &\begin{minipage}[t]{3in}
1203          {Surface Pressure}
1204         \end{minipage}\\
1205     QQAVE    &   $(m/sec)^2$  &    Nrphys
1206         &\begin{minipage}[t]{3in}
1207          {Time-averaged $Turbulent Kinetic Energy$}
1208         \end{minipage}\\
1209     SWGCLR   &   $Watts/m^2$  &    1  
1210         &\begin{minipage}[t]{3in}
1211          {Net downward clearsky Shortwave flux at the ground}
1212         \end{minipage}\\
1213     PAVE     &   $mb$  &    1
1214         &\begin{minipage}[t]{3in}
1215          {Time-averaged Surface Pressure}
1216         \end{minipage}\\
1217     DIABU    & $m/sec/day$ &    Nrphys
1218         &\begin{minipage}[t]{3in}
1219          {Total Diabatic forcing on $u-Wind$}
1220         \end{minipage}\\
1221     DIABV    & $m/sec/day$ &    Nrphys
1222         &\begin{minipage}[t]{3in}
1223          {Total Diabatic forcing on $v-Wind$}
1224         \end{minipage}\\
1225     DIABT    & $deg/day$ &    Nrphys
1226         &\begin{minipage}[t]{3in}
1227          {Total Diabatic forcing on $Temperature$}
1228         \end{minipage}\\
1229     DIABQ    & $g/kg/day$ &    Nrphys
1230         &\begin{minipage}[t]{3in}
1231          {Total Diabatic forcing on $Specific \, \, Humidity$}
1232         \end{minipage}\\
1233     RFU      &    $m/sec/day$ &  Nrphys
1234         &\begin{minipage}[t]{3in}
1235          {U-Wind tendency due to Rayleigh Friction}
1236         \end{minipage}\\
1237     RFV      &    $m/sec/day$ &  Nrphys
1238         &\begin{minipage}[t]{3in}
1239          {V-Wind tendency due to Rayleigh Friction}
1240         \end{minipage}\\
1241     GWDU     &    $m/sec/day$ &  Nrphys
1242         &\begin{minipage}[t]{3in}
1243          {U-Wind tendency due to Gravity Wave Drag}
1244         \end{minipage}\\
1245     GWDU     &    $m/sec/day$ &  Nrphys
1246         &\begin{minipage}[t]{3in}
1247          {V-Wind tendency due to Gravity Wave Drag}
1248         \end{minipage}\\
1249     GWDUS    &    $N/m^2$ &  1
1250         &\begin{minipage}[t]{3in}
1251          {U-Wind Gravity Wave Drag Stress at Surface}
1252         \end{minipage}\\
1253     GWDVS    &    $N/m^2$ &  1
1254         &\begin{minipage}[t]{3in}
1255          {V-Wind Gravity Wave Drag Stress at Surface}
1256         \end{minipage}\\
1257     GWDUT    &    $N/m^2$ &  1
1258         &\begin{minipage}[t]{3in}
1259          {U-Wind Gravity Wave Drag Stress at Top}
1260         \end{minipage}\\
1261     GWDVT    &    $N/m^2$ &  1
1262         &\begin{minipage}[t]{3in}
1263          {V-Wind Gravity Wave Drag Stress at Top}
1264         \end{minipage}\\
1265     LZRAD    &    $mg/kg$ &  Nrphys
1266             &\begin{minipage}[t]{3in}
1267              {Estimated Cloud Liquid Water used in Radiation}
1268             \end{minipage}\\
1269    \end{tabular}
1270    \vfill
1271    
1272    \newpage
1273    \vspace*{\fill}
1274    \begin{tabular}{llll}
1275    \hline\hline
1276     NAME & UNITS & LEVELS & DESCRIPTION \\
1277    \hline
1278    
1279    &\\
1280     SLP      &   $mb$  &    1
1281             &\begin{minipage}[t]{3in}
1282              {Time-averaged Sea-level Pressure}
1283             \end{minipage}\\
1284     CLDFRC  & $0-1$ &    1
1285             &\begin{minipage}[t]{3in}
1286              {Total Cloud Fraction}
1287             \end{minipage}\\
1288     TPW     & $gm/cm^2$ &    1
1289             &\begin{minipage}[t]{3in}
1290              {Precipitable water}
1291             \end{minipage}\\
1292     U2M     & $m/sec$ &    1
1293             &\begin{minipage}[t]{3in}
1294              {U-Wind at 2 meters}
1295             \end{minipage}\\
1296     V2M     & $m/sec$ &    1
1297             &\begin{minipage}[t]{3in}
1298              {V-Wind at 2 meters}
1299             \end{minipage}\\
1300     T2M     & $deg$ &    1
1301             &\begin{minipage}[t]{3in}
1302              {Temperature at 2 meters}
1303             \end{minipage}\\
1304     Q2M     & $g/kg$ &    1
1305             &\begin{minipage}[t]{3in}
1306              {Specific Humidity at 2 meters}
1307             \end{minipage}\\
1308     U10M    & $m/sec$ &    1
1309             &\begin{minipage}[t]{3in}
1310              {U-Wind at 10 meters}
1311             \end{minipage}\\
1312     V10M    & $m/sec$ &    1
1313             &\begin{minipage}[t]{3in}
1314              {V-Wind at 10 meters}
1315             \end{minipage}\\
1316     T10M    & $deg$ &    1
1317             &\begin{minipage}[t]{3in}
1318              {Temperature at 10 meters}
1319             \end{minipage}\\
1320     Q10M    & $g/kg$ &    1
1321             &\begin{minipage}[t]{3in}
1322              {Specific Humidity at 10 meters}
1323             \end{minipage}\\
1324     DTRAIN  & $kg/m^2$ &    Nrphys
1325             &\begin{minipage}[t]{3in}
1326              {Detrainment Cloud Mass Flux}
1327             \end{minipage}\\
1328     QFILL   & $g/kg/day$ &    Nrphys
1329             &\begin{minipage}[t]{3in}
1330              {Filling of negative specific humidity}
1331             \end{minipage}\\
1332    \end{tabular}
1333    \vspace{1.5in}
1334    \vfill
1335    
1336    \newpage
1337    \vspace*{\fill}
1338    \begin{tabular}{llll}
1339    \hline\hline
1340     NAME & UNITS & LEVELS & DESCRIPTION \\
1341    \hline
1342    
1343    &\\
1344     DTCONV   & $deg/sec$ & Nr
1345             &\begin{minipage}[t]{3in}
1346              {Temp Change due to Convection}
1347             \end{minipage}\\
1348     DQCONV   & $g/kg/sec$ & Nr
1349             &\begin{minipage}[t]{3in}
1350              {Specific Humidity Change due to Convection}
1351             \end{minipage}\\
1352     RELHUM   & $percent$ & Nr
1353             &\begin{minipage}[t]{3in}
1354              {Relative Humidity}
1355             \end{minipage}\\
1356     PRECLS   & $g/m^2/sec$ & 1
1357             &\begin{minipage}[t]{3in}
1358              {Large Scale Precipitation}
1359             \end{minipage}\\
1360     ENPREC   & $J/g$ & 1
1361             &\begin{minipage}[t]{3in}
1362              {Energy of Precipitation (snow, rain Temp)}
1363             \end{minipage}\\
1364    \end{tabular}
1365    \vspace{1.5in}
1366    \vfill
1367    
1368    \newpage
1369    
1370    Fizhi Diagnostic Description:
1371    
1372    In this section we list and describe the diagnostic quantities available within the
1373    GCM.  The diagnostics are listed in the order that they appear in the
1374    Diagnostic Menu, Section \ref{sec:pkg:fizhi:diagnostics}.
1375    In all cases, each diagnostic as currently archived on the output datasets
1376    is time-averaged over its diagnostic output frequency:
1377    
1378    \[
1379    {\bf DIAGNOSTIC} = \frac{1}{TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1380    \]
1381    where $TTOT = \frac{ {\bf NQDIAG} }{\Delta t}$, {\bf NQDIAG} is the
1382    output frequency of the diagnostic, and $\Delta t$ is
1383    the timestep over which the diagnostic is updated.  
1384    
1385    { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1386    
1387    The zonal wind stress is the turbulent flux of zonal momentum from
1388    the surface.
1389    \[
1390    {\bf UFLUX} =  - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1391    \]
1392    where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1393    drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1394    (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1395    the zonal wind in the lowest model layer.
1396    \\
1397    
1398    
1399    { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1400    
1401    The meridional wind stress is the turbulent flux of meridional momentum from
1402    the surface.
1403    \[
1404    {\bf VFLUX} =  - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1405    \]
1406    where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1407    drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1408    (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1409    the meridional wind in the lowest model layer.
1410    \\
1411    
1412    { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1413    
1414    The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1415    gradient of virtual potential temperature and the eddy exchange coefficient:
1416    \[
1417    {\bf HFLUX} =  P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1418    \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1419    \]
1420    where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1421    heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1422    magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1423    for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1424    for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1425    at the surface and at the bottom model level.
1426    \\
1427    
1428    
1429    { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1430    
1431    The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1432    gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1433    \[
1434    {\bf EFLUX} =  \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1435    \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1436    \]
1437    where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1438    the potential evapotranspiration actually evaporated, L is the latent
1439    heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1440    magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1441    for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1442    for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1443    humidity at the surface and at the bottom model level, respectively.
1444    \\
1445    
1446    { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1447    
1448    Over sea ice there is an additional source of energy at the surface due to the heat
1449    conduction from the relatively warm ocean through the sea ice. The heat conduction
1450    through sea ice represents an additional energy source term for the ground temperature equation.
1451    
1452    \[
1453    {\bf QICE} = \frac{C_{ti}}{H_i} (T_i-T_g)
1454    \]
1455    
1456    where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1457    be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1458    $T_g$ is the temperature of the sea ice.
1459    
1460    NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1461    \\
1462    
1463    
1464    { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1465    
1466    \begin{eqnarray*}
1467    {\bf RADLWG} & =  & F_{LW,Nrphys+1}^{Net} \\
1468                 & =  & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1469    \end{eqnarray*}
1470    \\
1471    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1472    $F_{LW}^\uparrow$ is
1473    the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1474    \\
1475    
1476    { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1477    
1478    \begin{eqnarray*}
1479    {\bf RADSWG} & =  & F_{SW,Nrphys+1}^{Net} \\
1480                 & =  & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1481    \end{eqnarray*}
1482    \\
1483    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1484    $F_{SW}^\downarrow$ is
1485    the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1486    \\
1487    
1488    
1489    \noindent
1490    { \underline {RI} Richardson Number} ($dimensionless$)
1491    
1492    \noindent
1493    The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1494    \[
1495    {\bf RI} = \frac{ \frac{g}{\theta_v} \pp {\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
1496     =  \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
1497    \]
1498    \\
1499    where we used the hydrostatic equation:
1500    \[
1501    {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1502    \]
1503    Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1504    indicate dominantly unstable shear, and large positive values indicate dominantly stable
1505    stratification.
1506    \\
1507    
1508    \noindent
1509    { \underline {CT}  Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1510    
1511    \noindent
1512    The surface exchange coefficient is obtained from the similarity functions for the stability
1513     dependant flux profile relationships:
1514    \[
1515    {\bf CT} = -\frac{( \overline{w^{\prime}\theta^{\prime}} ) }{ u_* \Delta \theta } =
1516    -\frac{( \overline{w^{\prime}q^{\prime}} ) }{ u_* \Delta q } =
1517    \frac{ k }{ (\psi_{h} + \psi_{g}) }
1518    \]
1519    where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1520    viscous sublayer non-dimensional temperature or moisture change:
1521    \[
1522    \psi_{h} = \int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta \hspace{1cm} and
1523    \hspace{1cm} \psi_{g} = \frac{ 0.55 (Pr^{2/3} - 0.2) }{ \nu^{1/2} }
1524    (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1525    \]
1526    and:
1527    $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1528    
1529    \noindent
1530    $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1531    the temperature and moisture gradients, specified differently for stable and unstable
1532    layers according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1533    non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1534    viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1535    (see diagnostic number 67), and the subscript ref refers to a reference value.
1536    \\
1537    
1538    \noindent
1539    { \underline {CU}  Surface Exchange Coefficient for Momentum ($dimensionless$) }
1540    
1541    \noindent
1542    The surface exchange coefficient is obtained from the similarity functions for the stability
1543     dependant flux profile relationships:
1544    \[
1545    {\bf CU} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} }
1546    \]
1547    where $\psi_m$ is the surface layer non-dimensional wind shear:
1548    \[
1549    \psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta}
1550    \]
1551    \noindent
1552    $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1553    the temperature and moisture gradients, specified differently for stable and unstable layers
1554    according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1555    non-dimensional stability parameter, $u_*$ is the surface stress velocity
1556    (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1557    \\
1558    
1559    \noindent
1560    { \underline {ET}  Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1561    
1562    \noindent
1563    In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1564    moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1565    diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1566    or moisture. In the \cite{helflab:88} adaptation of this closure, $K_h$
1567    takes the form:
1568    \[
1569    {\bf ET} = K_h = -\frac{( \overline{w^{\prime}\theta_v^{\prime}}) }{ \pp{\theta_v}{z} }
1570     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1571    \\ \frac{ q^2 }{ q_e } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1572    \]
1573    where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1574    energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1575    which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1576    depth,
1577    $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1578    wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1579    dimensionless buoyancy and wind shear
1580    parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1581    are functions of the Richardson number.
1582    
1583    \noindent
1584    For the detailed equations and derivations of the modified level 2.5 closure scheme,
1585    see \cite{helflab:88}.
1586    
1587    \noindent
1588    In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1589    in units of $m/sec$, given by:
1590    \[
1591    {\bf ET_{Nrphys}} =  C_t * u_* = C_H W_s
1592    \]
1593    \noindent
1594    where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1595    surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1596    friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1597    and $W_s$ is the magnitude of the surface layer wind.
1598    \\
1599    
1600    \noindent
1601    { \underline {EU}  Diffusivity Coefficient for Momentum ($m^2/sec$) }
1602    
1603    \noindent  
1604    In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1605    momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1606    diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1607    In the \cite{helflab:88} adaptation of this closure, $K_m$
1608    takes the form:
1609    \[
1610    {\bf EU} = K_m = -\frac{( \overline{u^{\prime}w^{\prime}} ) }{ \pp{U}{z} }
1611     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1612    \\ \frac{ q^2 }{ q_e } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1613    \]
1614    \noindent
1615    where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1616    energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1617    which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1618    depth,
1619    $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1620    wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1621    dimensionless buoyancy and wind shear
1622    parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1623    are functions of the Richardson number.
1624    
1625    \noindent
1626    For the detailed equations and derivations of the modified level 2.5 closure scheme,
1627    see \cite{helflab:88}.
1628    
1629    \noindent
1630    In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1631    in units of $m/sec$, given by:
1632    \[
1633    {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1634    \]
1635    \noindent
1636    where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1637    similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1638    (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1639    magnitude of the surface layer wind.
1640    \\
1641    
1642    \noindent
1643    { \underline {TURBU}  Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1644    
1645    \noindent
1646    The tendency of U-Momentum due to turbulence is written:
1647    \[
1648    {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1649     = {\pp{}{z} }{(K_m \pp{u}{z})}
1650    \]
1651    
1652    \noindent
1653    The Helfand and Labraga level 2.5 scheme models the turbulent
1654    flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1655    equation.
1656    
1657    \noindent
1658    { \underline {TURBV}  Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1659    
1660    \noindent
1661    The tendency of V-Momentum due to turbulence is written:
1662    \[
1663    {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1664     = {\pp{}{z} }{(K_m \pp{v}{z})}
1665    \]
1666    
1667    \noindent
1668    The Helfand and Labraga level 2.5 scheme models the turbulent
1669    flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1670    equation.
1671    \\
1672    
1673    \noindent
1674    { \underline {TURBT}  Temperature changes due to Turbulence ($deg/day$) }
1675    
1676    \noindent
1677    The tendency of temperature due to turbulence is written:
1678    \[
1679    {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1680    P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1681     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1682    \]
1683    
1684    \noindent
1685    The Helfand and Labraga level 2.5 scheme models the turbulent
1686    flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1687    equation.
1688    \\
1689    
1690    \noindent
1691    { \underline {TURBQ}  Specific Humidity changes due to Turbulence ($g/kg/day$) }
1692    
1693    \noindent
1694    The tendency of specific humidity due to turbulence is written:
1695    \[
1696    {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1697     = {\pp{}{z} }{(K_h \pp{q}{z})}
1698    \]
1699    
1700    \noindent
1701    The Helfand and Labraga level 2.5 scheme models the turbulent
1702    flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1703    equation.
1704    \\
1705    
1706    \noindent
1707    { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1708    
1709    \noindent
1710    \[
1711    {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1712    \]
1713    where:
1714    \[
1715    \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{c_p} \Gamma_s \right)_i
1716    \hspace{.4cm} and
1717    \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = \frac{L}{c_p} (q^*-q)
1718    \]
1719    and
1720    \[
1721    \Gamma_s = g \eta \pp{s}{p}
1722    \]
1723    
1724    \noindent
1725    The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1726    precipitation processes, or supersaturation rain.
1727    The summation refers to contributions from each cloud type called by RAS.  
1728    The dry static energy is given
1729    as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1730    given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1731    the description of the convective parameterization.  The fractional adjustment, or relaxation
1732    parameter, for each cloud type is given as $\alpha$, while
1733    $R$ is the rain re-evaporation adjustment.
1734    \\
1735    
1736    \noindent
1737    { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1738    
1739    \noindent
1740    \[
1741    {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1742    \]
1743    where:
1744    \[
1745    \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{L}(\Gamma_h-\Gamma_s) \right)_i
1746    \hspace{.4cm} and
1747    \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1748    \]
1749    and
1750    \[
1751    \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1752    \]
1753    \noindent
1754    The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1755    precipitation processes, or supersaturation rain.
1756    The summation refers to contributions from each cloud type called by RAS.  
1757    The dry static energy is given as $s$,
1758    the moist static energy is given as $h$,
1759    the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1760    given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1761    the description of the convective parameterization.  The fractional adjustment, or relaxation
1762    parameter, for each cloud type is given as $\alpha$, while
1763    $R$ is the rain re-evaporation adjustment.
1764    \\
1765    
1766    \noindent
1767    { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1768    
1769    \noindent
1770    The net longwave heating rate is calculated as the vertical divergence of the
1771    net terrestrial radiative fluxes.
1772    Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1773    longwave routine.
1774    The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1775    For a given cloud fraction,
1776    the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1777    to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1778    for the upward and downward radiative fluxes.
1779    (see Section \ref{sec:fizhi:radcloud}).
1780    The cloudy-sky flux is then obtained as:
1781      
1782    \noindent
1783    \[
1784    F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1785    \]
1786    
1787    \noindent
1788    Finally, the net longwave heating rate is calculated as the vertical divergence of the
1789    net terrestrial radiative fluxes:
1790    \[
1791    \pp{\rho c_p T}{t} = - \p{z} F_{LW}^{NET} ,
1792    \]
1793    or
1794    \[
1795    {\bf RADLW} = \frac{g}{c_p \pi} \p{\sigma} F_{LW}^{NET} .
1796    \]
1797    
1798    \noindent
1799    where $g$ is the accelation due to gravity,
1800    $c_p$ is the heat capacity of air at constant pressure,
1801    and
1802    \[
1803    F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1804    \]
1805    \\
1806    
1807    
1808    \noindent
1809    { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1810    
1811    \noindent
1812    The net Shortwave heating rate is calculated as the vertical divergence of the
1813    net solar radiative fluxes.
1814    The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1815    For the clear-sky case, the shortwave fluxes and heating rates are computed with
1816    both CLMO (maximum overlap cloud fraction) and
1817    CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1818    The shortwave routine is then called a second time, for the cloudy-sky case, with the
1819    true time-averaged cloud fractions CLMO
1820    and CLRO being used.  In all cases, a normalized incident shortwave flux is used as
1821    input at the top of the atmosphere.
1822    
1823    \noindent
1824    The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1825    \[
1826    \pp{\rho c_p T}{t} = - \p{z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1827    \]
1828    or
1829    \[
1830    {\bf RADSW} = \frac{g}{c_p \pi} \p{\sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1831    \]
1832    
1833    \noindent
1834    where $g$ is the accelation due to gravity,
1835    $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1836    shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1837    \[
1838    F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1839    \]
1840    \\
1841    
1842    \noindent
1843    { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1844    
1845    \noindent
1846    For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1847    the vertical integral or total precipitable amount is given by:  
1848    \[
1849    {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta  q_{moist}
1850    \frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{moist} dp
1851    \]
1852    \\
1853    
1854    \noindent
1855    A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1856    time step, scaled to $mm/day$.
1857    \\
1858    
1859    \noindent
1860    { \underline {PRECON} Convective Precipition ($mm/day$) }
1861    
1862    \noindent
1863    For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1864    the vertical integral or total precipitable amount is given by:  
1865    \[
1866    {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta  q_{cum}
1867    \frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{cum} dp
1868    \]
1869    \\
1870    
1871    \noindent
1872    A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1873    time step, scaled to $mm/day$.
1874    \\
1875    
1876    \noindent
1877    { \underline {TUFLUX}  Turbulent Flux of U-Momentum ($Newton/m^2$) }
1878    
1879    \noindent
1880    The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1881     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1882    
1883    \[
1884    {\bf TUFLUX} =  {\rho } {(\overline{u^{\prime}w^{\prime}})} =  
1885    {\rho } {(- K_m \pp{U}{z})}
1886    \]
1887    
1888    \noindent
1889    where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1890    \\
1891    
1892    \noindent
1893    { \underline {TVFLUX}  Turbulent Flux of V-Momentum ($Newton/m^2$) }
1894    
1895    \noindent
1896    The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1897    \hspace{.2cm} only$ from the eddy coefficient for momentum:
1898    
1899    \[
1900    {\bf TVFLUX} =  {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1901     {\rho } {(- K_m \pp{V}{z})}
1902    \]
1903    
1904    \noindent
1905    where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1906    \\
1907    
1908    
1909    \noindent
1910    { \underline {TTFLUX}  Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1911    
1912    \noindent
1913    The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1914    \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1915    
1916    \noindent
1917    \[
1918    {\bf TTFLUX} = c_p {\rho }  
1919    P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1920     = c_p  {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1921    \]
1922    
1923    \noindent
1924    where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1925    \\
1926    
1927    
1928    \noindent
1929    { \underline {TQFLUX}  Turbulent Flux of Latent Heat ($Watts/m^2$) }
1930    
1931    \noindent
1932    The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1933    \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1934    
1935    \noindent
1936    \[
1937    {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1938    {L {\rho }(- K_h \pp{q}{z})}
1939    \]
1940    
1941    \noindent
1942    where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1943    \\
1944    
1945    
1946    \noindent
1947    { \underline {CN}  Neutral Drag Coefficient ($dimensionless$) }
1948    
1949    \noindent
1950    The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1951    \[
1952    {\bf CN} = \frac{ k }{ \ln(\frac{h }{z_0}) }
1953    \]
1954    
1955    \noindent
1956    where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1957    $z_0$ is the surface roughness.
1958    
1959    \noindent
1960    NOTE: CN is not available through model version 5.3, but is available in subsequent
1961    versions.
1962    \\
1963    
1964    \noindent
1965    { \underline {WINDS}  Surface Wind Speed ($meter/sec$) }
1966    
1967    \noindent
1968    The surface wind speed is calculated for the last internal turbulence time step:
1969    \[
1970    {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1971    \]
1972    
1973    \noindent
1974    where the subscript $Nrphys$ refers to the lowest model level.
1975    \\
1976    
1977    \noindent
1978    { \underline {DTSRF}  Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1979    
1980    \noindent
1981    The air/surface virtual temperature difference measures the stability of the surface layer:
1982    \[
1983    {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1984    \]
1985    \noindent
1986    where
1987    \[
1988    \theta_{v{Nrphys+1}} = \frac{ T_g }{ P^{\kappa}_{surf} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1989    and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1990    \]
1991    
1992    \noindent
1993    $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1994    $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1995    and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1996    refers to the surface.
1997    \\
1998    
1999    
2000    \noindent
2001    { \underline {TG}  Ground Temperature ($deg \hspace{.1cm} K$) }
2002    
2003    \noindent
2004    The ground temperature equation is solved as part of the turbulence package
2005    using a backward implicit time differencing scheme:
2006    \[
2007    {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2008    C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2009    \]
2010    
2011    \noindent
2012    where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2013    net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2014    sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2015    flux, and $C_g$ is the total heat capacity of the ground.
2016    $C_g$ is obtained by solving a heat diffusion equation
2017    for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
2018    \[
2019    C_g = \sqrt{ \frac{\lambda C_s }{ 2 \omega } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2020    \frac{86400.}{2\pi} } \, \, .
2021    \]
2022    \noindent
2023    Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ $\frac{ly}{sec}
2024    \frac{cm}{K}$,
2025    the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2026    by $2 \pi$ $radians/
2027    day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2028    is a function of the ground wetness, $W$.
2029    \\
2030    
2031    \noindent
2032    { \underline {TS}  Surface Temperature ($deg \hspace{.1cm} K$) }
2033    
2034    \noindent
2035    The surface temperature estimate is made by assuming that the model's lowest
2036    layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2037    The surface temperature is therefore:
2038    \[
2039    {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2040    \]
2041    \\
2042    
2043    \noindent
2044    { \underline {DTG}  Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2045    
2046    \noindent
2047    The change in surface temperature from one turbulence time step to the next, solved
2048    using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2049    \[
2050    {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2051    \]
2052    
2053    \noindent
2054    where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2055    refers to the value at the previous turbulence time level.
2056    \\
2057    
2058    \noindent
2059    { \underline {QG}  Ground Specific Humidity ($g/kg$) }
2060    
2061    \noindent
2062    The ground specific humidity is obtained by interpolating between the specific
2063    humidity at the lowest model level and the specific humidity of a saturated ground.
2064    The interpolation is performed using the potential evapotranspiration function:
2065    \[
2066    {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2067    \]
2068    
2069    \noindent
2070    where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2071    and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2072    pressure.
2073    \\
2074    
2075    \noindent
2076    { \underline {QS}  Saturation Surface Specific Humidity ($g/kg$) }
2077    
2078    \noindent
2079    The surface saturation specific humidity is the saturation specific humidity at
2080    the ground temprature and surface pressure:
2081    \[
2082    {\bf QS} = q^*(T_g,P_s)
2083    \]
2084    \\
2085    
2086    \noindent
2087    { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2088     radiation subroutine (deg)}
2089    \[
2090    {\bf TGRLW}  = T_g(\lambda , \phi ,n)
2091    \]
2092    \noindent
2093    where $T_g$ is the model ground temperature at the current time step $n$.
2094    \\
2095    
2096    
2097    \noindent
2098    { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2099    \[
2100    {\bf ST4} = \sigma T^4
2101    \]
2102    \noindent
2103    where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2104    \\
2105    
2106    \noindent
2107    { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2108    \[
2109    {\bf OLR}  =  F_{LW,top}^{NET}
2110    \]
2111    \noindent
2112    where top indicates the top of the first model layer.
2113    In the GCM, $p_{top}$ = 0.0 mb.
2114    \\
2115    
2116    
2117    \noindent
2118    { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2119    \[
2120    {\bf OLRCLR}  =  F(clearsky)_{LW,top}^{NET}
2121    \]
2122    \noindent
2123    where top indicates the top of the first model layer.
2124    In the GCM, $p_{top}$ = 0.0 mb.
2125    \\
2126    
2127    \noindent
2128    { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2129    
2130    \noindent
2131    \begin{eqnarray*}
2132    {\bf LWGCLR} & =  & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2133                 & =  & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2134    \end{eqnarray*}
2135    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2136    $F(clearsky)_{LW}^\uparrow$ is
2137    the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2138    \\
2139    
2140    \noindent
2141    { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2142    
2143    \noindent
2144    The net longwave heating rate is calculated as the vertical divergence of the
2145    net terrestrial radiative fluxes.
2146    Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2147    longwave routine.
2148    The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2149    For a given cloud fraction,
2150    the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2151    to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2152    for the upward and downward radiative fluxes.
2153    (see Section \ref{sec:fizhi:radcloud}).
2154    The cloudy-sky flux is then obtained as:
2155      
2156    \noindent
2157    \[
2158    F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2159    \]
2160    
2161    \noindent
2162    Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2163    vertical divergence of the
2164    clear-sky longwave radiative flux:
2165    \[
2166    \pp{\rho c_p T}{t}_{clearsky} = - \p{z} F(clearsky)_{LW}^{NET} ,
2167    \]
2168    or
2169    \[
2170    {\bf LWCLR} = \frac{g}{c_p \pi} \p{\sigma} F(clearsky)_{LW}^{NET} .
2171    \]
2172    
2173    \noindent
2174    where $g$ is the accelation due to gravity,
2175    $c_p$ is the heat capacity of air at constant pressure,
2176    and
2177    \[
2178    F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2179    \]
2180    \\
2181    
2182    
2183    \noindent
2184    { \underline {TLW} Instantaneous temperature used as input to the Longwave
2185     radiation subroutine (deg)}
2186    \[
2187    {\bf TLW}  = T(\lambda , \phi ,level, n)
2188    \]
2189    \noindent
2190    where $T$ is the model temperature at the current time step $n$.
2191    \\
2192    
2193    
2194    \noindent
2195    { \underline {SHLW} Instantaneous specific humidity used as input to
2196     the Longwave radiation subroutine (kg/kg)}
2197    \[
2198    {\bf SHLW}  = q(\lambda , \phi , level , n)
2199    \]
2200    \noindent
2201    where $q$ is the model specific humidity at the current time step $n$.
2202    \\
2203    
2204    
2205    \noindent
2206    { \underline {OZLW} Instantaneous ozone used as input to
2207     the Longwave radiation subroutine (kg/kg)}
2208    \[
2209    {\bf OZLW}  = {\rm OZ}(\lambda , \phi , level , n)
2210    \]
2211    \noindent
2212    where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2213    mean zonally averaged ozone data set.
2214    \\
2215    
2216    
2217    \noindent
2218    { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2219    
2220    \noindent
2221    {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2222    Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm.  These are
2223    convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2224    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2225    \[
2226    {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi,  level )
2227    \]
2228    \\
2229    
2230    
2231    { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2232    
2233    {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2234    Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2235    Radiation packages.
2236    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2237    \[
2238    {\bf CLDTOT} = F_{RAS} + F_{LS}
2239    \]
2240    \\
2241    where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2242    time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2243    \\
2244    
2245    
2246    \noindent
2247    { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2248    
2249    \noindent
2250    {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2251    Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm.  These are
2252    convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2253    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2254    \[
2255    {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi,  level )
2256    \]
2257    \\
2258    
2259    \noindent
2260    { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2261    
2262    \noindent
2263    {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2264    Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2265    Radiation algorithm.  These are
2266    convective and large-scale clouds whose radiative characteristics are not
2267    assumed to be correlated in the vertical.
2268    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2269    \[
2270    {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi,  level )
2271    \]
2272    \\
2273    
2274    \noindent
2275    { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2276    \[
2277    {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2278    \]
2279    \noindent
2280    where $S_0$, is the extra-terrestial solar contant,
2281    $R_a$ is the earth-sun distance in Astronomical Units,
2282    and $cos \phi_z$ is the cosine of the zenith angle.
2283    It should be noted that {\bf RADSWT}, as well as
2284    {\bf OSR} and {\bf OSRCLR},
2285    are calculated at the top of the atmosphere (p=0 mb).  However, the
2286    {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2287    calculated at $p= p_{top}$ (0.0 mb for the GCM).
2288    \\
2289      
2290    \noindent
2291    { \underline {EVAP}  Surface Evaporation ($mm/day$) }
2292    
2293    \noindent
2294    The surface evaporation is a function of the gradient of moisture, the potential
2295    evapotranspiration fraction and the eddy exchange coefficient:
2296    \[
2297    {\bf EVAP} =  \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2298    \]
2299    where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2300    the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2301    turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2302    $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2303    number 34) and at the bottom model level, respectively.
2304    \\
2305    
2306    \noindent
2307    { \underline {DUDT} Total Zonal U-Wind Tendency  ($m/sec/day$) }
2308    
2309    \noindent
2310    {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2311    and Analysis forcing.
2312    \[
2313    {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2314    \]
2315    \\
2316    
2317    \noindent
2318    { \underline {DVDT} Total Zonal V-Wind Tendency  ($m/sec/day$) }
2319    
2320    \noindent
2321    {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2322    and Analysis forcing.
2323    \[
2324    {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2325    \]
2326    \\
2327    
2328    \noindent
2329    { \underline {DTDT} Total Temperature Tendency  ($deg/day$) }
2330    
2331    \noindent
2332    {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2333    and Analysis forcing.
2334    \begin{eqnarray*}
2335    {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2336               & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2337    \end{eqnarray*}
2338    \\
2339    
2340    \noindent
2341    { \underline {DQDT} Total Specific Humidity Tendency  ($g/kg/day$) }
2342    
2343    \noindent
2344    {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2345    and Analysis forcing.
2346    \[
2347    {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2348    + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2349    \]
2350    \\
2351      
2352    \noindent
2353    { \underline {USTAR}  Surface-Stress Velocity ($m/sec$) }
2354    
2355    \noindent
2356    The surface stress velocity, or the friction velocity, is the wind speed at
2357    the surface layer top impeded by the surface drag:
2358    \[
2359    {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2360    C_u = \frac{k}{\psi_m}
2361    \]
2362    
2363    \noindent
2364    $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2365    number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2366    
2367    \noindent
2368    { \underline {Z0}  Surface Roughness Length ($m$) }
2369    
2370    \noindent
2371    Over the land surface, the surface roughness length is interpolated to the local
2372    time from the monthly mean data of \cite{dorsell:89}. Over the ocean,
2373    the roughness length is a function of the surface-stress velocity, $u_*$.
2374    \[
2375    {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5}{u_*}
2376    \]
2377    
2378    \noindent
2379    where the constants are chosen to interpolate between the reciprocal relation of
2380    \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
2381    for moderate to large winds.
2382    \\
2383    
2384    \noindent
2385    { \underline {FRQTRB}  Frequency of Turbulence ($0-1$) }
2386    
2387    \noindent
2388    The fraction of time when turbulence is present is defined as the fraction of
2389    time when the turbulent kinetic energy exceeds some minimum value, defined here
2390    to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2391    incremented. The fraction over the averaging interval is reported.
2392    \\
2393    
2394    \noindent
2395    { \underline {PBL}  Planetary Boundary Layer Depth ($mb$) }
2396    
2397    \noindent
2398    The depth of the PBL is defined by the turbulence parameterization to be the
2399    depth at which the turbulent kinetic energy reduces to ten percent of its surface
2400    value.
2401    
2402    \[
2403    {\bf PBL} = P_{PBL} - P_{surface}
2404    \]
2405    
2406    \noindent
2407    where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2408    reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2409    \\
2410    
2411    \noindent
2412    { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2413    
2414    \noindent
2415    The net Shortwave heating rate is calculated as the vertical divergence of the
2416    net solar radiative fluxes.
2417    The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2418    For the clear-sky case, the shortwave fluxes and heating rates are computed with
2419    both CLMO (maximum overlap cloud fraction) and
2420    CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2421    The shortwave routine is then called a second time, for the cloudy-sky case, with the
2422    true time-averaged cloud fractions CLMO
2423    and CLRO being used.  In all cases, a normalized incident shortwave flux is used as
2424    input at the top of the atmosphere.
2425    
2426    \noindent
2427    The heating rate due to Shortwave Radiation under clear skies is defined as:
2428    \[
2429    \pp{\rho c_p T}{t} = - \p{z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2430    \]
2431    or
2432    \[
2433    {\bf SWCLR} = \frac{g}{c_p } \p{p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2434    \]
2435    
2436    \noindent
2437    where $g$ is the accelation due to gravity,
2438    $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2439    shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2440    \[
2441    F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2442    \]
2443    \\
2444    
2445    \noindent
2446    { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2447    \[
2448    {\bf OSR}  =  F_{SW,top}^{NET}
2449    \]                                                                                      
2450    \noindent
2451    where top indicates the top of the first model layer used in the shortwave radiation
2452    routine.
2453    In the GCM, $p_{SW_{top}}$ = 0 mb.
2454    \\
2455    
2456    \noindent
2457    { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2458    \[
2459    {\bf OSRCLR}  =  F(clearsky)_{SW,top}^{NET}
2460    \]
2461    \noindent
2462    where top indicates the top of the first model layer used in the shortwave radiation
2463    routine.
2464    In the GCM, $p_{SW_{top}}$ = 0 mb.
2465    \\
2466    
2467    
2468    \noindent
2469    { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2470    
2471    \noindent
2472    The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2473    \[
2474    {\bf CLDMAS} = \eta m_B
2475    \]
2476    where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2477    the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2478    description of the convective parameterization.
2479    \\
2480    
2481    
2482    
2483    \noindent
2484    { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2485    
2486    \noindent
2487    The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2488    the {\bf NUAVE} output frequency.  This is contrasted to the instantaneous
2489    Zonal U-Wind which is archived on the Prognostic Output data stream.
2490    \[
2491    {\bf UAVE} = u(\lambda, \phi, level , t)
2492    \]
2493    \\
2494    Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2495    \\
2496    
2497    \noindent
2498    { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2499    
2500    \noindent
2501    The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2502    the {\bf NVAVE} output frequency.  This is contrasted to the instantaneous
2503    Meridional V-Wind which is archived on the Prognostic Output data stream.
2504    \[
2505    {\bf VAVE} = v(\lambda, \phi, level , t)
2506    \]
2507    \\
2508    Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2509    \\
2510    
2511    \noindent
2512    { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2513    
2514    \noindent
2515    The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2516    the {\bf NTAVE} output frequency.  This is contrasted to the instantaneous
2517    Temperature which is archived on the Prognostic Output data stream.
2518    \[
2519    {\bf TAVE} = T(\lambda, \phi, level , t)
2520    \]
2521    \\
2522    
2523    \noindent
2524    { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2525    
2526    \noindent
2527    The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2528    the {\bf NQAVE} output frequency.  This is contrasted to the instantaneous
2529    Specific Humidity which is archived on the Prognostic Output data stream.
2530    \[
2531    {\bf QAVE} = q(\lambda, \phi, level , t)
2532    \]
2533    \\
2534    
2535    \noindent
2536    { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2537    
2538    \noindent
2539    The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2540    the {\bf NPAVE} output frequency.  This is contrasted to the instantaneous
2541    Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2542    \begin{eqnarray*}
2543    {\bf PAVE} & =  & \pi(\lambda, \phi, level , t) \\
2544               & =  & p_s(\lambda, \phi, level , t) - p_T
2545    \end{eqnarray*}
2546    \\
2547    
2548    
2549    \noindent
2550    { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2551    
2552    \noindent
2553    The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2554    produced by the GCM Turbulence parameterization over
2555    the {\bf NQQAVE} output frequency.  This is contrasted to the instantaneous
2556    Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2557    \[
2558    {\bf QQAVE} = qq(\lambda, \phi, level , t)
2559    \]
2560    \\
2561    Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2562    \\
2563    
2564    \noindent
2565    { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2566    
2567    \noindent
2568    \begin{eqnarray*}
2569    {\bf SWGCLR} & =  & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2570                 & =  & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2571    \end{eqnarray*}
2572    \noindent
2573    \\
2574    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2575    $F(clearsky){SW}^\downarrow$ is
2576    the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2577    the upward clearsky Shortwave flux.
2578    \\
2579    
2580    \noindent
2581    { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency  ($m/sec/day$) }
2582    
2583    \noindent
2584    {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2585    and the Analysis forcing.
2586    \[
2587    {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2588    \]
2589    \\
2590    
2591    \noindent
2592    { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency  ($m/sec/day$) }
2593    
2594    \noindent
2595    {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2596    and the Analysis forcing.
2597    \[
2598    {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2599    \]
2600    \\
2601    
2602    \noindent
2603    { \underline {DIABT} Total Diabatic Temperature Tendency  ($deg/day$) }
2604    
2605    \noindent
2606    {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2607    and the Analysis forcing.
2608    \begin{eqnarray*}
2609    {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2610               & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2611    \end{eqnarray*}
2612    \\
2613    If we define the time-tendency of Temperature due to Diabatic processes as
2614    \begin{eqnarray*}
2615    \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2616                         & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2617    \end{eqnarray*}
2618    then, since there are no surface pressure changes due to Diabatic processes, we may write
2619    \[
2620    \pp{T}{t}_{Diabatic} = \frac{p^\kappa}{\pi}\pp{\pi \theta}{t}_{Diabatic}
2621    \]
2622    where $\theta = T/p^\kappa$.  Thus, {\bf DIABT} may be written as
2623    \[
2624    {\bf DIABT} = \frac{p^\kappa}{\pi} \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2625    \]
2626    \\
2627    
2628    \noindent
2629    { \underline {DIABQ} Total Diabatic Specific Humidity Tendency  ($g/kg/day$) }
2630    
2631    \noindent
2632    {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2633    and the Analysis forcing.
2634    \[
2635    {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2636    \]
2637    If we define the time-tendency of Specific Humidity due to Diabatic processes as
2638    \[
2639    \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2640    \]
2641    then, since there are no surface pressure changes due to Diabatic processes, we may write
2642    \[
2643    \pp{q}{t}_{Diabatic} = \frac{1}{\pi}\pp{\pi q}{t}_{Diabatic}
2644    \]
2645    Thus, {\bf DIABQ} may be written as
2646    \[
2647    {\bf DIABQ} = \frac{1}{\pi} \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2648    \]
2649    \\
2650    
2651    \noindent
2652    { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2653    
2654    \noindent
2655    The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2656    $u q$ over the depth of the atmosphere at each model timestep,
2657    and dividing by the total mass of the column.
2658    \[
2659    {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz  } { \int_{surf}^{top} \rho dz  }
2660    \]
2661    Using $\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p$, we have
2662    \[
2663    {\bf VINTUQ} = { \int_0^1 u q dp  }
2664    \]
2665    \\
2666    
2667    
2668    \noindent
2669    { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2670    
2671    \noindent
2672    The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2673    $v q$ over the depth of the atmosphere at each model timestep,
2674    and dividing by the total mass of the column.
2675    \[
2676    {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz  } { \int_{surf}^{top} \rho dz  }
2677    \]
2678    Using $\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p$, we have
2679    \[
2680    {\bf VINTVQ} = { \int_0^1 v q dp  }
2681    \]
2682    \\
2683    
2684    
2685    \noindent
2686    { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2687    
2688    \noindent
2689    The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2690    $u T$ over the depth of the atmosphere at each model timestep,
2691    and dividing by the total mass of the column.
2692    \[
2693    {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz  } { \int_{surf}^{top} \rho dz  }
2694    \]
2695    Or,
2696    \[
2697    {\bf VINTUT} = { \int_0^1 u T dp  }
2698    \]
2699    \\
2700    
2701    \noindent
2702    { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2703    
2704    \noindent
2705    The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2706    $v T$ over the depth of the atmosphere at each model timestep,
2707    and dividing by the total mass of the column.
2708    \[
2709    {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz  } { \int_{surf}^{top} \rho dz  }
2710    \]
2711    Using $\rho \delta z = -\frac{\delta p}{g} $, we have
2712    \[
2713    {\bf VINTVT} = { \int_0^1 v T dp  }
2714    \]
2715    \\
2716    
2717    \noindent
2718    { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2719    
2720    If we define the
2721    time-averaged random and maximum overlapped cloudiness as CLRO and
2722    CLMO respectively, then the probability of clear sky associated
2723    with random overlapped clouds at any level is (1-CLRO) while the probability of
2724    clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2725    The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2726    the total cloud fraction at each  level may be obtained by
2727    1-(1-CLRO)*(1-CLMO).
2728    
2729    At any given level, we may define the clear line-of-site probability by
2730    appropriately accounting for the maximum and random overlap
2731    cloudiness.  The clear line-of-site probability is defined to be
2732    equal to the product of the clear line-of-site probabilities
2733    associated with random and maximum overlap cloudiness.  The clear
2734    line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2735    from the current pressure $p$
2736    to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2737    is simply 1.0 minus the largest maximum overlap cloud value along  the
2738    line-of-site, ie.
2739    
2740    $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2741    
2742    Thus, even in the time-averaged sense it is assumed that the
2743    maximum overlap clouds are correlated in the vertical.  The clear
2744    line-of-site probability associated with random overlap clouds is
2745    defined to be the product of the clear sky probabilities at each
2746    level along the line-of-site, ie.
2747    
2748    $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2749    
2750    The total cloud fraction at a given level associated with a line-
2751    of-site calculation is given by
2752    
2753    $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2754        \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2755    
2756    
2757    \noindent
2758    The 2-dimensional net cloud fraction as seen from the top of the
2759    atmosphere is given by
2760    \[
2761    {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2762        \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2763    \]
2764    \\
2765    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2766    
2767    
2768    \noindent
2769    { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2770    
2771    \noindent
2772    The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2773    given by:
2774    \begin{eqnarray*}
2775    {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2776               & = & \frac{\pi}{g} \int_0^1 q dp
2777    \end{eqnarray*}
2778    where we have used the hydrostatic relation
2779    $\rho \delta z = -\frac{\delta p}{g} $.
2780    \\
2781    
2782    
2783    \noindent
2784    { \underline {U2M}  Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2785    
2786    \noindent
2787    The u-wind at the 2-meter depth is determined from the similarity theory:
2788    \[
2789    {\bf U2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{u_{sl}}{W_s} =
2790    \frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }u_{sl}
2791    \]
2792    
2793    \noindent
2794    where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2795    $sl$ refers to the height of the top of the surface layer. If the roughness height
2796    is above two meters, ${\bf U2M}$ is undefined.
2797    \\
2798    
2799    \noindent
2800    { \underline {V2M}  Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2801    
2802    \noindent
2803    The v-wind at the 2-meter depth is a determined from the similarity theory:
2804    \[
2805    {\bf V2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{v_{sl}}{W_s} =
2806    \frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }v_{sl}
2807    \]
2808    
2809    \noindent
2810    where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2811    $sl$ refers to the height of the top of the surface layer. If the roughness height
2812    is above two meters, ${\bf V2M}$ is undefined.
2813    \\
2814    
2815    \noindent
2816    { \underline {T2M}  Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2817    
2818    \noindent
2819    The temperature at the 2-meter depth is a determined from the similarity theory:
2820    \[
2821    {\bf T2M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2822    P^{\kappa}(\theta_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g }
2823    (\theta_{sl} - \theta_{surf}) )
2824    \]
2825    where:
2826    \[
2827    \theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* }
2828    \]
2829    
2830    \noindent
2831    where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2832    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2833    $sl$ refers to the height of the top of the surface layer. If the roughness height
2834    is above two meters, ${\bf T2M}$ is undefined.
2835    \\
2836    
2837    \noindent
2838    { \underline {Q2M}  Specific Humidity at 2 Meter Depth ($g/kg$) }
2839    
2840    \noindent
2841    The specific humidity at the 2-meter depth is determined from the similarity theory:
2842    \[
2843    {\bf Q2M} = P^{\kappa} \frac({q_*}{k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2844    P^{\kappa}(q_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g }
2845    (q_{sl} - q_{surf}))
2846    \]
2847    where:
2848    \[
2849    q_* = - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* }
2850    \]
2851    
2852    \noindent
2853    where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2854    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2855    $sl$ refers to the height of the top of the surface layer. If the roughness height
2856    is above two meters, ${\bf Q2M}$ is undefined.
2857    \\
2858    
2859    \noindent
2860    { \underline {U10M}  Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2861    
2862    \noindent
2863    The u-wind at the 10-meter depth is an interpolation between the surface wind
2864    and the model lowest level wind using the ratio of the non-dimensional wind shear
2865    at the two levels:
2866    \[
2867    {\bf U10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{u_{sl}}{W_s} =
2868    \frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }u_{sl}
2869    \]
2870    
2871    \noindent
2872    where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2873    $sl$ refers to the height of the top of the surface layer.
2874    \\
2875    
2876    \noindent
2877    { \underline {V10M}  Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2878    
2879    \noindent
2880    The v-wind at the 10-meter depth is an interpolation between the surface wind
2881    and the model lowest level wind using the ratio of the non-dimensional wind shear
2882    at the two levels:
2883    \[
2884    {\bf V10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{v_{sl}}{W_s} =
2885    \frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }v_{sl}
2886    \]
2887    
2888    \noindent
2889    where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2890    $sl$ refers to the height of the top of the surface layer.
2891    \\
2892    
2893    \noindent
2894    { \underline {T10M}  Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2895    
2896    \noindent
2897    The temperature at the 10-meter depth is an interpolation between the surface potential
2898    temperature and the model lowest level potential temperature using the ratio of the
2899    non-dimensional temperature gradient at the two levels:
2900    \[
2901    {\bf T10M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2902    P^{\kappa}(\theta_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g}
2903    (\theta_{sl} - \theta_{surf}))
2904    \]
2905    where:
2906    \[
2907    \theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* }
2908    \]
2909    
2910    \noindent
2911    where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2912    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2913    $sl$ refers to the height of the top of the surface layer.
2914    \\
2915    
2916    \noindent
2917    { \underline {Q10M}  Specific Humidity at 10 Meter Depth ($g/kg$) }
2918    
2919    \noindent
2920    The specific humidity at the 10-meter depth is an interpolation between the surface specific
2921    humidity and the model lowest level specific humidity using the ratio of the
2922    non-dimensional temperature gradient at the two levels:
2923    \[
2924    {\bf Q10M} = P^{\kappa} (\frac{q_*}{k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2925    P^{\kappa}(q_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g}
2926    (q_{sl} - q_{surf}))
2927    \]
2928    where:
2929    \[
2930    q_* =  - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* }
2931    \]
2932    
2933    \noindent
2934    where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2935    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2936    $sl$ refers to the height of the top of the surface layer.
2937    \\
2938    
2939    \noindent
2940    { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2941    
2942    The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2943    \[
2944    {\bf DTRAIN} = \eta_{r_D}m_B
2945    \]
2946    \noindent
2947    where $r_D$ is the detrainment level,
2948    $m_B$ is the cloud base mass flux, and $\eta$
2949    is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2950    \\
2951    
2952    \noindent
2953    { \underline {QFILL}  Filling of negative Specific Humidity ($g/kg/day$) }
2954    
2955    \noindent
2956    Due to computational errors associated with the numerical scheme used for
2957    the advection of moisture, negative values of specific humidity may be generated.  The
2958    specific humidity is checked for negative values after every dynamics timestep.  If negative
2959    values have been produced, a filling algorithm is invoked which redistributes moisture from
2960    below.  Diagnostic {\bf QFILL} is equal to the net filling needed
2961    to eliminate negative specific humidity, scaled to a per-day rate:
2962    \[
2963    {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2964    \]
2965    where
2966    \[
2967    q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2968    \]
2969    
2970    
2971    \subsubsection{Key subroutines, parameters and files}
2972    
2973    \subsubsection{Dos and donts}
2974    
2975    \subsubsection{Fizhi Reference}
2976    
2977    \subsubsection{Experiments and tutorials that use fizhi}
2978    \label{sec:pkg:fizhi:experiments}
2979    
2980    \begin{itemize}
2981    \item{Global atmosphere experiment with realistic SST and topography in fizhi-cs-32x32x10 verification directory. }
2982    \item{Global atmosphere aqua planet experiment in fizhi-cs-aqualev20 verification directory. }
2983    \end{itemize}
2984    
 \subsection{Fizhi Reference}  

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.19

  ViewVC Help
Powered by ViewVC 1.1.22