/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by molod, Mon Feb 2 22:00:18 2004 UTC revision 1.10 by molod, Tue Aug 2 15:43:59 2005 UTC
# Line 1  Line 1 
1  \section{Fizhi: High-end Atmospheric Physics}  \subsection{Fizhi: High-end Atmospheric Physics}
2    \label{sec:pkg:fizhi}
3    \begin{rawhtml}
4    <!-- CMIREDIR:package_fizhi: -->
5    \end{rawhtml}
6  \input{texinputs/epsf.tex}  \input{texinputs/epsf.tex}
7    
8  \subsection{Introduction}  \subsubsection{Introduction}
9  The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art  The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10  physical parameterizations for atmospheric radiation, cumulus convection, atmospheric  physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11  boundary layer turbulence, and land surface processes.  boundary layer turbulence, and land surface processes.
# Line 9  boundary layer turbulence, and land surf Line 13  boundary layer turbulence, and land surf
13  % *************************************************************************  % *************************************************************************
14  % *************************************************************************  % *************************************************************************
15    
16  \subsection{Equations}  \subsubsection{Equations}
17    
18  \subsubsection{Moist Convective Processes}  Moist Convective Processes:
19    
20  \paragraph{Sub-grid and Large-scale Convection}  \paragraph{Sub-grid and Large-scale Convection}
21  \label{sec:fizhi:mc}  \label{sec:fizhi:mc}
22    
23  Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa  Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
24  Schubert (RAS) scheme of Moorthi and Suarez (1992), which is a linearized Arakawa Schubert  Schubert (RAS) scheme of \cite{moorsz:92}, which is a linearized Arakawa Schubert
25  type scheme.  RAS predicts the mass flux from an ensemble of clouds.  Each subensemble is identified  type scheme.  RAS predicts the mass flux from an ensemble of clouds.  Each subensemble is identified
26  by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.  by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.
27    
# Line 39  where we have used the hydrostatic equat Line 43  where we have used the hydrostatic equat
43  The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its  The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
44  detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral  detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral
45  buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal  buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal
46  to the saturation moist static energy of the environment, $h^*$.  Following Moorthi and Suarez (1992),  to the saturation moist static energy of the environment, $h^*$.  Following \cite{moorsz:92},
47  $\lambda$ may be written as  $\lambda$ may be written as
48  \[  \[
49  \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,  \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,
# Line 97  $\alpha$ of the total adjustment. The pa Line 101  $\alpha$ of the total adjustment. The pa
101  towards equillibrium.    towards equillibrium.  
102    
103  In addition to the RAS cumulus convection scheme, the fizhi package employs a  In addition to the RAS cumulus convection scheme, the fizhi package employs a
104  Kessler-type scheme for the re-evaporation of falling rain (Sud and Molod, 1988), which  Kessler-type scheme for the re-evaporation of falling rain (\cite{sudm:88}), which
105  correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current  correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current
106  formulation assumes that all cloud water is deposited into the detrainment level as rain.  formulation assumes that all cloud water is deposited into the detrainment level as rain.
107  All of the rain is available for re-evaporation, which begins in the level below detrainment.  All of the rain is available for re-evaporation, which begins in the level below detrainment.
# Line 182  F_{CLD} = \max \left[ F_{RAS},F_{LS} \ri Line 186  F_{CLD} = \max \left[ F_{RAS},F_{LS} \ri
186  Finally, cloud fractions are time-averaged between calls to the radiation packages.  Finally, cloud fractions are time-averaged between calls to the radiation packages.
187    
188    
189  \subsubsection{Radiation}  Radiation:
190    
191  The parameterization of radiative heating in the fizhi package includes effects  The parameterization of radiative heating in the fizhi package includes effects
192  from both shortwave and longwave processes.  from both shortwave and longwave processes.
# Line 217  The solar constant value used in the pac Line 221  The solar constant value used in the pac
221  and a $CO_2$ mixing ratio of 330 ppm.  and a $CO_2$ mixing ratio of 330 ppm.
222  For the ozone mixing ratio, monthly mean zonally averaged  For the ozone mixing ratio, monthly mean zonally averaged
223  climatological values specified as a function  climatological values specified as a function
224  of latitude and height (Rosenfield, et al., 1987) are linearly interpolated to the current time.  of latitude and height (\cite{rosen:87}) are linearly interpolated to the current time.
225    
226    
227  \paragraph{Shortwave Radiation}  \paragraph{Shortwave Radiation}
# Line 227  heating due to the absoption by water va Line 231  heating due to the absoption by water va
231  clouds, and aerosols and due to the  clouds, and aerosols and due to the
232  scattering by clouds, aerosols, and gases.  scattering by clouds, aerosols, and gases.
233  The shortwave radiative processes are described by  The shortwave radiative processes are described by
234  Chou (1990,1992). This shortwave package  \cite{chou:90,chou:92}. This shortwave package
235  uses the Delta-Eddington approximation to compute the  uses the Delta-Eddington approximation to compute the
236  bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).  bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).
237  The transmittance and reflectance of diffuse radiation  The transmittance and reflectance of diffuse radiation
238  follow the procedures of Sagan and Pollock (JGR, 1967) and Lacis and Hansen (JAS, 1974).  follow the procedures of Sagan and Pollock (JGR, 1967) and \cite{lhans:74}.
239    
240  Highly accurate heating rate calculations are obtained through the use  Highly accurate heating rate calculations are obtained through the use
241  of an optimal grouping strategy of spectral bands.  By grouping the UV and visible regions  of an optimal grouping strategy of spectral bands.  By grouping the UV and visible regions
# Line 317  low/middle/high classification, and appr Line 321  low/middle/high classification, and appr
321    
322  \paragraph{Longwave Radiation}  \paragraph{Longwave Radiation}
323    
324  The longwave radiation package used in the fizhi package is thoroughly described by Chou and Suarez (1994).  The longwave radiation package used in the fizhi package is thoroughly described by \cite{chsz:94}.
325  As described in that document, IR fluxes are computed due to absorption by water vapor, carbon  As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
326  dioxide, and ozone.  The spectral bands together with their absorbers and parameterization methods,  dioxide, and ozone.  The spectral bands together with their absorbers and parameterization methods,
327  configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.  configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.
# Line 353  Band & Spectral Range (cm$^{-1}$) & Abso Line 357  Band & Spectral Range (cm$^{-1}$) & Abso
357  \end{tabular}  \end{tabular}
358  \end{center}  \end{center}
359  \vspace{0.1in}  \vspace{0.1in}
360  \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from Chou and Suarez, 1994)}  \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from \cite{chzs:94})}
361  \label{tab:fizhi:longwave}  \label{tab:fizhi:longwave}
362  \end{table}  \end{table}
363    
# Line 424  The cloud fraction values are time-avera Line 428  The cloud fraction values are time-avera
428  hours).  Therefore, in a time-averaged sense, both convective and large-scale  hours).  Therefore, in a time-averaged sense, both convective and large-scale
429  cloudiness can exist in a given grid-box.    cloudiness can exist in a given grid-box.  
430    
431  \subsubsection{Turbulence}  Turbulence:
432    
433  Turbulence is parameterized in the fizhi package to account for its contribution to the  Turbulence is parameterized in the fizhi package to account for its contribution to the
434  vertical exchange of heat, moisture, and momentum.    vertical exchange of heat, moisture, and momentum.  
435  The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative  The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
# Line 454  Within the atmosphere, the time evolutio Line 459  Within the atmosphere, the time evolutio
459  of second turbulent moments is explicitly modeled by representing the third moments in terms of  of second turbulent moments is explicitly modeled by representing the third moments in terms of
460  the first and second moments.  This approach is known as a second-order closure modeling.  the first and second moments.  This approach is known as a second-order closure modeling.
461  To simplify and streamline the computation of the second moments, the level 2.5 assumption  To simplify and streamline the computation of the second moments, the level 2.5 assumption
462  of Mellor and Yamada (1974) and Yamada (1977) is employed, in which only the turbulent  of Mellor and Yamada (1974) and \cite{yam:77} is employed, in which only the turbulent
463  kinetic energy (TKE),  kinetic energy (TKE),
464    
465  \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]  \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]
# Line 488  of TKE. Line 493  of TKE.
493    
494  In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the  In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the
495  wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and  wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and
496  $K_m$, respectively.  In the statisically realizable level 2.5 turbulence scheme of Helfand  $K_m$, respectively.  In the statisically realizable level 2.5 turbulence scheme of
497  and Labraga (1988), these diffusion coefficients are expressed as  \cite{helflab:88}, these diffusion coefficients are expressed as
498    
499  \[  \[
500  K_h  K_h
# Line 564  where $\psi_h$ is the surface layer non- Line 569  where $\psi_h$ is the surface layer non-
569  \]  \]
570  Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of  Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
571  the temperature and moisture gradients, and is specified differently for stable and unstable  the temperature and moisture gradients, and is specified differently for stable and unstable
572  layers according to Helfand and Schubert, 1995.  layers according to \cite{helfschu:95}.
573    
574  $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,  $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,
575  which is the mosstly laminar region between the surface and the tops of the roughness  which is the mosstly laminar region between the surface and the tops of the roughness
576  elements, in which temperature and moisture gradients can be quite large.  elements, in which temperature and moisture gradients can be quite large.
577  Based on Yaglom and Kader (1974):  Based on \cite{yagkad:74}:
578  \[  \[
579  \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }  \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
580  (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}  (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
# Line 583  The surface roughness length over oceans Line 588  The surface roughness length over oceans
588  {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}  {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
589  \]  \]
590  where the constants are chosen to interpolate between the reciprocal relation of  where the constants are chosen to interpolate between the reciprocal relation of
591  Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)  \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
592  for moderate to large winds.  Roughness lengths over land are specified  for moderate to large winds.  Roughness lengths over land are specified
593  from the climatology of Dorman and Sellers (1989).  from the climatology of \cite{dorsell:89}.
594    
595  For an unstable surface layer, the stability functions, chosen to interpolate between the  For an unstable surface layer, the stability functions, chosen to interpolate between the
596  condition of small values of $\beta$ and the convective limit, are the KEYPS function  condition of small values of $\beta$ and the convective limit, are the KEYPS function
597  (Panofsky, 1973) for momentum, and its generalization for heat and moisture:    (\cite{pano:73}) for momentum, and its generalization for heat and moisture:  
598  \[  \[
599  {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}  {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
600  {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .  {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .
# Line 598  The function for heat and moisture assur Line 603  The function for heat and moisture assur
603  speed approaches zero.  speed approaches zero.
604    
605  For a stable surface layer, the stability functions are the observationally  For a stable surface layer, the stability functions are the observationally
606  based functions of Clarke (1970),  slightly modified for  based functions of \cite{clarke:70},  slightly modified for
607  the momemtum flux:    the momemtum flux:  
608  \[  \[
609  {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}  {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}
# Line 656  be $3 \hspace{.1cm} m$ where sea ice is Line 661  be $3 \hspace{.1cm} m$ where sea ice is
661  surface temperature of the ice.  surface temperature of the ice.
662    
663  $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation  $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
664  for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:  for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
665  \[  \[
666  C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}  C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
667  {86400 \over 2 \pi} } \, \, .  {86400 \over 2 \pi} } \, \, .
# Line 668  by $2 \pi$ $radians/ Line 673  by $2 \pi$ $radians/
673  day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,  day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
674  is a function of the ground wetness, $W$.  is a function of the ground wetness, $W$.
675    
676  \subsubsection{Land Surface Processes}  Land Surface Processes:
677    
678  \paragraph{Surface Type}  \paragraph{Surface Type}
679  The fizhi package surface Types are designated using the Koster-Suarez (1992) mosaic  The fizhi package surface Types are designated using the Koster-Suarez (\cite{ks:91,ks:92})
680  philosophy which allows multiple ``tiles'', or multiple surface types, in any one  Land Surface Model (LSM) mosaic philosophy which allows multiple ``tiles'', or multiple surface
681  grid cell. The Koster-Suarez Land Surface Model (LSM) surface type classifications  types, in any one grid cell. The Koster-Suarez LSM surface type classifications
682  are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid  are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid
683  cell occupied by any surface type were derived from the surface classification of  cell occupied by any surface type were derived from the surface classification of
684  Defries and Townshend (1994), and information about the location of permanent  \cite{deftow:94}, and information about the location of permanent
685  ice was obtained from the classifications of Dorman and Sellers (1989).  ice was obtained from the classifications of \cite{dorsell:89}.
686  The surface type for the \txt GCM grid is shown in Figure \ref{fig:fizhi:surftype}.  The surface type for the \txt GCM grid is shown in Figure \ref{fig:fizhi:surftype}.
687  The determination of the land or sea category of surface type was made from NCAR's  The determination of the land or sea category of surface type was made from NCAR's
688  10 minute by 10 minute Navy topography  10 minute by 10 minute Navy topography
# Line 731  and surface albedo.} Line 736  and surface albedo.}
736    
737  \paragraph{Surface Roughness}  \paragraph{Surface Roughness}
738  The surface roughness length over oceans is computed iteratively with the wind  The surface roughness length over oceans is computed iteratively with the wind
739  stress by the surface layer parameterization (Helfand and Schubert, 1991).  stress by the surface layer parameterization (\cite{helfschu:95}).
740  It employs an interpolation between the functions of Large and Pond (1981)  It employs an interpolation between the functions of \cite{larpond:81}
741  for high winds and of Kondo (1975) for weak winds.  for high winds and of \cite{kondo:75} for weak winds.
742    
743    
744  \paragraph{Albedo}  \paragraph{Albedo}
745  The surface albedo computation, described in Koster and Suarez (1991),  The surface albedo computation, described in \cite{ks:91},
746  employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)  employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
747  Model which distinguishes between the direct and diffuse albedos in the visible  Model which distinguishes between the direct and diffuse albedos in the visible
748  and in the near infra-red spectral ranges. The albedos are functions of the observed  and in the near infra-red spectral ranges. The albedos are functions of the observed
# Line 746  sun), the greenness fraction, the vegeta Line 751  sun), the greenness fraction, the vegeta
751  Modifications are made to account for the presence of snow, and its depth relative  Modifications are made to account for the presence of snow, and its depth relative
752  to the height of the vegetation elements.  to the height of the vegetation elements.
753    
754  \subsubsection{Gravity Wave Drag}  Gravity Wave Drag:
755  The fizhi package employs the gravity wave drag scheme of Zhou et al. (1996).  
756    The fizhi package employs the gravity wave drag scheme of \cite{zhouetal:96}).
757  This scheme is a modified version of Vernekar et al. (1992),  This scheme is a modified version of Vernekar et al. (1992),
758  which was based on Alpert et al. (1988) and Helfand et al. (1987).    which was based on Alpert et al. (1988) and Helfand et al. (1987).  
759  In this version, the gravity wave stress at the surface is  In this version, the gravity wave stress at the surface is
# Line 764  A modification introduced by Zhou et al. Line 770  A modification introduced by Zhou et al.
770  escape through the top of the model, although this effect is small for the current 70-level model.    escape through the top of the model, although this effect is small for the current 70-level model.  
771  The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.  The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.
772    
773  The effects of using this scheme within a GCM are shown in Takacs and Suarez (1996).  The effects of using this scheme within a GCM are shown in \cite{taksz:96}.
774  Experiments using the gravity wave drag parameterization yielded significant and  Experiments using the gravity wave drag parameterization yielded significant and
775  beneficial impacts on both the time-mean flow and the transient statistics of the  beneficial impacts on both the time-mean flow and the transient statistics of the
776  a GCM climatology, and have eliminated most of the worst dynamically driven biases  a GCM climatology, and have eliminated most of the worst dynamically driven biases
# Line 780  of mountain torque (through a redistribu Line 786  of mountain torque (through a redistribu
786  convergence (through a reduction in the flux of westerly momentum by transient flow eddies).    convergence (through a reduction in the flux of westerly momentum by transient flow eddies).  
787    
788    
789  \subsubsection{Boundary Conditions and other Input Data}  Boundary Conditions and other Input Data:
790    
791  Required fields which are not explicitly predicted or diagnosed during model execution must  Required fields which are not explicitly predicted or diagnosed during model execution must
792  either be prescribed internally or obtained from external data sets.  In the fizhi package these  either be prescribed internally or obtained from external data sets.  In the fizhi package these
# Line 821  current years and frequencies available. Line 827  current years and frequencies available.
827  Surface geopotential heights are provided from an averaging of the Navy 10 minute  Surface geopotential heights are provided from an averaging of the Navy 10 minute
828  by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the  by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
829  model's grid resolution. The original topography is first rotated to the proper grid-orientation  model's grid resolution. The original topography is first rotated to the proper grid-orientation
830  which is being run, and then    which is being run, and then  averages the data to the model resolution.  
 averages the data to the model resolution.    
 The averaged topography is then passed through a Lanczos (1966) filter in both dimensions  
 which removes the smallest  
 scales while inhibiting Gibbs phenomena.    
   
 In one dimension, we may define a cyclic function in $x$ as:  
 \begin{equation}  
 f(x) = {a_0 \over 2} + \sum_{k=1}^N \left( a_k \cos(kx) + b_k \sin(kx) \right)  
 \label{eq:fizhi:filt}  
 \end{equation}  
 where $N = { {\rm IM} \over 2 }$ and ${\rm IM}$ is the total number of points in the $x$ direction.  
 Defining $\Delta x = { 2 \pi \over {\rm IM}}$, we may define the average of $f(x)$ over a  
 $2 \Delta x$ region as:  
   
 \begin{equation}  
 \overline {f(x)} = {1 \over {2 \Delta x}} \int_{x-\Delta x}^{x+\Delta x} f(x^{\prime}) dx^{\prime}  
 \label{eq:fizhi:fave1}  
 \end{equation}  
   
 Using equation (\ref{eq:fizhi:filt}) in equation (\ref{eq:fizhi:fave1}) and integrating, we may write:  
   
 \begin{equation}  
 \overline {f(x)} = {a_0 \over 2} + {1 \over {2 \Delta x}}  
 \sum_{k=1}^N \left [  
 \left. a_k { \sin(kx^{\prime}) \over k } \right /_{x-\Delta x}^{x+\Delta x} -  
 \left. b_k { \cos(kx^{\prime}) \over k } \right /_{x-\Delta x}^{x+\Delta x}  
 \right]  
 \end{equation}  
 or  
   
 \begin{equation}  
 \overline {f(x)} = {a_0 \over 2} + \sum_{k=1}^N {\sin(k \Delta x) \over {k \Delta x}}  
 \left( a_k \cos(kx) + b_k \sin(kx) \right)  
 \label{eq:fizhi:fave2}  
 \end{equation}  
   
 Thus, the Fourier wave amplitudes are simply modified by the Lanczos filter response  
 function ${\sin(k\Delta x) \over {k \Delta x}}$.  This may be compared with an $mth$-order  
 Shapiro (1970) filter response function, defined as $1-\sin^m({k \Delta x \over 2})$,  
 shown in Figure \ref{fig:fizhi:lanczos}.  
 It should be noted that negative values in the topography resulting from  
 the filtering procedure are {\em not} filled.  
831    
832  \begin{figure*}[htbp]  The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute
833    \centerline{  \epsfysize=7.0in  \epsfbox{part6/lanczos.ps}}  data to the model's resolution and re-interpolating back to the 10 minute by 10 minute resolution.
   \caption{ \label{fig:fizhi:lanczos} Comparison between the Lanczos and $mth$-order Shapiro filter  
   response functions for $m$ = 2, 4, and 8. }  
 \end{figure*}  
   
 The standard deviation of the subgrid-scale topography  
 is computed from a modified version of the the Navy 10 minute by 10 minute dataset.  
 The 10 minute by 10 minute topography is passed through a wavelet  
 filter in both dimensions which removes the scale smaller than 20 minutes.  
 The topography is then averaged to $1^\circ x 1^\circ$ grid resolution, and then  
 re-interpolated back to the 10 minute by 10 minute resolution.  
834  The sub-grid scale variance is constructed based on this smoothed dataset.  The sub-grid scale variance is constructed based on this smoothed dataset.
835    
836    
# Line 888  model's grid location and current time, Line 842  model's grid location and current time,
842  the model's moisture data is used.  Above 100 mb, the SAGE data is used.  Between 100 and 300 mb,  the model's moisture data is used.  Above 100 mb, the SAGE data is used.  Between 100 and 300 mb,
843  a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.  a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
844    
 \subsection{Key subroutines, parameters and files}  
845    
846  \subsection{Dos and donts}  \subsubsection{Fizhi Diagnostics}
847    
848    Fizhi Diagnostic Menu:
849    \label{sec:fizhi-diagnostics:menu}
850    
851    \begin{tabular}{llll}
852    \hline\hline
853     NAME & UNITS & LEVELS & DESCRIPTION \\
854    \hline
855    
856    &\\
857     UFLUX    &   $Newton/m^2$  &    1  
858             &\begin{minipage}[t]{3in}
859              {Surface U-Wind Stress on the atmosphere}
860             \end{minipage}\\
861     VFLUX    &   $Newton/m^2$  &    1  
862             &\begin{minipage}[t]{3in}
863              {Surface V-Wind Stress on the atmosphere}
864             \end{minipage}\\
865     HFLUX    &   $Watts/m^2$  &    1  
866             &\begin{minipage}[t]{3in}
867              {Surface Flux of Sensible Heat}
868             \end{minipage}\\
869     EFLUX    &   $Watts/m^2$  &    1  
870             &\begin{minipage}[t]{3in}
871              {Surface Flux of Latent Heat}
872             \end{minipage}\\
873     QICE     &   $Watts/m^2$  &    1  
874             &\begin{minipage}[t]{3in}
875              {Heat Conduction through Sea-Ice}
876             \end{minipage}\\
877     RADLWG   &   $Watts/m^2$ &    1  
878             &\begin{minipage}[t]{3in}
879              {Net upward LW flux at the ground}
880             \end{minipage}\\
881     RADSWG   &   $Watts/m^2$  &    1
882             &\begin{minipage}[t]{3in}
883              {Net downward SW flux at the ground}
884             \end{minipage}\\
885     RI       &  $dimensionless$ &  Nrphys
886             &\begin{minipage}[t]{3in}
887              {Richardson Number}
888             \end{minipage}\\
889     CT       &  $dimensionless$ &  1
890             &\begin{minipage}[t]{3in}
891              {Surface Drag coefficient for T and Q}
892             \end{minipage}\\
893     CU       & $dimensionless$ &  1
894         &\begin{minipage}[t]{3in}
895          {Surface Drag coefficient for U and V}
896         \end{minipage}\\
897     ET       &  $m^2/sec$ &  Nrphys
898         &\begin{minipage}[t]{3in}
899          {Diffusivity coefficient for T and Q}
900         \end{minipage}\\
901     EU       &  $m^2/sec$ &  Nrphys
902         &\begin{minipage}[t]{3in}
903          {Diffusivity coefficient for U and V}
904         \end{minipage}\\
905     TURBU    &  $m/sec/day$ &  Nrphys
906         &\begin{minipage}[t]{3in}
907          {U-Momentum Changes due to Turbulence}
908         \end{minipage}\\
909     TURBV    &  $m/sec/day$ &  Nrphys
910         &\begin{minipage}[t]{3in}
911          {V-Momentum Changes due to Turbulence}
912         \end{minipage}\\
913     TURBT    &  $deg/day$ &  Nrphys
914         &\begin{minipage}[t]{3in}
915          {Temperature Changes due to Turbulence}
916         \end{minipage}\\
917     TURBQ    &  $g/kg/day$ &  Nrphys
918         &\begin{minipage}[t]{3in}
919          {Specific Humidity Changes due to Turbulence}
920         \end{minipage}\\
921     MOISTT   &   $deg/day$ &  Nrphys
922         &\begin{minipage}[t]{3in}
923          {Temperature Changes due to Moist Processes}
924         \end{minipage}\\
925     MOISTQ   &  $g/kg/day$ &  Nrphys
926         &\begin{minipage}[t]{3in}
927          {Specific Humidity Changes due to Moist Processes}
928         \end{minipage}\\
929     RADLW    &  $deg/day$ &  Nrphys
930         &\begin{minipage}[t]{3in}
931          {Net Longwave heating rate for each level}
932         \end{minipage}\\
933     RADSW    &  $deg/day$ &  Nrphys
934         &\begin{minipage}[t]{3in}
935          {Net Shortwave heating rate for each level}
936         \end{minipage}\\
937     PREACC   &  $mm/day$ &  1
938         &\begin{minipage}[t]{3in}
939          {Total Precipitation}
940         \end{minipage}\\
941     PRECON   &  $mm/day$ &  1
942         &\begin{minipage}[t]{3in}
943          {Convective Precipitation}
944         \end{minipage}\\
945     TUFLUX   &  $Newton/m^2$ &  Nrphys
946         &\begin{minipage}[t]{3in}
947          {Turbulent Flux of U-Momentum}
948         \end{minipage}\\
949     TVFLUX   &  $Newton/m^2$ &  Nrphys
950         &\begin{minipage}[t]{3in}
951          {Turbulent Flux of V-Momentum}
952         \end{minipage}\\
953     TTFLUX   &  $Watts/m^2$ &  Nrphys
954         &\begin{minipage}[t]{3in}
955          {Turbulent Flux of Sensible Heat}
956         \end{minipage}\\
957    \end{tabular}
958    
959    \newpage
960    \vspace*{\fill}
961    \begin{tabular}{llll}
962    \hline\hline
963     NAME & UNITS & LEVELS & DESCRIPTION \\
964    \hline
965    
966    &\\
967     TQFLUX   &  $Watts/m^2$ &  Nrphys
968         &\begin{minipage}[t]{3in}
969          {Turbulent Flux of Latent Heat}
970         \end{minipage}\\
971     CN       &  $dimensionless$ &  1
972         &\begin{minipage}[t]{3in}
973          {Neutral Drag Coefficient}
974         \end{minipage}\\
975     WINDS     &  $m/sec$ &  1
976         &\begin{minipage}[t]{3in}
977          {Surface Wind Speed}
978         \end{minipage}\\
979     DTSRF     &  $deg$ &  1
980         &\begin{minipage}[t]{3in}
981          {Air/Surface virtual temperature difference}
982         \end{minipage}\\
983     TG        &  $deg$ &  1
984         &\begin{minipage}[t]{3in}
985          {Ground temperature}
986         \end{minipage}\\
987     TS        &  $deg$ &  1
988         &\begin{minipage}[t]{3in}
989          {Surface air temperature (Adiabatic from lowest model layer)}
990         \end{minipage}\\
991     DTG       &  $deg$ &  1
992         &\begin{minipage}[t]{3in}
993          {Ground temperature adjustment}
994         \end{minipage}\\
995    
996     QG        &  $g/kg$ &  1
997         &\begin{minipage}[t]{3in}
998          {Ground specific humidity}
999         \end{minipage}\\
1000     QS        &  $g/kg$ &  1
1001         &\begin{minipage}[t]{3in}
1002          {Saturation surface specific humidity}
1003         \end{minipage}\\
1004     TGRLW    &    $deg$   &    1  
1005         &\begin{minipage}[t]{3in}
1006          {Instantaneous ground temperature used as input to the
1007           Longwave radiation subroutine}
1008         \end{minipage}\\
1009     ST4      &   $Watts/m^2$  &    1  
1010         &\begin{minipage}[t]{3in}
1011          {Upward Longwave flux at the ground ($\sigma T^4$)}
1012         \end{minipage}\\
1013     OLR      &   $Watts/m^2$  &    1  
1014         &\begin{minipage}[t]{3in}
1015          {Net upward Longwave flux at the top of the model}
1016         \end{minipage}\\
1017     OLRCLR   &   $Watts/m^2$  &    1  
1018         &\begin{minipage}[t]{3in}
1019          {Net upward clearsky Longwave flux at the top of the model}
1020         \end{minipage}\\
1021     LWGCLR   &   $Watts/m^2$  &    1  
1022         &\begin{minipage}[t]{3in}
1023          {Net upward clearsky Longwave flux at the ground}
1024         \end{minipage}\\
1025     LWCLR    &  $deg/day$ &  Nrphys
1026         &\begin{minipage}[t]{3in}
1027          {Net clearsky Longwave heating rate for each level}
1028         \end{minipage}\\
1029     TLW      &    $deg$   &  Nrphys
1030         &\begin{minipage}[t]{3in}
1031          {Instantaneous temperature used as input to the Longwave radiation
1032          subroutine}
1033         \end{minipage}\\
1034     SHLW     &    $g/g$   &  Nrphys
1035         &\begin{minipage}[t]{3in}
1036          {Instantaneous specific humidity used as input to the Longwave radiation
1037          subroutine}
1038         \end{minipage}\\
1039     OZLW     &    $g/g$   &  Nrphys
1040         &\begin{minipage}[t]{3in}
1041          {Instantaneous ozone used as input to the Longwave radiation
1042          subroutine}
1043         \end{minipage}\\
1044     CLMOLW   &    $0-1$   &  Nrphys
1045         &\begin{minipage}[t]{3in}
1046          {Maximum overlap cloud fraction used in the Longwave radiation
1047          subroutine}
1048         \end{minipage}\\
1049     CLDTOT   &    $0-1$   &  Nrphys
1050         &\begin{minipage}[t]{3in}
1051          {Total cloud fraction used in the Longwave and Shortwave radiation
1052          subroutines}
1053         \end{minipage}\\
1054     LWGDOWN  &    $Watts/m^2$   &  1
1055         &\begin{minipage}[t]{3in}
1056          {Downwelling Longwave radiation at the ground}
1057         \end{minipage}\\
1058     GWDT     &    $deg/day$ &  Nrphys
1059         &\begin{minipage}[t]{3in}
1060          {Temperature tendency due to Gravity Wave Drag}
1061         \end{minipage}\\
1062     RADSWT   &    $Watts/m^2$   &  1
1063         &\begin{minipage}[t]{3in}
1064          {Incident Shortwave radiation at the top of the atmosphere}
1065         \end{minipage}\\
1066     TAUCLD   &    $per 100 mb$   &  Nrphys
1067         &\begin{minipage}[t]{3in}
1068          {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1069         \end{minipage}\\
1070     TAUCLDC  &    $Number$   &  Nrphys
1071         &\begin{minipage}[t]{3in}
1072          {Cloud Optical Depth Counter}
1073         \end{minipage}\\
1074    \end{tabular}
1075    \vfill
1076    
1077    \newpage
1078    \vspace*{\fill}
1079    \begin{tabular}{llll}
1080    \hline\hline
1081     NAME & UNITS & LEVELS & DESCRIPTION \\
1082    \hline
1083    
1084    &\\
1085     CLDLOW   &    $0-1$   &  Nrphys
1086         &\begin{minipage}[t]{3in}
1087          {Low-Level ( 1000-700 hPa) Cloud Fraction  (0-1)}
1088         \end{minipage}\\
1089     EVAP     &    $mm/day$   &  1
1090         &\begin{minipage}[t]{3in}
1091          {Surface evaporation}
1092         \end{minipage}\\
1093     DPDT     &    $hPa/day$ &  1
1094         &\begin{minipage}[t]{3in}
1095          {Surface Pressure tendency}
1096         \end{minipage}\\
1097     UAVE     &    $m/sec$ &  Nrphys
1098         &\begin{minipage}[t]{3in}
1099          {Average U-Wind}
1100         \end{minipage}\\
1101     VAVE     &    $m/sec$ &  Nrphys
1102         &\begin{minipage}[t]{3in}
1103          {Average V-Wind}
1104         \end{minipage}\\
1105     TAVE     &    $deg$ &  Nrphys
1106         &\begin{minipage}[t]{3in}
1107          {Average Temperature}
1108         \end{minipage}\\
1109     QAVE     &    $g/kg$ &  Nrphys
1110         &\begin{minipage}[t]{3in}
1111          {Average Specific Humidity}
1112         \end{minipage}\\
1113     OMEGA    &    $hPa/day$ &  Nrphys
1114         &\begin{minipage}[t]{3in}
1115          {Vertical Velocity}
1116         \end{minipage}\\
1117     DUDT     &    $m/sec/day$ &  Nrphys
1118         &\begin{minipage}[t]{3in}
1119          {Total U-Wind tendency}
1120         \end{minipage}\\
1121     DVDT     &    $m/sec/day$ &  Nrphys
1122         &\begin{minipage}[t]{3in}
1123          {Total V-Wind tendency}
1124         \end{minipage}\\
1125     DTDT     &    $deg/day$ &  Nrphys
1126         &\begin{minipage}[t]{3in}
1127          {Total Temperature tendency}
1128         \end{minipage}\\
1129     DQDT     &    $g/kg/day$ &  Nrphys
1130         &\begin{minipage}[t]{3in}
1131          {Total Specific Humidity tendency}
1132         \end{minipage}\\
1133     VORT     &    $10^{-4}/sec$ &  Nrphys
1134         &\begin{minipage}[t]{3in}
1135          {Relative Vorticity}
1136         \end{minipage}\\
1137     DTLS     &    $deg/day$ &  Nrphys
1138         &\begin{minipage}[t]{3in}
1139          {Temperature tendency due to Stratiform Cloud Formation}
1140         \end{minipage}\\
1141     DQLS     &    $g/kg/day$ &  Nrphys
1142         &\begin{minipage}[t]{3in}
1143          {Specific Humidity tendency due to Stratiform Cloud Formation}
1144         \end{minipage}\\
1145     USTAR    &    $m/sec$ &  1
1146         &\begin{minipage}[t]{3in}
1147          {Surface USTAR wind}
1148         \end{minipage}\\
1149     Z0       &    $m$ &  1
1150         &\begin{minipage}[t]{3in}
1151          {Surface roughness}
1152         \end{minipage}\\
1153     FRQTRB   &    $0-1$ &  Nrphys-1
1154         &\begin{minipage}[t]{3in}
1155          {Frequency of Turbulence}
1156         \end{minipage}\\
1157     PBL      &    $mb$ &  1
1158         &\begin{minipage}[t]{3in}
1159          {Planetary Boundary Layer depth}
1160         \end{minipage}\\
1161     SWCLR    &  $deg/day$ &  Nrphys
1162         &\begin{minipage}[t]{3in}
1163          {Net clearsky Shortwave heating rate for each level}
1164         \end{minipage}\\
1165     OSR      &   $Watts/m^2$  &    1
1166         &\begin{minipage}[t]{3in}
1167          {Net downward Shortwave flux at the top of the model}
1168         \end{minipage}\\
1169     OSRCLR   &   $Watts/m^2$  &    1  
1170         &\begin{minipage}[t]{3in}
1171          {Net downward clearsky Shortwave flux at the top of the model}
1172         \end{minipage}\\
1173     CLDMAS   &   $kg / m^2$  &    Nrphys
1174         &\begin{minipage}[t]{3in}
1175          {Convective cloud mass flux}
1176         \end{minipage}\\
1177     UAVE     &   $m/sec$  &    Nrphys
1178         &\begin{minipage}[t]{3in}
1179          {Time-averaged $u-Wind$}
1180         \end{minipage}\\
1181    \end{tabular}
1182    \vfill
1183    
1184    \newpage
1185    \vspace*{\fill}
1186    \begin{tabular}{llll}
1187    \hline\hline
1188     NAME & UNITS & LEVELS & DESCRIPTION \\
1189    \hline
1190    
1191    &\\
1192     VAVE     &   $m/sec$  &    Nrphys
1193         &\begin{minipage}[t]{3in}
1194          {Time-averaged $v-Wind$}
1195         \end{minipage}\\
1196     TAVE     &   $deg$  &    Nrphys
1197         &\begin{minipage}[t]{3in}
1198          {Time-averaged $Temperature$}
1199         \end{minipage}\\
1200     QAVE     &   $g/g$  &    Nrphys
1201         &\begin{minipage}[t]{3in}
1202          {Time-averaged $Specific \, \, Humidity$}
1203         \end{minipage}\\
1204     RFT      &    $deg/day$ &  Nrphys
1205         &\begin{minipage}[t]{3in}
1206          {Temperature tendency due Rayleigh Friction}
1207         \end{minipage}\\
1208     PS       &   $mb$  &    1
1209         &\begin{minipage}[t]{3in}
1210          {Surface Pressure}
1211         \end{minipage}\\
1212     QQAVE    &   $(m/sec)^2$  &    Nrphys
1213         &\begin{minipage}[t]{3in}
1214          {Time-averaged $Turbulent Kinetic Energy$}
1215         \end{minipage}\\
1216     SWGCLR   &   $Watts/m^2$  &    1  
1217         &\begin{minipage}[t]{3in}
1218          {Net downward clearsky Shortwave flux at the ground}
1219         \end{minipage}\\
1220     PAVE     &   $mb$  &    1
1221         &\begin{minipage}[t]{3in}
1222          {Time-averaged Surface Pressure}
1223         \end{minipage}\\
1224     DIABU    & $m/sec/day$ &    Nrphys
1225         &\begin{minipage}[t]{3in}
1226          {Total Diabatic forcing on $u-Wind$}
1227         \end{minipage}\\
1228     DIABV    & $m/sec/day$ &    Nrphys
1229         &\begin{minipage}[t]{3in}
1230          {Total Diabatic forcing on $v-Wind$}
1231         \end{minipage}\\
1232     DIABT    & $deg/day$ &    Nrphys
1233         &\begin{minipage}[t]{3in}
1234          {Total Diabatic forcing on $Temperature$}
1235         \end{minipage}\\
1236     DIABQ    & $g/kg/day$ &    Nrphys
1237         &\begin{minipage}[t]{3in}
1238          {Total Diabatic forcing on $Specific \, \, Humidity$}
1239         \end{minipage}\\
1240     RFU      &    $m/sec/day$ &  Nrphys
1241         &\begin{minipage}[t]{3in}
1242          {U-Wind tendency due to Rayleigh Friction}
1243         \end{minipage}\\
1244     RFV      &    $m/sec/day$ &  Nrphys
1245         &\begin{minipage}[t]{3in}
1246          {V-Wind tendency due to Rayleigh Friction}
1247         \end{minipage}\\
1248     GWDU     &    $m/sec/day$ &  Nrphys
1249         &\begin{minipage}[t]{3in}
1250          {U-Wind tendency due to Gravity Wave Drag}
1251         \end{minipage}\\
1252     GWDU     &    $m/sec/day$ &  Nrphys
1253         &\begin{minipage}[t]{3in}
1254          {V-Wind tendency due to Gravity Wave Drag}
1255         \end{minipage}\\
1256     GWDUS    &    $N/m^2$ &  1
1257         &\begin{minipage}[t]{3in}
1258          {U-Wind Gravity Wave Drag Stress at Surface}
1259         \end{minipage}\\
1260     GWDVS    &    $N/m^2$ &  1
1261         &\begin{minipage}[t]{3in}
1262          {V-Wind Gravity Wave Drag Stress at Surface}
1263         \end{minipage}\\
1264     GWDUT    &    $N/m^2$ &  1
1265         &\begin{minipage}[t]{3in}
1266          {U-Wind Gravity Wave Drag Stress at Top}
1267         \end{minipage}\\
1268     GWDVT    &    $N/m^2$ &  1
1269         &\begin{minipage}[t]{3in}
1270          {V-Wind Gravity Wave Drag Stress at Top}
1271         \end{minipage}\\
1272     LZRAD    &    $mg/kg$ &  Nrphys
1273             &\begin{minipage}[t]{3in}
1274              {Estimated Cloud Liquid Water used in Radiation}
1275             \end{minipage}\\
1276    \end{tabular}
1277    \vfill
1278    
1279    \newpage
1280    \vspace*{\fill}
1281    \begin{tabular}{llll}
1282    \hline\hline
1283     NAME & UNITS & LEVELS & DESCRIPTION \\
1284    \hline
1285    
1286    &\\
1287     SLP      &   $mb$  &    1
1288             &\begin{minipage}[t]{3in}
1289              {Time-averaged Sea-level Pressure}
1290             \end{minipage}\\
1291     CLDFRC  & $0-1$ &    1
1292             &\begin{minipage}[t]{3in}
1293              {Total Cloud Fraction}
1294             \end{minipage}\\
1295     TPW     & $gm/cm^2$ &    1
1296             &\begin{minipage}[t]{3in}
1297              {Precipitable water}
1298             \end{minipage}\\
1299     U2M     & $m/sec$ &    1
1300             &\begin{minipage}[t]{3in}
1301              {U-Wind at 2 meters}
1302             \end{minipage}\\
1303     V2M     & $m/sec$ &    1
1304             &\begin{minipage}[t]{3in}
1305              {V-Wind at 2 meters}
1306             \end{minipage}\\
1307     T2M     & $deg$ &    1
1308             &\begin{minipage}[t]{3in}
1309              {Temperature at 2 meters}
1310             \end{minipage}\\
1311     Q2M     & $g/kg$ &    1
1312             &\begin{minipage}[t]{3in}
1313              {Specific Humidity at 2 meters}
1314             \end{minipage}\\
1315     U10M    & $m/sec$ &    1
1316             &\begin{minipage}[t]{3in}
1317              {U-Wind at 10 meters}
1318             \end{minipage}\\
1319     V10M    & $m/sec$ &    1
1320             &\begin{minipage}[t]{3in}
1321              {V-Wind at 10 meters}
1322             \end{minipage}\\
1323     T10M    & $deg$ &    1
1324             &\begin{minipage}[t]{3in}
1325              {Temperature at 10 meters}
1326             \end{minipage}\\
1327     Q10M    & $g/kg$ &    1
1328             &\begin{minipage}[t]{3in}
1329              {Specific Humidity at 10 meters}
1330             \end{minipage}\\
1331     DTRAIN  & $kg/m^2$ &    Nrphys
1332             &\begin{minipage}[t]{3in}
1333              {Detrainment Cloud Mass Flux}
1334             \end{minipage}\\
1335     QFILL   & $g/kg/day$ &    Nrphys
1336             &\begin{minipage}[t]{3in}
1337              {Filling of negative specific humidity}
1338             \end{minipage}\\
1339    \end{tabular}
1340    \vspace{1.5in}
1341    \vfill
1342    
1343    \newpage
1344    \vspace*{\fill}
1345    \begin{tabular}{llll}
1346    \hline\hline
1347     NAME & UNITS & LEVELS & DESCRIPTION \\
1348    \hline
1349    
1350    &\\
1351     DTCONV   & $deg/sec$ & Nr
1352             &\begin{minipage}[t]{3in}
1353              {Temp Change due to Convection}
1354             \end{minipage}\\
1355     DQCONV   & $g/kg/sec$ & Nr
1356             &\begin{minipage}[t]{3in}
1357              {Specific Humidity Change due to Convection}
1358             \end{minipage}\\
1359     RELHUM   & $percent$ & Nr
1360             &\begin{minipage}[t]{3in}
1361              {Relative Humidity}
1362             \end{minipage}\\
1363     PRECLS   & $g/m^2/sec$ & 1
1364             &\begin{minipage}[t]{3in}
1365              {Large Scale Precipitation}
1366             \end{minipage}\\
1367     ENPREC   & $J/g$ & 1
1368             &\begin{minipage}[t]{3in}
1369              {Energy of Precipitation (snow, rain Temp)}
1370             \end{minipage}\\
1371    \end{tabular}
1372    \vspace{1.5in}
1373    \vfill
1374    
1375    \newpage
1376    
1377    Fizhi Diagnostic Description:
1378    
1379    In this section we list and describe the diagnostic quantities available within the
1380    GCM.  The diagnostics are listed in the order that they appear in the
1381    Diagnostic Menu, Section \ref{sec:fizhi-diagnostics:menu}.
1382    In all cases, each diagnostic as currently archived on the output datasets
1383    is time-averaged over its diagnostic output frequency:
1384    
1385    \[
1386    {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1387    \]
1388    where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1389    output frequency of the diagnostic, and $\Delta t$ is
1390    the timestep over which the diagnostic is updated.  
1391    
1392    { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1393    
1394    The zonal wind stress is the turbulent flux of zonal momentum from
1395    the surface.
1396    \[
1397    {\bf UFLUX} =  - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1398    \]
1399    where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1400    drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1401    (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1402    the zonal wind in the lowest model layer.
1403    \\
1404    
1405    
1406    { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1407    
1408    The meridional wind stress is the turbulent flux of meridional momentum from
1409    the surface.
1410    \[
1411    {\bf VFLUX} =  - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1412    \]
1413    where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1414    drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1415    (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1416    the meridional wind in the lowest model layer.
1417    \\
1418    
1419    { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1420    
1421    The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1422    gradient of virtual potential temperature and the eddy exchange coefficient:
1423    \[
1424    {\bf HFLUX} =  P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1425    \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1426    \]
1427    where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1428    heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1429    magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1430    for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1431    for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1432    at the surface and at the bottom model level.
1433    \\
1434    
1435    
1436    { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1437    
1438    The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1439    gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1440    \[
1441    {\bf EFLUX} =  \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1442    \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1443    \]
1444    where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1445    the potential evapotranspiration actually evaporated, L is the latent
1446    heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1447    magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1448    for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1449    for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1450    humidity at the surface and at the bottom model level, respectively.
1451    \\
1452    
1453    { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1454    
1455    Over sea ice there is an additional source of energy at the surface due to the heat
1456    conduction from the relatively warm ocean through the sea ice. The heat conduction
1457    through sea ice represents an additional energy source term for the ground temperature equation.
1458    
1459    \[
1460    {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1461    \]
1462    
1463    where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1464    be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1465    $T_g$ is the temperature of the sea ice.
1466    
1467    NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1468    \\
1469    
1470    
1471    { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1472    
1473    \begin{eqnarray*}
1474    {\bf RADLWG} & =  & F_{LW,Nrphys+1}^{Net} \\
1475                 & =  & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1476    \end{eqnarray*}
1477    \\
1478    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1479    $F_{LW}^\uparrow$ is
1480    the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1481    \\
1482    
1483    { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1484    
1485    \begin{eqnarray*}
1486    {\bf RADSWG} & =  & F_{SW,Nrphys+1}^{Net} \\
1487                 & =  & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1488    \end{eqnarray*}
1489    \\
1490    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1491    $F_{SW}^\downarrow$ is
1492    the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1493    \\
1494    
1495    
1496    \noindent
1497    { \underline {RI} Richardson Number} ($dimensionless$)
1498    
1499    \noindent
1500    The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1501    \[
1502    {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1503     =  {  {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1504    \]
1505    \\
1506    where we used the hydrostatic equation:
1507    \[
1508    {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1509    \]
1510    Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1511    indicate dominantly unstable shear, and large positive values indicate dominantly stable
1512    stratification.
1513    \\
1514    
1515    \noindent
1516    { \underline {CT}  Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1517    
1518    \noindent
1519    The surface exchange coefficient is obtained from the similarity functions for the stability
1520     dependant flux profile relationships:
1521    \[
1522    {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1523    -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1524    { k \over { (\psi_{h} + \psi_{g}) } }
1525    \]
1526    where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1527    viscous sublayer non-dimensional temperature or moisture change:
1528    \[
1529    \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1530    \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1531    (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1532    \]
1533    and:
1534    $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1535    
1536    \noindent
1537    $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1538    the temperature and moisture gradients, specified differently for stable and unstable
1539    layers according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1540    non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1541    viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1542    (see diagnostic number 67), and the subscript ref refers to a reference value.
1543    \\
1544    
1545    \noindent
1546    { \underline {CU}  Surface Exchange Coefficient for Momentum ($dimensionless$) }
1547    
1548    \noindent
1549    The surface exchange coefficient is obtained from the similarity functions for the stability
1550     dependant flux profile relationships:
1551    \[
1552    {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1553    \]
1554    where $\psi_m$ is the surface layer non-dimensional wind shear:
1555    \[
1556    \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1557    \]
1558    \noindent
1559    $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1560    the temperature and moisture gradients, specified differently for stable and unstable layers
1561    according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1562    non-dimensional stability parameter, $u_*$ is the surface stress velocity
1563    (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1564    \\
1565    
1566    \noindent
1567    { \underline {ET}  Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1568    
1569    \noindent
1570    In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1571    moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1572    diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1573    or moisture. In the \cite{helflab:88} adaptation of this closure, $K_h$
1574    takes the form:
1575    \[
1576    {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1577     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1578    \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1579    \]
1580    where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1581    energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1582    which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1583    depth,
1584    $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1585    wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1586    dimensionless buoyancy and wind shear
1587    parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1588    are functions of the Richardson number.
1589    
1590    \noindent
1591    For the detailed equations and derivations of the modified level 2.5 closure scheme,
1592    see \cite{helflab:88}.
1593    
1594    \noindent
1595    In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1596    in units of $m/sec$, given by:
1597    \[
1598    {\bf ET_{Nrphys}} =  C_t * u_* = C_H W_s
1599    \]
1600    \noindent
1601    where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1602    surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1603    friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1604    and $W_s$ is the magnitude of the surface layer wind.
1605    \\
1606    
1607    \noindent
1608    { \underline {EU}  Diffusivity Coefficient for Momentum ($m^2/sec$) }
1609    
1610    \noindent  
1611    In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1612    momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1613    diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1614    In the \cite{helflab:88} adaptation of this closure, $K_m$
1615    takes the form:
1616    \[
1617    {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1618     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1619    \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1620    \]
1621    \noindent
1622    where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1623    energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1624    which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1625    depth,
1626    $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1627    wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1628    dimensionless buoyancy and wind shear
1629    parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1630    are functions of the Richardson number.
1631    
1632    \noindent
1633    For the detailed equations and derivations of the modified level 2.5 closure scheme,
1634    see \cite{helflab:88}.
1635    
1636    \noindent
1637    In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1638    in units of $m/sec$, given by:
1639    \[
1640    {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1641    \]
1642    \noindent
1643    where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1644    similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1645    (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1646    magnitude of the surface layer wind.
1647    \\
1648    
1649    \noindent
1650    { \underline {TURBU}  Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1651    
1652    \noindent
1653    The tendency of U-Momentum due to turbulence is written:
1654    \[
1655    {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1656     = {\pp{}{z} }{(K_m \pp{u}{z})}
1657    \]
1658    
1659    \noindent
1660    The Helfand and Labraga level 2.5 scheme models the turbulent
1661    flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1662    equation.
1663    
1664    \noindent
1665    { \underline {TURBV}  Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1666    
1667    \noindent
1668    The tendency of V-Momentum due to turbulence is written:
1669    \[
1670    {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1671     = {\pp{}{z} }{(K_m \pp{v}{z})}
1672    \]
1673    
1674    \noindent
1675    The Helfand and Labraga level 2.5 scheme models the turbulent
1676    flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1677    equation.
1678    \\
1679    
1680    \noindent
1681    { \underline {TURBT}  Temperature changes due to Turbulence ($deg/day$) }
1682    
1683    \noindent
1684    The tendency of temperature due to turbulence is written:
1685    \[
1686    {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1687    P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1688     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1689    \]
1690    
1691    \noindent
1692    The Helfand and Labraga level 2.5 scheme models the turbulent
1693    flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1694    equation.
1695    \\
1696    
1697    \noindent
1698    { \underline {TURBQ}  Specific Humidity changes due to Turbulence ($g/kg/day$) }
1699    
1700    \noindent
1701    The tendency of specific humidity due to turbulence is written:
1702    \[
1703    {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1704     = {\pp{}{z} }{(K_h \pp{q}{z})}
1705    \]
1706    
1707    \noindent
1708    The Helfand and Labraga level 2.5 scheme models the turbulent
1709    flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1710    equation.
1711    \\
1712    
1713    \noindent
1714    { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1715    
1716    \noindent
1717    \[
1718    {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1719    \]
1720    where:
1721    \[
1722    \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1723    \hspace{.4cm} and
1724    \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1725    \]
1726    and
1727    \[
1728    \Gamma_s = g \eta \pp{s}{p}
1729    \]
1730    
1731    \noindent
1732    The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1733    precipitation processes, or supersaturation rain.
1734    The summation refers to contributions from each cloud type called by RAS.  
1735    The dry static energy is given
1736    as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1737    given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1738    the description of the convective parameterization.  The fractional adjustment, or relaxation
1739    parameter, for each cloud type is given as $\alpha$, while
1740    $R$ is the rain re-evaporation adjustment.
1741    \\
1742    
1743    \noindent
1744    { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1745    
1746    \noindent
1747    \[
1748    {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1749    \]
1750    where:
1751    \[
1752    \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1753    \hspace{.4cm} and
1754    \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1755    \]
1756    and
1757    \[
1758    \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1759    \]
1760    \noindent
1761    The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1762    precipitation processes, or supersaturation rain.
1763    The summation refers to contributions from each cloud type called by RAS.  
1764    The dry static energy is given as $s$,
1765    the moist static energy is given as $h$,
1766    the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1767    given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1768    the description of the convective parameterization.  The fractional adjustment, or relaxation
1769    parameter, for each cloud type is given as $\alpha$, while
1770    $R$ is the rain re-evaporation adjustment.
1771    \\
1772    
1773    \noindent
1774    { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1775    
1776    \noindent
1777    The net longwave heating rate is calculated as the vertical divergence of the
1778    net terrestrial radiative fluxes.
1779    Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1780    longwave routine.
1781    The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1782    For a given cloud fraction,
1783    the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1784    to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1785    for the upward and downward radiative fluxes.
1786    (see Section \ref{sec:fizhi:radcloud}).
1787    The cloudy-sky flux is then obtained as:
1788      
1789    \noindent
1790    \[
1791    F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1792    \]
1793    
1794    \noindent
1795    Finally, the net longwave heating rate is calculated as the vertical divergence of the
1796    net terrestrial radiative fluxes:
1797    \[
1798    \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1799    \]
1800    or
1801    \[
1802    {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1803    \]
1804    
1805    \noindent
1806    where $g$ is the accelation due to gravity,
1807    $c_p$ is the heat capacity of air at constant pressure,
1808    and
1809    \[
1810    F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1811    \]
1812    \\
1813    
1814    
1815    \noindent
1816    { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1817    
1818    \noindent
1819    The net Shortwave heating rate is calculated as the vertical divergence of the
1820    net solar radiative fluxes.
1821    The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1822    For the clear-sky case, the shortwave fluxes and heating rates are computed with
1823    both CLMO (maximum overlap cloud fraction) and
1824    CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1825    The shortwave routine is then called a second time, for the cloudy-sky case, with the
1826    true time-averaged cloud fractions CLMO
1827    and CLRO being used.  In all cases, a normalized incident shortwave flux is used as
1828    input at the top of the atmosphere.
1829    
1830    \noindent
1831    The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1832    \[
1833    \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1834    \]
1835    or
1836    \[
1837    {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1838    \]
1839    
1840    \noindent
1841    where $g$ is the accelation due to gravity,
1842    $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1843    shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1844    \[
1845    F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1846    \]
1847    \\
1848    
1849    \noindent
1850    { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1851    
1852    \noindent
1853    For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1854    the vertical integral or total precipitable amount is given by:  
1855    \[
1856    {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta  q_{moist}
1857    {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1858    \]
1859    \\
1860    
1861    \noindent
1862    A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1863    time step, scaled to $mm/day$.
1864    \\
1865    
1866    \noindent
1867    { \underline {PRECON} Convective Precipition ($mm/day$) }
1868    
1869    \noindent
1870    For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1871    the vertical integral or total precipitable amount is given by:  
1872    \[
1873    {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta  q_{cum}
1874    {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1875    \]
1876    \\
1877    
1878    \noindent
1879    A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1880    time step, scaled to $mm/day$.
1881    \\
1882    
1883    \noindent
1884    { \underline {TUFLUX}  Turbulent Flux of U-Momentum ($Newton/m^2$) }
1885    
1886    \noindent
1887    The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1888     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1889    
1890    \[
1891    {\bf TUFLUX} =  {\rho } {(\overline{u^{\prime}w^{\prime}})} =  
1892    {\rho } {(- K_m \pp{U}{z})}
1893    \]
1894    
1895    \noindent
1896    where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1897    \\
1898    
1899    \noindent
1900    { \underline {TVFLUX}  Turbulent Flux of V-Momentum ($Newton/m^2$) }
1901    
1902    \noindent
1903    The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1904    \hspace{.2cm} only$ from the eddy coefficient for momentum:
1905    
1906    \[
1907    {\bf TVFLUX} =  {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1908     {\rho } {(- K_m \pp{V}{z})}
1909    \]
1910    
1911    \noindent
1912    where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1913    \\
1914    
1915    
1916    \noindent
1917    { \underline {TTFLUX}  Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1918    
1919    \noindent
1920    The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1921    \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1922    
1923    \noindent
1924    \[
1925    {\bf TTFLUX} = c_p {\rho }  
1926    P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1927     = c_p  {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1928    \]
1929    
1930    \noindent
1931    where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1932    \\
1933    
1934    
1935    \noindent
1936    { \underline {TQFLUX}  Turbulent Flux of Latent Heat ($Watts/m^2$) }
1937    
1938    \noindent
1939    The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1940    \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1941    
1942    \noindent
1943    \[
1944    {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1945    {L {\rho }(- K_h \pp{q}{z})}
1946    \]
1947    
1948    \noindent
1949    where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1950    \\
1951    
1952    
1953    \noindent
1954    { \underline {CN}  Neutral Drag Coefficient ($dimensionless$) }
1955    
1956    \noindent
1957    The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1958    \[
1959    {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1960    \]
1961    
1962    \noindent
1963    where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1964    $z_0$ is the surface roughness.
1965    
1966    \noindent
1967    NOTE: CN is not available through model version 5.3, but is available in subsequent
1968    versions.
1969    \\
1970    
1971    \noindent
1972    { \underline {WINDS}  Surface Wind Speed ($meter/sec$) }
1973    
1974    \noindent
1975    The surface wind speed is calculated for the last internal turbulence time step:
1976    \[
1977    {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1978    \]
1979    
1980    \noindent
1981    where the subscript $Nrphys$ refers to the lowest model level.
1982    \\
1983    
1984    \noindent
1985    { \underline {DTSRF}  Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1986    
1987    \noindent
1988    The air/surface virtual temperature difference measures the stability of the surface layer:
1989    \[
1990    {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1991    \]
1992    \noindent
1993    where
1994    \[
1995    \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1996    and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1997    \]
1998    
1999    \noindent
2000    $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2001    $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
2002    and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
2003    refers to the surface.
2004    \\
2005    
2006    
2007    \noindent
2008    { \underline {TG}  Ground Temperature ($deg \hspace{.1cm} K$) }
2009    
2010    \noindent
2011    The ground temperature equation is solved as part of the turbulence package
2012    using a backward implicit time differencing scheme:
2013    \[
2014    {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2015    C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2016    \]
2017    
2018    \noindent
2019    where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2020    net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2021    sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2022    flux, and $C_g$ is the total heat capacity of the ground.
2023    $C_g$ is obtained by solving a heat diffusion equation
2024    for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
2025    \[
2026    C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2027    { 86400. \over {2 \pi} } } \, \, .
2028    \]
2029    \noindent
2030    Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
2031    {cm \over {^oK}}$,
2032    the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2033    by $2 \pi$ $radians/
2034    day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2035    is a function of the ground wetness, $W$.
2036    \\
2037    
2038    \noindent
2039    { \underline {TS}  Surface Temperature ($deg \hspace{.1cm} K$) }
2040    
2041    \noindent
2042    The surface temperature estimate is made by assuming that the model's lowest
2043    layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2044    The surface temperature is therefore:
2045    \[
2046    {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2047    \]
2048    \\
2049    
2050    \noindent
2051    { \underline {DTG}  Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2052    
2053    \noindent
2054    The change in surface temperature from one turbulence time step to the next, solved
2055    using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2056    \[
2057    {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2058    \]
2059    
2060    \noindent
2061    where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2062    refers to the value at the previous turbulence time level.
2063    \\
2064    
2065    \noindent
2066    { \underline {QG}  Ground Specific Humidity ($g/kg$) }
2067    
2068    \noindent
2069    The ground specific humidity is obtained by interpolating between the specific
2070    humidity at the lowest model level and the specific humidity of a saturated ground.
2071    The interpolation is performed using the potential evapotranspiration function:
2072    \[
2073    {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2074    \]
2075    
2076    \noindent
2077    where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2078    and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2079    pressure.
2080    \\
2081    
2082    \noindent
2083    { \underline {QS}  Saturation Surface Specific Humidity ($g/kg$) }
2084    
2085    \noindent
2086    The surface saturation specific humidity is the saturation specific humidity at
2087    the ground temprature and surface pressure:
2088    \[
2089    {\bf QS} = q^*(T_g,P_s)
2090    \]
2091    \\
2092    
2093    \noindent
2094    { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2095     radiation subroutine (deg)}
2096    \[
2097    {\bf TGRLW}  = T_g(\lambda , \phi ,n)
2098    \]
2099    \noindent
2100    where $T_g$ is the model ground temperature at the current time step $n$.
2101    \\
2102    
2103    
2104    \noindent
2105    { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2106    \[
2107    {\bf ST4} = \sigma T^4
2108    \]
2109    \noindent
2110    where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2111    \\
2112    
2113    \noindent
2114    { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2115    \[
2116    {\bf OLR}  =  F_{LW,top}^{NET}
2117    \]
2118    \noindent
2119    where top indicates the top of the first model layer.
2120    In the GCM, $p_{top}$ = 0.0 mb.
2121    \\
2122    
2123    
2124    \noindent
2125    { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2126    \[
2127    {\bf OLRCLR}  =  F(clearsky)_{LW,top}^{NET}
2128    \]
2129    \noindent
2130    where top indicates the top of the first model layer.
2131    In the GCM, $p_{top}$ = 0.0 mb.
2132    \\
2133    
2134    \noindent
2135    { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2136    
2137    \noindent
2138    \begin{eqnarray*}
2139    {\bf LWGCLR} & =  & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2140                 & =  & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2141    \end{eqnarray*}
2142    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2143    $F(clearsky)_{LW}^\uparrow$ is
2144    the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2145    \\
2146    
2147    \noindent
2148    { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2149    
2150    \noindent
2151    The net longwave heating rate is calculated as the vertical divergence of the
2152    net terrestrial radiative fluxes.
2153    Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2154    longwave routine.
2155    The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2156    For a given cloud fraction,
2157    the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2158    to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2159    for the upward and downward radiative fluxes.
2160    (see Section \ref{sec:fizhi:radcloud}).
2161    The cloudy-sky flux is then obtained as:
2162      
2163    \noindent
2164    \[
2165    F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2166    \]
2167    
2168    \noindent
2169    Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2170    vertical divergence of the
2171    clear-sky longwave radiative flux:
2172    \[
2173    \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2174    \]
2175    or
2176    \[
2177    {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2178    \]
2179    
2180    \noindent
2181    where $g$ is the accelation due to gravity,
2182    $c_p$ is the heat capacity of air at constant pressure,
2183    and
2184    \[
2185    F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2186    \]
2187    \\
2188    
2189    
2190    \noindent
2191    { \underline {TLW} Instantaneous temperature used as input to the Longwave
2192     radiation subroutine (deg)}
2193    \[
2194    {\bf TLW}  = T(\lambda , \phi ,level, n)
2195    \]
2196    \noindent
2197    where $T$ is the model temperature at the current time step $n$.
2198    \\
2199    
2200    
2201    \noindent
2202    { \underline {SHLW} Instantaneous specific humidity used as input to
2203     the Longwave radiation subroutine (kg/kg)}
2204    \[
2205    {\bf SHLW}  = q(\lambda , \phi , level , n)
2206    \]
2207    \noindent
2208    where $q$ is the model specific humidity at the current time step $n$.
2209    \\
2210    
2211    
2212    \noindent
2213    { \underline {OZLW} Instantaneous ozone used as input to
2214     the Longwave radiation subroutine (kg/kg)}
2215    \[
2216    {\bf OZLW}  = {\rm OZ}(\lambda , \phi , level , n)
2217    \]
2218    \noindent
2219    where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2220    mean zonally averaged ozone data set.
2221    \\
2222    
2223    
2224    \noindent
2225    { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2226    
2227    \noindent
2228    {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2229    Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm.  These are
2230    convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2231    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2232    \[
2233    {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi,  level )
2234    \]
2235    \\
2236    
2237    
2238    { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2239    
2240    {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2241    Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2242    Radiation packages.
2243    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2244    \[
2245    {\bf CLDTOT} = F_{RAS} + F_{LS}
2246    \]
2247    \\
2248    where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2249    time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2250    \\
2251    
2252    
2253    \noindent
2254    { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2255    
2256    \noindent
2257    {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2258    Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm.  These are
2259    convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2260    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2261    \[
2262    {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi,  level )
2263    \]
2264    \\
2265    
2266    \noindent
2267    { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2268    
2269    \noindent
2270    {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2271    Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2272    Radiation algorithm.  These are
2273    convective and large-scale clouds whose radiative characteristics are not
2274    assumed to be correlated in the vertical.
2275    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2276    \[
2277    {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi,  level )
2278    \]
2279    \\
2280    
2281    \noindent
2282    { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2283    \[
2284    {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2285    \]
2286    \noindent
2287    where $S_0$, is the extra-terrestial solar contant,
2288    $R_a$ is the earth-sun distance in Astronomical Units,
2289    and $cos \phi_z$ is the cosine of the zenith angle.
2290    It should be noted that {\bf RADSWT}, as well as
2291    {\bf OSR} and {\bf OSRCLR},
2292    are calculated at the top of the atmosphere (p=0 mb).  However, the
2293    {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2294    calculated at $p= p_{top}$ (0.0 mb for the GCM).
2295    \\
2296      
2297    \noindent
2298    { \underline {EVAP}  Surface Evaporation ($mm/day$) }
2299    
2300    \noindent
2301    The surface evaporation is a function of the gradient of moisture, the potential
2302    evapotranspiration fraction and the eddy exchange coefficient:
2303    \[
2304    {\bf EVAP} =  \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2305    \]
2306    where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2307    the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2308    turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2309    $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2310    number 34) and at the bottom model level, respectively.
2311    \\
2312    
2313    \noindent
2314    { \underline {DUDT} Total Zonal U-Wind Tendency  ($m/sec/day$) }
2315    
2316    \noindent
2317    {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2318    and Analysis forcing.
2319    \[
2320    {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2321    \]
2322    \\
2323    
2324    \noindent
2325    { \underline {DVDT} Total Zonal V-Wind Tendency  ($m/sec/day$) }
2326    
2327    \noindent
2328    {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2329    and Analysis forcing.
2330    \[
2331    {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2332    \]
2333    \\
2334    
2335    \noindent
2336    { \underline {DTDT} Total Temperature Tendency  ($deg/day$) }
2337    
2338    \noindent
2339    {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2340    and Analysis forcing.
2341    \begin{eqnarray*}
2342    {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2343               & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2344    \end{eqnarray*}
2345    \\
2346    
2347    \noindent
2348    { \underline {DQDT} Total Specific Humidity Tendency  ($g/kg/day$) }
2349    
2350    \noindent
2351    {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2352    and Analysis forcing.
2353    \[
2354    {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2355    + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2356    \]
2357    \\
2358      
2359    \noindent
2360    { \underline {USTAR}  Surface-Stress Velocity ($m/sec$) }
2361    
2362    \noindent
2363    The surface stress velocity, or the friction velocity, is the wind speed at
2364    the surface layer top impeded by the surface drag:
2365    \[
2366    {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2367    C_u = {k \over {\psi_m} }
2368    \]
2369    
2370    \noindent
2371    $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2372    number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2373    
2374    \noindent
2375    { \underline {Z0}  Surface Roughness Length ($m$) }
2376    
2377    \noindent
2378    Over the land surface, the surface roughness length is interpolated to the local
2379    time from the monthly mean data of \cite{dorsell:89}. Over the ocean,
2380    the roughness length is a function of the surface-stress velocity, $u_*$.
2381    \[
2382    {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2383    \]
2384    
2385    \noindent
2386    where the constants are chosen to interpolate between the reciprocal relation of
2387    \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
2388    for moderate to large winds.
2389    \\
2390    
2391    \noindent
2392    { \underline {FRQTRB}  Frequency of Turbulence ($0-1$) }
2393    
2394    \noindent
2395    The fraction of time when turbulence is present is defined as the fraction of
2396    time when the turbulent kinetic energy exceeds some minimum value, defined here
2397    to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2398    incremented. The fraction over the averaging interval is reported.
2399    \\
2400    
2401    \noindent
2402    { \underline {PBL}  Planetary Boundary Layer Depth ($mb$) }
2403    
2404    \noindent
2405    The depth of the PBL is defined by the turbulence parameterization to be the
2406    depth at which the turbulent kinetic energy reduces to ten percent of its surface
2407    value.
2408    
2409    \[
2410    {\bf PBL} = P_{PBL} - P_{surface}
2411    \]
2412    
2413    \noindent
2414    where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2415    reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2416    \\
2417    
2418    \noindent
2419    { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2420    
2421    \noindent
2422    The net Shortwave heating rate is calculated as the vertical divergence of the
2423    net solar radiative fluxes.
2424    The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2425    For the clear-sky case, the shortwave fluxes and heating rates are computed with
2426    both CLMO (maximum overlap cloud fraction) and
2427    CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2428    The shortwave routine is then called a second time, for the cloudy-sky case, with the
2429    true time-averaged cloud fractions CLMO
2430    and CLRO being used.  In all cases, a normalized incident shortwave flux is used as
2431    input at the top of the atmosphere.
2432    
2433    \noindent
2434    The heating rate due to Shortwave Radiation under clear skies is defined as:
2435    \[
2436    \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2437    \]
2438    or
2439    \[
2440    {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2441    \]
2442    
2443    \noindent
2444    where $g$ is the accelation due to gravity,
2445    $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2446    shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2447    \[
2448    F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2449    \]
2450    \\
2451    
2452    \noindent
2453    { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2454    \[
2455    {\bf OSR}  =  F_{SW,top}^{NET}
2456    \]                                                                                      
2457    \noindent
2458    where top indicates the top of the first model layer used in the shortwave radiation
2459    routine.
2460    In the GCM, $p_{SW_{top}}$ = 0 mb.
2461    \\
2462    
2463    \noindent
2464    { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2465    \[
2466    {\bf OSRCLR}  =  F(clearsky)_{SW,top}^{NET}
2467    \]
2468    \noindent
2469    where top indicates the top of the first model layer used in the shortwave radiation
2470    routine.
2471    In the GCM, $p_{SW_{top}}$ = 0 mb.
2472    \\
2473    
2474    
2475    \noindent
2476    { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2477    
2478    \noindent
2479    The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2480    \[
2481    {\bf CLDMAS} = \eta m_B
2482    \]
2483    where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2484    the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2485    description of the convective parameterization.
2486    \\
2487    
2488    
2489    
2490    \noindent
2491    { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2492    
2493    \noindent
2494    The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2495    the {\bf NUAVE} output frequency.  This is contrasted to the instantaneous
2496    Zonal U-Wind which is archived on the Prognostic Output data stream.
2497    \[
2498    {\bf UAVE} = u(\lambda, \phi, level , t)
2499    \]
2500    \\
2501    Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2502    \\
2503    
2504    \noindent
2505    { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2506    
2507    \noindent
2508    The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2509    the {\bf NVAVE} output frequency.  This is contrasted to the instantaneous
2510    Meridional V-Wind which is archived on the Prognostic Output data stream.
2511    \[
2512    {\bf VAVE} = v(\lambda, \phi, level , t)
2513    \]
2514    \\
2515    Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2516    \\
2517    
2518    \noindent
2519    { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2520    
2521    \noindent
2522    The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2523    the {\bf NTAVE} output frequency.  This is contrasted to the instantaneous
2524    Temperature which is archived on the Prognostic Output data stream.
2525    \[
2526    {\bf TAVE} = T(\lambda, \phi, level , t)
2527    \]
2528    \\
2529    
2530    \noindent
2531    { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2532    
2533    \noindent
2534    The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2535    the {\bf NQAVE} output frequency.  This is contrasted to the instantaneous
2536    Specific Humidity which is archived on the Prognostic Output data stream.
2537    \[
2538    {\bf QAVE} = q(\lambda, \phi, level , t)
2539    \]
2540    \\
2541    
2542    \noindent
2543    { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2544    
2545    \noindent
2546    The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2547    the {\bf NPAVE} output frequency.  This is contrasted to the instantaneous
2548    Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2549    \begin{eqnarray*}
2550    {\bf PAVE} & =  & \pi(\lambda, \phi, level , t) \\
2551               & =  & p_s(\lambda, \phi, level , t) - p_T
2552    \end{eqnarray*}
2553    \\
2554    
2555    
2556    \noindent
2557    { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2558    
2559    \noindent
2560    The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2561    produced by the GCM Turbulence parameterization over
2562    the {\bf NQQAVE} output frequency.  This is contrasted to the instantaneous
2563    Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2564    \[
2565    {\bf QQAVE} = qq(\lambda, \phi, level , t)
2566    \]
2567    \\
2568    Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2569    \\
2570    
2571    \noindent
2572    { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2573    
2574    \noindent
2575    \begin{eqnarray*}
2576    {\bf SWGCLR} & =  & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2577                 & =  & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2578    \end{eqnarray*}
2579    \noindent
2580    \\
2581    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2582    $F(clearsky){SW}^\downarrow$ is
2583    the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2584    the upward clearsky Shortwave flux.
2585    \\
2586    
2587    \noindent
2588    { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency  ($m/sec/day$) }
2589    
2590    \noindent
2591    {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2592    and the Analysis forcing.
2593    \[
2594    {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2595    \]
2596    \\
2597    
2598    \noindent
2599    { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency  ($m/sec/day$) }
2600    
2601    \noindent
2602    {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2603    and the Analysis forcing.
2604    \[
2605    {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2606    \]
2607    \\
2608    
2609    \noindent
2610    { \underline {DIABT} Total Diabatic Temperature Tendency  ($deg/day$) }
2611    
2612    \noindent
2613    {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2614    and the Analysis forcing.
2615    \begin{eqnarray*}
2616    {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2617               & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2618    \end{eqnarray*}
2619    \\
2620    If we define the time-tendency of Temperature due to Diabatic processes as
2621    \begin{eqnarray*}
2622    \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2623                         & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2624    \end{eqnarray*}
2625    then, since there are no surface pressure changes due to Diabatic processes, we may write
2626    \[
2627    \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2628    \]
2629    where $\theta = T/p^\kappa$.  Thus, {\bf DIABT} may be written as
2630    \[
2631    {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2632    \]
2633    \\
2634    
2635    \noindent
2636    { \underline {DIABQ} Total Diabatic Specific Humidity Tendency  ($g/kg/day$) }
2637    
2638    \noindent
2639    {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2640    and the Analysis forcing.
2641    \[
2642    {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2643    \]
2644    If we define the time-tendency of Specific Humidity due to Diabatic processes as
2645    \[
2646    \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2647    \]
2648    then, since there are no surface pressure changes due to Diabatic processes, we may write
2649    \[
2650    \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2651    \]
2652    Thus, {\bf DIABQ} may be written as
2653    \[
2654    {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2655    \]
2656    \\
2657    
2658    \noindent
2659    { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2660    
2661    \noindent
2662    The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2663    $u q$ over the depth of the atmosphere at each model timestep,
2664    and dividing by the total mass of the column.
2665    \[
2666    {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz  } { \int_{surf}^{top} \rho dz  }
2667    \]
2668    Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2669    \[
2670    {\bf VINTUQ} = { \int_0^1 u q dp  }
2671    \]
2672    \\
2673    
2674    
2675    \noindent
2676    { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2677    
2678    \noindent
2679    The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2680    $v q$ over the depth of the atmosphere at each model timestep,
2681    and dividing by the total mass of the column.
2682    \[
2683    {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz  } { \int_{surf}^{top} \rho dz  }
2684    \]
2685    Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2686    \[
2687    {\bf VINTVQ} = { \int_0^1 v q dp  }
2688    \]
2689    \\
2690    
2691    
2692    \noindent
2693    { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2694    
2695    \noindent
2696    The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2697    $u T$ over the depth of the atmosphere at each model timestep,
2698    and dividing by the total mass of the column.
2699    \[
2700    {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz  } { \int_{surf}^{top} \rho dz  }
2701    \]
2702    Or,
2703    \[
2704    {\bf VINTUT} = { \int_0^1 u T dp  }
2705    \]
2706    \\
2707    
2708    \noindent
2709    { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2710    
2711    \noindent
2712    The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2713    $v T$ over the depth of the atmosphere at each model timestep,
2714    and dividing by the total mass of the column.
2715    \[
2716    {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz  } { \int_{surf}^{top} \rho dz  }
2717    \]
2718    Using $\rho \delta z = -{\delta p \over g} $, we have
2719    \[
2720    {\bf VINTVT} = { \int_0^1 v T dp  }
2721    \]
2722    \\
2723    
2724    \noindent
2725    { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2726    
2727    If we define the
2728    time-averaged random and maximum overlapped cloudiness as CLRO and
2729    CLMO respectively, then the probability of clear sky associated
2730    with random overlapped clouds at any level is (1-CLRO) while the probability of
2731    clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2732    The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2733    the total cloud fraction at each  level may be obtained by
2734    1-(1-CLRO)*(1-CLMO).
2735    
2736    At any given level, we may define the clear line-of-site probability by
2737    appropriately accounting for the maximum and random overlap
2738    cloudiness.  The clear line-of-site probability is defined to be
2739    equal to the product of the clear line-of-site probabilities
2740    associated with random and maximum overlap cloudiness.  The clear
2741    line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2742    from the current pressure $p$
2743    to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2744    is simply 1.0 minus the largest maximum overlap cloud value along  the
2745    line-of-site, ie.
2746    
2747    $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2748    
2749    Thus, even in the time-averaged sense it is assumed that the
2750    maximum overlap clouds are correlated in the vertical.  The clear
2751    line-of-site probability associated with random overlap clouds is
2752    defined to be the product of the clear sky probabilities at each
2753    level along the line-of-site, ie.
2754    
2755    $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2756    
2757    The total cloud fraction at a given level associated with a line-
2758    of-site calculation is given by
2759    
2760    $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2761        \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2762    
2763    
2764    \noindent
2765    The 2-dimensional net cloud fraction as seen from the top of the
2766    atmosphere is given by
2767    \[
2768    {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2769        \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2770    \]
2771    \\
2772    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2773    
2774    
2775    \noindent
2776    { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2777    
2778    \noindent
2779    The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2780    given by:
2781    \begin{eqnarray*}
2782    {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2783               & = & {\pi \over g} \int_0^1 q dp
2784    \end{eqnarray*}
2785    where we have used the hydrostatic relation
2786    $\rho \delta z = -{\delta p \over g} $.
2787    \\
2788    
2789    
2790    \noindent
2791    { \underline {U2M}  Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2792    
2793    \noindent
2794    The u-wind at the 2-meter depth is determined from the similarity theory:
2795    \[
2796    {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2797    { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2798    \]
2799    
2800    \noindent
2801    where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2802    $sl$ refers to the height of the top of the surface layer. If the roughness height
2803    is above two meters, ${\bf U2M}$ is undefined.
2804    \\
2805    
2806    \noindent
2807    { \underline {V2M}  Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2808    
2809    \noindent
2810    The v-wind at the 2-meter depth is a determined from the similarity theory:
2811    \[
2812    {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2813    { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2814    \]
2815    
2816    \noindent
2817    where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2818    $sl$ refers to the height of the top of the surface layer. If the roughness height
2819    is above two meters, ${\bf V2M}$ is undefined.
2820    \\
2821    
2822    \noindent
2823    { \underline {T2M}  Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2824    
2825    \noindent
2826    The temperature at the 2-meter depth is a determined from the similarity theory:
2827    \[
2828    {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2829    P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2830    (\theta_{sl} - \theta_{surf}))
2831    \]
2832    where:
2833    \[
2834    \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2835    \]
2836    
2837    \noindent
2838    where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2839    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2840    $sl$ refers to the height of the top of the surface layer. If the roughness height
2841    is above two meters, ${\bf T2M}$ is undefined.
2842    \\
2843    
2844    \noindent
2845    { \underline {Q2M}  Specific Humidity at 2 Meter Depth ($g/kg$) }
2846    
2847    \noindent
2848    The specific humidity at the 2-meter depth is determined from the similarity theory:
2849    \[
2850    {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2851    P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2852    (q_{sl} - q_{surf}))
2853    \]
2854    where:
2855    \[
2856    q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2857    \]
2858    
2859    \noindent
2860    where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2861    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2862    $sl$ refers to the height of the top of the surface layer. If the roughness height
2863    is above two meters, ${\bf Q2M}$ is undefined.
2864    \\
2865    
2866    \noindent
2867    { \underline {U10M}  Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2868    
2869    \noindent
2870    The u-wind at the 10-meter depth is an interpolation between the surface wind
2871    and the model lowest level wind using the ratio of the non-dimensional wind shear
2872    at the two levels:
2873    \[
2874    {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2875    { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2876    \]
2877    
2878    \noindent
2879    where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2880    $sl$ refers to the height of the top of the surface layer.
2881    \\
2882    
2883    \noindent
2884    { \underline {V10M}  Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2885    
2886    \noindent
2887    The v-wind at the 10-meter depth is an interpolation between the surface wind
2888    and the model lowest level wind using the ratio of the non-dimensional wind shear
2889    at the two levels:
2890    \[
2891    {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2892    { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2893    \]
2894    
2895    \noindent
2896    where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2897    $sl$ refers to the height of the top of the surface layer.
2898    \\
2899    
2900    \noindent
2901    { \underline {T10M}  Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2902    
2903    \noindent
2904    The temperature at the 10-meter depth is an interpolation between the surface potential
2905    temperature and the model lowest level potential temperature using the ratio of the
2906    non-dimensional temperature gradient at the two levels:
2907    \[
2908    {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2909    P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2910    (\theta_{sl} - \theta_{surf}))
2911    \]
2912    where:
2913    \[
2914    \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2915    \]
2916    
2917    \noindent
2918    where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2919    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2920    $sl$ refers to the height of the top of the surface layer.
2921    \\
2922    
2923    \noindent
2924    { \underline {Q10M}  Specific Humidity at 10 Meter Depth ($g/kg$) }
2925    
2926    \noindent
2927    The specific humidity at the 10-meter depth is an interpolation between the surface specific
2928    humidity and the model lowest level specific humidity using the ratio of the
2929    non-dimensional temperature gradient at the two levels:
2930    \[
2931    {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2932    P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2933    (q_{sl} - q_{surf}))
2934    \]
2935    where:
2936    \[
2937    q_* =  - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2938    \]
2939    
2940    \noindent
2941    where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2942    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2943    $sl$ refers to the height of the top of the surface layer.
2944    \\
2945    
2946    \noindent
2947    { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2948    
2949    The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2950    \[
2951    {\bf DTRAIN} = \eta_{r_D}m_B
2952    \]
2953    \noindent
2954    where $r_D$ is the detrainment level,
2955    $m_B$ is the cloud base mass flux, and $\eta$
2956    is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2957    \\
2958    
2959    \noindent
2960    { \underline {QFILL}  Filling of negative Specific Humidity ($g/kg/day$) }
2961    
2962    \noindent
2963    Due to computational errors associated with the numerical scheme used for
2964    the advection of moisture, negative values of specific humidity may be generated.  The
2965    specific humidity is checked for negative values after every dynamics timestep.  If negative
2966    values have been produced, a filling algorithm is invoked which redistributes moisture from
2967    below.  Diagnostic {\bf QFILL} is equal to the net filling needed
2968    to eliminate negative specific humidity, scaled to a per-day rate:
2969    \[
2970    {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2971    \]
2972    where
2973    \[
2974    q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2975    \]
2976    
2977    
2978    \subsubsection{Key subroutines, parameters and files}
2979    
2980    \subsubsection{Dos and donts}
2981    
2982  \subsection{Fizhi Reference}  \subsubsection{Fizhi Reference}

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.10

  ViewVC Help
Powered by ViewVC 1.1.22