/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by molod, Wed Jan 28 18:27:15 2004 UTC revision 1.7 by edhill, Tue Oct 12 18:16:03 2004 UTC
# Line 1  Line 1 
1  \section{Fizhi: High-end Atmospheric Physics}  \section{Fizhi: High-end Atmospheric Physics}
2    \label{sec:pkg:fizhi}
3    \begin{rawhtml}
4    <!-- CMIREDIR:package_fizhi: -->
5    \end{rawhtml}
6  \input{texinputs/epsf.tex}  \input{texinputs/epsf.tex}
7    
8  \subsection{Introduction}  \subsection{Introduction}
# Line 13  boundary layer turbulence, and land surf Line 17  boundary layer turbulence, and land surf
17    
18  \subsubsection{Moist Convective Processes}  \subsubsection{Moist Convective Processes}
19    
20  \subsubsection{Sub-grid and Large-scale Convection}  \paragraph{Sub-grid and Large-scale Convection}
21  \label{sec:fizhi:mc}  \label{sec:fizhi:mc}
22    
23  Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa  Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
# Line 120  The large-scale precipitation re-evapora Line 124  The large-scale precipitation re-evapora
124  lower layers in a process identical to the re-evaporation of convective rain.  lower layers in a process identical to the re-evaporation of convective rain.
125    
126    
127  \subsubsection{Cloud Formation}  \paragraph{Cloud Formation}
128  \label{sec:fizhi:clouds}  \label{sec:fizhi:clouds}
129    
130  Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined  Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined
# Line 166  Figure (\ref{fig:fizhi:rhcrit}). Line 170  Figure (\ref{fig:fizhi:rhcrit}).
170    
171  \begin{figure*}[htbp]  \begin{figure*}[htbp]
172    \vspace{0.4in}    \vspace{0.4in}
173    \centerline{  \epsfysize=4.0in  \epsfbox{rhcrit.ps}}    \centerline{  \epsfysize=4.0in  \epsfbox{part6/rhcrit.ps}}
174    \vspace{0.4in}    \vspace{0.4in}
175    \caption  [Critical Relative Humidity for Clouds.]    \caption  [Critical Relative Humidity for Clouds.]
176              {Critical Relative Humidity for Clouds.}              {Critical Relative Humidity for Clouds.}
# Line 220  climatological values specified as a fun Line 224  climatological values specified as a fun
224  of latitude and height (Rosenfield, et al., 1987) are linearly interpolated to the current time.  of latitude and height (Rosenfield, et al., 1987) are linearly interpolated to the current time.
225    
226    
227  \subsubsection{Shortwave Radiation}  \paragraph{Shortwave Radiation}
228    
229  The shortwave radiation package used in the package computes solar radiative  The shortwave radiation package used in the package computes solar radiative
230  heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen,  heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen,
# Line 307  low/middle/high classification, and appr Line 311  low/middle/high classification, and appr
311    
312  \begin{figure*}[htbp]  \begin{figure*}[htbp]
313    \vspace{0.4in}    \vspace{0.4in}
314    \centerline{  \epsfysize=4.0in  %\epsfbox{rhcrit.ps}    \centerline{  \epsfysize=4.0in  %\epsfbox{part6/rhcrit.ps}
315               }               }
316    \vspace{0.4in}    \vspace{0.4in}
317    \caption  {Low-Middle-High Cloud Configurations}    \caption  {Low-Middle-High Cloud Configurations}
# Line 315  low/middle/high classification, and appr Line 319  low/middle/high classification, and appr
319  \end{figure*}  \end{figure*}
320    
321    
322  \subsubsection{Longwave Radiation}  \paragraph{Longwave Radiation}
323    
324  The longwave radiation package used in the fizhi package is thoroughly described by Chou and Suarez (1994).  The longwave radiation package used in the fizhi package is thoroughly described by Chou and Suarez (1994).
325  As described in that document, IR fluxes are computed due to absorption by water vapor, carbon  As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
# Line 383  For groups and/or levels outside the ran Line 387  For groups and/or levels outside the ran
387  assigned.  assigned.
388    
389    
390  \subsubsection{Cloud-Radiation Interaction}  \paragraph{Cloud-Radiation Interaction}
391  \label{sec:fizhi:radcloud}  \label{sec:fizhi:radcloud}
392    
393  The cloud fractions and diagnosed cloud liquid water produced by moist processes  The cloud fractions and diagnosed cloud liquid water produced by moist processes
# Line 613  land. Line 617  land.
617  Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically  Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically
618  using an implicit backward operator.  using an implicit backward operator.
619    
620  \subsubsection{Atmospheric Boundary Layer}  \paragraph{Atmospheric Boundary Layer}
621    
622  The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the  The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the
623  level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value.  level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value.
624  The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers.  The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers.
625    
626  \subsubsection{Surface Energy Budget}  \paragraph{Surface Energy Budget}
627    
628  The ground temperature equation is solved as part of the turbulence package  The ground temperature equation is solved as part of the turbulence package
629  using a backward implicit time differencing scheme:  using a backward implicit time differencing scheme:
# Line 670  is a function of the ground wetness, $W$ Line 674  is a function of the ground wetness, $W$
674    
675  \subsubsection{Land Surface Processes}  \subsubsection{Land Surface Processes}
676    
677  \subsubsection{Surface Type}  \paragraph{Surface Type}
678  The fizhi package surface Types are designated using the Koster-Suarez (1992) mosaic  The fizhi package surface Types are designated using the Koster-Suarez (1992) mosaic
679  philosophy which allows multiple ``tiles'', or multiple surface types, in any one  philosophy which allows multiple ``tiles'', or multiple surface types, in any one
680  grid cell. The Koster-Suarez Land Surface Model (LSM) surface type classifications  grid cell. The Koster-Suarez Land Surface Model (LSM) surface type classifications
# Line 715  and surface albedo.} Line 719  and surface albedo.}
719    
720    
721  \begin{figure*}[htbp]  \begin{figure*}[htbp]
722    \centerline{  \epsfysize=7in  \epsfbox{surftypes.ps}}    \centerline{  \epsfysize=7in  \epsfbox{part6/surftypes.ps}}
723    \vspace{0.3in}    \vspace{0.3in}
724    \caption  {Surface Type Compinations at \txt resolution.}    \caption  {Surface Type Compinations at \txt resolution.}
725    \label{fig:fizhi:surftype}    \label{fig:fizhi:surftype}
726  \end{figure*}  \end{figure*}
727    
728  \begin{figure*}[htbp]  \begin{figure*}[htbp]
729    \centerline{  \epsfysize=7in  \epsfbox{surftypes.descrip.ps}}    \centerline{  \epsfysize=7in  \epsfbox{part6/surftypes.descrip.ps}}
730    \vspace{0.3in}    \vspace{0.3in}
731    \caption  {Surface Type Descriptions.}    \caption  {Surface Type Descriptions.}
732    \label{fig:fizhi:surftype.desc}    \label{fig:fizhi:surftype.desc}
733  \end{figure*}  \end{figure*}
734    
735    
736  \subsubsection{Surface Roughness}  \paragraph{Surface Roughness}
737  The surface roughness length over oceans is computed iteratively with the wind  The surface roughness length over oceans is computed iteratively with the wind
738  stress by the surface layer parameterization (Helfand and Schubert, 1991).  stress by the surface layer parameterization (Helfand and Schubert, 1991).
739  It employs an interpolation between the functions of Large and Pond (1981)  It employs an interpolation between the functions of Large and Pond (1981)
740  for high winds and of Kondo (1975) for weak winds.  for high winds and of Kondo (1975) for weak winds.
741    
742    
743  \subsubsection{Albedo}  \paragraph{Albedo}
744  The surface albedo computation, described in Koster and Suarez (1991),  The surface albedo computation, described in Koster and Suarez (1991),
745  employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)  employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
746  Model which distinguishes between the direct and diffuse albedos in the visible  Model which distinguishes between the direct and diffuse albedos in the visible
# Line 816  current years and frequencies available. Line 820  current years and frequencies available.
820  \end{table}  \end{table}
821    
822    
823  \subsubsection{Topography and Topography Variance}  \paragraph{Topography and Topography Variance}
824    
825  Surface geopotential heights are provided from an averaging of the Navy 10 minute  Surface geopotential heights are provided from an averaging of the Navy 10 minute
826  by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the  by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
# Line 866  It should be noted that negative values Line 870  It should be noted that negative values
870  the filtering procedure are {\em not} filled.  the filtering procedure are {\em not} filled.
871    
872  \begin{figure*}[htbp]  \begin{figure*}[htbp]
873    \centerline{  \epsfysize=7.0in  \epsfbox{lanczos.ps}}    \centerline{  \epsfysize=7.0in  \epsfbox{part6/lanczos.ps}}
874    \caption{ \label{fig:fizhi:lanczos} Comparison between the Lanczos and $mth$-order Shapiro filter    \caption{ \label{fig:fizhi:lanczos} Comparison between the Lanczos and $mth$-order Shapiro filter
875    response functions for $m$ = 2, 4, and 8. }    response functions for $m$ = 2, 4, and 8. }
876  \end{figure*}  \end{figure*}
# Line 880  re-interpolated back to the 10 minute by Line 884  re-interpolated back to the 10 minute by
884  The sub-grid scale variance is constructed based on this smoothed dataset.  The sub-grid scale variance is constructed based on this smoothed dataset.
885    
886    
887  \subsubsection{Upper Level Moisture}  \paragraph{Upper Level Moisture}
888  The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas  The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas
889  Experiment (SAGE) as input into the model's radiation packages.  The SAGE data is archived  Experiment (SAGE) as input into the model's radiation packages.  The SAGE data is archived
890  as monthly zonal means at 5$^\circ$ latitudinal resolution.  The data is interpolated to the  as monthly zonal means at 5$^\circ$ latitudinal resolution.  The data is interpolated to the
# Line 888  model's grid location and current time, Line 892  model's grid location and current time,
892  the model's moisture data is used.  Above 100 mb, the SAGE data is used.  Between 100 and 300 mb,  the model's moisture data is used.  Above 100 mb, the SAGE data is used.  Between 100 and 300 mb,
893  a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.  a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
894    
895    \subsection{Key subroutines, parameters and files}
896    
897    \subsection{Dos and donts}
898    
899    \subsection{Fizhi Reference}

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.7

  ViewVC Help
Powered by ViewVC 1.1.22