/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.18 by jmc, Fri Aug 27 13:15:37 2010 UTC revision 1.19 by jmc, Mon Aug 30 23:09:21 2010 UTC
# Line 36  buoyancy. RAS assumes that the normalize Line 36  buoyancy. RAS assumes that the normalize
36  mass flux, is a linear function of height, expressed as:  mass flux, is a linear function of height, expressed as:
37  \[  \[
38  \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =  \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
39  -{c_p \over {g}}\theta\lambda  -\frac{c_p}{g}\theta\lambda
40  \]  \]
41  where we have used the hydrostatic equation written in the form:  where we have used the hydrostatic equation written in the form:
42  \[  \[
43  \pp{z}{P^{\kappa}} = -{c_p \over {g}}\theta  \pp{z}{P^{\kappa}} = -\frac{c_p}{g}\theta
44  \]  \]
45    
46  The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its  The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
# Line 49  buoyancy, ie., the level at which the mo Line 49  buoyancy, ie., the level at which the mo
49  to the saturation moist static energy of the environment, $h^*$.  Following \cite{moorsz:92},  to the saturation moist static energy of the environment, $h^*$.  Following \cite{moorsz:92},
50  $\lambda$ may be written as  $\lambda$ may be written as
51  \[  \[
52  \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,  \lambda = \frac{h_B - h^*_D}{ \frac{c_p}{g} \int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}},
53  \]  \]
54    
55  where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.  where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.
# Line 60  rate of change of cumulus kinetic energy Line 60  rate of change of cumulus kinetic energy
60  related to the buoyancy, or the difference  related to the buoyancy, or the difference
61  between the moist static energy in the cloud and in the environment:  between the moist static energy in the cloud and in the environment:
62  \[  \[
63  A = \int_{P_D}^{P_B} { {\eta \over {1 + \gamma} }  A = \int_{P_D}^{P_B} \frac{\eta}{1 + \gamma}
64  \left[ {{h_c-h^*} \over {P^{\kappa}}} \right] dP^{\kappa}}  \left[ \frac{h_c-h^*}{P^{\kappa}} \right] dP^{\kappa}
65  \]  \]
66    
67  where $\gamma$ is ${L \over {c_p}}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,  where $\gamma$ is $\frac{L}{c_p}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,
68  and the subscript $c$ refers to the value inside the cloud.  and the subscript $c$ refers to the value inside the cloud.
69    
70    
# Line 72  To determine the cloud base mass flux, t Line 72  To determine the cloud base mass flux, t
72  the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation  the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation
73  by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:  by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:
74  \[  \[
75  m_B = {{- \left.{dA \over dt} \right|_{ls}} \over K}  m_B = \frac{- \left. \frac{dA}{dt} \right|_{ls}}{K}
76  \]  \]
77    
78  where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per  where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per
# Line 90  and moisture budget equations to determi Line 90  and moisture budget equations to determi
90  temperature (through latent heating and compensating subsidence) and moisture (through  temperature (through latent heating and compensating subsidence) and moisture (through
91  precipitation and detrainment):  precipitation and detrainment):
92  \[  \[
93  \left.{\pp{\theta}{t}}\right|_{c} = \alpha { m_B \over {c_p P^{\kappa}}} \eta \pp{s}{p}  \left.{\pp{\theta}{t}}\right|_{c} = \alpha \frac{ m_B}{c_p P^{\kappa}} \eta \pp{s}{p}
94  \]  \]
95  and  and
96  \[  \[
97  \left.{\pp{q}{t}}\right|_{c} = \alpha { m_B \over {L}} \eta (\pp{h}{p}-\pp{s}{p})  \left.{\pp{q}{t}}\right|_{c} = \alpha \frac{ m_B}{L} \eta (\pp{h}{p}-\pp{s}{p})
98  \]  \]
99  where $\theta = {T \over P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.  where $\theta = \frac{T}{P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.
100    
101  As an approximation to a full interaction between the different allowable subensembles,  As an approximation to a full interaction between the different allowable subensembles,
102  many clouds are simulated frequently, each modifying the large scale environment some fraction  many clouds are simulated frequently, each modifying the large scale environment some fraction
# Line 136  Convective cloud fractions produced by R Line 136  Convective cloud fractions produced by R
136  detrained liquid water amount given by  detrained liquid water amount given by
137    
138  \[  \[
139  F_{RAS} = \min\left[ {l_{RAS}\over l_c}, 1.0 \right]  F_{RAS} = \min\left[ \frac{l_{RAS}}{l_c}, 1.0 \right]
140  \]  \]
141    
142  where $l_c$ is an assigned critical value equal to $1.25$ g/kg.  where $l_c$ is an assigned critical value equal to $1.25$ g/kg.
143  A memory is associated with convective clouds defined by:  A memory is associated with convective clouds defined by:
144    
145  \[  \[
146  F_{RAS}^n = \min\left[ F_{RAS} + (1-{\Delta t_{RAS}\over\tau})F_{RAS}^{n-1}, 1.0 \right]  F_{RAS}^n = \min\left[ F_{RAS} + (1-\frac{\Delta t_{RAS}}{\tau})F_{RAS}^{n-1}, 1.0 \right]
147  \]  \]
148    
149  where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction  where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction
# Line 154  Large-scale cloudiness is defined, follo Line 154  Large-scale cloudiness is defined, follo
154  humidity:  humidity:
155    
156  \[  \[
157  F_{LS} = \min\left[ { \left( {RH-RH_c \over 1-RH_c} \right) }^2, 1.0 \right]  F_{LS} = \min\left[ { \left( \frac{RH-RH_c}{1-RH_c} \right) }^2, 1.0 \right]
158  \]  \]
159    
160  where  where
# Line 162  where Line 162  where
162  \bqa  \bqa
163  RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\  RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\
164     s & = & p/p_{surf} \nonumber \\     s & = & p/p_{surf} \nonumber \\
165     r & = & \left( {1.0-RH_{min} \over \alpha} \right) \nonumber \\     r & = & \left( \frac{1.0-RH_{min}}{\alpha} \right) \nonumber \\
166  RH_{min} & = & 0.75 \nonumber \\  RH_{min} & = & 0.75 \nonumber \\
167  \alpha & = & 0.573285 \nonumber  .  \alpha & = & 0.573285 \nonumber  .
168  \eqa  \eqa
# Line 409  The total optical depth in a given model Line 409  The total optical depth in a given model
409  the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the  the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the
410  layer:  layer:
411    
412  \[ \tau = \left( {F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} \over F_{RAS}+F_{LS} } \right) \Delta p, \]  \[ \tau = \left( \frac{F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} }{ F_{RAS}+F_{LS} } \right) \Delta p, \]
413    
414  where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale  where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale
415  processes described in Section \ref{sec:fizhi:clouds}.  processes described in Section \ref{sec:fizhi:clouds}.
# Line 463  is solved numerically using an implicit Line 463  is solved numerically using an implicit
463  and is written:  and is written:
464    
465  \[  \[
466  {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ {5 \over 3} {{\lambda}_1} q { \pp {}{z}  {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ \frac{5}{3} {{\lambda}_1} q { \pp {}{z}
467  ({\h}q^2)} })} =  ({\h}q^2)} })} =
468  {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}  {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
469  { \pp{V}{z} }} + {{g \over {\Theta_0}}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} }  { \pp{V}{z} }} + {\frac{g}{\Theta_0}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}}
470  - { q^3 \over {{\Lambda} _1} }  - \frac{ q^3}{{\Lambda}_1} }
471  \]  \]
472    
473  where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and  where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and
# Line 491  $K_m$, respectively.  In the statisicall Line 491  $K_m$, respectively.  In the statisicall
491  \[  \[
492  K_h  K_h
493   = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}   = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
494  \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.  \\ \frac{ q^2 }{ q_e } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
495  \]  \]
496    
497  and  and
# Line 499  and Line 499  and
499  \[  \[
500  K_m  K_m
501   = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}                   = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}                
502  \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.  \\ \frac{ q^2 }{ q_e } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
503  \]  \]
504    
505  where the subscript $e$ refers to the value under conditions of local equillibrium  where the subscript $e$ refers to the value under conditions of local equillibrium
# Line 511  Both $G_H$ and $G_M$, and their equilibr Line 511  Both $G_H$ and $G_M$, and their equilibr
511  are functions of the Richardson number:  are functions of the Richardson number:
512    
513  \[  \[
514  {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }  {\bf RI} = \frac{ \frac{g}{\theta_v} \pp{\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
515   =  {  {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } .   =  \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 } .
516  \]  \]
517    
518  Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)  Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)
519  indicate dominantly unstable shear, and large positive values indicate dominantly stable  indicate dominantly unstable shear, and large positive values indicate dominantly stable
520  stratification.  stratification.
521    
522  Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer,  Turbulent eddy diffusion coefficients of momentum, heat and moisture in the
523  which corresponds to the lowest GCM level (see \ref{tab:fizhi:sigma}),  surface layer, which corresponds to the lowest GCM level
524    (see {\it --- missing table ---}%\ref{tab:fizhi:sigma}
525    ),
526  are calculated using stability-dependant functions based on Monin-Obukhov theory:  are calculated using stability-dependant functions based on Monin-Obukhov theory:
527  \[  \[
528  {K_m} (surface) = C_u \times u_* = C_D W_s  {K_m} (surface) = C_u \times u_* = C_D W_s
# Line 536  and $W_s$ is the magnitude of the surfac Line 538  and $W_s$ is the magnitude of the surfac
538  $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer  $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
539  similarity functions:  similarity functions:
540  \[  \[
541  {C_u} = {u_* \over W_s} = { k \over \psi_{m} }  {C_u} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} }
542  \]  \]
543  where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional  where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional
544  wind shear given by  wind shear given by
545  \[  \[
546  \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} .  \psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta} .
547  \]  \]
548  Here $\zeta$ is the non-dimensional stability parameter, and  Here $\zeta$ is the non-dimensional stability parameter, and
549  $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of  $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of
# Line 551  layers. Line 553  layers.
553  $C_t$ is the dimensionless exchange coefficient for heat and  $C_t$ is the dimensionless exchange coefficient for heat and
554  moisture from the surface layer similarity functions:  moisture from the surface layer similarity functions:
555  \[  \[
556  {C_t} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =  {C_t} = -\frac{( \overline{w^{\prime}\theta^{\prime}}) }{ u_* \Delta \theta } =
557  -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =  -\frac{( \overline{w^{\prime}q^{\prime}}) }{ u_* \Delta q } =
558  { k \over { (\psi_{h} + \psi_{g}) } }  \frac{ k }{ (\psi_{h} + \psi_{g}) }
559  \]  \]
560  where $\psi_h$ is the surface layer non-dimensional temperature gradient given by  where $\psi_h$ is the surface layer non-dimensional temperature gradient given by
561  \[  \[
562  \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} .  \psi_{h} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta} .
563  \]  \]
564  Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of  Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
565  the temperature and moisture gradients, and is specified differently for stable and unstable  the temperature and moisture gradients, and is specified differently for stable and unstable
# Line 568  which is the mosstly laminar region betw Line 570  which is the mosstly laminar region betw
570  elements, in which temperature and moisture gradients can be quite large.  elements, in which temperature and moisture gradients can be quite large.
571  Based on \cite{yagkad:74}:  Based on \cite{yagkad:74}:
572  \[  \[
573  \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }  \psi_{g} = \frac{ 0.55 (Pr^{2/3} - 0.2) }{ \nu^{1/2} }
574  (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}  (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
575  \]  \]
576  where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the  where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the
# Line 577  $h_{0} = 30z_{0}$ with a maximum value o Line 579  $h_{0} = 30z_{0}$ with a maximum value o
579    
580  The surface roughness length over oceans is is a function of the surface-stress velocity,  The surface roughness length over oceans is is a function of the surface-stress velocity,
581  \[  \[
582  {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}  {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + \frac{c_5 }{ u_*}
583  \]  \]
584  where the constants are chosen to interpolate between the reciprocal relation of  where the constants are chosen to interpolate between the reciprocal relation of
585  \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}  \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
# Line 598  For a stable surface layer, the stabilit Line 600  For a stable surface layer, the stabilit
600  based functions of \cite{clarke:70},  slightly modified for  based functions of \cite{clarke:70},  slightly modified for
601  the momemtum flux:    the momemtum flux:  
602  \[  \[
603  {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}  {\phi_m} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta}_1
604  (1+ 5 {{\zeta}_1}) } } \hspace{1cm} ; \hspace{1cm}  (1+ 5 {\zeta}_1) } \hspace{1cm} ; \hspace{1cm}
605  {\phi_h} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {\zeta}  {\phi_h} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta}
606  (1+ 5 {{\zeta}_1}) } } .  (1+ 5 {{\zeta}_1}) } .
607  \]  \]
608  The moisture flux also depends on a specified evapotranspiration  The moisture flux also depends on a specified evapotranspiration
609  coefficient, set to unity over oceans and dependant on the climatological ground wetness over  coefficient, set to unity over oceans and dependant on the climatological ground wetness over
# Line 646  humidity of the surface and of the lowes Line 648  humidity of the surface and of the lowes
648    
649  The heat conduction through sea ice, $Q_{ice}$, is given by  The heat conduction through sea ice, $Q_{ice}$, is given by
650  \[  \[
651  {Q_{ice}} = {C_{ti} \over {H_i}} (T_i-T_g)  {Q_{ice}} = \frac{C_{ti} }{ H_i} (T_i-T_g)
652  \]  \]
653  where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to  where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
654  be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the  be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the
# Line 655  surface temperature of the ice. Line 657  surface temperature of the ice.
657  $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation  $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
658  for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:  for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
659  \[  \[
660  C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}  C_g = \sqrt{ \frac{\lambda C_s }{ 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
661  {86400 \over 2 \pi} } \, \, .  \frac{86400}{2\pi} } \, \, .
662  \]  \]
663  Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ ${ly\over{ sec}}  Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ $\frac{ly}{sec}
664  {cm \over {^oK}}$,      \frac{cm}{K}$,
665  the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided  the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
666  by $2 \pi$ $radians/    by $2 \pi$ $radians/  
667  day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,  day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
# Line 752  In this version, the gravity wave stress Line 754  In this version, the gravity wave stress
754  based on that derived by Pierrehumbert (1986) and is given by:  based on that derived by Pierrehumbert (1986) and is given by:
755    
756  \bq  \bq
757  |\vec{\tau}_{sfc}| = {\rho U^3\over{N \ell^*}} \left(F_r^2 \over{1+F_r^2}\right) \, \, ,  |\vec{\tau}_{sfc}| = \frac{\rho U^3}{N \ell^*} \left( \frac{F_r^2}{1+F_r^2}\right) \, \, ,
758  \eq  \eq
759    
760  where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the  where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the
# Line 1374  In all cases, each diagnostic as current Line 1376  In all cases, each diagnostic as current
1376  is time-averaged over its diagnostic output frequency:  is time-averaged over its diagnostic output frequency:
1377    
1378  \[  \[
1379  {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)  {\bf DIAGNOSTIC} = \frac{1}{TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1380  \]  \]
1381  where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the  where $TTOT = \frac{ {\bf NQDIAG} }{\Delta t}$, {\bf NQDIAG} is the
1382  output frequency of the diagnostic, and $\Delta t$ is  output frequency of the diagnostic, and $\Delta t$ is
1383  the timestep over which the diagnostic is updated.    the timestep over which the diagnostic is updated.  
1384    
# Line 1448  conduction from the relatively warm ocea Line 1450  conduction from the relatively warm ocea
1450  through sea ice represents an additional energy source term for the ground temperature equation.  through sea ice represents an additional energy source term for the ground temperature equation.
1451    
1452  \[  \[
1453  {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)  {\bf QICE} = \frac{C_{ti}}{H_i} (T_i-T_g)
1454  \]  \]
1455    
1456  where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to  where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
# Line 1490  the downward Shortwave flux and $F_{SW}^ Line 1492  the downward Shortwave flux and $F_{SW}^
1492  \noindent  \noindent
1493  The non-dimensional stability indicator is the ratio of the buoyancy to the shear:  The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1494  \[  \[
1495  {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }  {\bf RI} = \frac{ \frac{g}{\theta_v} \pp {\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
1496   =  {  {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }   =  \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
1497  \]  \]
1498  \\  \\
1499  where we used the hydrostatic equation:  where we used the hydrostatic equation:
# Line 1510  stratification. Line 1512  stratification.
1512  The surface exchange coefficient is obtained from the similarity functions for the stability  The surface exchange coefficient is obtained from the similarity functions for the stability
1513   dependant flux profile relationships:   dependant flux profile relationships:
1514  \[  \[
1515  {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =  {\bf CT} = -\frac{( \overline{w^{\prime}\theta^{\prime}} ) }{ u_* \Delta \theta } =
1516  -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =  -\frac{( \overline{w^{\prime}q^{\prime}} ) }{ u_* \Delta q } =
1517  { k \over { (\psi_{h} + \psi_{g}) } }  \frac{ k }{ (\psi_{h} + \psi_{g}) }
1518  \]  \]
1519  where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the  where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1520  viscous sublayer non-dimensional temperature or moisture change:  viscous sublayer non-dimensional temperature or moisture change:
1521  \[  \[
1522  \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and  \psi_{h} = \int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta \hspace{1cm} and
1523  \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }  \hspace{1cm} \psi_{g} = \frac{ 0.55 (Pr^{2/3} - 0.2) }{ \nu^{1/2} }
1524  (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}  (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1525  \]  \]
1526  and:  and:
# Line 1540  viscosity, $z_{0}$ is the surface roughn Line 1542  viscosity, $z_{0}$ is the surface roughn
1542  The surface exchange coefficient is obtained from the similarity functions for the stability  The surface exchange coefficient is obtained from the similarity functions for the stability
1543   dependant flux profile relationships:   dependant flux profile relationships:
1544  \[  \[
1545  {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }  {\bf CU} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} }
1546  \]  \]
1547  where $\psi_m$ is the surface layer non-dimensional wind shear:  where $\psi_m$ is the surface layer non-dimensional wind shear:
1548  \[  \[
1549  \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}  \psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta}
1550  \]  \]
1551  \noindent  \noindent
1552  $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of  $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
# Line 1564  diffusion coefficient $K_h$ times the ne Line 1566  diffusion coefficient $K_h$ times the ne
1566  or moisture. In the \cite{helflab:88} adaptation of this closure, $K_h$  or moisture. In the \cite{helflab:88} adaptation of this closure, $K_h$
1567  takes the form:  takes the form:
1568  \[  \[
1569  {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }  {\bf ET} = K_h = -\frac{( \overline{w^{\prime}\theta_v^{\prime}}) }{ \pp{\theta_v}{z} }
1570   = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}   = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1571  \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.  \\ \frac{ q^2 }{ q_e } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1572  \]  \]
1573  where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}  where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1574  energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,  energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
# Line 1605  diffusion coefficient $K_m$ times the ne Line 1607  diffusion coefficient $K_m$ times the ne
1607  In the \cite{helflab:88} adaptation of this closure, $K_m$  In the \cite{helflab:88} adaptation of this closure, $K_m$
1608  takes the form:  takes the form:
1609  \[  \[
1610  {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }  {\bf EU} = K_m = -\frac{( \overline{u^{\prime}w^{\prime}} ) }{ \pp{U}{z} }
1611   = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}   = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1612  \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.  \\ \frac{ q^2 }{ q_e } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1613  \]  \]
1614  \noindent  \noindent
1615  where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}  where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
# Line 1710  equation. Line 1712  equation.
1712  \]  \]
1713  where:  where:
1714  \[  \[
1715  \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i  \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{c_p} \Gamma_s \right)_i
1716  \hspace{.4cm} and  \hspace{.4cm} and
1717  \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)  \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = \frac{L}{c_p} (q^*-q)
1718  \]  \]
1719  and  and
1720  \[  \[
# Line 1740  $R$ is the rain re-evaporation adjustmen Line 1742  $R$ is the rain re-evaporation adjustmen
1742  \]  \]
1743  where:  where:
1744  \[  \[
1745  \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i  \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{L}(\Gamma_h-\Gamma_s) \right)_i
1746  \hspace{.4cm} and  \hspace{.4cm} and
1747  \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)  \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1748  \]  \]
# Line 1786  F_{LW} = C(p,p') \cdot F^{clearsky}_{LW} Line 1788  F_{LW} = C(p,p') \cdot F^{clearsky}_{LW}
1788  Finally, the net longwave heating rate is calculated as the vertical divergence of the  Finally, the net longwave heating rate is calculated as the vertical divergence of the
1789  net terrestrial radiative fluxes:  net terrestrial radiative fluxes:
1790  \[  \[
1791  \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,  \pp{\rho c_p T}{t} = - \p{z} F_{LW}^{NET} ,
1792  \]  \]
1793  or  or
1794  \[  \[
1795  {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .  {\bf RADLW} = \frac{g}{c_p \pi} \p{\sigma} F_{LW}^{NET} .
1796  \]  \]
1797    
1798  \noindent  \noindent
# Line 1821  input at the top of the atmosphere. Line 1823  input at the top of the atmosphere.
1823  \noindent  \noindent
1824  The heating rate due to Shortwave Radiation under cloudy skies is defined as:  The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1825  \[  \[
1826  \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},  \pp{\rho c_p T}{t} = - \p{z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1827  \]  \]
1828  or  or
1829  \[  \[
1830  {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .  {\bf RADSW} = \frac{g}{c_p \pi} \p{\sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1831  \]  \]
1832    
1833  \noindent  \noindent
# Line 1845  For a change in specific humidity due to Line 1847  For a change in specific humidity due to
1847  the vertical integral or total precipitable amount is given by:    the vertical integral or total precipitable amount is given by:  
1848  \[  \[
1849  {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta  q_{moist}  {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta  q_{moist}
1850  {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp  \frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{moist} dp
1851  \]  \]
1852  \\  \\
1853    
# Line 1862  For a change in specific humidity due to Line 1864  For a change in specific humidity due to
1864  the vertical integral or total precipitable amount is given by:    the vertical integral or total precipitable amount is given by:  
1865  \[  \[
1866  {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta  q_{cum}  {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta  q_{cum}
1867  {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp  \frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{cum} dp
1868  \]  \]
1869  \\  \\
1870    
# Line 1947  where $\rho$ is the air density, and $K_ Line 1949  where $\rho$ is the air density, and $K_
1949  \noindent  \noindent
1950  The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:  The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1951  \[  \[
1952  {\bf CN} = { k \over { \ln({h \over {z_0}})} }  {\bf CN} = \frac{ k }{ \ln(\frac{h }{z_0}) }
1953  \]  \]
1954    
1955  \noindent  \noindent
# Line 1983  The air/surface virtual temperature diff Line 1985  The air/surface virtual temperature diff
1985  \noindent  \noindent
1986  where  where
1987  \[  \[
1988  \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}  \theta_{v{Nrphys+1}} = \frac{ T_g }{ P^{\kappa}_{surf} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1989  and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})  and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1990  \]  \]
1991    
# Line 2014  flux, and $C_g$ is the total heat capaci Line 2016  flux, and $C_g$ is the total heat capaci
2016  $C_g$ is obtained by solving a heat diffusion equation  $C_g$ is obtained by solving a heat diffusion equation
2017  for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:  for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
2018  \[  \[
2019  C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}  C_g = \sqrt{ \frac{\lambda C_s }{ 2 \omega } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2020  { 86400. \over {2 \pi} } } \, \, .  \frac{86400.}{2\pi} } \, \, .
2021  \]  \]
2022  \noindent  \noindent
2023  Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}  Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ $\frac{ly}{sec}
2024  {cm \over {^oK}}$,  \frac{cm}{K}$,
2025  the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided  the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2026  by $2 \pi$ $radians/  by $2 \pi$ $radians/
2027  day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,  day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
# Line 2161  Thus, {\bf LWCLR} is defined as the net Line 2163  Thus, {\bf LWCLR} is defined as the net
2163  vertical divergence of the  vertical divergence of the
2164  clear-sky longwave radiative flux:  clear-sky longwave radiative flux:
2165  \[  \[
2166  \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,  \pp{\rho c_p T}{t}_{clearsky} = - \p{z} F(clearsky)_{LW}^{NET} ,
2167  \]  \]
2168  or  or
2169  \[  \[
2170  {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .  {\bf LWCLR} = \frac{g}{c_p \pi} \p{\sigma} F(clearsky)_{LW}^{NET} .
2171  \]  \]
2172    
2173  \noindent  \noindent
# Line 2355  The surface stress velocity, or the fric Line 2357  The surface stress velocity, or the fric
2357  the surface layer top impeded by the surface drag:  the surface layer top impeded by the surface drag:
2358  \[  \[
2359  {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}  {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2360  C_u = {k \over {\psi_m} }  C_u = \frac{k}{\psi_m}
2361  \]  \]
2362    
2363  \noindent  \noindent
# Line 2370  Over the land surface, the surface rough Line 2372  Over the land surface, the surface rough
2372  time from the monthly mean data of \cite{dorsell:89}. Over the ocean,  time from the monthly mean data of \cite{dorsell:89}. Over the ocean,
2373  the roughness length is a function of the surface-stress velocity, $u_*$.  the roughness length is a function of the surface-stress velocity, $u_*$.
2374  \[  \[
2375  {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}  {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5}{u_*}
2376  \]  \]
2377    
2378  \noindent  \noindent
# Line 2424  input at the top of the atmosphere. Line 2426  input at the top of the atmosphere.
2426  \noindent  \noindent
2427  The heating rate due to Shortwave Radiation under clear skies is defined as:  The heating rate due to Shortwave Radiation under clear skies is defined as:
2428  \[  \[
2429  \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},  \pp{\rho c_p T}{t} = - \p{z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2430  \]  \]
2431  or  or
2432  \[  \[
2433  {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .  {\bf SWCLR} = \frac{g}{c_p } \p{p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2434  \]  \]
2435    
2436  \noindent  \noindent
# Line 2615  If we define the time-tendency of Temper Line 2617  If we define the time-tendency of Temper
2617  \end{eqnarray*}  \end{eqnarray*}
2618  then, since there are no surface pressure changes due to Diabatic processes, we may write  then, since there are no surface pressure changes due to Diabatic processes, we may write
2619  \[  \[
2620  \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}  \pp{T}{t}_{Diabatic} = \frac{p^\kappa}{\pi}\pp{\pi \theta}{t}_{Diabatic}
2621  \]  \]
2622  where $\theta = T/p^\kappa$.  Thus, {\bf DIABT} may be written as  where $\theta = T/p^\kappa$.  Thus, {\bf DIABT} may be written as
2623  \[  \[
2624  {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)  {\bf DIABT} = \frac{p^\kappa}{\pi} \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2625  \]  \]
2626  \\  \\
2627    
# Line 2638  If we define the time-tendency of Specif Line 2640  If we define the time-tendency of Specif
2640  \]  \]
2641  then, since there are no surface pressure changes due to Diabatic processes, we may write  then, since there are no surface pressure changes due to Diabatic processes, we may write
2642  \[  \[
2643  \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}  \pp{q}{t}_{Diabatic} = \frac{1}{\pi}\pp{\pi q}{t}_{Diabatic}
2644  \]  \]
2645  Thus, {\bf DIABQ} may be written as  Thus, {\bf DIABQ} may be written as
2646  \[  \[
2647  {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)  {\bf DIABQ} = \frac{1}{\pi} \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2648  \]  \]
2649  \\  \\
2650    
# Line 2656  and dividing by the total mass of the co Line 2658  and dividing by the total mass of the co
2658  \[  \[
2659  {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz  } { \int_{surf}^{top} \rho dz  }  {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz  } { \int_{surf}^{top} \rho dz  }
2660  \]  \]
2661  Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have  Using $\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p$, we have
2662  \[  \[
2663  {\bf VINTUQ} = { \int_0^1 u q dp  }  {\bf VINTUQ} = { \int_0^1 u q dp  }
2664  \]  \]
# Line 2673  and dividing by the total mass of the co Line 2675  and dividing by the total mass of the co
2675  \[  \[
2676  {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz  } { \int_{surf}^{top} \rho dz  }  {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz  } { \int_{surf}^{top} \rho dz  }
2677  \]  \]
2678  Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have  Using $\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p$, we have
2679  \[  \[
2680  {\bf VINTVQ} = { \int_0^1 v q dp  }  {\bf VINTVQ} = { \int_0^1 v q dp  }
2681  \]  \]
# Line 2706  and dividing by the total mass of the co Line 2708  and dividing by the total mass of the co
2708  \[  \[
2709  {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz  } { \int_{surf}^{top} \rho dz  }  {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz  } { \int_{surf}^{top} \rho dz  }
2710  \]  \]
2711  Using $\rho \delta z = -{\delta p \over g} $, we have  Using $\rho \delta z = -\frac{\delta p}{g} $, we have
2712  \[  \[
2713  {\bf VINTVT} = { \int_0^1 v T dp  }  {\bf VINTVT} = { \int_0^1 v T dp  }
2714  \]  \]
# Line 2771  The Total Precipitable Water is defined Line 2773  The Total Precipitable Water is defined
2773  given by:  given by:
2774  \begin{eqnarray*}  \begin{eqnarray*}
2775  {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\  {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2776             & = & {\pi \over g} \int_0^1 q dp             & = & \frac{\pi}{g} \int_0^1 q dp
2777  \end{eqnarray*}  \end{eqnarray*}
2778  where we have used the hydrostatic relation  where we have used the hydrostatic relation
2779  $\rho \delta z = -{\delta p \over g} $.  $\rho \delta z = -\frac{\delta p}{g} $.
2780  \\  \\
2781    
2782    
# Line 2784  $\rho \delta z = -{\delta p \over g} $. Line 2786  $\rho \delta z = -{\delta p \over g} $.
2786  \noindent  \noindent
2787  The u-wind at the 2-meter depth is determined from the similarity theory:  The u-wind at the 2-meter depth is determined from the similarity theory:
2788  \[  \[
2789  {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =  {\bf U2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{u_{sl}}{W_s} =
2790  { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}  \frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }u_{sl}
2791  \]  \]
2792    
2793  \noindent  \noindent
# Line 2800  is above two meters, ${\bf U2M}$ is unde Line 2802  is above two meters, ${\bf U2M}$ is unde
2802  \noindent  \noindent
2803  The v-wind at the 2-meter depth is a determined from the similarity theory:  The v-wind at the 2-meter depth is a determined from the similarity theory:
2804  \[  \[
2805  {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =  {\bf V2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{v_{sl}}{W_s} =
2806  { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}  \frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }v_{sl}
2807  \]  \]
2808    
2809  \noindent  \noindent
# Line 2816  is above two meters, ${\bf V2M}$ is unde Line 2818  is above two meters, ${\bf V2M}$ is unde
2818  \noindent  \noindent
2819  The temperature at the 2-meter depth is a determined from the similarity theory:  The temperature at the 2-meter depth is a determined from the similarity theory:
2820  \[  \[
2821  {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =  {\bf T2M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2822  P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }  P^{\kappa}(\theta_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g }
2823  (\theta_{sl} - \theta_{surf}))  (\theta_{sl} - \theta_{surf}) )
2824  \]  \]
2825  where:  where:
2826  \[  \[
2827  \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }  \theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* }
2828  \]  \]
2829    
2830  \noindent  \noindent
# Line 2838  is above two meters, ${\bf T2M}$ is unde Line 2840  is above two meters, ${\bf T2M}$ is unde
2840  \noindent  \noindent
2841  The specific humidity at the 2-meter depth is determined from the similarity theory:  The specific humidity at the 2-meter depth is determined from the similarity theory:
2842  \[  \[
2843  {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =  {\bf Q2M} = P^{\kappa} \frac({q_*}{k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2844  P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }  P^{\kappa}(q_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g }
2845  (q_{sl} - q_{surf}))  (q_{sl} - q_{surf}))
2846  \]  \]
2847  where:  where:
2848  \[  \[
2849  q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }  q_* = - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* }
2850  \]  \]
2851    
2852  \noindent  \noindent
# Line 2862  The u-wind at the 10-meter depth is an i Line 2864  The u-wind at the 10-meter depth is an i
2864  and the model lowest level wind using the ratio of the non-dimensional wind shear  and the model lowest level wind using the ratio of the non-dimensional wind shear
2865  at the two levels:  at the two levels:
2866  \[  \[
2867  {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =  {\bf U10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{u_{sl}}{W_s} =
2868  { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}  \frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }u_{sl}
2869  \]  \]
2870    
2871  \noindent  \noindent
# Line 2879  The v-wind at the 10-meter depth is an i Line 2881  The v-wind at the 10-meter depth is an i
2881  and the model lowest level wind using the ratio of the non-dimensional wind shear  and the model lowest level wind using the ratio of the non-dimensional wind shear
2882  at the two levels:  at the two levels:
2883  \[  \[
2884  {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =  {\bf V10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{v_{sl}}{W_s} =
2885  { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}  \frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }v_{sl}
2886  \]  \]
2887    
2888  \noindent  \noindent
# Line 2896  The temperature at the 10-meter depth is Line 2898  The temperature at the 10-meter depth is
2898  temperature and the model lowest level potential temperature using the ratio of the  temperature and the model lowest level potential temperature using the ratio of the
2899  non-dimensional temperature gradient at the two levels:  non-dimensional temperature gradient at the two levels:
2900  \[  \[
2901  {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =  {\bf T10M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2902  P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }  P^{\kappa}(\theta_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g}
2903  (\theta_{sl} - \theta_{surf}))  (\theta_{sl} - \theta_{surf}))
2904  \]  \]
2905  where:  where:
2906  \[  \[
2907  \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }  \theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* }
2908  \]  \]
2909    
2910  \noindent  \noindent
# Line 2919  The specific humidity at the 10-meter de Line 2921  The specific humidity at the 10-meter de
2921  humidity and the model lowest level specific humidity using the ratio of the  humidity and the model lowest level specific humidity using the ratio of the
2922  non-dimensional temperature gradient at the two levels:  non-dimensional temperature gradient at the two levels:
2923  \[  \[
2924  {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =  {\bf Q10M} = P^{\kappa} (\frac{q_*}{k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2925  P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }  P^{\kappa}(q_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g}
2926  (q_{sl} - q_{surf}))  (q_{sl} - q_{surf}))
2927  \]  \]
2928  where:  where:
2929  \[  \[
2930  q_* =  - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }  q_* =  - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* }
2931  \]  \]
2932    
2933  \noindent  \noindent

Legend:
Removed from v.1.18  
changed lines
  Added in v.1.19

  ViewVC Help
Powered by ViewVC 1.1.22