/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.9 - (hide annotations) (download) (as text)
Mon Jul 18 20:45:27 2005 UTC (18 years, 9 months ago) by molod
Branch: MAIN
Changes since 1.8: +17 -15 lines
File MIME type: application/x-tex
Reorganization of chap 6 and 7 -- move some tex files, demote many
sections in section hierarchy

1 molod 1.9 \subsection{Fizhi: High-end Atmospheric Physics}
2 edhill 1.7 \label{sec:pkg:fizhi}
3     \begin{rawhtml}
4     <!-- CMIREDIR:package_fizhi: -->
5     \end{rawhtml}
6 molod 1.3 \input{texinputs/epsf.tex}
7 molod 1.1
8 molod 1.9 \subsubsection{Introduction}
9 molod 1.1 The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10     physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11     boundary layer turbulence, and land surface processes.
12    
13     % *************************************************************************
14     % *************************************************************************
15    
16 molod 1.9 \subsubsection{Equations}
17 molod 1.1
18 molod 1.9 Moist Convective Processes:
19 molod 1.1
20 molod 1.5 \paragraph{Sub-grid and Large-scale Convection}
21 molod 1.1 \label{sec:fizhi:mc}
22    
23     Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
24     Schubert (RAS) scheme of Moorthi and Suarez (1992), which is a linearized Arakawa Schubert
25     type scheme. RAS predicts the mass flux from an ensemble of clouds. Each subensemble is identified
26     by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.
27    
28     The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are
29     the dry static energy, $s=c_pT +gz$, and the moist static energy, $h=c_p T + gz + Lq$.
30     The conceptual model behind RAS depicts each subensemble as a rising plume cloud, entraining
31     mass from the environment during ascent, and detraining all cloud air at the level of neutral
32     buoyancy. RAS assumes that the normalized cloud mass flux, $\eta$, normalized by the cloud base
33     mass flux, is a linear function of height, expressed as:
34     \[
35     \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
36     -{c_p \over {g}}\theta\lambda
37     \]
38     where we have used the hydrostatic equation written in the form:
39     \[
40     \pp{z}{P^{\kappa}} = -{c_p \over {g}}\theta
41     \]
42    
43     The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
44     detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral
45     buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal
46     to the saturation moist static energy of the environment, $h^*$. Following Moorthi and Suarez (1992),
47     $\lambda$ may be written as
48     \[
49     \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,
50     \]
51    
52     where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.
53    
54    
55     The convective instability is measured in terms of the cloud work function $A$, defined as the
56     rate of change of cumulus kinetic energy. The cloud work function is
57     related to the buoyancy, or the difference
58     between the moist static energy in the cloud and in the environment:
59     \[
60     A = \int_{P_D}^{P_B} { {\eta \over {1 + \gamma} }
61     \left[ {{h_c-h^*} \over {P^{\kappa}}} \right] dP^{\kappa}}
62     \]
63    
64     where $\gamma$ is ${L \over {c_p}}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,
65     and the subscript $c$ refers to the value inside the cloud.
66    
67    
68     To determine the cloud base mass flux, the rate of change of $A$ in time {\em due to dissipation by
69     the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation
70     by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:
71     \[
72     m_B = {{- \left.{dA \over dt} \right|_{ls}} \over K}
73     \]
74    
75     where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per
76     unit cloud base mass flux, and is currently obtained by analytically differentiating the
77     expression for $A$ in time.
78     The rate of change of $A$ due to the generation by the large scale can be written as the
79     difference between the current $A(t+\Delta t)$ and its equillibrated value after the previous
80     convective time step
81     $A(t)$, divided by the time step. $A(t)$ is approximated as some critical $A_{crit}$,
82     computed by Lord (1982) from $in situ$ observations.
83    
84    
85     The predicted convective mass fluxes are used to solve grid-scale temperature
86     and moisture budget equations to determine the impact of convection on the large scale fields of
87     temperature (through latent heating and compensating subsidence) and moisture (through
88     precipitation and detrainment):
89     \[
90     \left.{\pp{\theta}{t}}\right|_{c} = \alpha { m_B \over {c_p P^{\kappa}}} \eta \pp{s}{p}
91     \]
92     and
93     \[
94     \left.{\pp{q}{t}}\right|_{c} = \alpha { m_B \over {L}} \eta (\pp{h}{p}-\pp{s}{p})
95     \]
96     where $\theta = {T \over P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.
97    
98     As an approximation to a full interaction between the different allowable subensembles,
99     many clouds are simulated frequently, each modifying the large scale environment some fraction
100     $\alpha$ of the total adjustment. The parameterization thereby ``relaxes'' the large scale environment
101     towards equillibrium.
102    
103     In addition to the RAS cumulus convection scheme, the fizhi package employs a
104     Kessler-type scheme for the re-evaporation of falling rain (Sud and Molod, 1988), which
105     correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current
106     formulation assumes that all cloud water is deposited into the detrainment level as rain.
107     All of the rain is available for re-evaporation, which begins in the level below detrainment.
108     The scheme accounts for some microphysics such as
109     the rainfall intensity, the drop size distribution, as well as the temperature,
110     pressure and relative humidity of the surrounding air. The fraction of the moisture deficit
111     in any model layer into which the rain may re-evaporate is controlled by a free parameter,
112     which allows for a relatively efficient re-evaporation of liquid precipitate and larger rainout
113     for frozen precipitation.
114    
115     Due to the increased vertical resolution near the surface, the lowest model
116     layers are averaged to provide a 50 mb thick sub-cloud layer for RAS. Each time RAS is
117     invoked (every ten simulated minutes),
118     a number of randomly chosen subensembles are checked for the possibility
119     of convection, from just above cloud base to 10 mb.
120    
121     Supersaturation or large-scale precipitation is initiated in the fizhi package whenever
122     the relative humidity in any grid-box exceeds a critical value, currently 100 \%.
123     The large-scale precipitation re-evaporates during descent to partially saturate
124     lower layers in a process identical to the re-evaporation of convective rain.
125    
126    
127 molod 1.5 \paragraph{Cloud Formation}
128 molod 1.1 \label{sec:fizhi:clouds}
129    
130     Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined
131     diagnostically as part of the cumulus and large-scale parameterizations.
132     Convective cloud fractions produced by RAS are proportional to the
133     detrained liquid water amount given by
134    
135     \[
136     F_{RAS} = \min\left[ {l_{RAS}\over l_c}, 1.0 \right]
137     \]
138    
139     where $l_c$ is an assigned critical value equal to $1.25$ g/kg.
140     A memory is associated with convective clouds defined by:
141    
142     \[
143     F_{RAS}^n = \min\left[ F_{RAS} + (1-{\Delta t_{RAS}\over\tau})F_{RAS}^{n-1}, 1.0 \right]
144     \]
145    
146     where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction
147     from the previous RAS timestep. The memory coefficient is computed using a RAS cloud timescale,
148     $\tau$, equal to 1 hour. RAS cloud fractions are cleared when they fall below 5 \%.
149    
150     Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative
151     humidity:
152    
153     \[
154     F_{LS} = \min\left[ { \left( {RH-RH_c \over 1-RH_c} \right) }^2, 1.0 \right]
155     \]
156    
157     where
158    
159     \bqa
160     RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\
161     s & = & p/p_{surf} \nonumber \\
162     r & = & \left( {1.0-RH_{min} \over \alpha} \right) \nonumber \\
163     RH_{min} & = & 0.75 \nonumber \\
164     \alpha & = & 0.573285 \nonumber .
165     \eqa
166    
167     These cloud fractions are suppressed, however, in regions where the convective
168     sub-cloud layer is conditionally unstable. The functional form of $RH_c$ is shown in
169     Figure (\ref{fig:fizhi:rhcrit}).
170    
171     \begin{figure*}[htbp]
172     \vspace{0.4in}
173 molod 1.4 \centerline{ \epsfysize=4.0in \epsfbox{part6/rhcrit.ps}}
174 molod 1.1 \vspace{0.4in}
175     \caption [Critical Relative Humidity for Clouds.]
176     {Critical Relative Humidity for Clouds.}
177     \label{fig:fizhi:rhcrit}
178     \end{figure*}
179    
180     The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:
181    
182     \[
183     F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] .
184     \]
185    
186     Finally, cloud fractions are time-averaged between calls to the radiation packages.
187    
188    
189 molod 1.9 Radiation:
190 molod 1.1
191     The parameterization of radiative heating in the fizhi package includes effects
192     from both shortwave and longwave processes.
193     Radiative fluxes are calculated at each
194     model edge-level in both up and down directions.
195     The heating rates/cooling rates are then obtained
196     from the vertical divergence of the net radiative fluxes.
197    
198     The net flux is
199     \[
200     F = F^\uparrow - F^\downarrow
201     \]
202     where $F$ is the net flux, $F^\uparrow$ is the upward flux and $F^\downarrow$ is
203     the downward flux.
204    
205     The heating rate due to the divergence of the radiative flux is given by
206     \[
207     \pp{\rho c_p T}{t} = - \pp{F}{z}
208     \]
209     or
210     \[
211     \pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}
212     \]
213     where $g$ is the accelation due to gravity
214     and $c_p$ is the heat capacity of air at constant pressure.
215    
216     The time tendency for Longwave
217     Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is updated once
218     every three hours assuming a normalized incident solar radiation, and subsequently modified at
219     every model time step by the true incident radiation.
220     The solar constant value used in the package is equal to 1365 $W/m^2$
221     and a $CO_2$ mixing ratio of 330 ppm.
222     For the ozone mixing ratio, monthly mean zonally averaged
223     climatological values specified as a function
224     of latitude and height (Rosenfield, et al., 1987) are linearly interpolated to the current time.
225    
226    
227 molod 1.5 \paragraph{Shortwave Radiation}
228 molod 1.1
229     The shortwave radiation package used in the package computes solar radiative
230     heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen,
231     clouds, and aerosols and due to the
232     scattering by clouds, aerosols, and gases.
233     The shortwave radiative processes are described by
234     Chou (1990,1992). This shortwave package
235     uses the Delta-Eddington approximation to compute the
236     bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).
237     The transmittance and reflectance of diffuse radiation
238     follow the procedures of Sagan and Pollock (JGR, 1967) and Lacis and Hansen (JAS, 1974).
239    
240     Highly accurate heating rate calculations are obtained through the use
241     of an optimal grouping strategy of spectral bands. By grouping the UV and visible regions
242     as indicated in Table \ref{tab:fizhi:solar2}, the Rayleigh scattering and the ozone absorption of solar radiation
243     can be accurately computed in the ultraviolet region and the photosynthetically
244     active radiation (PAR) region.
245     The computation of solar flux in the infrared region is performed with a broadband
246     parameterization using the spectrum regions shown in Table \ref{tab:fizhi:solar1}.
247     The solar radiation algorithm used in the fizhi package can be applied not only for climate studies but
248     also for studies on the photolysis in the upper atmosphere and the photosynthesis in the biosphere.
249    
250     \begin{table}[htb]
251     \begin{center}
252     {\bf UV and Visible Spectral Regions} \\
253     \vspace{0.1in}
254     \begin{tabular}{|c|c|c|}
255     \hline
256     Region & Band & Wavelength (micron) \\ \hline
257     \hline
258     UV-C & 1. & .175 - .225 \\
259     & 2. & .225 - .245 \\
260     & & .260 - .280 \\
261     & 3. & .245 - .260 \\ \hline
262     UV-B & 4. & .280 - .295 \\
263     & 5. & .295 - .310 \\
264     & 6. & .310 - .320 \\ \hline
265     UV-A & 7. & .320 - .400 \\ \hline
266     PAR & 8. & .400 - .700 \\
267     \hline
268     \end{tabular}
269     \end{center}
270     \caption{UV and Visible Spectral Regions used in shortwave radiation package.}
271     \label{tab:fizhi:solar2}
272     \end{table}
273    
274     \begin{table}[htb]
275     \begin{center}
276     {\bf Infrared Spectral Regions} \\
277     \vspace{0.1in}
278     \begin{tabular}{|c|c|c|}
279     \hline
280     Band & Wavenumber(cm$^{-1}$) & Wavelength (micron) \\ \hline
281     \hline
282     1 & 1000-4400 & 2.27-10.0 \\
283     2 & 4400-8200 & 1.22-2.27 \\
284     3 & 8200-14300 & 0.70-1.22 \\
285     \hline
286     \end{tabular}
287     \end{center}
288     \caption{Infrared Spectral Regions used in shortwave radiation package.}
289     \label{tab:fizhi:solar1}
290     \end{table}
291    
292     Within the shortwave radiation package,
293     both ice and liquid cloud particles are allowed to co-exist in any of the model layers.
294     Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles.
295     Cloud parameters are defined as the cloud optical thickness and the effective cloud particle size.
296     In the fizhi package, the effective radius for water droplets is given as 10 microns,
297     while 65 microns is used for ice particles. The absorption due to aerosols is currently
298     set to zero.
299    
300     To simplify calculations in a cloudy atmosphere, clouds are
301     grouped into low ($p>700$ mb), middle (700 mb $\ge p > 400$ mb), and high ($p < 400$ mb) cloud regions.
302     Within each of the three regions, clouds are assumed maximally
303     overlapped, and the cloud cover of the group is the maximum
304     cloud cover of all the layers in the group. The optical thickness
305     of a given layer is then scaled for both the direct (as a function of the
306     solar zenith angle) and diffuse beam radiation
307     so that the grouped layer reflectance is the same as the original reflectance.
308     The solar flux is computed for each of the eight cloud realizations possible
309     (see Figure \ref{fig:fizhi:cloud}) within this
310     low/middle/high classification, and appropriately averaged to produce the net solar flux.
311    
312     \begin{figure*}[htbp]
313     \vspace{0.4in}
314 molod 1.4 \centerline{ \epsfysize=4.0in %\epsfbox{part6/rhcrit.ps}
315 molod 1.1 }
316     \vspace{0.4in}
317     \caption {Low-Middle-High Cloud Configurations}
318     \label{fig:fizhi:cloud}
319     \end{figure*}
320    
321    
322 molod 1.5 \paragraph{Longwave Radiation}
323 molod 1.1
324     The longwave radiation package used in the fizhi package is thoroughly described by Chou and Suarez (1994).
325     As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
326     dioxide, and ozone. The spectral bands together with their absorbers and parameterization methods,
327     configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.
328    
329    
330     \begin{table}[htb]
331     \begin{center}
332     {\bf IR Spectral Bands} \\
333     \vspace{0.1in}
334     \begin{tabular}{|c|c|l|c| }
335     \hline
336     Band & Spectral Range (cm$^{-1}$) & Absorber & Method \\ \hline
337     \hline
338     1 & 0-340 & H$_2$O line & T \\ \hline
339     2 & 340-540 & H$_2$O line & T \\ \hline
340     3a & 540-620 & H$_2$O line & K \\
341     3b & 620-720 & H$_2$O continuum & S \\
342     3b & 720-800 & CO$_2$ & T \\ \hline
343     4 & 800-980 & H$_2$O line & K \\
344     & & H$_2$O continuum & S \\ \hline
345     & & H$_2$O line & K \\
346     5 & 980-1100 & H$_2$O continuum & S \\
347     & & O$_3$ & T \\ \hline
348     6 & 1100-1380 & H$_2$O line & K \\
349     & & H$_2$O continuum & S \\ \hline
350     7 & 1380-1900 & H$_2$O line & T \\ \hline
351     8 & 1900-3000 & H$_2$O line & K \\ \hline
352     \hline
353     \multicolumn{4}{|l|}{ \quad K: {\em k}-distribution method with linear pressure scaling } \\
354     \multicolumn{4}{|l|}{ \quad T: Table look-up with temperature and pressure scaling } \\
355     \multicolumn{4}{|l|}{ \quad S: One-parameter temperature scaling } \\
356     \hline
357     \end{tabular}
358     \end{center}
359     \vspace{0.1in}
360     \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from Chou and Suarez, 1994)}
361     \label{tab:fizhi:longwave}
362     \end{table}
363    
364    
365     The longwave radiation package accurately computes cooling rates for the middle and
366     lower atmosphere from 0.01 mb to the surface. Errors are $<$ 0.4 C day$^{-1}$ in cooling
367     rates and $<$ 1\% in fluxes. From Chou and Suarez, it is estimated that the total effect of
368     neglecting all minor absorption bands and the effects of minor infrared absorbers such as
369     nitrous oxide (N$_2$O), methane (CH$_4$), and the chlorofluorocarbons (CFCs), is an underestimate
370     of $\approx$ 5 W/m$^2$ in the downward flux at the surface and an overestimate of $\approx$ 3 W/m$^2$
371     in the upward flux at the top of the atmosphere.
372    
373     Similar to the procedure used in the shortwave radiation package, clouds are grouped into
374     three regions catagorized as low/middle/high.
375     The net clear line-of-site probability $(P)$ between any two levels, $p_1$ and $p_2 \quad (p_2 > p_1)$,
376     assuming randomly overlapped cloud groups, is simply the product of the probabilities within each group:
377    
378     \[ P_{net} = P_{low} \times P_{mid} \times P_{hi} . \]
379    
380     Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within
381     a group is given by:
382    
383     \[ P_{group} = 1 - F_{max} , \]
384    
385     where $F_{max}$ is the maximum cloud fraction encountered between $p_1$ and $p_2$ within that group.
386     For groups and/or levels outside the range of $p_1$ and $p_2$, a clear line-of-site probability equal to 1 is
387     assigned.
388    
389    
390 molod 1.5 \paragraph{Cloud-Radiation Interaction}
391 molod 1.1 \label{sec:fizhi:radcloud}
392    
393     The cloud fractions and diagnosed cloud liquid water produced by moist processes
394     within the fizhi package are used in the radiation packages to produce cloud-radiative forcing.
395     The cloud optical thickness associated with large-scale cloudiness is made
396     proportional to the diagnosed large-scale liquid water, $\ell$, detrained due to super-saturation.
397     Two values are used corresponding to cloud ice particles and water droplets.
398     The range of optical thickness for these clouds is given as
399    
400     \[ 0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002 \quad\mbox{for}\quad 0 \le \ell \le 2 \quad\mbox{mg/kg} , \]
401     \[ 0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2 \quad\mbox{for}\quad 0 \le \ell \le 10 \quad\mbox{mg/kg} . \]
402    
403     The partitioning, $\alpha$, between ice particles and water droplets is achieved through a linear scaling
404     in temperature:
405    
406     \[ 0 \le \alpha \le 1 \quad\mbox{for}\quad 233.15 \le T \le 253.15 . \]
407    
408     The resulting optical depth associated with large-scale cloudiness is given as
409    
410     \[ \tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} . \]
411    
412     The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as
413    
414     \[ \tau_{RAS} = 0.16 \quad mb^{-1} . \]
415    
416     The total optical depth in a given model layer is computed as a weighted average between
417     the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the
418     layer:
419    
420     \[ \tau = \left( {F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} \over F_{RAS}+F_{LS} } \right) \Delta p, \]
421    
422     where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale
423     processes described in Section \ref{sec:fizhi:clouds}.
424     The optical thickness for the longwave radiative feedback is assumed to be 75 $\%$ of these values.
425    
426     The entire Moist Convective Processes Module is called with a frequency of 10 minutes.
427     The cloud fraction values are time-averaged over the period between Radiation calls (every 3
428     hours). Therefore, in a time-averaged sense, both convective and large-scale
429     cloudiness can exist in a given grid-box.
430    
431 molod 1.9 Turbulence:
432    
433 molod 1.1 Turbulence is parameterized in the fizhi package to account for its contribution to the
434     vertical exchange of heat, moisture, and momentum.
435     The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
436     time scheme with an internal time step of 5 minutes.
437     The tendencies of atmospheric state variables due to turbulent diffusion are calculated using
438     the diffusion equations:
439    
440     \[
441     {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
442     = {\pp{}{z} }{(K_m \pp{u}{z})}
443     \]
444     \[
445     {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
446     = {\pp{}{z} }{(K_m \pp{v}{z})}
447     \]
448     \[
449     {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
450     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
451     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
452     \]
453     \[
454     {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
455     = {\pp{}{z} }{(K_h \pp{q}{z})}
456     \]
457    
458     Within the atmosphere, the time evolution
459     of second turbulent moments is explicitly modeled by representing the third moments in terms of
460     the first and second moments. This approach is known as a second-order closure modeling.
461     To simplify and streamline the computation of the second moments, the level 2.5 assumption
462     of Mellor and Yamada (1974) and Yamada (1977) is employed, in which only the turbulent
463     kinetic energy (TKE),
464    
465     \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]
466    
467     is solved prognostically and the other second moments are solved diagnostically.
468     The prognostic equation for TKE allows the scheme to simulate
469     some of the transient and diffusive effects in the turbulence. The TKE budget equation
470     is solved numerically using an implicit backward computation of the terms linear in $q^2$
471     and is written:
472    
473     \[
474     {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ {5 \over 3} {{\lambda}_1} q { \pp {}{z}
475     ({\h}q^2)} })} =
476     {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
477     { \pp{V}{z} }} + {{g \over {\Theta_0}}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} }
478     - { q^3 \over {{\Lambda} _1} }
479     \]
480    
481     where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and
482     ${{\theta}^{\prime}}$ are the fluctuating parts of the velocity components and potential
483     temperature, $U$ and $V$ are the mean velocity components, ${\Theta_0}^{-1}$ is the
484     coefficient of thermal expansion, and ${{\lambda}_1}$ and ${{\Lambda} _1}$ are constant
485     multiples of the master length scale, $\ell$, which is designed to be a characteristic measure
486     of the vertical structure of the turbulent layers.
487    
488     The first term on the left-hand side represents the time rate of change of TKE, and
489     the second term is a representation of the triple correlation, or turbulent
490     transport term. The first three terms on the right-hand side represent the sources of
491     TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation
492     of TKE.
493    
494     In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the
495     wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and
496     $K_m$, respectively. In the statisically realizable level 2.5 turbulence scheme of Helfand
497     and Labraga (1988), these diffusion coefficients are expressed as
498    
499     \[
500     K_h
501     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
502     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
503     \]
504    
505     and
506    
507     \[
508     K_m
509     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}
510     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
511     \]
512    
513     where the subscript $e$ refers to the value under conditions of local equillibrium
514     (obtained from the Level 2.0 Model), $\ell$ is the master length scale related to the
515     vertical structure of the atmosphere,
516     and $S_M$ and $S_H$ are functions of $G_H$ and $G_M$, the dimensionless buoyancy and
517     wind shear parameters, respectively.
518     Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
519     are functions of the Richardson number:
520    
521     \[
522     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
523     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } .
524     \]
525    
526     Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)
527     indicate dominantly unstable shear, and large positive values indicate dominantly stable
528     stratification.
529    
530     Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer,
531     which corresponds to the lowest GCM level (see \ref{tab:fizhi:sigma}),
532     are calculated using stability-dependant functions based on Monin-Obukhov theory:
533     \[
534     {K_m} (surface) = C_u \times u_* = C_D W_s
535     \]
536     and
537     \[
538     {K_h} (surface) = C_t \times u_* = C_H W_s
539     \]
540     where $u_*=C_uW_s$ is the surface friction velocity,
541     $C_D$ is termed the surface drag coefficient, $C_H$ the heat transfer coefficient,
542     and $W_s$ is the magnitude of the surface layer wind.
543    
544     $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
545     similarity functions:
546     \[
547     {C_u} = {u_* \over W_s} = { k \over \psi_{m} }
548     \]
549     where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional
550     wind shear given by
551     \[
552     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} .
553     \]
554     Here $\zeta$ is the non-dimensional stability parameter, and
555     $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of
556     the momentum gradient. The functional form of $\phi_m$ is specified differently for stable and unstable
557     layers.
558    
559     $C_t$ is the dimensionless exchange coefficient for heat and
560     moisture from the surface layer similarity functions:
561     \[
562     {C_t} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
563     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
564     { k \over { (\psi_{h} + \psi_{g}) } }
565     \]
566     where $\psi_h$ is the surface layer non-dimensional temperature gradient given by
567     \[
568     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} .
569     \]
570     Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
571     the temperature and moisture gradients, and is specified differently for stable and unstable
572     layers according to Helfand and Schubert, 1995.
573    
574     $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,
575     which is the mosstly laminar region between the surface and the tops of the roughness
576     elements, in which temperature and moisture gradients can be quite large.
577     Based on Yaglom and Kader (1974):
578     \[
579     \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
580     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
581     \]
582     where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the
583     surface roughness length, and the subscript {\em ref} refers to a reference value.
584     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
585    
586     The surface roughness length over oceans is is a function of the surface-stress velocity,
587     \[
588     {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
589     \]
590     where the constants are chosen to interpolate between the reciprocal relation of
591     Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
592     for moderate to large winds. Roughness lengths over land are specified
593     from the climatology of Dorman and Sellers (1989).
594    
595     For an unstable surface layer, the stability functions, chosen to interpolate between the
596     condition of small values of $\beta$ and the convective limit, are the KEYPS function
597     (Panofsky, 1973) for momentum, and its generalization for heat and moisture:
598     \[
599     {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
600     {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .
601     \]
602     The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind
603     speed approaches zero.
604    
605     For a stable surface layer, the stability functions are the observationally
606     based functions of Clarke (1970), slightly modified for
607     the momemtum flux:
608     \[
609     {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}
610     (1+ 5 {{\zeta}_1}) } } \hspace{1cm} ; \hspace{1cm}
611     {\phi_h} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {\zeta}
612     (1+ 5 {{\zeta}_1}) } } .
613     \]
614     The moisture flux also depends on a specified evapotranspiration
615     coefficient, set to unity over oceans and dependant on the climatological ground wetness over
616     land.
617    
618     Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically
619     using an implicit backward operator.
620    
621 molod 1.5 \paragraph{Atmospheric Boundary Layer}
622 molod 1.1
623     The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the
624     level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value.
625     The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers.
626    
627 molod 1.5 \paragraph{Surface Energy Budget}
628 molod 1.1
629     The ground temperature equation is solved as part of the turbulence package
630     using a backward implicit time differencing scheme:
631     \[
632     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
633     \]
634     where $R_{sw}$ is the net surface downward shortwave radiative flux and $R_{lw}$ is the
635     net surface upward longwave radiative flux.
636    
637     $H$ is the upward sensible heat flux, given by:
638     \[
639     {H} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY})
640     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
641     \]
642     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
643     heat of air at constant pressure, and $\theta$ represents the potential temperature
644     of the surface and of the lowest $\sigma$-level, respectively.
645    
646     The upward latent heat flux, $LE$, is given by
647     \[
648     {LE} = \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY})
649     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
650     \]
651     where $\beta$ is the fraction of the potential evapotranspiration actually evaporated,
652     L is the latent heat of evaporation, and $q_{surface}$ and $q_{NLAY}$ are the specific
653     humidity of the surface and of the lowest $\sigma$-level, respectively.
654    
655     The heat conduction through sea ice, $Q_{ice}$, is given by
656     \[
657     {Q_{ice}} = {C_{ti} \over {H_i}} (T_i-T_g)
658     \]
659     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
660     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the
661     surface temperature of the ice.
662    
663     $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
664     for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
665     \[
666     C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
667     {86400 \over 2 \pi} } \, \, .
668     \]
669     Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ ${ly\over{ sec}}
670     {cm \over {^oK}}$,
671     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
672     by $2 \pi$ $radians/
673     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
674     is a function of the ground wetness, $W$.
675    
676 molod 1.9 Land Surface Processes:
677 molod 1.1
678 molod 1.5 \paragraph{Surface Type}
679 molod 1.1 The fizhi package surface Types are designated using the Koster-Suarez (1992) mosaic
680     philosophy which allows multiple ``tiles'', or multiple surface types, in any one
681     grid cell. The Koster-Suarez Land Surface Model (LSM) surface type classifications
682     are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid
683     cell occupied by any surface type were derived from the surface classification of
684     Defries and Townshend (1994), and information about the location of permanent
685     ice was obtained from the classifications of Dorman and Sellers (1989).
686     The surface type for the \txt GCM grid is shown in Figure \ref{fig:fizhi:surftype}.
687     The determination of the land or sea category of surface type was made from NCAR's
688     10 minute by 10 minute Navy topography
689     dataset, which includes information about the percentage of water-cover at any point.
690     The data were averaged to the model's \fxf and \txt grid resolutions,
691     and any grid-box whose averaged water percentage was $\geq 60 \%$ was
692     defined as a water point. The \fxf grid Land-Water designation was further modified
693     subjectively to ensure sufficient representation from small but isolated land and water regions.
694    
695     \begin{table}
696     \begin{center}
697     {\bf Surface Type Designation} \\
698     \vspace{0.1in}
699     \begin{tabular}{ |c|l| }
700     \hline
701     Type & Vegetation Designation \\ \hline
702     \hline
703     1 & Broadleaf Evergreen Trees \\ \hline
704     2 & Broadleaf Deciduous Trees \\ \hline
705     3 & Needleleaf Trees \\ \hline
706     4 & Ground Cover \\ \hline
707     5 & Broadleaf Shrubs \\ \hline
708     6 & Dwarf Trees (Tundra) \\ \hline
709     7 & Bare Soil \\ \hline
710     8 & Desert (Bright) \\ \hline
711     9 & Glacier \\ \hline
712     10 & Desert (Dark) \\ \hline
713     100 & Ocean \\ \hline
714     \end{tabular}
715     \end{center}
716     \caption{Surface type designations used to compute surface roughness (over land)
717     and surface albedo.}
718     \label{tab:fizhi:surftype}
719     \end{table}
720    
721    
722     \begin{figure*}[htbp]
723 molod 1.4 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.ps}}
724 molod 1.1 \vspace{0.3in}
725     \caption {Surface Type Compinations at \txt resolution.}
726     \label{fig:fizhi:surftype}
727     \end{figure*}
728    
729     \begin{figure*}[htbp]
730 molod 1.4 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.descrip.ps}}
731 molod 1.1 \vspace{0.3in}
732     \caption {Surface Type Descriptions.}
733     \label{fig:fizhi:surftype.desc}
734     \end{figure*}
735    
736    
737 molod 1.5 \paragraph{Surface Roughness}
738 molod 1.1 The surface roughness length over oceans is computed iteratively with the wind
739     stress by the surface layer parameterization (Helfand and Schubert, 1991).
740     It employs an interpolation between the functions of Large and Pond (1981)
741     for high winds and of Kondo (1975) for weak winds.
742    
743    
744 molod 1.5 \paragraph{Albedo}
745 molod 1.1 The surface albedo computation, described in Koster and Suarez (1991),
746     employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
747     Model which distinguishes between the direct and diffuse albedos in the visible
748     and in the near infra-red spectral ranges. The albedos are functions of the observed
749     leaf area index (a description of the relative orientation of the leaves to the
750     sun), the greenness fraction, the vegetation type, and the solar zenith angle.
751     Modifications are made to account for the presence of snow, and its depth relative
752     to the height of the vegetation elements.
753    
754 molod 1.9 Gravity Wave Drag:
755    
756 molod 1.1 The fizhi package employs the gravity wave drag scheme of Zhou et al. (1996).
757     This scheme is a modified version of Vernekar et al. (1992),
758     which was based on Alpert et al. (1988) and Helfand et al. (1987).
759     In this version, the gravity wave stress at the surface is
760     based on that derived by Pierrehumbert (1986) and is given by:
761    
762     \bq
763     |\vec{\tau}_{sfc}| = {\rho U^3\over{N \ell^*}} \left(F_r^2 \over{1+F_r^2}\right) \, \, ,
764     \eq
765    
766     where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the
767     surface wind speed, $h$ is the standard deviation of the sub-grid scale orography,
768     and $\ell^*$ is the wavelength of the monochromatic gravity wave in the direction of the low-level wind.
769     A modification introduced by Zhou et al. allows for the momentum flux to
770     escape through the top of the model, although this effect is small for the current 70-level model.
771     The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.
772    
773     The effects of using this scheme within a GCM are shown in Takacs and Suarez (1996).
774     Experiments using the gravity wave drag parameterization yielded significant and
775     beneficial impacts on both the time-mean flow and the transient statistics of the
776     a GCM climatology, and have eliminated most of the worst dynamically driven biases
777     in the a GCM simulation.
778     An examination of the angular momentum budget during climate runs indicates that the
779     resulting gravity wave torque is similar to the data-driven torque produced by a data
780     assimilation which was performed without gravity
781     wave drag. It was shown that the inclusion of gravity wave drag results in
782     large changes in both the mean flow and in eddy fluxes.
783     The result is a more
784     accurate simulation of surface stress (through a reduction in the surface wind strength),
785     of mountain torque (through a redistribution of mean sea-level pressure), and of momentum
786     convergence (through a reduction in the flux of westerly momentum by transient flow eddies).
787    
788    
789 molod 1.9 Boundary Conditions and other Input Data:
790 molod 1.1
791     Required fields which are not explicitly predicted or diagnosed during model execution must
792     either be prescribed internally or obtained from external data sets. In the fizhi package these
793     fields include: sea surface temperature, sea ice estent, surface geopotential variance,
794     vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,
795     and stratospheric moisture.
796    
797     Boundary condition data sets are available at the model's \fxf and \txt
798     resolutions for either climatological or yearly varying conditions.
799     Any frequency of boundary condition data can be used in the fizhi package;
800     however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@.
801     The time mean values are interpolated during each model timestep to the
802     current time. Future model versions will incorporate boundary conditions at
803     higher spatial \mbox{($1^\circ$ x $1^\circ$)} resolutions.
804    
805     \begin{table}[htb]
806     \begin{center}
807     {\bf Fizhi Input Datasets} \\
808     \vspace{0.1in}
809     \begin{tabular}{|l|c|r|} \hline
810     \multicolumn{1}{|c}{Variable} & \multicolumn{1}{|c}{Frequency} & \multicolumn{1}{|c|}{Years} \\ \hline\hline
811     Sea Ice Extent & monthly & 1979-current, climatology \\ \hline
812     Sea Ice Extent & weekly & 1982-current, climatology \\ \hline
813     Sea Surface Temperature & monthly & 1979-current, climatology \\ \hline
814     Sea Surface Temperature & weekly & 1982-current, climatology \\ \hline
815     Zonally Averaged Upper-Level Moisture & monthly & climatology \\ \hline
816     Zonally Averaged Ozone Concentration & monthly & climatology \\ \hline
817     \end{tabular}
818     \end{center}
819     \caption{Boundary conditions and other input data used in the fizhi package. Also noted are the
820     current years and frequencies available.}
821     \label{tab:fizhi:bcdata}
822     \end{table}
823    
824    
825 molod 1.5 \paragraph{Topography and Topography Variance}
826 molod 1.1
827     Surface geopotential heights are provided from an averaging of the Navy 10 minute
828     by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
829     model's grid resolution. The original topography is first rotated to the proper grid-orientation
830     which is being run, and then
831     averages the data to the model resolution.
832     The averaged topography is then passed through a Lanczos (1966) filter in both dimensions
833     which removes the smallest
834     scales while inhibiting Gibbs phenomena.
835    
836     In one dimension, we may define a cyclic function in $x$ as:
837     \begin{equation}
838     f(x) = {a_0 \over 2} + \sum_{k=1}^N \left( a_k \cos(kx) + b_k \sin(kx) \right)
839     \label{eq:fizhi:filt}
840     \end{equation}
841     where $N = { {\rm IM} \over 2 }$ and ${\rm IM}$ is the total number of points in the $x$ direction.
842     Defining $\Delta x = { 2 \pi \over {\rm IM}}$, we may define the average of $f(x)$ over a
843     $2 \Delta x$ region as:
844    
845     \begin{equation}
846     \overline {f(x)} = {1 \over {2 \Delta x}} \int_{x-\Delta x}^{x+\Delta x} f(x^{\prime}) dx^{\prime}
847     \label{eq:fizhi:fave1}
848     \end{equation}
849    
850     Using equation (\ref{eq:fizhi:filt}) in equation (\ref{eq:fizhi:fave1}) and integrating, we may write:
851    
852     \begin{equation}
853     \overline {f(x)} = {a_0 \over 2} + {1 \over {2 \Delta x}}
854     \sum_{k=1}^N \left [
855     \left. a_k { \sin(kx^{\prime}) \over k } \right /_{x-\Delta x}^{x+\Delta x} -
856     \left. b_k { \cos(kx^{\prime}) \over k } \right /_{x-\Delta x}^{x+\Delta x}
857     \right]
858     \end{equation}
859     or
860    
861     \begin{equation}
862     \overline {f(x)} = {a_0 \over 2} + \sum_{k=1}^N {\sin(k \Delta x) \over {k \Delta x}}
863     \left( a_k \cos(kx) + b_k \sin(kx) \right)
864     \label{eq:fizhi:fave2}
865     \end{equation}
866    
867     Thus, the Fourier wave amplitudes are simply modified by the Lanczos filter response
868     function ${\sin(k\Delta x) \over {k \Delta x}}$. This may be compared with an $mth$-order
869     Shapiro (1970) filter response function, defined as $1-\sin^m({k \Delta x \over 2})$,
870     shown in Figure \ref{fig:fizhi:lanczos}.
871     It should be noted that negative values in the topography resulting from
872     the filtering procedure are {\em not} filled.
873    
874     \begin{figure*}[htbp]
875 molod 1.4 \centerline{ \epsfysize=7.0in \epsfbox{part6/lanczos.ps}}
876 molod 1.1 \caption{ \label{fig:fizhi:lanczos} Comparison between the Lanczos and $mth$-order Shapiro filter
877     response functions for $m$ = 2, 4, and 8. }
878     \end{figure*}
879    
880     The standard deviation of the subgrid-scale topography
881     is computed from a modified version of the the Navy 10 minute by 10 minute dataset.
882     The 10 minute by 10 minute topography is passed through a wavelet
883     filter in both dimensions which removes the scale smaller than 20 minutes.
884     The topography is then averaged to $1^\circ x 1^\circ$ grid resolution, and then
885     re-interpolated back to the 10 minute by 10 minute resolution.
886     The sub-grid scale variance is constructed based on this smoothed dataset.
887    
888    
889 molod 1.5 \paragraph{Upper Level Moisture}
890 molod 1.1 The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas
891     Experiment (SAGE) as input into the model's radiation packages. The SAGE data is archived
892     as monthly zonal means at 5$^\circ$ latitudinal resolution. The data is interpolated to the
893     model's grid location and current time, and blended with the GCM's moisture data. Below 300 mb,
894     the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb,
895     a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
896    
897 molod 1.8
898 molod 1.9 \subsubsection{Fizhi Diagnostics}
899 molod 1.8
900 molod 1.9 Fizhi Diagnostic Menu:
901 molod 1.8 \label{sec:fizhi-diagnostics:menu}
902    
903     \begin{tabular}{llll}
904     \hline\hline
905     NAME & UNITS & LEVELS & DESCRIPTION \\
906     \hline
907    
908     &\\
909     UFLUX & $Newton/m^2$ & 1
910     &\begin{minipage}[t]{3in}
911     {Surface U-Wind Stress on the atmosphere}
912     \end{minipage}\\
913     VFLUX & $Newton/m^2$ & 1
914     &\begin{minipage}[t]{3in}
915     {Surface V-Wind Stress on the atmosphere}
916     \end{minipage}\\
917     HFLUX & $Watts/m^2$ & 1
918     &\begin{minipage}[t]{3in}
919     {Surface Flux of Sensible Heat}
920     \end{minipage}\\
921     EFLUX & $Watts/m^2$ & 1
922     &\begin{minipage}[t]{3in}
923     {Surface Flux of Latent Heat}
924     \end{minipage}\\
925     QICE & $Watts/m^2$ & 1
926     &\begin{minipage}[t]{3in}
927     {Heat Conduction through Sea-Ice}
928     \end{minipage}\\
929     RADLWG & $Watts/m^2$ & 1
930     &\begin{minipage}[t]{3in}
931     {Net upward LW flux at the ground}
932     \end{minipage}\\
933     RADSWG & $Watts/m^2$ & 1
934     &\begin{minipage}[t]{3in}
935     {Net downward SW flux at the ground}
936     \end{minipage}\\
937     RI & $dimensionless$ & Nrphys
938     &\begin{minipage}[t]{3in}
939     {Richardson Number}
940     \end{minipage}\\
941     CT & $dimensionless$ & 1
942     &\begin{minipage}[t]{3in}
943     {Surface Drag coefficient for T and Q}
944     \end{minipage}\\
945     CU & $dimensionless$ & 1
946     &\begin{minipage}[t]{3in}
947     {Surface Drag coefficient for U and V}
948     \end{minipage}\\
949     ET & $m^2/sec$ & Nrphys
950     &\begin{minipage}[t]{3in}
951     {Diffusivity coefficient for T and Q}
952     \end{minipage}\\
953     EU & $m^2/sec$ & Nrphys
954     &\begin{minipage}[t]{3in}
955     {Diffusivity coefficient for U and V}
956     \end{minipage}\\
957     TURBU & $m/sec/day$ & Nrphys
958     &\begin{minipage}[t]{3in}
959     {U-Momentum Changes due to Turbulence}
960     \end{minipage}\\
961     TURBV & $m/sec/day$ & Nrphys
962     &\begin{minipage}[t]{3in}
963     {V-Momentum Changes due to Turbulence}
964     \end{minipage}\\
965     TURBT & $deg/day$ & Nrphys
966     &\begin{minipage}[t]{3in}
967     {Temperature Changes due to Turbulence}
968     \end{minipage}\\
969     TURBQ & $g/kg/day$ & Nrphys
970     &\begin{minipage}[t]{3in}
971     {Specific Humidity Changes due to Turbulence}
972     \end{minipage}\\
973     MOISTT & $deg/day$ & Nrphys
974     &\begin{minipage}[t]{3in}
975     {Temperature Changes due to Moist Processes}
976     \end{minipage}\\
977     MOISTQ & $g/kg/day$ & Nrphys
978     &\begin{minipage}[t]{3in}
979     {Specific Humidity Changes due to Moist Processes}
980     \end{minipage}\\
981     RADLW & $deg/day$ & Nrphys
982     &\begin{minipage}[t]{3in}
983     {Net Longwave heating rate for each level}
984     \end{minipage}\\
985     RADSW & $deg/day$ & Nrphys
986     &\begin{minipage}[t]{3in}
987     {Net Shortwave heating rate for each level}
988     \end{minipage}\\
989     PREACC & $mm/day$ & 1
990     &\begin{minipage}[t]{3in}
991     {Total Precipitation}
992     \end{minipage}\\
993     PRECON & $mm/day$ & 1
994     &\begin{minipage}[t]{3in}
995     {Convective Precipitation}
996     \end{minipage}\\
997     TUFLUX & $Newton/m^2$ & Nrphys
998     &\begin{minipage}[t]{3in}
999     {Turbulent Flux of U-Momentum}
1000     \end{minipage}\\
1001     TVFLUX & $Newton/m^2$ & Nrphys
1002     &\begin{minipage}[t]{3in}
1003     {Turbulent Flux of V-Momentum}
1004     \end{minipage}\\
1005     TTFLUX & $Watts/m^2$ & Nrphys
1006     &\begin{minipage}[t]{3in}
1007     {Turbulent Flux of Sensible Heat}
1008     \end{minipage}\\
1009     \end{tabular}
1010    
1011     \newpage
1012     \vspace*{\fill}
1013     \begin{tabular}{llll}
1014     \hline\hline
1015     NAME & UNITS & LEVELS & DESCRIPTION \\
1016     \hline
1017    
1018     &\\
1019     TQFLUX & $Watts/m^2$ & Nrphys
1020     &\begin{minipage}[t]{3in}
1021     {Turbulent Flux of Latent Heat}
1022     \end{minipage}\\
1023     CN & $dimensionless$ & 1
1024     &\begin{minipage}[t]{3in}
1025     {Neutral Drag Coefficient}
1026     \end{minipage}\\
1027     WINDS & $m/sec$ & 1
1028     &\begin{minipage}[t]{3in}
1029     {Surface Wind Speed}
1030     \end{minipage}\\
1031     DTSRF & $deg$ & 1
1032     &\begin{minipage}[t]{3in}
1033     {Air/Surface virtual temperature difference}
1034     \end{minipage}\\
1035     TG & $deg$ & 1
1036     &\begin{minipage}[t]{3in}
1037     {Ground temperature}
1038     \end{minipage}\\
1039     TS & $deg$ & 1
1040     &\begin{minipage}[t]{3in}
1041     {Surface air temperature (Adiabatic from lowest model layer)}
1042     \end{minipage}\\
1043     DTG & $deg$ & 1
1044     &\begin{minipage}[t]{3in}
1045     {Ground temperature adjustment}
1046     \end{minipage}\\
1047    
1048     QG & $g/kg$ & 1
1049     &\begin{minipage}[t]{3in}
1050     {Ground specific humidity}
1051     \end{minipage}\\
1052     QS & $g/kg$ & 1
1053     &\begin{minipage}[t]{3in}
1054     {Saturation surface specific humidity}
1055     \end{minipage}\\
1056     TGRLW & $deg$ & 1
1057     &\begin{minipage}[t]{3in}
1058     {Instantaneous ground temperature used as input to the
1059     Longwave radiation subroutine}
1060     \end{minipage}\\
1061     ST4 & $Watts/m^2$ & 1
1062     &\begin{minipage}[t]{3in}
1063     {Upward Longwave flux at the ground ($\sigma T^4$)}
1064     \end{minipage}\\
1065     OLR & $Watts/m^2$ & 1
1066     &\begin{minipage}[t]{3in}
1067     {Net upward Longwave flux at the top of the model}
1068     \end{minipage}\\
1069     OLRCLR & $Watts/m^2$ & 1
1070     &\begin{minipage}[t]{3in}
1071     {Net upward clearsky Longwave flux at the top of the model}
1072     \end{minipage}\\
1073     LWGCLR & $Watts/m^2$ & 1
1074     &\begin{minipage}[t]{3in}
1075     {Net upward clearsky Longwave flux at the ground}
1076     \end{minipage}\\
1077     LWCLR & $deg/day$ & Nrphys
1078     &\begin{minipage}[t]{3in}
1079     {Net clearsky Longwave heating rate for each level}
1080     \end{minipage}\\
1081     TLW & $deg$ & Nrphys
1082     &\begin{minipage}[t]{3in}
1083     {Instantaneous temperature used as input to the Longwave radiation
1084     subroutine}
1085     \end{minipage}\\
1086     SHLW & $g/g$ & Nrphys
1087     &\begin{minipage}[t]{3in}
1088     {Instantaneous specific humidity used as input to the Longwave radiation
1089     subroutine}
1090     \end{minipage}\\
1091     OZLW & $g/g$ & Nrphys
1092     &\begin{minipage}[t]{3in}
1093     {Instantaneous ozone used as input to the Longwave radiation
1094     subroutine}
1095     \end{minipage}\\
1096     CLMOLW & $0-1$ & Nrphys
1097     &\begin{minipage}[t]{3in}
1098     {Maximum overlap cloud fraction used in the Longwave radiation
1099     subroutine}
1100     \end{minipage}\\
1101     CLDTOT & $0-1$ & Nrphys
1102     &\begin{minipage}[t]{3in}
1103     {Total cloud fraction used in the Longwave and Shortwave radiation
1104     subroutines}
1105     \end{minipage}\\
1106     LWGDOWN & $Watts/m^2$ & 1
1107     &\begin{minipage}[t]{3in}
1108     {Downwelling Longwave radiation at the ground}
1109     \end{minipage}\\
1110     GWDT & $deg/day$ & Nrphys
1111     &\begin{minipage}[t]{3in}
1112     {Temperature tendency due to Gravity Wave Drag}
1113     \end{minipage}\\
1114     RADSWT & $Watts/m^2$ & 1
1115     &\begin{minipage}[t]{3in}
1116     {Incident Shortwave radiation at the top of the atmosphere}
1117     \end{minipage}\\
1118     TAUCLD & $per 100 mb$ & Nrphys
1119     &\begin{minipage}[t]{3in}
1120     {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1121     \end{minipage}\\
1122     TAUCLDC & $Number$ & Nrphys
1123     &\begin{minipage}[t]{3in}
1124     {Cloud Optical Depth Counter}
1125     \end{minipage}\\
1126     \end{tabular}
1127     \vfill
1128    
1129     \newpage
1130     \vspace*{\fill}
1131     \begin{tabular}{llll}
1132     \hline\hline
1133     NAME & UNITS & LEVELS & DESCRIPTION \\
1134     \hline
1135    
1136     &\\
1137     CLDLOW & $0-1$ & Nrphys
1138     &\begin{minipage}[t]{3in}
1139     {Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)}
1140     \end{minipage}\\
1141     EVAP & $mm/day$ & 1
1142     &\begin{minipage}[t]{3in}
1143     {Surface evaporation}
1144     \end{minipage}\\
1145     DPDT & $hPa/day$ & 1
1146     &\begin{minipage}[t]{3in}
1147     {Surface Pressure tendency}
1148     \end{minipage}\\
1149     UAVE & $m/sec$ & Nrphys
1150     &\begin{minipage}[t]{3in}
1151     {Average U-Wind}
1152     \end{minipage}\\
1153     VAVE & $m/sec$ & Nrphys
1154     &\begin{minipage}[t]{3in}
1155     {Average V-Wind}
1156     \end{minipage}\\
1157     TAVE & $deg$ & Nrphys
1158     &\begin{minipage}[t]{3in}
1159     {Average Temperature}
1160     \end{minipage}\\
1161     QAVE & $g/kg$ & Nrphys
1162     &\begin{minipage}[t]{3in}
1163     {Average Specific Humidity}
1164     \end{minipage}\\
1165     OMEGA & $hPa/day$ & Nrphys
1166     &\begin{minipage}[t]{3in}
1167     {Vertical Velocity}
1168     \end{minipage}\\
1169     DUDT & $m/sec/day$ & Nrphys
1170     &\begin{minipage}[t]{3in}
1171     {Total U-Wind tendency}
1172     \end{minipage}\\
1173     DVDT & $m/sec/day$ & Nrphys
1174     &\begin{minipage}[t]{3in}
1175     {Total V-Wind tendency}
1176     \end{minipage}\\
1177     DTDT & $deg/day$ & Nrphys
1178     &\begin{minipage}[t]{3in}
1179     {Total Temperature tendency}
1180     \end{minipage}\\
1181     DQDT & $g/kg/day$ & Nrphys
1182     &\begin{minipage}[t]{3in}
1183     {Total Specific Humidity tendency}
1184     \end{minipage}\\
1185     VORT & $10^{-4}/sec$ & Nrphys
1186     &\begin{minipage}[t]{3in}
1187     {Relative Vorticity}
1188     \end{minipage}\\
1189     DTLS & $deg/day$ & Nrphys
1190     &\begin{minipage}[t]{3in}
1191     {Temperature tendency due to Stratiform Cloud Formation}
1192     \end{minipage}\\
1193     DQLS & $g/kg/day$ & Nrphys
1194     &\begin{minipage}[t]{3in}
1195     {Specific Humidity tendency due to Stratiform Cloud Formation}
1196     \end{minipage}\\
1197     USTAR & $m/sec$ & 1
1198     &\begin{minipage}[t]{3in}
1199     {Surface USTAR wind}
1200     \end{minipage}\\
1201     Z0 & $m$ & 1
1202     &\begin{minipage}[t]{3in}
1203     {Surface roughness}
1204     \end{minipage}\\
1205     FRQTRB & $0-1$ & Nrphys-1
1206     &\begin{minipage}[t]{3in}
1207     {Frequency of Turbulence}
1208     \end{minipage}\\
1209     PBL & $mb$ & 1
1210     &\begin{minipage}[t]{3in}
1211     {Planetary Boundary Layer depth}
1212     \end{minipage}\\
1213     SWCLR & $deg/day$ & Nrphys
1214     &\begin{minipage}[t]{3in}
1215     {Net clearsky Shortwave heating rate for each level}
1216     \end{minipage}\\
1217     OSR & $Watts/m^2$ & 1
1218     &\begin{minipage}[t]{3in}
1219     {Net downward Shortwave flux at the top of the model}
1220     \end{minipage}\\
1221     OSRCLR & $Watts/m^2$ & 1
1222     &\begin{minipage}[t]{3in}
1223     {Net downward clearsky Shortwave flux at the top of the model}
1224     \end{minipage}\\
1225     CLDMAS & $kg / m^2$ & Nrphys
1226     &\begin{minipage}[t]{3in}
1227     {Convective cloud mass flux}
1228     \end{minipage}\\
1229     UAVE & $m/sec$ & Nrphys
1230     &\begin{minipage}[t]{3in}
1231     {Time-averaged $u-Wind$}
1232     \end{minipage}\\
1233     \end{tabular}
1234     \vfill
1235    
1236     \newpage
1237     \vspace*{\fill}
1238     \begin{tabular}{llll}
1239     \hline\hline
1240     NAME & UNITS & LEVELS & DESCRIPTION \\
1241     \hline
1242    
1243     &\\
1244     VAVE & $m/sec$ & Nrphys
1245     &\begin{minipage}[t]{3in}
1246     {Time-averaged $v-Wind$}
1247     \end{minipage}\\
1248     TAVE & $deg$ & Nrphys
1249     &\begin{minipage}[t]{3in}
1250     {Time-averaged $Temperature$}
1251     \end{minipage}\\
1252     QAVE & $g/g$ & Nrphys
1253     &\begin{minipage}[t]{3in}
1254     {Time-averaged $Specific \, \, Humidity$}
1255     \end{minipage}\\
1256     RFT & $deg/day$ & Nrphys
1257     &\begin{minipage}[t]{3in}
1258     {Temperature tendency due Rayleigh Friction}
1259     \end{minipage}\\
1260     PS & $mb$ & 1
1261     &\begin{minipage}[t]{3in}
1262     {Surface Pressure}
1263     \end{minipage}\\
1264     QQAVE & $(m/sec)^2$ & Nrphys
1265     &\begin{minipage}[t]{3in}
1266     {Time-averaged $Turbulent Kinetic Energy$}
1267     \end{minipage}\\
1268     SWGCLR & $Watts/m^2$ & 1
1269     &\begin{minipage}[t]{3in}
1270     {Net downward clearsky Shortwave flux at the ground}
1271     \end{minipage}\\
1272     PAVE & $mb$ & 1
1273     &\begin{minipage}[t]{3in}
1274     {Time-averaged Surface Pressure}
1275     \end{minipage}\\
1276     DIABU & $m/sec/day$ & Nrphys
1277     &\begin{minipage}[t]{3in}
1278     {Total Diabatic forcing on $u-Wind$}
1279     \end{minipage}\\
1280     DIABV & $m/sec/day$ & Nrphys
1281     &\begin{minipage}[t]{3in}
1282     {Total Diabatic forcing on $v-Wind$}
1283     \end{minipage}\\
1284     DIABT & $deg/day$ & Nrphys
1285     &\begin{minipage}[t]{3in}
1286     {Total Diabatic forcing on $Temperature$}
1287     \end{minipage}\\
1288     DIABQ & $g/kg/day$ & Nrphys
1289     &\begin{minipage}[t]{3in}
1290     {Total Diabatic forcing on $Specific \, \, Humidity$}
1291     \end{minipage}\\
1292     RFU & $m/sec/day$ & Nrphys
1293     &\begin{minipage}[t]{3in}
1294     {U-Wind tendency due to Rayleigh Friction}
1295     \end{minipage}\\
1296     RFV & $m/sec/day$ & Nrphys
1297     &\begin{minipage}[t]{3in}
1298     {V-Wind tendency due to Rayleigh Friction}
1299     \end{minipage}\\
1300     GWDU & $m/sec/day$ & Nrphys
1301     &\begin{minipage}[t]{3in}
1302     {U-Wind tendency due to Gravity Wave Drag}
1303     \end{minipage}\\
1304     GWDU & $m/sec/day$ & Nrphys
1305     &\begin{minipage}[t]{3in}
1306     {V-Wind tendency due to Gravity Wave Drag}
1307     \end{minipage}\\
1308     GWDUS & $N/m^2$ & 1
1309     &\begin{minipage}[t]{3in}
1310     {U-Wind Gravity Wave Drag Stress at Surface}
1311     \end{minipage}\\
1312     GWDVS & $N/m^2$ & 1
1313     &\begin{minipage}[t]{3in}
1314     {V-Wind Gravity Wave Drag Stress at Surface}
1315     \end{minipage}\\
1316     GWDUT & $N/m^2$ & 1
1317     &\begin{minipage}[t]{3in}
1318     {U-Wind Gravity Wave Drag Stress at Top}
1319     \end{minipage}\\
1320     GWDVT & $N/m^2$ & 1
1321     &\begin{minipage}[t]{3in}
1322     {V-Wind Gravity Wave Drag Stress at Top}
1323     \end{minipage}\\
1324     LZRAD & $mg/kg$ & Nrphys
1325     &\begin{minipage}[t]{3in}
1326     {Estimated Cloud Liquid Water used in Radiation}
1327     \end{minipage}\\
1328     \end{tabular}
1329     \vfill
1330    
1331     \newpage
1332     \vspace*{\fill}
1333     \begin{tabular}{llll}
1334     \hline\hline
1335     NAME & UNITS & LEVELS & DESCRIPTION \\
1336     \hline
1337    
1338     &\\
1339     SLP & $mb$ & 1
1340     &\begin{minipage}[t]{3in}
1341     {Time-averaged Sea-level Pressure}
1342     \end{minipage}\\
1343     CLDFRC & $0-1$ & 1
1344     &\begin{minipage}[t]{3in}
1345     {Total Cloud Fraction}
1346     \end{minipage}\\
1347     TPW & $gm/cm^2$ & 1
1348     &\begin{minipage}[t]{3in}
1349     {Precipitable water}
1350     \end{minipage}\\
1351     U2M & $m/sec$ & 1
1352     &\begin{minipage}[t]{3in}
1353     {U-Wind at 2 meters}
1354     \end{minipage}\\
1355     V2M & $m/sec$ & 1
1356     &\begin{minipage}[t]{3in}
1357     {V-Wind at 2 meters}
1358     \end{minipage}\\
1359     T2M & $deg$ & 1
1360     &\begin{minipage}[t]{3in}
1361     {Temperature at 2 meters}
1362     \end{minipage}\\
1363     Q2M & $g/kg$ & 1
1364     &\begin{minipage}[t]{3in}
1365     {Specific Humidity at 2 meters}
1366     \end{minipage}\\
1367     U10M & $m/sec$ & 1
1368     &\begin{minipage}[t]{3in}
1369     {U-Wind at 10 meters}
1370     \end{minipage}\\
1371     V10M & $m/sec$ & 1
1372     &\begin{minipage}[t]{3in}
1373     {V-Wind at 10 meters}
1374     \end{minipage}\\
1375     T10M & $deg$ & 1
1376     &\begin{minipage}[t]{3in}
1377     {Temperature at 10 meters}
1378     \end{minipage}\\
1379     Q10M & $g/kg$ & 1
1380     &\begin{minipage}[t]{3in}
1381     {Specific Humidity at 10 meters}
1382     \end{minipage}\\
1383     DTRAIN & $kg/m^2$ & Nrphys
1384     &\begin{minipage}[t]{3in}
1385     {Detrainment Cloud Mass Flux}
1386     \end{minipage}\\
1387     QFILL & $g/kg/day$ & Nrphys
1388     &\begin{minipage}[t]{3in}
1389     {Filling of negative specific humidity}
1390     \end{minipage}\\
1391     \end{tabular}
1392     \vspace{1.5in}
1393     \vfill
1394    
1395     \newpage
1396     \vspace*{\fill}
1397     \begin{tabular}{llll}
1398     \hline\hline
1399     NAME & UNITS & LEVELS & DESCRIPTION \\
1400     \hline
1401    
1402     &\\
1403     DTCONV & $deg/sec$ & Nr
1404     &\begin{minipage}[t]{3in}
1405     {Temp Change due to Convection}
1406     \end{minipage}\\
1407     DQCONV & $g/kg/sec$ & Nr
1408     &\begin{minipage}[t]{3in}
1409     {Specific Humidity Change due to Convection}
1410     \end{minipage}\\
1411     RELHUM & $percent$ & Nr
1412     &\begin{minipage}[t]{3in}
1413     {Relative Humidity}
1414     \end{minipage}\\
1415     PRECLS & $g/m^2/sec$ & 1
1416     &\begin{minipage}[t]{3in}
1417     {Large Scale Precipitation}
1418     \end{minipage}\\
1419     ENPREC & $J/g$ & 1
1420     &\begin{minipage}[t]{3in}
1421     {Energy of Precipitation (snow, rain Temp)}
1422     \end{minipage}\\
1423     \end{tabular}
1424     \vspace{1.5in}
1425     \vfill
1426    
1427     \newpage
1428    
1429 molod 1.9 Fizhi Diagnostic Description:
1430 molod 1.8
1431     In this section we list and describe the diagnostic quantities available within the
1432     GCM. The diagnostics are listed in the order that they appear in the
1433     Diagnostic Menu, Section \ref{sec:fizhi-diagnostics:menu}.
1434     In all cases, each diagnostic as currently archived on the output datasets
1435     is time-averaged over its diagnostic output frequency:
1436    
1437     \[
1438     {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1439     \]
1440     where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1441     output frequency of the diagnostic, and $\Delta t$ is
1442     the timestep over which the diagnostic is updated.
1443    
1444     { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1445    
1446     The zonal wind stress is the turbulent flux of zonal momentum from
1447     the surface.
1448     \[
1449     {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1450     \]
1451     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1452     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1453     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1454     the zonal wind in the lowest model layer.
1455     \\
1456    
1457    
1458     { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1459    
1460     The meridional wind stress is the turbulent flux of meridional momentum from
1461     the surface.
1462     \[
1463     {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1464     \]
1465     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1466     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1467     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1468     the meridional wind in the lowest model layer.
1469     \\
1470    
1471     { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1472    
1473     The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1474     gradient of virtual potential temperature and the eddy exchange coefficient:
1475     \[
1476     {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1477     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1478     \]
1479     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1480     heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1481     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1482     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1483     for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1484     at the surface and at the bottom model level.
1485     \\
1486    
1487    
1488     { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1489    
1490     The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1491     gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1492     \[
1493     {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1494     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1495     \]
1496     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1497     the potential evapotranspiration actually evaporated, L is the latent
1498     heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1499     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1500     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1501     for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1502     humidity at the surface and at the bottom model level, respectively.
1503     \\
1504    
1505     { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1506    
1507     Over sea ice there is an additional source of energy at the surface due to the heat
1508     conduction from the relatively warm ocean through the sea ice. The heat conduction
1509     through sea ice represents an additional energy source term for the ground temperature equation.
1510    
1511     \[
1512     {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1513     \]
1514    
1515     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1516     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1517     $T_g$ is the temperature of the sea ice.
1518    
1519     NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1520     \\
1521    
1522    
1523     { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1524    
1525     \begin{eqnarray*}
1526     {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
1527     & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1528     \end{eqnarray*}
1529     \\
1530     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1531     $F_{LW}^\uparrow$ is
1532     the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1533     \\
1534    
1535     { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1536    
1537     \begin{eqnarray*}
1538     {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
1539     & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1540     \end{eqnarray*}
1541     \\
1542     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1543     $F_{SW}^\downarrow$ is
1544     the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1545     \\
1546    
1547    
1548     \noindent
1549     { \underline {RI} Richardson Number} ($dimensionless$)
1550    
1551     \noindent
1552     The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1553     \[
1554     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1555     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1556     \]
1557     \\
1558     where we used the hydrostatic equation:
1559     \[
1560     {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1561     \]
1562     Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1563     indicate dominantly unstable shear, and large positive values indicate dominantly stable
1564     stratification.
1565     \\
1566    
1567     \noindent
1568     { \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1569    
1570     \noindent
1571     The surface exchange coefficient is obtained from the similarity functions for the stability
1572     dependant flux profile relationships:
1573     \[
1574     {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1575     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1576     { k \over { (\psi_{h} + \psi_{g}) } }
1577     \]
1578     where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1579     viscous sublayer non-dimensional temperature or moisture change:
1580     \[
1581     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1582     \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1583     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1584     \]
1585     and:
1586     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1587    
1588     \noindent
1589     $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1590     the temperature and moisture gradients, specified differently for stable and unstable
1591     layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1592     non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1593     viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1594     (see diagnostic number 67), and the subscript ref refers to a reference value.
1595     \\
1596    
1597     \noindent
1598     { \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
1599    
1600     \noindent
1601     The surface exchange coefficient is obtained from the similarity functions for the stability
1602     dependant flux profile relationships:
1603     \[
1604     {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1605     \]
1606     where $\psi_m$ is the surface layer non-dimensional wind shear:
1607     \[
1608     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1609     \]
1610     \noindent
1611     $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1612     the temperature and moisture gradients, specified differently for stable and unstable layers
1613     according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1614     non-dimensional stability parameter, $u_*$ is the surface stress velocity
1615     (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1616     \\
1617    
1618     \noindent
1619     { \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1620    
1621     \noindent
1622     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1623     moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1624     diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1625     or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
1626     takes the form:
1627     \[
1628     {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1629     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1630     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1631     \]
1632     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1633     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1634     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1635     depth,
1636     $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1637     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1638     dimensionless buoyancy and wind shear
1639     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1640     are functions of the Richardson number.
1641    
1642     \noindent
1643     For the detailed equations and derivations of the modified level 2.5 closure scheme,
1644     see Helfand and Labraga, 1988.
1645    
1646     \noindent
1647     In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1648     in units of $m/sec$, given by:
1649     \[
1650     {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
1651     \]
1652     \noindent
1653     where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1654     surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1655     friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1656     and $W_s$ is the magnitude of the surface layer wind.
1657     \\
1658    
1659     \noindent
1660     { \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
1661    
1662     \noindent
1663     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1664     momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1665     diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1666     In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
1667     takes the form:
1668     \[
1669     {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1670     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1671     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1672     \]
1673     \noindent
1674     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1675     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1676     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1677     depth,
1678     $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1679     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1680     dimensionless buoyancy and wind shear
1681     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1682     are functions of the Richardson number.
1683    
1684     \noindent
1685     For the detailed equations and derivations of the modified level 2.5 closure scheme,
1686     see Helfand and Labraga, 1988.
1687    
1688     \noindent
1689     In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1690     in units of $m/sec$, given by:
1691     \[
1692     {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1693     \]
1694     \noindent
1695     where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1696     similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1697     (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1698     magnitude of the surface layer wind.
1699     \\
1700    
1701     \noindent
1702     { \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1703    
1704     \noindent
1705     The tendency of U-Momentum due to turbulence is written:
1706     \[
1707     {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1708     = {\pp{}{z} }{(K_m \pp{u}{z})}
1709     \]
1710    
1711     \noindent
1712     The Helfand and Labraga level 2.5 scheme models the turbulent
1713     flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1714     equation.
1715    
1716     \noindent
1717     { \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1718    
1719     \noindent
1720     The tendency of V-Momentum due to turbulence is written:
1721     \[
1722     {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1723     = {\pp{}{z} }{(K_m \pp{v}{z})}
1724     \]
1725    
1726     \noindent
1727     The Helfand and Labraga level 2.5 scheme models the turbulent
1728     flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1729     equation.
1730     \\
1731    
1732     \noindent
1733     { \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1734    
1735     \noindent
1736     The tendency of temperature due to turbulence is written:
1737     \[
1738     {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1739     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1740     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1741     \]
1742    
1743     \noindent
1744     The Helfand and Labraga level 2.5 scheme models the turbulent
1745     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1746     equation.
1747     \\
1748    
1749     \noindent
1750     { \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1751    
1752     \noindent
1753     The tendency of specific humidity due to turbulence is written:
1754     \[
1755     {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1756     = {\pp{}{z} }{(K_h \pp{q}{z})}
1757     \]
1758    
1759     \noindent
1760     The Helfand and Labraga level 2.5 scheme models the turbulent
1761     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1762     equation.
1763     \\
1764    
1765     \noindent
1766     { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1767    
1768     \noindent
1769     \[
1770     {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1771     \]
1772     where:
1773     \[
1774     \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1775     \hspace{.4cm} and
1776     \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1777     \]
1778     and
1779     \[
1780     \Gamma_s = g \eta \pp{s}{p}
1781     \]
1782    
1783     \noindent
1784     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1785     precipitation processes, or supersaturation rain.
1786     The summation refers to contributions from each cloud type called by RAS.
1787     The dry static energy is given
1788     as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1789     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1790     the description of the convective parameterization. The fractional adjustment, or relaxation
1791     parameter, for each cloud type is given as $\alpha$, while
1792     $R$ is the rain re-evaporation adjustment.
1793     \\
1794    
1795     \noindent
1796     { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1797    
1798     \noindent
1799     \[
1800     {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1801     \]
1802     where:
1803     \[
1804     \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1805     \hspace{.4cm} and
1806     \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1807     \]
1808     and
1809     \[
1810     \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1811     \]
1812     \noindent
1813     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1814     precipitation processes, or supersaturation rain.
1815     The summation refers to contributions from each cloud type called by RAS.
1816     The dry static energy is given as $s$,
1817     the moist static energy is given as $h$,
1818     the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1819     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1820     the description of the convective parameterization. The fractional adjustment, or relaxation
1821     parameter, for each cloud type is given as $\alpha$, while
1822     $R$ is the rain re-evaporation adjustment.
1823     \\
1824    
1825     \noindent
1826     { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1827    
1828     \noindent
1829     The net longwave heating rate is calculated as the vertical divergence of the
1830     net terrestrial radiative fluxes.
1831     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1832     longwave routine.
1833     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1834     For a given cloud fraction,
1835     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1836     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1837     for the upward and downward radiative fluxes.
1838     (see Section \ref{sec:fizhi:radcloud}).
1839     The cloudy-sky flux is then obtained as:
1840    
1841     \noindent
1842     \[
1843     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1844     \]
1845    
1846     \noindent
1847     Finally, the net longwave heating rate is calculated as the vertical divergence of the
1848     net terrestrial radiative fluxes:
1849     \[
1850     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1851     \]
1852     or
1853     \[
1854     {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1855     \]
1856    
1857     \noindent
1858     where $g$ is the accelation due to gravity,
1859     $c_p$ is the heat capacity of air at constant pressure,
1860     and
1861     \[
1862     F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1863     \]
1864     \\
1865    
1866    
1867     \noindent
1868     { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1869    
1870     \noindent
1871     The net Shortwave heating rate is calculated as the vertical divergence of the
1872     net solar radiative fluxes.
1873     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1874     For the clear-sky case, the shortwave fluxes and heating rates are computed with
1875     both CLMO (maximum overlap cloud fraction) and
1876     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1877     The shortwave routine is then called a second time, for the cloudy-sky case, with the
1878     true time-averaged cloud fractions CLMO
1879     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1880     input at the top of the atmosphere.
1881    
1882     \noindent
1883     The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1884     \[
1885     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1886     \]
1887     or
1888     \[
1889     {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1890     \]
1891    
1892     \noindent
1893     where $g$ is the accelation due to gravity,
1894     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1895     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1896     \[
1897     F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1898     \]
1899     \\
1900    
1901     \noindent
1902     { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1903    
1904     \noindent
1905     For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1906     the vertical integral or total precipitable amount is given by:
1907     \[
1908     {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1909     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1910     \]
1911     \\
1912    
1913     \noindent
1914     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1915     time step, scaled to $mm/day$.
1916     \\
1917    
1918     \noindent
1919     { \underline {PRECON} Convective Precipition ($mm/day$) }
1920    
1921     \noindent
1922     For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1923     the vertical integral or total precipitable amount is given by:
1924     \[
1925     {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1926     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1927     \]
1928     \\
1929    
1930     \noindent
1931     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1932     time step, scaled to $mm/day$.
1933     \\
1934    
1935     \noindent
1936     { \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1937    
1938     \noindent
1939     The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1940     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1941    
1942     \[
1943     {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1944     {\rho } {(- K_m \pp{U}{z})}
1945     \]
1946    
1947     \noindent
1948     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1949     \\
1950    
1951     \noindent
1952     { \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1953    
1954     \noindent
1955     The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1956     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1957    
1958     \[
1959     {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1960     {\rho } {(- K_m \pp{V}{z})}
1961     \]
1962    
1963     \noindent
1964     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1965     \\
1966    
1967    
1968     \noindent
1969     { \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1970    
1971     \noindent
1972     The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1973     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1974    
1975     \noindent
1976     \[
1977     {\bf TTFLUX} = c_p {\rho }
1978     P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1979     = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1980     \]
1981    
1982     \noindent
1983     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1984     \\
1985    
1986    
1987     \noindent
1988     { \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1989    
1990     \noindent
1991     The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1992     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1993    
1994     \noindent
1995     \[
1996     {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1997     {L {\rho }(- K_h \pp{q}{z})}
1998     \]
1999    
2000     \noindent
2001     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
2002     \\
2003    
2004    
2005     \noindent
2006     { \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
2007    
2008     \noindent
2009     The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
2010     \[
2011     {\bf CN} = { k \over { \ln({h \over {z_0}})} }
2012     \]
2013    
2014     \noindent
2015     where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
2016     $z_0$ is the surface roughness.
2017    
2018     \noindent
2019     NOTE: CN is not available through model version 5.3, but is available in subsequent
2020     versions.
2021     \\
2022    
2023     \noindent
2024     { \underline {WINDS} Surface Wind Speed ($meter/sec$) }
2025    
2026     \noindent
2027     The surface wind speed is calculated for the last internal turbulence time step:
2028     \[
2029     {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
2030     \]
2031    
2032     \noindent
2033     where the subscript $Nrphys$ refers to the lowest model level.
2034     \\
2035    
2036     \noindent
2037     { \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
2038    
2039     \noindent
2040     The air/surface virtual temperature difference measures the stability of the surface layer:
2041     \[
2042     {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
2043     \]
2044     \noindent
2045     where
2046     \[
2047     \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
2048     and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2049     \]
2050    
2051     \noindent
2052     $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2053     $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
2054     and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
2055     refers to the surface.
2056     \\
2057    
2058    
2059     \noindent
2060     { \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
2061    
2062     \noindent
2063     The ground temperature equation is solved as part of the turbulence package
2064     using a backward implicit time differencing scheme:
2065     \[
2066     {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2067     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2068     \]
2069    
2070     \noindent
2071     where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2072     net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2073     sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2074     flux, and $C_g$ is the total heat capacity of the ground.
2075     $C_g$ is obtained by solving a heat diffusion equation
2076     for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
2077     \[
2078     C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2079     { 86400. \over {2 \pi} } } \, \, .
2080     \]
2081     \noindent
2082     Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
2083     {cm \over {^oK}}$,
2084     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2085     by $2 \pi$ $radians/
2086     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2087     is a function of the ground wetness, $W$.
2088     \\
2089    
2090     \noindent
2091     { \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
2092    
2093     \noindent
2094     The surface temperature estimate is made by assuming that the model's lowest
2095     layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2096     The surface temperature is therefore:
2097     \[
2098     {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2099     \]
2100     \\
2101    
2102     \noindent
2103     { \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2104    
2105     \noindent
2106     The change in surface temperature from one turbulence time step to the next, solved
2107     using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2108     \[
2109     {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2110     \]
2111    
2112     \noindent
2113     where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2114     refers to the value at the previous turbulence time level.
2115     \\
2116    
2117     \noindent
2118     { \underline {QG} Ground Specific Humidity ($g/kg$) }
2119    
2120     \noindent
2121     The ground specific humidity is obtained by interpolating between the specific
2122     humidity at the lowest model level and the specific humidity of a saturated ground.
2123     The interpolation is performed using the potential evapotranspiration function:
2124     \[
2125     {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2126     \]
2127    
2128     \noindent
2129     where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2130     and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2131     pressure.
2132     \\
2133    
2134     \noindent
2135     { \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
2136    
2137     \noindent
2138     The surface saturation specific humidity is the saturation specific humidity at
2139     the ground temprature and surface pressure:
2140     \[
2141     {\bf QS} = q^*(T_g,P_s)
2142     \]
2143     \\
2144    
2145     \noindent
2146     { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2147     radiation subroutine (deg)}
2148     \[
2149     {\bf TGRLW} = T_g(\lambda , \phi ,n)
2150     \]
2151     \noindent
2152     where $T_g$ is the model ground temperature at the current time step $n$.
2153     \\
2154    
2155    
2156     \noindent
2157     { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2158     \[
2159     {\bf ST4} = \sigma T^4
2160     \]
2161     \noindent
2162     where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2163     \\
2164    
2165     \noindent
2166     { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2167     \[
2168     {\bf OLR} = F_{LW,top}^{NET}
2169     \]
2170     \noindent
2171     where top indicates the top of the first model layer.
2172     In the GCM, $p_{top}$ = 0.0 mb.
2173     \\
2174    
2175    
2176     \noindent
2177     { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2178     \[
2179     {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
2180     \]
2181     \noindent
2182     where top indicates the top of the first model layer.
2183     In the GCM, $p_{top}$ = 0.0 mb.
2184     \\
2185    
2186     \noindent
2187     { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2188    
2189     \noindent
2190     \begin{eqnarray*}
2191     {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2192     & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2193     \end{eqnarray*}
2194     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2195     $F(clearsky)_{LW}^\uparrow$ is
2196     the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2197     \\
2198    
2199     \noindent
2200     { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2201    
2202     \noindent
2203     The net longwave heating rate is calculated as the vertical divergence of the
2204     net terrestrial radiative fluxes.
2205     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2206     longwave routine.
2207     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2208     For a given cloud fraction,
2209     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2210     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2211     for the upward and downward radiative fluxes.
2212     (see Section \ref{sec:fizhi:radcloud}).
2213     The cloudy-sky flux is then obtained as:
2214    
2215     \noindent
2216     \[
2217     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2218     \]
2219    
2220     \noindent
2221     Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2222     vertical divergence of the
2223     clear-sky longwave radiative flux:
2224     \[
2225     \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2226     \]
2227     or
2228     \[
2229     {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2230     \]
2231    
2232     \noindent
2233     where $g$ is the accelation due to gravity,
2234     $c_p$ is the heat capacity of air at constant pressure,
2235     and
2236     \[
2237     F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2238     \]
2239     \\
2240    
2241    
2242     \noindent
2243     { \underline {TLW} Instantaneous temperature used as input to the Longwave
2244     radiation subroutine (deg)}
2245     \[
2246     {\bf TLW} = T(\lambda , \phi ,level, n)
2247     \]
2248     \noindent
2249     where $T$ is the model temperature at the current time step $n$.
2250     \\
2251    
2252    
2253     \noindent
2254     { \underline {SHLW} Instantaneous specific humidity used as input to
2255     the Longwave radiation subroutine (kg/kg)}
2256     \[
2257     {\bf SHLW} = q(\lambda , \phi , level , n)
2258     \]
2259     \noindent
2260     where $q$ is the model specific humidity at the current time step $n$.
2261     \\
2262    
2263    
2264     \noindent
2265     { \underline {OZLW} Instantaneous ozone used as input to
2266     the Longwave radiation subroutine (kg/kg)}
2267     \[
2268     {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
2269     \]
2270     \noindent
2271     where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2272     mean zonally averaged ozone data set.
2273     \\
2274    
2275    
2276     \noindent
2277     { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2278    
2279     \noindent
2280     {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2281     Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
2282     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2283     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2284     \[
2285     {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
2286     \]
2287     \\
2288    
2289    
2290     { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2291    
2292     {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2293     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2294     Radiation packages.
2295     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2296     \[
2297     {\bf CLDTOT} = F_{RAS} + F_{LS}
2298     \]
2299     \\
2300     where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2301     time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2302     \\
2303    
2304    
2305     \noindent
2306     { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2307    
2308     \noindent
2309     {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2310     Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
2311     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2312     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2313     \[
2314     {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
2315     \]
2316     \\
2317    
2318     \noindent
2319     { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2320    
2321     \noindent
2322     {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2323     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2324     Radiation algorithm. These are
2325     convective and large-scale clouds whose radiative characteristics are not
2326     assumed to be correlated in the vertical.
2327     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2328     \[
2329     {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
2330     \]
2331     \\
2332    
2333     \noindent
2334     { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2335     \[
2336     {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2337     \]
2338     \noindent
2339     where $S_0$, is the extra-terrestial solar contant,
2340     $R_a$ is the earth-sun distance in Astronomical Units,
2341     and $cos \phi_z$ is the cosine of the zenith angle.
2342     It should be noted that {\bf RADSWT}, as well as
2343     {\bf OSR} and {\bf OSRCLR},
2344     are calculated at the top of the atmosphere (p=0 mb). However, the
2345     {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2346     calculated at $p= p_{top}$ (0.0 mb for the GCM).
2347     \\
2348    
2349     \noindent
2350     { \underline {EVAP} Surface Evaporation ($mm/day$) }
2351    
2352     \noindent
2353     The surface evaporation is a function of the gradient of moisture, the potential
2354     evapotranspiration fraction and the eddy exchange coefficient:
2355     \[
2356     {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2357     \]
2358     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2359     the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2360     turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2361     $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2362     number 34) and at the bottom model level, respectively.
2363     \\
2364    
2365     \noindent
2366     { \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
2367    
2368     \noindent
2369     {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2370     and Analysis forcing.
2371     \[
2372     {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2373     \]
2374     \\
2375    
2376     \noindent
2377     { \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
2378    
2379     \noindent
2380     {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2381     and Analysis forcing.
2382     \[
2383     {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2384     \]
2385     \\
2386    
2387     \noindent
2388     { \underline {DTDT} Total Temperature Tendency ($deg/day$) }
2389    
2390     \noindent
2391     {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2392     and Analysis forcing.
2393     \begin{eqnarray*}
2394     {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2395     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2396     \end{eqnarray*}
2397     \\
2398    
2399     \noindent
2400     { \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
2401    
2402     \noindent
2403     {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2404     and Analysis forcing.
2405     \[
2406     {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2407     + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2408     \]
2409     \\
2410    
2411     \noindent
2412     { \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
2413    
2414     \noindent
2415     The surface stress velocity, or the friction velocity, is the wind speed at
2416     the surface layer top impeded by the surface drag:
2417     \[
2418     {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2419     C_u = {k \over {\psi_m} }
2420     \]
2421    
2422     \noindent
2423     $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2424     number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2425    
2426     \noindent
2427     { \underline {Z0} Surface Roughness Length ($m$) }
2428    
2429     \noindent
2430     Over the land surface, the surface roughness length is interpolated to the local
2431     time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
2432     the roughness length is a function of the surface-stress velocity, $u_*$.
2433     \[
2434     {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2435     \]
2436    
2437     \noindent
2438     where the constants are chosen to interpolate between the reciprocal relation of
2439     Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
2440     for moderate to large winds.
2441     \\
2442    
2443     \noindent
2444     { \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
2445    
2446     \noindent
2447     The fraction of time when turbulence is present is defined as the fraction of
2448     time when the turbulent kinetic energy exceeds some minimum value, defined here
2449     to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2450     incremented. The fraction over the averaging interval is reported.
2451     \\
2452    
2453     \noindent
2454     { \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
2455    
2456     \noindent
2457     The depth of the PBL is defined by the turbulence parameterization to be the
2458     depth at which the turbulent kinetic energy reduces to ten percent of its surface
2459     value.
2460    
2461     \[
2462     {\bf PBL} = P_{PBL} - P_{surface}
2463     \]
2464    
2465     \noindent
2466     where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2467     reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2468     \\
2469    
2470     \noindent
2471     { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2472    
2473     \noindent
2474     The net Shortwave heating rate is calculated as the vertical divergence of the
2475     net solar radiative fluxes.
2476     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2477     For the clear-sky case, the shortwave fluxes and heating rates are computed with
2478     both CLMO (maximum overlap cloud fraction) and
2479     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2480     The shortwave routine is then called a second time, for the cloudy-sky case, with the
2481     true time-averaged cloud fractions CLMO
2482     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
2483     input at the top of the atmosphere.
2484    
2485     \noindent
2486     The heating rate due to Shortwave Radiation under clear skies is defined as:
2487     \[
2488     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2489     \]
2490     or
2491     \[
2492     {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2493     \]
2494    
2495     \noindent
2496     where $g$ is the accelation due to gravity,
2497     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2498     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2499     \[
2500     F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2501     \]
2502     \\
2503    
2504     \noindent
2505     { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2506     \[
2507     {\bf OSR} = F_{SW,top}^{NET}
2508     \]
2509     \noindent
2510     where top indicates the top of the first model layer used in the shortwave radiation
2511     routine.
2512     In the GCM, $p_{SW_{top}}$ = 0 mb.
2513     \\
2514    
2515     \noindent
2516     { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2517     \[
2518     {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
2519     \]
2520     \noindent
2521     where top indicates the top of the first model layer used in the shortwave radiation
2522     routine.
2523     In the GCM, $p_{SW_{top}}$ = 0 mb.
2524     \\
2525    
2526    
2527     \noindent
2528     { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2529    
2530     \noindent
2531     The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2532     \[
2533     {\bf CLDMAS} = \eta m_B
2534     \]
2535     where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2536     the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2537     description of the convective parameterization.
2538     \\
2539    
2540    
2541    
2542     \noindent
2543     { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2544    
2545     \noindent
2546     The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2547     the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
2548     Zonal U-Wind which is archived on the Prognostic Output data stream.
2549     \[
2550     {\bf UAVE} = u(\lambda, \phi, level , t)
2551     \]
2552     \\
2553     Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2554     \\
2555    
2556     \noindent
2557     { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2558    
2559     \noindent
2560     The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2561     the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
2562     Meridional V-Wind which is archived on the Prognostic Output data stream.
2563     \[
2564     {\bf VAVE} = v(\lambda, \phi, level , t)
2565     \]
2566     \\
2567     Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2568     \\
2569    
2570     \noindent
2571     { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2572    
2573     \noindent
2574     The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2575     the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
2576     Temperature which is archived on the Prognostic Output data stream.
2577     \[
2578     {\bf TAVE} = T(\lambda, \phi, level , t)
2579     \]
2580     \\
2581    
2582     \noindent
2583     { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2584    
2585     \noindent
2586     The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2587     the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
2588     Specific Humidity which is archived on the Prognostic Output data stream.
2589     \[
2590     {\bf QAVE} = q(\lambda, \phi, level , t)
2591     \]
2592     \\
2593    
2594     \noindent
2595     { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2596    
2597     \noindent
2598     The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2599     the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
2600     Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2601     \begin{eqnarray*}
2602     {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
2603     & = & p_s(\lambda, \phi, level , t) - p_T
2604     \end{eqnarray*}
2605     \\
2606    
2607    
2608     \noindent
2609     { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2610    
2611     \noindent
2612     The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2613     produced by the GCM Turbulence parameterization over
2614     the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
2615     Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2616     \[
2617     {\bf QQAVE} = qq(\lambda, \phi, level , t)
2618     \]
2619     \\
2620     Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2621     \\
2622    
2623     \noindent
2624     { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2625    
2626     \noindent
2627     \begin{eqnarray*}
2628     {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2629     & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2630     \end{eqnarray*}
2631     \noindent
2632     \\
2633     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2634     $F(clearsky){SW}^\downarrow$ is
2635     the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2636     the upward clearsky Shortwave flux.
2637     \\
2638    
2639     \noindent
2640     { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2641    
2642     \noindent
2643     {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2644     and the Analysis forcing.
2645     \[
2646     {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2647     \]
2648     \\
2649    
2650     \noindent
2651     { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2652    
2653     \noindent
2654     {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2655     and the Analysis forcing.
2656     \[
2657     {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2658     \]
2659     \\
2660    
2661     \noindent
2662     { \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2663    
2664     \noindent
2665     {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2666     and the Analysis forcing.
2667     \begin{eqnarray*}
2668     {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2669     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2670     \end{eqnarray*}
2671     \\
2672     If we define the time-tendency of Temperature due to Diabatic processes as
2673     \begin{eqnarray*}
2674     \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2675     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2676     \end{eqnarray*}
2677     then, since there are no surface pressure changes due to Diabatic processes, we may write
2678     \[
2679     \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2680     \]
2681     where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2682     \[
2683     {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2684     \]
2685     \\
2686    
2687     \noindent
2688     { \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2689    
2690     \noindent
2691     {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2692     and the Analysis forcing.
2693     \[
2694     {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2695     \]
2696     If we define the time-tendency of Specific Humidity due to Diabatic processes as
2697     \[
2698     \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2699     \]
2700     then, since there are no surface pressure changes due to Diabatic processes, we may write
2701     \[
2702     \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2703     \]
2704     Thus, {\bf DIABQ} may be written as
2705     \[
2706     {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2707     \]
2708     \\
2709    
2710     \noindent
2711     { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2712    
2713     \noindent
2714     The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2715     $u q$ over the depth of the atmosphere at each model timestep,
2716     and dividing by the total mass of the column.
2717     \[
2718     {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2719     \]
2720     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2721     \[
2722     {\bf VINTUQ} = { \int_0^1 u q dp }
2723     \]
2724     \\
2725    
2726    
2727     \noindent
2728     { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2729    
2730     \noindent
2731     The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2732     $v q$ over the depth of the atmosphere at each model timestep,
2733     and dividing by the total mass of the column.
2734     \[
2735     {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2736     \]
2737     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2738     \[
2739     {\bf VINTVQ} = { \int_0^1 v q dp }
2740     \]
2741     \\
2742    
2743    
2744     \noindent
2745     { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2746    
2747     \noindent
2748     The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2749     $u T$ over the depth of the atmosphere at each model timestep,
2750     and dividing by the total mass of the column.
2751     \[
2752     {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2753     \]
2754     Or,
2755     \[
2756     {\bf VINTUT} = { \int_0^1 u T dp }
2757     \]
2758     \\
2759    
2760     \noindent
2761     { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2762    
2763     \noindent
2764     The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2765     $v T$ over the depth of the atmosphere at each model timestep,
2766     and dividing by the total mass of the column.
2767     \[
2768     {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2769     \]
2770     Using $\rho \delta z = -{\delta p \over g} $, we have
2771     \[
2772     {\bf VINTVT} = { \int_0^1 v T dp }
2773     \]
2774     \\
2775    
2776     \noindent
2777     { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2778    
2779     If we define the
2780     time-averaged random and maximum overlapped cloudiness as CLRO and
2781     CLMO respectively, then the probability of clear sky associated
2782     with random overlapped clouds at any level is (1-CLRO) while the probability of
2783     clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2784     The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2785     the total cloud fraction at each level may be obtained by
2786     1-(1-CLRO)*(1-CLMO).
2787    
2788     At any given level, we may define the clear line-of-site probability by
2789     appropriately accounting for the maximum and random overlap
2790     cloudiness. The clear line-of-site probability is defined to be
2791     equal to the product of the clear line-of-site probabilities
2792     associated with random and maximum overlap cloudiness. The clear
2793     line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2794     from the current pressure $p$
2795     to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2796     is simply 1.0 minus the largest maximum overlap cloud value along the
2797     line-of-site, ie.
2798    
2799     $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2800    
2801     Thus, even in the time-averaged sense it is assumed that the
2802     maximum overlap clouds are correlated in the vertical. The clear
2803     line-of-site probability associated with random overlap clouds is
2804     defined to be the product of the clear sky probabilities at each
2805     level along the line-of-site, ie.
2806    
2807     $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2808    
2809     The total cloud fraction at a given level associated with a line-
2810     of-site calculation is given by
2811    
2812     $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2813     \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2814    
2815    
2816     \noindent
2817     The 2-dimensional net cloud fraction as seen from the top of the
2818     atmosphere is given by
2819     \[
2820     {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2821     \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2822     \]
2823     \\
2824     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2825    
2826    
2827     \noindent
2828     { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2829    
2830     \noindent
2831     The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2832     given by:
2833     \begin{eqnarray*}
2834     {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2835     & = & {\pi \over g} \int_0^1 q dp
2836     \end{eqnarray*}
2837     where we have used the hydrostatic relation
2838     $\rho \delta z = -{\delta p \over g} $.
2839     \\
2840    
2841    
2842     \noindent
2843     { \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2844    
2845     \noindent
2846     The u-wind at the 2-meter depth is determined from the similarity theory:
2847     \[
2848     {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2849     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2850     \]
2851    
2852     \noindent
2853     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2854     $sl$ refers to the height of the top of the surface layer. If the roughness height
2855     is above two meters, ${\bf U2M}$ is undefined.
2856     \\
2857    
2858     \noindent
2859     { \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2860    
2861     \noindent
2862     The v-wind at the 2-meter depth is a determined from the similarity theory:
2863     \[
2864     {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2865     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2866     \]
2867    
2868     \noindent
2869     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2870     $sl$ refers to the height of the top of the surface layer. If the roughness height
2871     is above two meters, ${\bf V2M}$ is undefined.
2872     \\
2873    
2874     \noindent
2875     { \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2876    
2877     \noindent
2878     The temperature at the 2-meter depth is a determined from the similarity theory:
2879     \[
2880     {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2881     P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2882     (\theta_{sl} - \theta_{surf}))
2883     \]
2884     where:
2885     \[
2886     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2887     \]
2888    
2889     \noindent
2890     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2891     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2892     $sl$ refers to the height of the top of the surface layer. If the roughness height
2893     is above two meters, ${\bf T2M}$ is undefined.
2894     \\
2895    
2896     \noindent
2897     { \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2898    
2899     \noindent
2900     The specific humidity at the 2-meter depth is determined from the similarity theory:
2901     \[
2902     {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2903     P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2904     (q_{sl} - q_{surf}))
2905     \]
2906     where:
2907     \[
2908     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2909     \]
2910    
2911     \noindent
2912     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2913     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2914     $sl$ refers to the height of the top of the surface layer. If the roughness height
2915     is above two meters, ${\bf Q2M}$ is undefined.
2916     \\
2917    
2918     \noindent
2919     { \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2920    
2921     \noindent
2922     The u-wind at the 10-meter depth is an interpolation between the surface wind
2923     and the model lowest level wind using the ratio of the non-dimensional wind shear
2924     at the two levels:
2925     \[
2926     {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2927     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2928     \]
2929    
2930     \noindent
2931     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2932     $sl$ refers to the height of the top of the surface layer.
2933     \\
2934    
2935     \noindent
2936     { \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2937    
2938     \noindent
2939     The v-wind at the 10-meter depth is an interpolation between the surface wind
2940     and the model lowest level wind using the ratio of the non-dimensional wind shear
2941     at the two levels:
2942     \[
2943     {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2944     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2945     \]
2946    
2947     \noindent
2948     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2949     $sl$ refers to the height of the top of the surface layer.
2950     \\
2951    
2952     \noindent
2953     { \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2954    
2955     \noindent
2956     The temperature at the 10-meter depth is an interpolation between the surface potential
2957     temperature and the model lowest level potential temperature using the ratio of the
2958     non-dimensional temperature gradient at the two levels:
2959     \[
2960     {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2961     P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2962     (\theta_{sl} - \theta_{surf}))
2963     \]
2964     where:
2965     \[
2966     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2967     \]
2968    
2969     \noindent
2970     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2971     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2972     $sl$ refers to the height of the top of the surface layer.
2973     \\
2974    
2975     \noindent
2976     { \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2977    
2978     \noindent
2979     The specific humidity at the 10-meter depth is an interpolation between the surface specific
2980     humidity and the model lowest level specific humidity using the ratio of the
2981     non-dimensional temperature gradient at the two levels:
2982     \[
2983     {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2984     P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2985     (q_{sl} - q_{surf}))
2986     \]
2987     where:
2988     \[
2989     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2990     \]
2991    
2992     \noindent
2993     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2994     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2995     $sl$ refers to the height of the top of the surface layer.
2996     \\
2997    
2998     \noindent
2999     { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
3000    
3001     The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
3002     \[
3003     {\bf DTRAIN} = \eta_{r_D}m_B
3004     \]
3005     \noindent
3006     where $r_D$ is the detrainment level,
3007     $m_B$ is the cloud base mass flux, and $\eta$
3008     is the entrainment, defined in Section \ref{sec:fizhi:mc}.
3009     \\
3010    
3011     \noindent
3012     { \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
3013    
3014     \noindent
3015     Due to computational errors associated with the numerical scheme used for
3016     the advection of moisture, negative values of specific humidity may be generated. The
3017     specific humidity is checked for negative values after every dynamics timestep. If negative
3018     values have been produced, a filling algorithm is invoked which redistributes moisture from
3019     below. Diagnostic {\bf QFILL} is equal to the net filling needed
3020     to eliminate negative specific humidity, scaled to a per-day rate:
3021     \[
3022     {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
3023     \]
3024     where
3025     \[
3026     q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
3027     \]
3028    
3029    
3030 molod 1.9 \subsubsection{Key subroutines, parameters and files}
3031 molod 1.6
3032 molod 1.9 \subsubsection{Dos and donts}
3033 molod 1.6
3034 molod 1.9 \subsubsection{Fizhi Reference}

  ViewVC Help
Powered by ViewVC 1.1.22