| 1 | 
molod | 
1.9 | 
\subsection{Fizhi: High-end Atmospheric Physics} | 
| 2 | 
edhill | 
1.7 | 
\label{sec:pkg:fizhi} | 
| 3 | 
  | 
  | 
\begin{rawhtml} | 
| 4 | 
  | 
  | 
<!-- CMIREDIR:package_fizhi: --> | 
| 5 | 
  | 
  | 
\end{rawhtml} | 
| 6 | 
molod | 
1.3 | 
\input{texinputs/epsf.tex} | 
| 7 | 
molod | 
1.1 | 
 | 
| 8 | 
molod | 
1.9 | 
\subsubsection{Introduction} | 
| 9 | 
molod | 
1.1 | 
The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art | 
| 10 | 
  | 
  | 
physical parameterizations for atmospheric radiation, cumulus convection, atmospheric | 
| 11 | 
molod | 
1.11 | 
boundary layer turbulence, and land surface processes. The collection of atmospheric | 
| 12 | 
  | 
  | 
physics parameterizations were originally used together as part of the GEOS-3 | 
| 13 | 
  | 
  | 
(Goddard Earth Observing System-3) GCM developed at the NASA/Goddard Global Modelling | 
| 14 | 
  | 
  | 
and Assimilation Office (GMAO). | 
| 15 | 
molod | 
1.1 | 
 | 
| 16 | 
  | 
  | 
% ************************************************************************* | 
| 17 | 
  | 
  | 
% ************************************************************************* | 
| 18 | 
  | 
  | 
  | 
| 19 | 
molod | 
1.9 | 
\subsubsection{Equations} | 
| 20 | 
molod | 
1.1 | 
 | 
| 21 | 
molod | 
1.9 | 
Moist Convective Processes: | 
| 22 | 
molod | 
1.1 | 
 | 
| 23 | 
molod | 
1.5 | 
\paragraph{Sub-grid and Large-scale Convection} | 
| 24 | 
molod | 
1.1 | 
\label{sec:fizhi:mc} | 
| 25 | 
  | 
  | 
 | 
| 26 | 
  | 
  | 
Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa | 
| 27 | 
molod | 
1.10 | 
Schubert (RAS) scheme of \cite{moorsz:92}, which is a linearized Arakawa Schubert | 
| 28 | 
molod | 
1.1 | 
type scheme.  RAS predicts the mass flux from an ensemble of clouds.  Each subensemble is identified | 
| 29 | 
  | 
  | 
by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties. | 
| 30 | 
  | 
  | 
 | 
| 31 | 
  | 
  | 
The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are | 
| 32 | 
  | 
  | 
the dry static energy, $s=c_pT +gz$, and the moist static energy, $h=c_p T + gz + Lq$.  | 
| 33 | 
  | 
  | 
The conceptual model behind RAS depicts each subensemble as a rising plume cloud, entraining  | 
| 34 | 
  | 
  | 
mass from the environment during ascent, and detraining all cloud air at the level of neutral  | 
| 35 | 
  | 
  | 
buoyancy. RAS assumes that the normalized cloud mass flux, $\eta$, normalized by the cloud base  | 
| 36 | 
  | 
  | 
mass flux, is a linear function of height, expressed as: | 
| 37 | 
  | 
  | 
\[ | 
| 38 | 
  | 
  | 
\pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =  | 
| 39 | 
jmc | 
1.19 | 
-\frac{c_p}{g}\theta\lambda | 
| 40 | 
molod | 
1.1 | 
\] | 
| 41 | 
  | 
  | 
where we have used the hydrostatic equation written in the form: | 
| 42 | 
  | 
  | 
\[ | 
| 43 | 
jmc | 
1.19 | 
\pp{z}{P^{\kappa}} = -\frac{c_p}{g}\theta | 
| 44 | 
molod | 
1.1 | 
\] | 
| 45 | 
  | 
  | 
 | 
| 46 | 
  | 
  | 
The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its | 
| 47 | 
  | 
  | 
detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral | 
| 48 | 
  | 
  | 
buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal  | 
| 49 | 
molod | 
1.10 | 
to the saturation moist static energy of the environment, $h^*$.  Following \cite{moorsz:92}, | 
| 50 | 
molod | 
1.1 | 
$\lambda$ may be written as | 
| 51 | 
  | 
  | 
\[ | 
| 52 | 
jmc | 
1.19 | 
\lambda = \frac{h_B - h^*_D}{ \frac{c_p}{g} \int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}, | 
| 53 | 
molod | 
1.1 | 
\] | 
| 54 | 
  | 
  | 
 | 
| 55 | 
  | 
  | 
where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level. | 
| 56 | 
  | 
  | 
 | 
| 57 | 
  | 
  | 
 | 
| 58 | 
  | 
  | 
The convective instability is measured in terms of the cloud work function $A$, defined as the | 
| 59 | 
  | 
  | 
rate of change of cumulus kinetic energy. The cloud work function is  | 
| 60 | 
  | 
  | 
related to the buoyancy, or the difference | 
| 61 | 
  | 
  | 
between the moist static energy in the cloud and in the environment: | 
| 62 | 
  | 
  | 
\[ | 
| 63 | 
jmc | 
1.19 | 
A = \int_{P_D}^{P_B} \frac{\eta}{1 + \gamma} | 
| 64 | 
  | 
  | 
\left[ \frac{h_c-h^*}{P^{\kappa}} \right] dP^{\kappa} | 
| 65 | 
molod | 
1.1 | 
\] | 
| 66 | 
  | 
  | 
 | 
| 67 | 
jmc | 
1.19 | 
where $\gamma$ is $\frac{L}{c_p}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation, | 
| 68 | 
molod | 
1.1 | 
and the subscript $c$ refers to the value inside the cloud. | 
| 69 | 
  | 
  | 
 | 
| 70 | 
  | 
  | 
 | 
| 71 | 
  | 
  | 
To determine the cloud base mass flux, the rate of change of $A$ in time {\em due to dissipation by  | 
| 72 | 
  | 
  | 
the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation  | 
| 73 | 
  | 
  | 
by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$: | 
| 74 | 
  | 
  | 
\[ | 
| 75 | 
jmc | 
1.19 | 
m_B = \frac{- \left. \frac{dA}{dt} \right|_{ls}}{K} | 
| 76 | 
molod | 
1.1 | 
\] | 
| 77 | 
  | 
  | 
 | 
| 78 | 
  | 
  | 
where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per | 
| 79 | 
  | 
  | 
unit cloud base mass flux, and is currently obtained by analytically differentiating the  | 
| 80 | 
  | 
  | 
expression for $A$ in time. | 
| 81 | 
  | 
  | 
The rate of change of $A$ due to the generation by the large scale can be written as the | 
| 82 | 
  | 
  | 
difference between the current $A(t+\Delta t)$ and its equillibrated value after the previous  | 
| 83 | 
  | 
  | 
convective time step  | 
| 84 | 
  | 
  | 
$A(t)$, divided by the time step. $A(t)$ is approximated as some critical $A_{crit}$, | 
| 85 | 
  | 
  | 
computed by Lord (1982) from $in situ$ observations. | 
| 86 | 
  | 
  | 
 | 
| 87 | 
  | 
  | 
 | 
| 88 | 
  | 
  | 
The predicted convective mass fluxes are used to solve grid-scale temperature | 
| 89 | 
  | 
  | 
and moisture budget equations to determine the impact of convection on the large scale fields of | 
| 90 | 
  | 
  | 
temperature (through latent heating and compensating subsidence) and moisture (through | 
| 91 | 
  | 
  | 
precipitation and detrainment): | 
| 92 | 
  | 
  | 
\[ | 
| 93 | 
jmc | 
1.19 | 
\left.{\pp{\theta}{t}}\right|_{c} = \alpha \frac{ m_B}{c_p P^{\kappa}} \eta \pp{s}{p} | 
| 94 | 
molod | 
1.1 | 
\] | 
| 95 | 
  | 
  | 
and | 
| 96 | 
  | 
  | 
\[ | 
| 97 | 
jmc | 
1.19 | 
\left.{\pp{q}{t}}\right|_{c} = \alpha \frac{ m_B}{L} \eta (\pp{h}{p}-\pp{s}{p}) | 
| 98 | 
molod | 
1.1 | 
\] | 
| 99 | 
jmc | 
1.19 | 
where $\theta = \frac{T}{P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter. | 
| 100 | 
molod | 
1.1 | 
 | 
| 101 | 
  | 
  | 
As an approximation to a full interaction between the different allowable subensembles, | 
| 102 | 
  | 
  | 
many clouds are simulated frequently, each modifying the large scale environment some fraction | 
| 103 | 
  | 
  | 
$\alpha$ of the total adjustment. The parameterization thereby ``relaxes'' the large scale environment | 
| 104 | 
  | 
  | 
towards equillibrium.   | 
| 105 | 
  | 
  | 
 | 
| 106 | 
  | 
  | 
In addition to the RAS cumulus convection scheme, the fizhi package employs a | 
| 107 | 
molod | 
1.10 | 
Kessler-type scheme for the re-evaporation of falling rain (\cite{sudm:88}), which | 
| 108 | 
molod | 
1.1 | 
correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current | 
| 109 | 
  | 
  | 
formulation assumes that all cloud water is deposited into the detrainment level as rain. | 
| 110 | 
  | 
  | 
All of the rain is available for re-evaporation, which begins in the level below detrainment.  | 
| 111 | 
  | 
  | 
The scheme accounts for some microphysics such as | 
| 112 | 
  | 
  | 
the rainfall intensity, the drop size distribution, as well as the temperature,  | 
| 113 | 
  | 
  | 
pressure and relative humidity of the surrounding air.  The fraction of the moisture deficit  | 
| 114 | 
  | 
  | 
in any model layer into which the rain may re-evaporate is controlled by a free parameter, | 
| 115 | 
  | 
  | 
which allows for a relatively efficient re-evaporation of liquid precipitate and larger rainout | 
| 116 | 
  | 
  | 
for frozen precipitation. | 
| 117 | 
  | 
  | 
 | 
| 118 | 
  | 
  | 
Due to the increased vertical resolution near the surface, the lowest model  | 
| 119 | 
  | 
  | 
layers are averaged to provide a 50 mb thick sub-cloud layer for RAS.  Each time RAS is | 
| 120 | 
  | 
  | 
invoked (every ten simulated minutes),  | 
| 121 | 
  | 
  | 
a number of randomly chosen subensembles are checked for the possibility  | 
| 122 | 
  | 
  | 
of convection, from just above cloud base to 10 mb.   | 
| 123 | 
  | 
  | 
 | 
| 124 | 
  | 
  | 
Supersaturation or large-scale precipitation is initiated in the fizhi package whenever  | 
| 125 | 
  | 
  | 
the relative humidity in any grid-box exceeds a critical value, currently 100 \%. | 
| 126 | 
  | 
  | 
The large-scale precipitation re-evaporates during descent to partially saturate  | 
| 127 | 
  | 
  | 
lower layers in a process identical to the re-evaporation of convective rain.  | 
| 128 | 
  | 
  | 
 | 
| 129 | 
  | 
  | 
  | 
| 130 | 
molod | 
1.5 | 
\paragraph{Cloud Formation} | 
| 131 | 
molod | 
1.1 | 
\label{sec:fizhi:clouds} | 
| 132 | 
  | 
  | 
 | 
| 133 | 
  | 
  | 
Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined | 
| 134 | 
  | 
  | 
diagnostically as part of the cumulus and large-scale parameterizations. | 
| 135 | 
  | 
  | 
Convective cloud fractions produced by RAS are proportional to the  | 
| 136 | 
  | 
  | 
detrained liquid water amount given by | 
| 137 | 
  | 
  | 
 | 
| 138 | 
  | 
  | 
\[ | 
| 139 | 
jmc | 
1.19 | 
F_{RAS} = \min\left[ \frac{l_{RAS}}{l_c}, 1.0 \right] | 
| 140 | 
molod | 
1.1 | 
\] | 
| 141 | 
  | 
  | 
 | 
| 142 | 
  | 
  | 
where $l_c$ is an assigned critical value equal to $1.25$ g/kg. | 
| 143 | 
  | 
  | 
A memory is associated with convective clouds defined by: | 
| 144 | 
  | 
  | 
 | 
| 145 | 
  | 
  | 
\[ | 
| 146 | 
jmc | 
1.19 | 
F_{RAS}^n = \min\left[ F_{RAS} + (1-\frac{\Delta t_{RAS}}{\tau})F_{RAS}^{n-1}, 1.0 \right] | 
| 147 | 
molod | 
1.1 | 
\] | 
| 148 | 
  | 
  | 
 | 
| 149 | 
  | 
  | 
where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction | 
| 150 | 
  | 
  | 
from the previous RAS timestep.  The memory coefficient is computed using a RAS cloud timescale, | 
| 151 | 
  | 
  | 
$\tau$, equal to 1 hour.  RAS cloud fractions are cleared when they fall below 5 \%. | 
| 152 | 
  | 
  | 
 | 
| 153 | 
  | 
  | 
Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative | 
| 154 | 
  | 
  | 
humidity: | 
| 155 | 
  | 
  | 
 | 
| 156 | 
  | 
  | 
\[ | 
| 157 | 
jmc | 
1.19 | 
F_{LS} = \min\left[ { \left( \frac{RH-RH_c}{1-RH_c} \right) }^2, 1.0 \right] | 
| 158 | 
molod | 
1.1 | 
\] | 
| 159 | 
  | 
  | 
 | 
| 160 | 
  | 
  | 
where | 
| 161 | 
  | 
  | 
 | 
| 162 | 
  | 
  | 
\bqa | 
| 163 | 
  | 
  | 
RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\ | 
| 164 | 
  | 
  | 
   s & = & p/p_{surf} \nonumber \\ | 
| 165 | 
jmc | 
1.19 | 
   r & = & \left( \frac{1.0-RH_{min}}{\alpha} \right) \nonumber \\ | 
| 166 | 
molod | 
1.1 | 
RH_{min} & = & 0.75 \nonumber \\ | 
| 167 | 
  | 
  | 
\alpha & = & 0.573285 \nonumber  . | 
| 168 | 
  | 
  | 
\eqa | 
| 169 | 
  | 
  | 
 | 
| 170 | 
  | 
  | 
These cloud fractions are suppressed, however, in regions where the convective | 
| 171 | 
  | 
  | 
sub-cloud layer is conditionally unstable.  The functional form of $RH_c$ is shown in | 
| 172 | 
molod | 
1.13 | 
Figure (\ref{fig.rhcrit}). | 
| 173 | 
molod | 
1.1 | 
 | 
| 174 | 
  | 
  | 
\begin{figure*}[htbp] | 
| 175 | 
  | 
  | 
  \vspace{0.4in} | 
| 176 | 
jmc | 
1.18 | 
  \centerline{  \epsfysize=4.0in  \epsfbox{s_phys_pkgs/figs/rhcrit.ps}} | 
| 177 | 
molod | 
1.1 | 
  \vspace{0.4in} | 
| 178 | 
molod | 
1.13 | 
  \caption  [Critical Relative Humidity for Clouds.] | 
| 179 | 
  | 
  | 
            {Critical Relative Humidity for Clouds.} | 
| 180 | 
  | 
  | 
  \label{fig.rhcrit} | 
| 181 | 
molod | 
1.1 | 
\end{figure*} | 
| 182 | 
  | 
  | 
 | 
| 183 | 
  | 
  | 
The total cloud fraction in a grid box is determined by the larger of the two cloud fractions: | 
| 184 | 
  | 
  | 
 | 
| 185 | 
  | 
  | 
\[ | 
| 186 | 
  | 
  | 
F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] . | 
| 187 | 
  | 
  | 
\] | 
| 188 | 
  | 
  | 
 | 
| 189 | 
  | 
  | 
Finally, cloud fractions are time-averaged between calls to the radiation packages. | 
| 190 | 
  | 
  | 
 | 
| 191 | 
  | 
  | 
 | 
| 192 | 
molod | 
1.9 | 
Radiation: | 
| 193 | 
molod | 
1.1 | 
 | 
| 194 | 
  | 
  | 
The parameterization of radiative heating in the fizhi package includes effects  | 
| 195 | 
  | 
  | 
from both shortwave and longwave processes. | 
| 196 | 
  | 
  | 
Radiative fluxes are calculated at each | 
| 197 | 
  | 
  | 
model edge-level in both up and down directions. | 
| 198 | 
  | 
  | 
The heating rates/cooling rates are then obtained  | 
| 199 | 
  | 
  | 
from the vertical divergence of the net radiative fluxes. | 
| 200 | 
  | 
  | 
 | 
| 201 | 
  | 
  | 
The net flux is | 
| 202 | 
  | 
  | 
\[ | 
| 203 | 
  | 
  | 
F = F^\uparrow - F^\downarrow | 
| 204 | 
  | 
  | 
\] | 
| 205 | 
  | 
  | 
where $F$ is the net flux, $F^\uparrow$ is the upward flux and $F^\downarrow$ is | 
| 206 | 
  | 
  | 
the downward flux. | 
| 207 | 
  | 
  | 
 | 
| 208 | 
  | 
  | 
The heating rate due to the divergence of the radiative flux is given by | 
| 209 | 
  | 
  | 
\[ | 
| 210 | 
  | 
  | 
\pp{\rho c_p T}{t} = - \pp{F}{z} | 
| 211 | 
  | 
  | 
\] | 
| 212 | 
  | 
  | 
or | 
| 213 | 
  | 
  | 
\[ | 
| 214 | 
  | 
  | 
\pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma} | 
| 215 | 
  | 
  | 
\] | 
| 216 | 
  | 
  | 
where $g$ is the accelation due to gravity | 
| 217 | 
  | 
  | 
and $c_p$ is the heat capacity of air at constant pressure. | 
| 218 | 
  | 
  | 
   | 
| 219 | 
  | 
  | 
The time tendency for Longwave | 
| 220 | 
  | 
  | 
Radiation is updated every 3 hours.  The time tendency for Shortwave Radiation is updated once | 
| 221 | 
  | 
  | 
every three hours assuming a normalized incident solar radiation, and subsequently modified at | 
| 222 | 
  | 
  | 
every model time step by the true incident radiation.   | 
| 223 | 
  | 
  | 
The solar constant value used in the package is equal to 1365 $W/m^2$ | 
| 224 | 
  | 
  | 
and a $CO_2$ mixing ratio of 330 ppm.  | 
| 225 | 
  | 
  | 
For the ozone mixing ratio, monthly mean zonally averaged  | 
| 226 | 
  | 
  | 
climatological values specified as a function | 
| 227 | 
molod | 
1.10 | 
of latitude and height (\cite{rosen:87}) are linearly interpolated to the current time. | 
| 228 | 
molod | 
1.1 | 
 | 
| 229 | 
  | 
  | 
 | 
| 230 | 
molod | 
1.5 | 
\paragraph{Shortwave Radiation} | 
| 231 | 
molod | 
1.1 | 
 | 
| 232 | 
  | 
  | 
The shortwave radiation package used in the package computes solar radiative  | 
| 233 | 
  | 
  | 
heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen, | 
| 234 | 
  | 
  | 
clouds, and aerosols and due to the | 
| 235 | 
  | 
  | 
scattering by clouds, aerosols, and gases. | 
| 236 | 
  | 
  | 
The shortwave radiative processes are described by  | 
| 237 | 
molod | 
1.10 | 
\cite{chou:90,chou:92}. This shortwave package | 
| 238 | 
molod | 
1.1 | 
uses the Delta-Eddington approximation to compute the | 
| 239 | 
  | 
  | 
bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986). | 
| 240 | 
  | 
  | 
The transmittance and reflectance of diffuse radiation | 
| 241 | 
molod | 
1.10 | 
follow the procedures of Sagan and Pollock (JGR, 1967) and \cite{lhans:74}. | 
| 242 | 
molod | 
1.1 | 
 | 
| 243 | 
  | 
  | 
Highly accurate heating rate calculations are obtained through the use | 
| 244 | 
  | 
  | 
of an optimal grouping strategy of spectral bands.  By grouping the UV and visible regions | 
| 245 | 
  | 
  | 
as indicated in Table \ref{tab:fizhi:solar2}, the Rayleigh scattering and the ozone absorption of solar radiation | 
| 246 | 
  | 
  | 
can be accurately computed in the ultraviolet region and the photosynthetically | 
| 247 | 
  | 
  | 
active radiation (PAR) region. | 
| 248 | 
  | 
  | 
The computation of solar flux in the infrared region is performed with a broadband | 
| 249 | 
  | 
  | 
parameterization using the spectrum regions shown in Table \ref{tab:fizhi:solar1}. | 
| 250 | 
  | 
  | 
The solar radiation algorithm used in the fizhi package can be applied not only for climate studies but | 
| 251 | 
  | 
  | 
also for studies on the photolysis in the upper atmosphere and the photosynthesis in the biosphere. | 
| 252 | 
  | 
  | 
 | 
| 253 | 
  | 
  | 
\begin{table}[htb] | 
| 254 | 
  | 
  | 
\begin{center} | 
| 255 | 
  | 
  | 
{\bf UV and Visible Spectral Regions} \\ | 
| 256 | 
  | 
  | 
\vspace{0.1in} | 
| 257 | 
  | 
  | 
\begin{tabular}{|c|c|c|}  | 
| 258 | 
  | 
  | 
\hline | 
| 259 | 
  | 
  | 
Region & Band & Wavelength (micron) \\ \hline | 
| 260 | 
  | 
  | 
\hline | 
| 261 | 
  | 
  | 
UV-C   &  1.  &  .175 - .225  \\ | 
| 262 | 
  | 
  | 
       &  2.  &  .225 - .245  \\ | 
| 263 | 
  | 
  | 
       &      &  .260 - .280  \\ | 
| 264 | 
  | 
  | 
       &  3.  &  .245 - .260  \\ \hline | 
| 265 | 
  | 
  | 
UV-B   &  4.  &  .280 - .295  \\ | 
| 266 | 
  | 
  | 
       &  5.  &  .295 - .310  \\ | 
| 267 | 
  | 
  | 
       &  6.  &  .310 - .320  \\ \hline | 
| 268 | 
  | 
  | 
UV-A   &  7.  &  .320 - .400  \\ \hline | 
| 269 | 
  | 
  | 
PAR    &  8.  &  .400 - .700  \\ | 
| 270 | 
  | 
  | 
\hline | 
| 271 | 
  | 
  | 
\end{tabular} | 
| 272 | 
  | 
  | 
\end{center} | 
| 273 | 
  | 
  | 
\caption{UV and Visible Spectral Regions used in shortwave radiation package.} | 
| 274 | 
  | 
  | 
\label{tab:fizhi:solar2} | 
| 275 | 
  | 
  | 
\end{table} | 
| 276 | 
  | 
  | 
 | 
| 277 | 
  | 
  | 
\begin{table}[htb] | 
| 278 | 
  | 
  | 
\begin{center} | 
| 279 | 
  | 
  | 
{\bf Infrared Spectral Regions} \\ | 
| 280 | 
  | 
  | 
\vspace{0.1in} | 
| 281 | 
  | 
  | 
\begin{tabular}{|c|c|c|}  | 
| 282 | 
  | 
  | 
\hline | 
| 283 | 
  | 
  | 
Band & Wavenumber(cm$^{-1}$) & Wavelength (micron) \\ \hline | 
| 284 | 
  | 
  | 
\hline | 
| 285 | 
  | 
  | 
1  &    1000-4400    &    2.27-10.0 \\ | 
| 286 | 
  | 
  | 
2  &    4400-8200    &    1.22-2.27 \\ | 
| 287 | 
  | 
  | 
3  &    8200-14300   &    0.70-1.22 \\ | 
| 288 | 
  | 
  | 
\hline | 
| 289 | 
  | 
  | 
\end{tabular} | 
| 290 | 
  | 
  | 
\end{center} | 
| 291 | 
  | 
  | 
\caption{Infrared Spectral Regions used in shortwave radiation package.} | 
| 292 | 
  | 
  | 
\label{tab:fizhi:solar1} | 
| 293 | 
  | 
  | 
\end{table} | 
| 294 | 
  | 
  | 
 | 
| 295 | 
  | 
  | 
Within the shortwave radiation package,  | 
| 296 | 
  | 
  | 
both ice and liquid cloud particles are allowed to co-exist in any of the model layers.  | 
| 297 | 
  | 
  | 
Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles. | 
| 298 | 
  | 
  | 
Cloud parameters are defined as the cloud optical thickness and the effective cloud particle size. | 
| 299 | 
  | 
  | 
In the fizhi package, the effective radius for water droplets is given as 10 microns, | 
| 300 | 
  | 
  | 
while 65 microns is used for ice particles.  The absorption due to aerosols is currently | 
| 301 | 
  | 
  | 
set to zero. | 
| 302 | 
  | 
  | 
 | 
| 303 | 
  | 
  | 
To simplify calculations in a cloudy atmosphere, clouds are | 
| 304 | 
  | 
  | 
grouped into low ($p>700$ mb), middle (700 mb $\ge p > 400$ mb), and high ($p < 400$ mb) cloud regions.  | 
| 305 | 
  | 
  | 
Within each of the three regions, clouds are assumed maximally | 
| 306 | 
  | 
  | 
overlapped, and the cloud cover of the group is the maximum | 
| 307 | 
  | 
  | 
cloud cover of all the layers in the group.  The optical thickness | 
| 308 | 
  | 
  | 
of a given layer is then scaled for both the direct (as a function of the | 
| 309 | 
  | 
  | 
solar zenith angle) and diffuse beam radiation  | 
| 310 | 
  | 
  | 
so that the grouped layer reflectance is the same as the original reflectance. | 
| 311 | 
molod | 
1.13 | 
The solar flux is computed for each of eight cloud realizations possible within this | 
| 312 | 
molod | 
1.1 | 
low/middle/high classification, and appropriately averaged to produce the net solar flux. | 
| 313 | 
  | 
  | 
 | 
| 314 | 
molod | 
1.5 | 
\paragraph{Longwave Radiation} | 
| 315 | 
molod | 
1.1 | 
 | 
| 316 | 
molod | 
1.10 | 
The longwave radiation package used in the fizhi package is thoroughly described by \cite{chsz:94}. | 
| 317 | 
molod | 
1.1 | 
As described in that document, IR fluxes are computed due to absorption by water vapor, carbon | 
| 318 | 
  | 
  | 
dioxide, and ozone.  The spectral bands together with their absorbers and parameterization methods, | 
| 319 | 
  | 
  | 
configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}. | 
| 320 | 
  | 
  | 
 | 
| 321 | 
  | 
  | 
 | 
| 322 | 
  | 
  | 
\begin{table}[htb] | 
| 323 | 
  | 
  | 
\begin{center} | 
| 324 | 
  | 
  | 
{\bf IR Spectral Bands} \\ | 
| 325 | 
  | 
  | 
\vspace{0.1in} | 
| 326 | 
  | 
  | 
\begin{tabular}{|c|c|l|c| }  | 
| 327 | 
  | 
  | 
\hline | 
| 328 | 
  | 
  | 
Band & Spectral Range (cm$^{-1}$) & Absorber & Method \\ \hline | 
| 329 | 
  | 
  | 
\hline | 
| 330 | 
  | 
  | 
1   & 0-340      & H$_2$O line      & T \\ \hline | 
| 331 | 
  | 
  | 
2   & 340-540    & H$_2$O line      & T \\ \hline | 
| 332 | 
  | 
  | 
3a  & 540-620    & H$_2$O line      & K \\  | 
| 333 | 
  | 
  | 
3b  & 620-720    & H$_2$O continuum & S \\  | 
| 334 | 
  | 
  | 
3b  & 720-800    & CO$_2$           & T \\ \hline  | 
| 335 | 
  | 
  | 
4   & 800-980    & H$_2$O line      & K \\  | 
| 336 | 
  | 
  | 
    &            & H$_2$O continuum & S \\ \hline  | 
| 337 | 
  | 
  | 
    &            & H$_2$O line      & K \\  | 
| 338 | 
  | 
  | 
5   & 980-1100   & H$_2$O continuum & S \\  | 
| 339 | 
  | 
  | 
    &            & O$_3$            & T \\ \hline  | 
| 340 | 
  | 
  | 
6   & 1100-1380  & H$_2$O line      & K \\  | 
| 341 | 
  | 
  | 
    &            & H$_2$O continuum & S \\ \hline | 
| 342 | 
  | 
  | 
7   & 1380-1900  & H$_2$O line      & T \\ \hline  | 
| 343 | 
  | 
  | 
8   & 1900-3000  & H$_2$O line      & K \\ \hline  | 
| 344 | 
  | 
  | 
\hline | 
| 345 | 
  | 
  | 
\multicolumn{4}{|l|}{ \quad K: {\em k}-distribution method with linear pressure scaling } \\ | 
| 346 | 
  | 
  | 
\multicolumn{4}{|l|}{ \quad T: Table look-up with temperature and pressure scaling } \\ | 
| 347 | 
  | 
  | 
\multicolumn{4}{|l|}{ \quad S: One-parameter temperature scaling } \\ | 
| 348 | 
  | 
  | 
\hline | 
| 349 | 
  | 
  | 
\end{tabular} | 
| 350 | 
  | 
  | 
\end{center} | 
| 351 | 
  | 
  | 
\vspace{0.1in} | 
| 352 | 
molod | 
1.12 | 
\caption{IR Spectral Bands, Absorbers, and Parameterization Method (from \cite{chsz:94})} | 
| 353 | 
molod | 
1.1 | 
\label{tab:fizhi:longwave} | 
| 354 | 
  | 
  | 
\end{table} | 
| 355 | 
  | 
  | 
 | 
| 356 | 
  | 
  | 
 | 
| 357 | 
  | 
  | 
The longwave radiation package accurately computes cooling rates for the middle and  | 
| 358 | 
  | 
  | 
lower atmosphere from 0.01 mb to the surface.  Errors are $<$ 0.4 C day$^{-1}$ in cooling | 
| 359 | 
  | 
  | 
rates and $<$ 1\% in fluxes.  From Chou and Suarez, it is estimated that the total effect of  | 
| 360 | 
  | 
  | 
neglecting all minor absorption bands and the effects of minor infrared absorbers such as | 
| 361 | 
  | 
  | 
nitrous oxide (N$_2$O), methane (CH$_4$), and the chlorofluorocarbons (CFCs), is an underestimate | 
| 362 | 
  | 
  | 
of $\approx$ 5 W/m$^2$ in the downward flux at the surface and an overestimate of $\approx$ 3 W/m$^2$ | 
| 363 | 
  | 
  | 
in the upward flux at the top of the atmosphere. | 
| 364 | 
  | 
  | 
 | 
| 365 | 
  | 
  | 
Similar to the procedure used in the shortwave radiation package, clouds are grouped into | 
| 366 | 
  | 
  | 
three regions catagorized as low/middle/high. | 
| 367 | 
  | 
  | 
The net clear line-of-site probability $(P)$ between any two levels, $p_1$ and $p_2 \quad (p_2 > p_1)$,   | 
| 368 | 
  | 
  | 
assuming randomly overlapped cloud groups, is simply the product of the probabilities within each group: | 
| 369 | 
  | 
  | 
 | 
| 370 | 
  | 
  | 
\[ P_{net} = P_{low} \times P_{mid} \times P_{hi} . \] | 
| 371 | 
  | 
  | 
 | 
| 372 | 
  | 
  | 
Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within | 
| 373 | 
  | 
  | 
a group is given by: | 
| 374 | 
  | 
  | 
 | 
| 375 | 
  | 
  | 
\[ P_{group} = 1 - F_{max} , \] | 
| 376 | 
  | 
  | 
 | 
| 377 | 
  | 
  | 
where $F_{max}$ is the maximum cloud fraction encountered between $p_1$ and $p_2$ within that group. | 
| 378 | 
  | 
  | 
For groups and/or levels outside the range of $p_1$ and $p_2$, a clear line-of-site probability equal to 1 is | 
| 379 | 
  | 
  | 
assigned. | 
| 380 | 
  | 
  | 
 | 
| 381 | 
  | 
  | 
 | 
| 382 | 
molod | 
1.5 | 
\paragraph{Cloud-Radiation Interaction} | 
| 383 | 
molod | 
1.1 | 
\label{sec:fizhi:radcloud} | 
| 384 | 
  | 
  | 
 | 
| 385 | 
  | 
  | 
The cloud fractions and diagnosed cloud liquid water produced by moist processes  | 
| 386 | 
  | 
  | 
within the fizhi package are used in the radiation packages to produce cloud-radiative forcing. | 
| 387 | 
  | 
  | 
The cloud optical thickness associated with large-scale cloudiness is made | 
| 388 | 
  | 
  | 
proportional to the diagnosed large-scale liquid water, $\ell$, detrained due to super-saturation. | 
| 389 | 
  | 
  | 
Two values are used corresponding to cloud ice particles and water droplets. | 
| 390 | 
  | 
  | 
The range of optical thickness for these clouds is given as | 
| 391 | 
  | 
  | 
 | 
| 392 | 
  | 
  | 
\[ 0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002  \quad\mbox{for}\quad  0 \le \ell \le 2 \quad\mbox{mg/kg} , \] | 
| 393 | 
  | 
  | 
\[ 0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2  \quad\mbox{for}\quad  0 \le \ell \le 10 \quad\mbox{mg/kg} . \] | 
| 394 | 
  | 
  | 
 | 
| 395 | 
  | 
  | 
The partitioning, $\alpha$,  between ice particles and water droplets is achieved through a linear scaling | 
| 396 | 
  | 
  | 
in temperature: | 
| 397 | 
  | 
  | 
 | 
| 398 | 
  | 
  | 
\[ 0 \le \alpha \le 1 \quad\mbox{for}\quad  233.15 \le T \le 253.15 . \] | 
| 399 | 
  | 
  | 
 | 
| 400 | 
  | 
  | 
The resulting optical depth associated with large-scale cloudiness is given as | 
| 401 | 
  | 
  | 
 | 
| 402 | 
  | 
  | 
\[ \tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} . \] | 
| 403 | 
  | 
  | 
 | 
| 404 | 
  | 
  | 
The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as | 
| 405 | 
  | 
  | 
 | 
| 406 | 
  | 
  | 
\[ \tau_{RAS} = 0.16 \quad mb^{-1} . \] | 
| 407 | 
  | 
  | 
 | 
| 408 | 
  | 
  | 
The total optical depth in a given model layer is computed as a weighted average between | 
| 409 | 
  | 
  | 
the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the | 
| 410 | 
  | 
  | 
layer: | 
| 411 | 
  | 
  | 
 | 
| 412 | 
jmc | 
1.19 | 
\[ \tau = \left( \frac{F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} }{ F_{RAS}+F_{LS} } \right) \Delta p, \] | 
| 413 | 
molod | 
1.1 | 
 | 
| 414 | 
  | 
  | 
where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale | 
| 415 | 
  | 
  | 
processes described in Section \ref{sec:fizhi:clouds}. | 
| 416 | 
  | 
  | 
The optical thickness for the longwave radiative feedback is assumed to be 75 $\%$ of these values. | 
| 417 | 
  | 
  | 
 | 
| 418 | 
  | 
  | 
The entire Moist Convective Processes Module is called with a frequency of 10 minutes.  | 
| 419 | 
  | 
  | 
The cloud fraction values are time-averaged over the period between Radiation calls (every 3 | 
| 420 | 
  | 
  | 
hours).  Therefore, in a time-averaged sense, both convective and large-scale  | 
| 421 | 
  | 
  | 
cloudiness can exist in a given grid-box.   | 
| 422 | 
  | 
  | 
 | 
| 423 | 
molod | 
1.12 | 
\paragraph{Turbulence}: | 
| 424 | 
molod | 
1.9 | 
 | 
| 425 | 
molod | 
1.1 | 
Turbulence is parameterized in the fizhi package to account for its contribution to the | 
| 426 | 
  | 
  | 
vertical exchange of heat, moisture, and momentum.   | 
| 427 | 
  | 
  | 
The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative  | 
| 428 | 
  | 
  | 
time scheme with an internal time step of 5 minutes. | 
| 429 | 
  | 
  | 
The tendencies of atmospheric state variables due to turbulent diffusion are calculated using | 
| 430 | 
  | 
  | 
the diffusion equations: | 
| 431 | 
  | 
  | 
 | 
| 432 | 
  | 
  | 
\[ | 
| 433 | 
  | 
  | 
{\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})} | 
| 434 | 
  | 
  | 
 = {\pp{}{z} }{(K_m \pp{u}{z})} | 
| 435 | 
  | 
  | 
\] | 
| 436 | 
  | 
  | 
\[ | 
| 437 | 
  | 
  | 
{\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})} | 
| 438 | 
  | 
  | 
 = {\pp{}{z} }{(K_m \pp{v}{z})} | 
| 439 | 
  | 
  | 
\] | 
| 440 | 
  | 
  | 
\[ | 
| 441 | 
  | 
  | 
{\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =  | 
| 442 | 
  | 
  | 
P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})} | 
| 443 | 
  | 
  | 
 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})} | 
| 444 | 
  | 
  | 
\] | 
| 445 | 
  | 
  | 
\[ | 
| 446 | 
  | 
  | 
{\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})} | 
| 447 | 
  | 
  | 
 = {\pp{}{z} }{(K_h \pp{q}{z})} | 
| 448 | 
  | 
  | 
\] | 
| 449 | 
  | 
  | 
 | 
| 450 | 
  | 
  | 
Within the atmosphere, the time evolution | 
| 451 | 
  | 
  | 
of second turbulent moments is explicitly modeled by representing the third moments in terms of  | 
| 452 | 
  | 
  | 
the first and second moments.  This approach is known as a second-order closure modeling. | 
| 453 | 
  | 
  | 
To simplify and streamline the computation of the second moments, the level 2.5 assumption | 
| 454 | 
molod | 
1.10 | 
of Mellor and Yamada (1974) and \cite{yam:77} is employed, in which only the turbulent  | 
| 455 | 
molod | 
1.1 | 
kinetic energy (TKE), | 
| 456 | 
  | 
  | 
 | 
| 457 | 
  | 
  | 
\[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \] | 
| 458 | 
  | 
  | 
 | 
| 459 | 
  | 
  | 
is solved prognostically and the other second moments are solved diagnostically. | 
| 460 | 
  | 
  | 
The prognostic equation for TKE allows the scheme to simulate  | 
| 461 | 
  | 
  | 
some of the transient and diffusive effects in the turbulence. The TKE budget equation | 
| 462 | 
  | 
  | 
is solved numerically using an implicit backward computation of the terms linear in $q^2$ | 
| 463 | 
  | 
  | 
and is written: | 
| 464 | 
  | 
  | 
 | 
| 465 | 
  | 
  | 
\[ | 
| 466 | 
jmc | 
1.19 | 
{\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ \frac{5}{3} {{\lambda}_1} q { \pp {}{z}  | 
| 467 | 
molod | 
1.1 | 
({\h}q^2)} })} = | 
| 468 | 
  | 
  | 
{- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}  | 
| 469 | 
jmc | 
1.19 | 
{ \pp{V}{z} }} + {\frac{g}{\Theta_0}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} | 
| 470 | 
  | 
  | 
- \frac{ q^3}{{\Lambda}_1} } | 
| 471 | 
molod | 
1.1 | 
\] | 
| 472 | 
  | 
  | 
 | 
| 473 | 
  | 
  | 
where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and  | 
| 474 | 
  | 
  | 
${{\theta}^{\prime}}$ are the fluctuating parts of the velocity components and potential  | 
| 475 | 
  | 
  | 
temperature, $U$ and $V$ are the mean velocity components, ${\Theta_0}^{-1}$ is the | 
| 476 | 
  | 
  | 
coefficient of thermal expansion, and ${{\lambda}_1}$ and ${{\Lambda} _1}$ are constant | 
| 477 | 
  | 
  | 
multiples of the master length scale, $\ell$, which is designed to be a characteristic measure | 
| 478 | 
  | 
  | 
of the vertical structure of the turbulent layers. | 
| 479 | 
  | 
  | 
 | 
| 480 | 
  | 
  | 
The first term on the left-hand side represents the time rate of change of TKE, and | 
| 481 | 
  | 
  | 
the second term is a representation of the triple correlation, or turbulent | 
| 482 | 
  | 
  | 
transport term. The first three terms on the right-hand side represent the sources of | 
| 483 | 
  | 
  | 
TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation | 
| 484 | 
  | 
  | 
of TKE. | 
| 485 | 
  | 
  | 
 | 
| 486 | 
  | 
  | 
In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the | 
| 487 | 
  | 
  | 
wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and | 
| 488 | 
molod | 
1.10 | 
$K_m$, respectively.  In the statisically realizable level 2.5 turbulence scheme of  | 
| 489 | 
  | 
  | 
\cite{helflab:88}, these diffusion coefficients are expressed as | 
| 490 | 
molod | 
1.1 | 
 | 
| 491 | 
  | 
  | 
\[ | 
| 492 | 
  | 
  | 
K_h  | 
| 493 | 
  | 
  | 
 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence} | 
| 494 | 
jmc | 
1.19 | 
\\ \frac{ q^2 }{ q_e } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right. | 
| 495 | 
molod | 
1.1 | 
\] | 
| 496 | 
  | 
  | 
 | 
| 497 | 
  | 
  | 
and | 
| 498 | 
  | 
  | 
 | 
| 499 | 
  | 
  | 
\[ | 
| 500 | 
  | 
  | 
K_m | 
| 501 | 
  | 
  | 
 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}                 | 
| 502 | 
jmc | 
1.19 | 
\\ \frac{ q^2 }{ q_e } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right. | 
| 503 | 
molod | 
1.1 | 
\] | 
| 504 | 
  | 
  | 
 | 
| 505 | 
  | 
  | 
where the subscript $e$ refers to the value under conditions of local equillibrium | 
| 506 | 
  | 
  | 
(obtained from the Level 2.0 Model), $\ell$ is the master length scale related to the  | 
| 507 | 
  | 
  | 
vertical structure of the atmosphere, | 
| 508 | 
  | 
  | 
and $S_M$ and $S_H$ are functions of $G_H$ and $G_M$, the dimensionless buoyancy and | 
| 509 | 
  | 
  | 
wind shear parameters, respectively. | 
| 510 | 
  | 
  | 
Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$, | 
| 511 | 
  | 
  | 
are functions of the Richardson number: | 
| 512 | 
  | 
  | 
 | 
| 513 | 
  | 
  | 
\[ | 
| 514 | 
jmc | 
1.19 | 
{\bf RI} = \frac{ \frac{g}{\theta_v} \pp{\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 } | 
| 515 | 
  | 
  | 
 =  \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 } . | 
| 516 | 
molod | 
1.1 | 
\] | 
| 517 | 
  | 
  | 
 | 
| 518 | 
  | 
  | 
Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$) | 
| 519 | 
  | 
  | 
indicate dominantly unstable shear, and large positive values indicate dominantly stable | 
| 520 | 
  | 
  | 
stratification. | 
| 521 | 
  | 
  | 
 | 
| 522 | 
jmc | 
1.19 | 
Turbulent eddy diffusion coefficients of momentum, heat and moisture in the  | 
| 523 | 
  | 
  | 
surface layer, which corresponds to the lowest GCM level  | 
| 524 | 
  | 
  | 
(see {\it --- missing table ---}%\ref{tab:fizhi:sigma} | 
| 525 | 
  | 
  | 
),  | 
| 526 | 
molod | 
1.1 | 
are calculated using stability-dependant functions based on Monin-Obukhov theory: | 
| 527 | 
  | 
  | 
\[ | 
| 528 | 
  | 
  | 
{K_m} (surface) = C_u \times u_* = C_D W_s | 
| 529 | 
  | 
  | 
\] | 
| 530 | 
  | 
  | 
and | 
| 531 | 
  | 
  | 
\[ | 
| 532 | 
  | 
  | 
{K_h} (surface) =  C_t \times u_* = C_H W_s | 
| 533 | 
  | 
  | 
\] | 
| 534 | 
  | 
  | 
where $u_*=C_uW_s$ is the surface friction velocity, | 
| 535 | 
  | 
  | 
$C_D$ is termed the surface drag coefficient, $C_H$ the heat transfer coefficient,  | 
| 536 | 
  | 
  | 
and $W_s$ is the magnitude of the surface layer wind. | 
| 537 | 
  | 
  | 
 | 
| 538 | 
  | 
  | 
$C_u$ is the dimensionless exchange coefficient for momentum from the surface layer | 
| 539 | 
  | 
  | 
similarity functions:  | 
| 540 | 
  | 
  | 
\[ | 
| 541 | 
jmc | 
1.19 | 
{C_u} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} } | 
| 542 | 
molod | 
1.1 | 
\] | 
| 543 | 
  | 
  | 
where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional  | 
| 544 | 
  | 
  | 
wind shear given by | 
| 545 | 
  | 
  | 
\[ | 
| 546 | 
jmc | 
1.19 | 
\psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta} . | 
| 547 | 
molod | 
1.1 | 
\] | 
| 548 | 
  | 
  | 
Here $\zeta$ is the non-dimensional stability parameter, and | 
| 549 | 
  | 
  | 
$\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of | 
| 550 | 
  | 
  | 
the momentum gradient.  The functional form of $\phi_m$ is specified differently for stable and unstable  | 
| 551 | 
  | 
  | 
layers. | 
| 552 | 
  | 
  | 
 | 
| 553 | 
  | 
  | 
$C_t$ is the dimensionless exchange coefficient for heat and  | 
| 554 | 
  | 
  | 
moisture from the surface layer similarity functions: | 
| 555 | 
  | 
  | 
\[ | 
| 556 | 
jmc | 
1.19 | 
{C_t} = -\frac{( \overline{w^{\prime}\theta^{\prime}}) }{ u_* \Delta \theta } = | 
| 557 | 
  | 
  | 
-\frac{( \overline{w^{\prime}q^{\prime}}) }{ u_* \Delta q } = | 
| 558 | 
  | 
  | 
\frac{ k }{ (\psi_{h} + \psi_{g}) } | 
| 559 | 
molod | 
1.1 | 
\] | 
| 560 | 
  | 
  | 
where $\psi_h$ is the surface layer non-dimensional temperature gradient given by | 
| 561 | 
  | 
  | 
\[ | 
| 562 | 
jmc | 
1.19 | 
\psi_{h} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta} . | 
| 563 | 
molod | 
1.1 | 
\] | 
| 564 | 
  | 
  | 
Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of | 
| 565 | 
  | 
  | 
the temperature and moisture gradients, and is specified differently for stable and unstable | 
| 566 | 
molod | 
1.10 | 
layers according to \cite{helfschu:95}. | 
| 567 | 
molod | 
1.1 | 
 | 
| 568 | 
  | 
  | 
$\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,  | 
| 569 | 
  | 
  | 
which is the mosstly laminar region between the surface and the tops of the roughness  | 
| 570 | 
  | 
  | 
elements, in which temperature and moisture gradients can be quite large. | 
| 571 | 
molod | 
1.10 | 
Based on \cite{yagkad:74}: | 
| 572 | 
molod | 
1.1 | 
\[ | 
| 573 | 
jmc | 
1.19 | 
\psi_{g} = \frac{ 0.55 (Pr^{2/3} - 0.2) }{ \nu^{1/2} } | 
| 574 | 
molod | 
1.1 | 
(h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2} | 
| 575 | 
  | 
  | 
\] | 
| 576 | 
  | 
  | 
where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the  | 
| 577 | 
  | 
  | 
surface roughness length, and the subscript {\em ref} refers to a reference value. | 
| 578 | 
  | 
  | 
$h_{0} = 30z_{0}$ with a maximum value over land of 0.01 | 
| 579 | 
  | 
  | 
  | 
| 580 | 
  | 
  | 
The surface roughness length over oceans is is a function of the surface-stress velocity, | 
| 581 | 
  | 
  | 
\[ | 
| 582 | 
jmc | 
1.19 | 
{z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + \frac{c_5 }{ u_*} | 
| 583 | 
molod | 
1.1 | 
\] | 
| 584 | 
  | 
  | 
where the constants are chosen to interpolate between the reciprocal relation of | 
| 585 | 
molod | 
1.10 | 
\cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81} | 
| 586 | 
molod | 
1.1 | 
for moderate to large winds.  Roughness lengths over land are specified | 
| 587 | 
molod | 
1.10 | 
from the climatology of \cite{dorsell:89}. | 
| 588 | 
molod | 
1.1 | 
 | 
| 589 | 
  | 
  | 
For an unstable surface layer, the stability functions, chosen to interpolate between the | 
| 590 | 
  | 
  | 
condition of small values of $\beta$ and the convective limit, are the KEYPS function  | 
| 591 | 
molod | 
1.10 | 
(\cite{pano:73}) for momentum, and its generalization for heat and moisture:   | 
| 592 | 
molod | 
1.1 | 
\[ | 
| 593 | 
  | 
  | 
{\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}  | 
| 594 | 
  | 
  | 
{\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} . | 
| 595 | 
  | 
  | 
\] | 
| 596 | 
  | 
  | 
The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind  | 
| 597 | 
  | 
  | 
speed approaches zero.  | 
| 598 | 
  | 
  | 
 | 
| 599 | 
  | 
  | 
For a stable surface layer, the stability functions are the observationally  | 
| 600 | 
molod | 
1.10 | 
based functions of \cite{clarke:70},  slightly modified for | 
| 601 | 
molod | 
1.1 | 
the momemtum flux:   | 
| 602 | 
  | 
  | 
\[ | 
| 603 | 
jmc | 
1.19 | 
{\phi_m} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta}_1 | 
| 604 | 
  | 
  | 
(1+ 5 {\zeta}_1) } \hspace{1cm} ; \hspace{1cm} | 
| 605 | 
  | 
  | 
{\phi_h} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta} | 
| 606 | 
  | 
  | 
(1+ 5 {{\zeta}_1}) } . | 
| 607 | 
molod | 
1.1 | 
\] | 
| 608 | 
  | 
  | 
The moisture flux also depends on a specified evapotranspiration | 
| 609 | 
  | 
  | 
coefficient, set to unity over oceans and dependant on the climatological ground wetness over | 
| 610 | 
  | 
  | 
land.   | 
| 611 | 
  | 
  | 
 | 
| 612 | 
  | 
  | 
Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically | 
| 613 | 
  | 
  | 
using an implicit backward operator. | 
| 614 | 
  | 
  | 
 | 
| 615 | 
molod | 
1.5 | 
\paragraph{Atmospheric Boundary Layer} | 
| 616 | 
molod | 
1.1 | 
 | 
| 617 | 
  | 
  | 
The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the | 
| 618 | 
  | 
  | 
level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value. | 
| 619 | 
  | 
  | 
The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers. | 
| 620 | 
  | 
  | 
 | 
| 621 | 
molod | 
1.5 | 
\paragraph{Surface Energy Budget} | 
| 622 | 
molod | 
1.1 | 
 | 
| 623 | 
  | 
  | 
The ground temperature equation is solved as part of the turbulence package | 
| 624 | 
  | 
  | 
using a backward implicit time differencing scheme: | 
| 625 | 
  | 
  | 
\[ | 
| 626 | 
  | 
  | 
C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE | 
| 627 | 
  | 
  | 
\] | 
| 628 | 
  | 
  | 
where $R_{sw}$ is the net surface downward shortwave radiative flux and $R_{lw}$ is the | 
| 629 | 
  | 
  | 
net surface upward longwave radiative flux.  | 
| 630 | 
  | 
  | 
 | 
| 631 | 
  | 
  | 
$H$ is the upward sensible heat flux, given by: | 
| 632 | 
  | 
  | 
\[ | 
| 633 | 
  | 
  | 
{H} =  P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY}) | 
| 634 | 
  | 
  | 
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t | 
| 635 | 
  | 
  | 
\] | 
| 636 | 
  | 
  | 
where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific | 
| 637 | 
  | 
  | 
heat of air at constant pressure, and $\theta$ represents the potential temperature | 
| 638 | 
  | 
  | 
of the surface and of the lowest $\sigma$-level, respectively. | 
| 639 | 
  | 
  | 
  | 
| 640 | 
  | 
  | 
The upward latent heat flux, $LE$, is given by | 
| 641 | 
  | 
  | 
\[ | 
| 642 | 
  | 
  | 
{LE} =  \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY}) | 
| 643 | 
  | 
  | 
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t | 
| 644 | 
  | 
  | 
\] | 
| 645 | 
  | 
  | 
where $\beta$ is the fraction of the potential evapotranspiration actually evaporated, | 
| 646 | 
  | 
  | 
L is the latent heat of evaporation, and $q_{surface}$ and $q_{NLAY}$ are the specific | 
| 647 | 
  | 
  | 
humidity of the surface and of the lowest $\sigma$-level, respectively. | 
| 648 | 
  | 
  | 
 | 
| 649 | 
  | 
  | 
The heat conduction through sea ice, $Q_{ice}$, is given by | 
| 650 | 
  | 
  | 
\[ | 
| 651 | 
jmc | 
1.19 | 
{Q_{ice}} = \frac{C_{ti} }{ H_i} (T_i-T_g) | 
| 652 | 
molod | 
1.1 | 
\] | 
| 653 | 
  | 
  | 
where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to | 
| 654 | 
  | 
  | 
be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the  | 
| 655 | 
  | 
  | 
surface temperature of the ice. | 
| 656 | 
  | 
  | 
 | 
| 657 | 
  | 
  | 
$C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation | 
| 658 | 
molod | 
1.10 | 
for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by: | 
| 659 | 
molod | 
1.1 | 
\[ | 
| 660 | 
jmc | 
1.19 | 
C_g = \sqrt{ \frac{\lambda C_s }{ 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3} | 
| 661 | 
  | 
  | 
\frac{86400}{2\pi} } \, \, . | 
| 662 | 
molod | 
1.1 | 
\] | 
| 663 | 
jmc | 
1.19 | 
Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ $\frac{ly}{sec} | 
| 664 | 
  | 
  | 
\frac{cm}{K}$, | 
| 665 | 
molod | 
1.1 | 
the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided | 
| 666 | 
  | 
  | 
by $2 \pi$ $radians/   | 
| 667 | 
  | 
  | 
day$, and the expression for $C_s$, the heat capacity per unit volume at the surface, | 
| 668 | 
  | 
  | 
is a function of the ground wetness, $W$. | 
| 669 | 
  | 
  | 
 | 
| 670 | 
molod | 
1.9 | 
Land Surface Processes: | 
| 671 | 
molod | 
1.1 | 
 | 
| 672 | 
molod | 
1.5 | 
\paragraph{Surface Type} | 
| 673 | 
molod | 
1.10 | 
The fizhi package surface Types are designated using the Koster-Suarez (\cite{ks:91,ks:92})  | 
| 674 | 
  | 
  | 
Land Surface Model (LSM) mosaic philosophy which allows multiple ``tiles'', or multiple surface  | 
| 675 | 
  | 
  | 
types, in any one grid cell. The Koster-Suarez LSM surface type classifications | 
| 676 | 
molod | 
1.1 | 
are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid | 
| 677 | 
  | 
  | 
cell occupied by any surface type were derived from the surface classification of | 
| 678 | 
molod | 
1.10 | 
\cite{deftow:94}, and information about the location of permanent | 
| 679 | 
  | 
  | 
ice was obtained from the classifications of \cite{dorsell:89}. | 
| 680 | 
molod | 
1.13 | 
The surface type map for a $1^\circ$ grid is shown in Figure \ref{fig:fizhi:surftype}. | 
| 681 | 
molod | 
1.1 | 
The determination of the land or sea category of surface type was made from NCAR's | 
| 682 | 
  | 
  | 
10 minute by 10 minute Navy topography  | 
| 683 | 
  | 
  | 
dataset, which includes information about the percentage of water-cover at any point. | 
| 684 | 
molod | 
1.13 | 
The data were averaged to the model's grid resolutions, | 
| 685 | 
molod | 
1.1 | 
and any grid-box whose averaged water percentage was $\geq 60 \%$ was | 
| 686 | 
molod | 
1.13 | 
defined as a water point. The Land-Water designation was further modified | 
| 687 | 
molod | 
1.1 | 
subjectively to ensure sufficient representation from small but isolated land and water regions. | 
| 688 | 
  | 
  | 
  | 
| 689 | 
  | 
  | 
\begin{table} | 
| 690 | 
  | 
  | 
\begin{center} | 
| 691 | 
  | 
  | 
{\bf Surface Type Designation} \\ | 
| 692 | 
  | 
  | 
\vspace{0.1in} | 
| 693 | 
  | 
  | 
\begin{tabular}{ |c|l| } | 
| 694 | 
  | 
  | 
\hline | 
| 695 | 
  | 
  | 
Type & Vegetation Designation \\ \hline | 
| 696 | 
  | 
  | 
\hline | 
| 697 | 
  | 
  | 
  1 & Broadleaf Evergreen Trees \\ \hline | 
| 698 | 
  | 
  | 
  2 & Broadleaf Deciduous Trees \\ \hline | 
| 699 | 
  | 
  | 
  3 & Needleleaf Trees \\ \hline | 
| 700 | 
  | 
  | 
  4 & Ground Cover \\ \hline    | 
| 701 | 
  | 
  | 
  5 & Broadleaf Shrubs \\ \hline | 
| 702 | 
  | 
  | 
  6 & Dwarf Trees (Tundra) \\ \hline | 
| 703 | 
  | 
  | 
  7 & Bare Soil \\ \hline | 
| 704 | 
  | 
  | 
  8 & Desert (Bright) \\ \hline | 
| 705 | 
  | 
  | 
  9 & Glacier \\ \hline | 
| 706 | 
  | 
  | 
 10 & Desert (Dark) \\ \hline | 
| 707 | 
  | 
  | 
100 & Ocean \\ \hline | 
| 708 | 
  | 
  | 
\end{tabular} | 
| 709 | 
  | 
  | 
\end{center} | 
| 710 | 
molod | 
1.17 | 
\caption{Surface type designations.} | 
| 711 | 
molod | 
1.1 | 
\label{tab:fizhi:surftype} | 
| 712 | 
  | 
  | 
\end{table} | 
| 713 | 
  | 
  | 
  | 
| 714 | 
  | 
  | 
\begin{figure*}[htbp] | 
| 715 | 
jmc | 
1.18 | 
  \centerline{  \epsfysize=4.0in  \epsfbox{s_phys_pkgs/figs/surftype.eps}} | 
| 716 | 
molod | 
1.13 | 
  \vspace{0.2in} | 
| 717 | 
molod | 
1.17 | 
  \caption  {Surface Type Combinations.} | 
| 718 | 
molod | 
1.1 | 
  \label{fig:fizhi:surftype} | 
| 719 | 
  | 
  | 
\end{figure*} | 
| 720 | 
  | 
  | 
 | 
| 721 | 
jmc | 
1.18 | 
% \rotatebox{270}{\centerline{  \epsfysize=4in  \epsfbox{s_phys_pkgs/figs/surftypes.eps}}} | 
| 722 | 
  | 
  | 
% \rotatebox{270}{\centerline{  \epsfysize=4in  \epsfbox{s_phys_pkgs/figs/surftypes.descrip.eps}}} | 
| 723 | 
molod | 
1.13 | 
%\begin{figure*}[htbp] | 
| 724 | 
jmc | 
1.18 | 
%  \centerline{  \epsfysize=4in  \epsfbox{s_phys_pkgs/figs/surftypes.descrip.ps}} | 
| 725 | 
molod | 
1.13 | 
%  \vspace{0.3in} | 
| 726 | 
  | 
  | 
%  \caption  {Surface Type Descriptions.} | 
| 727 | 
  | 
  | 
%  \label{fig:fizhi:surftype.desc} | 
| 728 | 
  | 
  | 
%\end{figure*} | 
| 729 | 
molod | 
1.1 | 
 | 
| 730 | 
  | 
  | 
 | 
| 731 | 
molod | 
1.5 | 
\paragraph{Surface Roughness} | 
| 732 | 
molod | 
1.1 | 
The surface roughness length over oceans is computed iteratively with the wind | 
| 733 | 
molod | 
1.10 | 
stress by the surface layer parameterization (\cite{helfschu:95}). | 
| 734 | 
  | 
  | 
It employs an interpolation between the functions of \cite{larpond:81} | 
| 735 | 
  | 
  | 
for high winds and of \cite{kondo:75} for weak winds. | 
| 736 | 
molod | 
1.1 | 
 | 
| 737 | 
  | 
  | 
 | 
| 738 | 
molod | 
1.5 | 
\paragraph{Albedo} | 
| 739 | 
molod | 
1.10 | 
The surface albedo computation, described in \cite{ks:91}, | 
| 740 | 
molod | 
1.1 | 
employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB) | 
| 741 | 
  | 
  | 
Model which distinguishes between the direct and diffuse albedos in the visible | 
| 742 | 
  | 
  | 
and in the near infra-red spectral ranges. The albedos are functions of the observed | 
| 743 | 
  | 
  | 
leaf area index (a description of the relative orientation of the leaves to the | 
| 744 | 
  | 
  | 
sun), the greenness fraction, the vegetation type, and the solar zenith angle. | 
| 745 | 
  | 
  | 
Modifications are made to account for the presence of snow, and its depth relative | 
| 746 | 
  | 
  | 
to the height of the vegetation elements. | 
| 747 | 
  | 
  | 
 | 
| 748 | 
edhill | 
1.16 | 
\paragraph{Gravity Wave Drag} | 
| 749 | 
molod | 
1.9 | 
 | 
| 750 | 
molod | 
1.12 | 
The fizhi package employs the gravity wave drag scheme of \cite{zhouetal:95}). | 
| 751 | 
molod | 
1.1 | 
This scheme is a modified version of Vernekar et al. (1992), | 
| 752 | 
  | 
  | 
which was based on Alpert et al. (1988) and Helfand et al. (1987).   | 
| 753 | 
  | 
  | 
In this version, the gravity wave stress at the surface is | 
| 754 | 
  | 
  | 
based on that derived by Pierrehumbert (1986) and is given by: | 
| 755 | 
  | 
  | 
 | 
| 756 | 
  | 
  | 
\bq | 
| 757 | 
jmc | 
1.19 | 
|\vec{\tau}_{sfc}| = \frac{\rho U^3}{N \ell^*} \left( \frac{F_r^2}{1+F_r^2}\right) \, \, , | 
| 758 | 
molod | 
1.1 | 
\eq | 
| 759 | 
  | 
  | 
 | 
| 760 | 
  | 
  | 
where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the  | 
| 761 | 
  | 
  | 
surface wind speed, $h$ is the standard deviation of the sub-grid scale orography, | 
| 762 | 
  | 
  | 
and $\ell^*$ is the wavelength of the monochromatic gravity wave in the direction of the low-level wind. | 
| 763 | 
  | 
  | 
A modification introduced by Zhou et al. allows for the momentum flux to | 
| 764 | 
  | 
  | 
escape through the top of the model, although this effect is small for the current 70-level model.   | 
| 765 | 
  | 
  | 
The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.  | 
| 766 | 
  | 
  | 
 | 
| 767 | 
molod | 
1.10 | 
The effects of using this scheme within a GCM are shown in \cite{taksz:96}. | 
| 768 | 
molod | 
1.1 | 
Experiments using the gravity wave drag parameterization yielded significant and | 
| 769 | 
  | 
  | 
beneficial impacts on both the time-mean flow and the transient statistics of the | 
| 770 | 
  | 
  | 
a GCM climatology, and have eliminated most of the worst dynamically driven biases  | 
| 771 | 
  | 
  | 
in the a GCM simulation.  | 
| 772 | 
  | 
  | 
An examination of the angular momentum budget during climate runs indicates that the  | 
| 773 | 
  | 
  | 
resulting gravity wave torque is similar to the data-driven torque produced by a data  | 
| 774 | 
  | 
  | 
assimilation which was performed without gravity | 
| 775 | 
  | 
  | 
wave drag.  It was shown that the inclusion of gravity wave drag results in  | 
| 776 | 
  | 
  | 
large changes in both the mean flow and in eddy fluxes. | 
| 777 | 
  | 
  | 
The result is a more | 
| 778 | 
  | 
  | 
accurate simulation of surface stress (through a reduction in the surface wind strength),  | 
| 779 | 
  | 
  | 
of mountain torque (through a redistribution of mean sea-level pressure), and of momentum | 
| 780 | 
  | 
  | 
convergence (through a reduction in the flux of westerly momentum by transient flow eddies).   | 
| 781 | 
  | 
  | 
 | 
| 782 | 
  | 
  | 
 | 
| 783 | 
molod | 
1.9 | 
Boundary Conditions and other Input Data: | 
| 784 | 
molod | 
1.1 | 
 | 
| 785 | 
  | 
  | 
Required fields which are not explicitly predicted or diagnosed during model execution must | 
| 786 | 
  | 
  | 
either be prescribed internally or obtained from external data sets.  In the fizhi package these | 
| 787 | 
  | 
  | 
fields include:  sea surface temperature, sea ice estent, surface geopotential variance,  | 
| 788 | 
  | 
  | 
vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,  | 
| 789 | 
  | 
  | 
and stratospheric moisture. | 
| 790 | 
  | 
  | 
 | 
| 791 | 
molod | 
1.13 | 
Boundary condition data sets are available at the model's  | 
| 792 | 
molod | 
1.1 | 
resolutions for either climatological or yearly varying conditions.  | 
| 793 | 
  | 
  | 
Any frequency of boundary condition data can be used in the fizhi package;  | 
| 794 | 
  | 
  | 
however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@. | 
| 795 | 
  | 
  | 
The time mean values are interpolated during each model timestep to the  | 
| 796 | 
molod | 
1.13 | 
current time.  | 
| 797 | 
molod | 
1.1 | 
 | 
| 798 | 
  | 
  | 
\begin{table}[htb] | 
| 799 | 
  | 
  | 
\begin{center} | 
| 800 | 
  | 
  | 
{\bf Fizhi Input Datasets} \\ | 
| 801 | 
  | 
  | 
\vspace{0.1in} | 
| 802 | 
  | 
  | 
\begin{tabular}{|l|c|r|} \hline | 
| 803 | 
  | 
  | 
\multicolumn{1}{|c}{Variable} & \multicolumn{1}{|c}{Frequency} & \multicolumn{1}{|c|}{Years} \\ \hline\hline | 
| 804 | 
  | 
  | 
Sea Ice Extent & monthly & 1979-current, climatology \\ \hline | 
| 805 | 
  | 
  | 
Sea Ice Extent & weekly  & 1982-current, climatology \\ \hline | 
| 806 | 
  | 
  | 
Sea Surface Temperature & monthly & 1979-current, climatology \\ \hline | 
| 807 | 
  | 
  | 
Sea Surface Temperature & weekly & 1982-current, climatology \\ \hline | 
| 808 | 
  | 
  | 
Zonally Averaged Upper-Level Moisture & monthly  & climatology \\ \hline | 
| 809 | 
  | 
  | 
Zonally Averaged Ozone Concentration & monthly  & climatology \\ \hline | 
| 810 | 
  | 
  | 
\end{tabular} | 
| 811 | 
  | 
  | 
\end{center} | 
| 812 | 
  | 
  | 
\caption{Boundary conditions and other input data used in the fizhi package.  Also noted are the | 
| 813 | 
  | 
  | 
current years and frequencies available.} | 
| 814 | 
  | 
  | 
\label{tab:fizhi:bcdata} | 
| 815 | 
  | 
  | 
\end{table} | 
| 816 | 
  | 
  | 
 | 
| 817 | 
  | 
  | 
 | 
| 818 | 
molod | 
1.5 | 
\paragraph{Topography and Topography Variance} | 
| 819 | 
molod | 
1.1 | 
 | 
| 820 | 
  | 
  | 
Surface geopotential heights are provided from an averaging of the Navy 10 minute | 
| 821 | 
  | 
  | 
by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the | 
| 822 | 
  | 
  | 
model's grid resolution. The original topography is first rotated to the proper grid-orientation | 
| 823 | 
molod | 
1.10 | 
which is being run, and then  averages the data to the model resolution.   | 
| 824 | 
molod | 
1.1 | 
 | 
| 825 | 
molod | 
1.10 | 
The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute  | 
| 826 | 
  | 
  | 
data to the model's resolution and re-interpolating back to the 10 minute by 10 minute resolution.  | 
| 827 | 
molod | 
1.1 | 
The sub-grid scale variance is constructed based on this smoothed dataset. | 
| 828 | 
  | 
  | 
 | 
| 829 | 
  | 
  | 
 | 
| 830 | 
molod | 
1.5 | 
\paragraph{Upper Level Moisture} | 
| 831 | 
molod | 
1.1 | 
The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas  | 
| 832 | 
  | 
  | 
Experiment (SAGE) as input into the model's radiation packages.  The SAGE data is archived | 
| 833 | 
edhill | 
1.15 | 
as monthly zonal means at $5^\circ$ latitudinal resolution.  The data is interpolated to the | 
| 834 | 
molod | 
1.1 | 
model's grid location and current time, and blended with the GCM's moisture data.  Below 300 mb, | 
| 835 | 
  | 
  | 
the model's moisture data is used.  Above 100 mb, the SAGE data is used.  Between 100 and 300 mb, | 
| 836 | 
  | 
  | 
a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.  | 
| 837 | 
  | 
  | 
 | 
| 838 | 
molod | 
1.8 | 
 | 
| 839 | 
molod | 
1.9 | 
\subsubsection{Fizhi Diagnostics} | 
| 840 | 
molod | 
1.8 | 
 | 
| 841 | 
molod | 
1.9 | 
Fizhi Diagnostic Menu: | 
| 842 | 
molod | 
1.14 | 
\label{sec:pkg:fizhi:diagnostics} | 
| 843 | 
molod | 
1.8 | 
 | 
| 844 | 
  | 
  | 
\begin{tabular}{llll} | 
| 845 | 
  | 
  | 
\hline\hline | 
| 846 | 
  | 
  | 
 NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 847 | 
  | 
  | 
\hline | 
| 848 | 
  | 
  | 
 | 
| 849 | 
  | 
  | 
&\\ | 
| 850 | 
  | 
  | 
 UFLUX    &   $Newton/m^2$  &    1   | 
| 851 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 852 | 
  | 
  | 
          {Surface U-Wind Stress on the atmosphere} | 
| 853 | 
  | 
  | 
         \end{minipage}\\ | 
| 854 | 
  | 
  | 
 VFLUX    &   $Newton/m^2$  &    1   | 
| 855 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 856 | 
  | 
  | 
          {Surface V-Wind Stress on the atmosphere} | 
| 857 | 
  | 
  | 
         \end{minipage}\\ | 
| 858 | 
  | 
  | 
 HFLUX    &   $Watts/m^2$  &    1   | 
| 859 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 860 | 
  | 
  | 
          {Surface Flux of Sensible Heat} | 
| 861 | 
  | 
  | 
         \end{minipage}\\ | 
| 862 | 
  | 
  | 
 EFLUX    &   $Watts/m^2$  &    1   | 
| 863 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 864 | 
  | 
  | 
          {Surface Flux of Latent Heat} | 
| 865 | 
  | 
  | 
         \end{minipage}\\ | 
| 866 | 
  | 
  | 
 QICE     &   $Watts/m^2$  &    1   | 
| 867 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 868 | 
  | 
  | 
          {Heat Conduction through Sea-Ice} | 
| 869 | 
  | 
  | 
         \end{minipage}\\ | 
| 870 | 
  | 
  | 
 RADLWG   &   $Watts/m^2$ &    1   | 
| 871 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 872 | 
  | 
  | 
          {Net upward LW flux at the ground} | 
| 873 | 
  | 
  | 
         \end{minipage}\\ | 
| 874 | 
  | 
  | 
 RADSWG   &   $Watts/m^2$  &    1  | 
| 875 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 876 | 
  | 
  | 
          {Net downward SW flux at the ground}  | 
| 877 | 
  | 
  | 
         \end{minipage}\\ | 
| 878 | 
  | 
  | 
 RI       &  $dimensionless$ &  Nrphys  | 
| 879 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 880 | 
  | 
  | 
          {Richardson Number} | 
| 881 | 
  | 
  | 
         \end{minipage}\\ | 
| 882 | 
  | 
  | 
 CT       &  $dimensionless$ &  1  | 
| 883 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 884 | 
  | 
  | 
          {Surface Drag coefficient for T and Q} | 
| 885 | 
  | 
  | 
         \end{minipage}\\ | 
| 886 | 
  | 
  | 
 CU       & $dimensionless$ &  1  | 
| 887 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 888 | 
  | 
  | 
      {Surface Drag coefficient for U and V} | 
| 889 | 
  | 
  | 
     \end{minipage}\\ | 
| 890 | 
  | 
  | 
 ET       &  $m^2/sec$ &  Nrphys | 
| 891 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 892 | 
  | 
  | 
      {Diffusivity coefficient for T and Q} | 
| 893 | 
  | 
  | 
     \end{minipage}\\ | 
| 894 | 
  | 
  | 
 EU       &  $m^2/sec$ &  Nrphys | 
| 895 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 896 | 
  | 
  | 
      {Diffusivity coefficient for U and V} | 
| 897 | 
  | 
  | 
     \end{minipage}\\ | 
| 898 | 
  | 
  | 
 TURBU    &  $m/sec/day$ &  Nrphys  | 
| 899 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 900 | 
  | 
  | 
      {U-Momentum Changes due to Turbulence} | 
| 901 | 
  | 
  | 
     \end{minipage}\\ | 
| 902 | 
  | 
  | 
 TURBV    &  $m/sec/day$ &  Nrphys  | 
| 903 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 904 | 
  | 
  | 
      {V-Momentum Changes due to Turbulence} | 
| 905 | 
  | 
  | 
     \end{minipage}\\ | 
| 906 | 
  | 
  | 
 TURBT    &  $deg/day$ &  Nrphys  | 
| 907 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 908 | 
  | 
  | 
      {Temperature Changes due to Turbulence} | 
| 909 | 
  | 
  | 
     \end{minipage}\\ | 
| 910 | 
  | 
  | 
 TURBQ    &  $g/kg/day$ &  Nrphys  | 
| 911 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 912 | 
  | 
  | 
      {Specific Humidity Changes due to Turbulence} | 
| 913 | 
  | 
  | 
     \end{minipage}\\ | 
| 914 | 
  | 
  | 
 MOISTT   &   $deg/day$ &  Nrphys  | 
| 915 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 916 | 
  | 
  | 
      {Temperature Changes due to Moist Processes} | 
| 917 | 
  | 
  | 
     \end{minipage}\\ | 
| 918 | 
  | 
  | 
 MOISTQ   &  $g/kg/day$ &  Nrphys  | 
| 919 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 920 | 
  | 
  | 
      {Specific Humidity Changes due to Moist Processes} | 
| 921 | 
  | 
  | 
     \end{minipage}\\ | 
| 922 | 
  | 
  | 
 RADLW    &  $deg/day$ &  Nrphys  | 
| 923 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 924 | 
  | 
  | 
      {Net Longwave heating rate for each level} | 
| 925 | 
  | 
  | 
     \end{minipage}\\ | 
| 926 | 
  | 
  | 
 RADSW    &  $deg/day$ &  Nrphys  | 
| 927 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 928 | 
  | 
  | 
      {Net Shortwave heating rate for each level} | 
| 929 | 
  | 
  | 
     \end{minipage}\\ | 
| 930 | 
  | 
  | 
 PREACC   &  $mm/day$ &  1 | 
| 931 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 932 | 
  | 
  | 
      {Total Precipitation} | 
| 933 | 
  | 
  | 
     \end{minipage}\\ | 
| 934 | 
  | 
  | 
 PRECON   &  $mm/day$ &  1 | 
| 935 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 936 | 
  | 
  | 
      {Convective Precipitation} | 
| 937 | 
  | 
  | 
     \end{minipage}\\ | 
| 938 | 
  | 
  | 
 TUFLUX   &  $Newton/m^2$ &  Nrphys | 
| 939 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 940 | 
  | 
  | 
      {Turbulent Flux of U-Momentum} | 
| 941 | 
  | 
  | 
     \end{minipage}\\ | 
| 942 | 
  | 
  | 
 TVFLUX   &  $Newton/m^2$ &  Nrphys | 
| 943 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 944 | 
  | 
  | 
      {Turbulent Flux of V-Momentum} | 
| 945 | 
  | 
  | 
     \end{minipage}\\ | 
| 946 | 
  | 
  | 
 TTFLUX   &  $Watts/m^2$ &  Nrphys | 
| 947 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 948 | 
  | 
  | 
      {Turbulent Flux of Sensible Heat} | 
| 949 | 
  | 
  | 
     \end{minipage}\\ | 
| 950 | 
  | 
  | 
\end{tabular} | 
| 951 | 
  | 
  | 
 | 
| 952 | 
  | 
  | 
\newpage | 
| 953 | 
  | 
  | 
\vspace*{\fill} | 
| 954 | 
  | 
  | 
\begin{tabular}{llll} | 
| 955 | 
  | 
  | 
\hline\hline | 
| 956 | 
  | 
  | 
 NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 957 | 
  | 
  | 
\hline | 
| 958 | 
  | 
  | 
 | 
| 959 | 
  | 
  | 
&\\ | 
| 960 | 
  | 
  | 
 TQFLUX   &  $Watts/m^2$ &  Nrphys | 
| 961 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 962 | 
  | 
  | 
      {Turbulent Flux of Latent Heat} | 
| 963 | 
  | 
  | 
     \end{minipage}\\ | 
| 964 | 
  | 
  | 
 CN       &  $dimensionless$ &  1 | 
| 965 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 966 | 
  | 
  | 
      {Neutral Drag Coefficient} | 
| 967 | 
  | 
  | 
     \end{minipage}\\ | 
| 968 | 
  | 
  | 
 WINDS     &  $m/sec$ &  1 | 
| 969 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 970 | 
  | 
  | 
      {Surface Wind Speed} | 
| 971 | 
  | 
  | 
     \end{minipage}\\ | 
| 972 | 
  | 
  | 
 DTSRF     &  $deg$ &  1 | 
| 973 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 974 | 
  | 
  | 
      {Air/Surface virtual temperature difference} | 
| 975 | 
  | 
  | 
     \end{minipage}\\ | 
| 976 | 
  | 
  | 
 TG        &  $deg$ &  1 | 
| 977 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 978 | 
  | 
  | 
      {Ground temperature} | 
| 979 | 
  | 
  | 
     \end{minipage}\\ | 
| 980 | 
  | 
  | 
 TS        &  $deg$ &  1 | 
| 981 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 982 | 
  | 
  | 
      {Surface air temperature (Adiabatic from lowest model layer)} | 
| 983 | 
  | 
  | 
     \end{minipage}\\ | 
| 984 | 
  | 
  | 
 DTG       &  $deg$ &  1 | 
| 985 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 986 | 
  | 
  | 
      {Ground temperature adjustment} | 
| 987 | 
  | 
  | 
     \end{minipage}\\ | 
| 988 | 
  | 
  | 
 | 
| 989 | 
  | 
  | 
 QG        &  $g/kg$ &  1 | 
| 990 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 991 | 
  | 
  | 
      {Ground specific humidity} | 
| 992 | 
  | 
  | 
     \end{minipage}\\ | 
| 993 | 
  | 
  | 
 QS        &  $g/kg$ &  1 | 
| 994 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 995 | 
  | 
  | 
      {Saturation surface specific humidity} | 
| 996 | 
  | 
  | 
     \end{minipage}\\ | 
| 997 | 
  | 
  | 
 TGRLW    &    $deg$   &    1   | 
| 998 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 999 | 
  | 
  | 
      {Instantaneous ground temperature used as input to the | 
| 1000 | 
  | 
  | 
       Longwave radiation subroutine}  | 
| 1001 | 
  | 
  | 
     \end{minipage}\\ | 
| 1002 | 
  | 
  | 
 ST4      &   $Watts/m^2$  &    1   | 
| 1003 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1004 | 
  | 
  | 
      {Upward Longwave flux at the ground ($\sigma T^4$)} | 
| 1005 | 
  | 
  | 
     \end{minipage}\\ | 
| 1006 | 
  | 
  | 
 OLR      &   $Watts/m^2$  &    1   | 
| 1007 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1008 | 
  | 
  | 
      {Net upward Longwave flux at the top of the model} | 
| 1009 | 
  | 
  | 
     \end{minipage}\\ | 
| 1010 | 
  | 
  | 
 OLRCLR   &   $Watts/m^2$  &    1   | 
| 1011 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1012 | 
  | 
  | 
      {Net upward clearsky Longwave flux at the top of the model} | 
| 1013 | 
  | 
  | 
     \end{minipage}\\ | 
| 1014 | 
  | 
  | 
 LWGCLR   &   $Watts/m^2$  &    1   | 
| 1015 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1016 | 
  | 
  | 
      {Net upward clearsky Longwave flux at the ground} | 
| 1017 | 
  | 
  | 
     \end{minipage}\\ | 
| 1018 | 
  | 
  | 
 LWCLR    &  $deg/day$ &  Nrphys  | 
| 1019 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1020 | 
  | 
  | 
      {Net clearsky Longwave heating rate for each level} | 
| 1021 | 
  | 
  | 
     \end{minipage}\\ | 
| 1022 | 
  | 
  | 
 TLW      &    $deg$   &  Nrphys  | 
| 1023 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1024 | 
  | 
  | 
      {Instantaneous temperature used as input to the Longwave radiation | 
| 1025 | 
  | 
  | 
      subroutine}  | 
| 1026 | 
  | 
  | 
     \end{minipage}\\ | 
| 1027 | 
  | 
  | 
 SHLW     &    $g/g$   &  Nrphys  | 
| 1028 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1029 | 
  | 
  | 
      {Instantaneous specific humidity used as input to the Longwave radiation | 
| 1030 | 
  | 
  | 
      subroutine}  | 
| 1031 | 
  | 
  | 
     \end{minipage}\\ | 
| 1032 | 
  | 
  | 
 OZLW     &    $g/g$   &  Nrphys  | 
| 1033 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1034 | 
  | 
  | 
      {Instantaneous ozone used as input to the Longwave radiation | 
| 1035 | 
  | 
  | 
      subroutine}  | 
| 1036 | 
  | 
  | 
     \end{minipage}\\ | 
| 1037 | 
  | 
  | 
 CLMOLW   &    $0-1$   &  Nrphys  | 
| 1038 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1039 | 
  | 
  | 
      {Maximum overlap cloud fraction used in the Longwave radiation | 
| 1040 | 
  | 
  | 
      subroutine}  | 
| 1041 | 
  | 
  | 
     \end{minipage}\\ | 
| 1042 | 
  | 
  | 
 CLDTOT   &    $0-1$   &  Nrphys  | 
| 1043 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1044 | 
  | 
  | 
      {Total cloud fraction used in the Longwave and Shortwave radiation | 
| 1045 | 
  | 
  | 
      subroutines}  | 
| 1046 | 
  | 
  | 
     \end{minipage}\\ | 
| 1047 | 
  | 
  | 
 LWGDOWN  &    $Watts/m^2$   &  1  | 
| 1048 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1049 | 
  | 
  | 
      {Downwelling Longwave radiation at the ground} | 
| 1050 | 
  | 
  | 
     \end{minipage}\\ | 
| 1051 | 
  | 
  | 
 GWDT     &    $deg/day$ &  Nrphys | 
| 1052 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1053 | 
  | 
  | 
      {Temperature tendency due to Gravity Wave Drag} | 
| 1054 | 
  | 
  | 
     \end{minipage}\\ | 
| 1055 | 
  | 
  | 
 RADSWT   &    $Watts/m^2$   &  1  | 
| 1056 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1057 | 
  | 
  | 
      {Incident Shortwave radiation at the top of the atmosphere} | 
| 1058 | 
  | 
  | 
     \end{minipage}\\ | 
| 1059 | 
  | 
  | 
 TAUCLD   &    $per 100 mb$   &  Nrphys  | 
| 1060 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1061 | 
  | 
  | 
      {Counted Cloud Optical Depth (non-dimensional) per 100 mb} | 
| 1062 | 
  | 
  | 
     \end{minipage}\\ | 
| 1063 | 
  | 
  | 
 TAUCLDC  &    $Number$   &  Nrphys  | 
| 1064 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1065 | 
  | 
  | 
      {Cloud Optical Depth Counter} | 
| 1066 | 
  | 
  | 
     \end{minipage}\\ | 
| 1067 | 
  | 
  | 
\end{tabular} | 
| 1068 | 
  | 
  | 
\vfill | 
| 1069 | 
  | 
  | 
 | 
| 1070 | 
  | 
  | 
\newpage | 
| 1071 | 
  | 
  | 
\vspace*{\fill} | 
| 1072 | 
  | 
  | 
\begin{tabular}{llll} | 
| 1073 | 
  | 
  | 
\hline\hline | 
| 1074 | 
  | 
  | 
 NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 1075 | 
  | 
  | 
\hline | 
| 1076 | 
  | 
  | 
 | 
| 1077 | 
  | 
  | 
&\\ | 
| 1078 | 
  | 
  | 
 CLDLOW   &    $0-1$   &  Nrphys  | 
| 1079 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1080 | 
  | 
  | 
      {Low-Level ( 1000-700 hPa) Cloud Fraction  (0-1)} | 
| 1081 | 
  | 
  | 
     \end{minipage}\\ | 
| 1082 | 
  | 
  | 
 EVAP     &    $mm/day$   &  1  | 
| 1083 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1084 | 
  | 
  | 
      {Surface evaporation} | 
| 1085 | 
  | 
  | 
     \end{minipage}\\ | 
| 1086 | 
  | 
  | 
 DPDT     &    $hPa/day$ &  1 | 
| 1087 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1088 | 
  | 
  | 
      {Surface Pressure tendency} | 
| 1089 | 
  | 
  | 
     \end{minipage}\\ | 
| 1090 | 
  | 
  | 
 UAVE     &    $m/sec$ &  Nrphys | 
| 1091 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1092 | 
  | 
  | 
      {Average U-Wind} | 
| 1093 | 
  | 
  | 
     \end{minipage}\\ | 
| 1094 | 
  | 
  | 
 VAVE     &    $m/sec$ &  Nrphys | 
| 1095 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1096 | 
  | 
  | 
      {Average V-Wind} | 
| 1097 | 
  | 
  | 
     \end{minipage}\\ | 
| 1098 | 
  | 
  | 
 TAVE     &    $deg$ &  Nrphys | 
| 1099 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1100 | 
  | 
  | 
      {Average Temperature} | 
| 1101 | 
  | 
  | 
     \end{minipage}\\ | 
| 1102 | 
  | 
  | 
 QAVE     &    $g/kg$ &  Nrphys | 
| 1103 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1104 | 
  | 
  | 
      {Average Specific Humidity} | 
| 1105 | 
  | 
  | 
     \end{minipage}\\ | 
| 1106 | 
  | 
  | 
 OMEGA    &    $hPa/day$ &  Nrphys | 
| 1107 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1108 | 
  | 
  | 
      {Vertical Velocity} | 
| 1109 | 
  | 
  | 
     \end{minipage}\\ | 
| 1110 | 
  | 
  | 
 DUDT     &    $m/sec/day$ &  Nrphys | 
| 1111 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1112 | 
  | 
  | 
      {Total U-Wind tendency} | 
| 1113 | 
  | 
  | 
     \end{minipage}\\ | 
| 1114 | 
  | 
  | 
 DVDT     &    $m/sec/day$ &  Nrphys | 
| 1115 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1116 | 
  | 
  | 
      {Total V-Wind tendency} | 
| 1117 | 
  | 
  | 
     \end{minipage}\\ | 
| 1118 | 
  | 
  | 
 DTDT     &    $deg/day$ &  Nrphys | 
| 1119 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1120 | 
  | 
  | 
      {Total Temperature tendency} | 
| 1121 | 
  | 
  | 
     \end{minipage}\\ | 
| 1122 | 
  | 
  | 
 DQDT     &    $g/kg/day$ &  Nrphys | 
| 1123 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1124 | 
  | 
  | 
      {Total Specific Humidity tendency} | 
| 1125 | 
  | 
  | 
     \end{minipage}\\ | 
| 1126 | 
  | 
  | 
 VORT     &    $10^{-4}/sec$ &  Nrphys | 
| 1127 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1128 | 
  | 
  | 
      {Relative Vorticity} | 
| 1129 | 
  | 
  | 
     \end{minipage}\\ | 
| 1130 | 
  | 
  | 
 DTLS     &    $deg/day$ &  Nrphys | 
| 1131 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1132 | 
  | 
  | 
      {Temperature tendency due to Stratiform Cloud Formation} | 
| 1133 | 
  | 
  | 
     \end{minipage}\\ | 
| 1134 | 
  | 
  | 
 DQLS     &    $g/kg/day$ &  Nrphys | 
| 1135 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1136 | 
  | 
  | 
      {Specific Humidity tendency due to Stratiform Cloud Formation} | 
| 1137 | 
  | 
  | 
     \end{minipage}\\ | 
| 1138 | 
  | 
  | 
 USTAR    &    $m/sec$ &  1 | 
| 1139 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1140 | 
  | 
  | 
      {Surface USTAR wind} | 
| 1141 | 
  | 
  | 
     \end{minipage}\\ | 
| 1142 | 
  | 
  | 
 Z0       &    $m$ &  1 | 
| 1143 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1144 | 
  | 
  | 
      {Surface roughness} | 
| 1145 | 
  | 
  | 
     \end{minipage}\\ | 
| 1146 | 
  | 
  | 
 FRQTRB   &    $0-1$ &  Nrphys-1 | 
| 1147 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1148 | 
  | 
  | 
      {Frequency of Turbulence} | 
| 1149 | 
  | 
  | 
     \end{minipage}\\ | 
| 1150 | 
  | 
  | 
 PBL      &    $mb$ &  1 | 
| 1151 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1152 | 
  | 
  | 
      {Planetary Boundary Layer depth} | 
| 1153 | 
  | 
  | 
     \end{minipage}\\ | 
| 1154 | 
  | 
  | 
 SWCLR    &  $deg/day$ &  Nrphys  | 
| 1155 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1156 | 
  | 
  | 
      {Net clearsky Shortwave heating rate for each level} | 
| 1157 | 
  | 
  | 
     \end{minipage}\\ | 
| 1158 | 
  | 
  | 
 OSR      &   $Watts/m^2$  &    1  | 
| 1159 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1160 | 
  | 
  | 
      {Net downward Shortwave flux at the top of the model} | 
| 1161 | 
  | 
  | 
     \end{minipage}\\ | 
| 1162 | 
  | 
  | 
 OSRCLR   &   $Watts/m^2$  &    1   | 
| 1163 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1164 | 
  | 
  | 
      {Net downward clearsky Shortwave flux at the top of the model} | 
| 1165 | 
  | 
  | 
     \end{minipage}\\ | 
| 1166 | 
  | 
  | 
 CLDMAS   &   $kg / m^2$  &    Nrphys | 
| 1167 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1168 | 
  | 
  | 
      {Convective cloud mass flux} | 
| 1169 | 
  | 
  | 
     \end{minipage}\\ | 
| 1170 | 
  | 
  | 
 UAVE     &   $m/sec$  &    Nrphys | 
| 1171 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1172 | 
  | 
  | 
      {Time-averaged $u-Wind$} | 
| 1173 | 
  | 
  | 
     \end{minipage}\\ | 
| 1174 | 
  | 
  | 
\end{tabular} | 
| 1175 | 
  | 
  | 
\vfill | 
| 1176 | 
  | 
  | 
 | 
| 1177 | 
  | 
  | 
\newpage | 
| 1178 | 
  | 
  | 
\vspace*{\fill} | 
| 1179 | 
  | 
  | 
\begin{tabular}{llll} | 
| 1180 | 
  | 
  | 
\hline\hline | 
| 1181 | 
  | 
  | 
 NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 1182 | 
  | 
  | 
\hline | 
| 1183 | 
  | 
  | 
 | 
| 1184 | 
  | 
  | 
&\\ | 
| 1185 | 
  | 
  | 
 VAVE     &   $m/sec$  &    Nrphys | 
| 1186 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1187 | 
  | 
  | 
      {Time-averaged $v-Wind$} | 
| 1188 | 
  | 
  | 
     \end{minipage}\\ | 
| 1189 | 
  | 
  | 
 TAVE     &   $deg$  &    Nrphys | 
| 1190 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1191 | 
  | 
  | 
      {Time-averaged $Temperature$} | 
| 1192 | 
  | 
  | 
     \end{minipage}\\ | 
| 1193 | 
  | 
  | 
 QAVE     &   $g/g$  &    Nrphys | 
| 1194 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1195 | 
  | 
  | 
      {Time-averaged $Specific \, \, Humidity$} | 
| 1196 | 
  | 
  | 
     \end{minipage}\\ | 
| 1197 | 
  | 
  | 
 RFT      &    $deg/day$ &  Nrphys | 
| 1198 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1199 | 
  | 
  | 
      {Temperature tendency due Rayleigh Friction} | 
| 1200 | 
  | 
  | 
     \end{minipage}\\ | 
| 1201 | 
  | 
  | 
 PS       &   $mb$  &    1 | 
| 1202 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1203 | 
  | 
  | 
      {Surface Pressure} | 
| 1204 | 
  | 
  | 
     \end{minipage}\\ | 
| 1205 | 
  | 
  | 
 QQAVE    &   $(m/sec)^2$  &    Nrphys | 
| 1206 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1207 | 
  | 
  | 
      {Time-averaged $Turbulent Kinetic Energy$} | 
| 1208 | 
  | 
  | 
     \end{minipage}\\ | 
| 1209 | 
  | 
  | 
 SWGCLR   &   $Watts/m^2$  &    1   | 
| 1210 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1211 | 
  | 
  | 
      {Net downward clearsky Shortwave flux at the ground}  | 
| 1212 | 
  | 
  | 
     \end{minipage}\\ | 
| 1213 | 
  | 
  | 
 PAVE     &   $mb$  &    1 | 
| 1214 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1215 | 
  | 
  | 
      {Time-averaged Surface Pressure} | 
| 1216 | 
  | 
  | 
     \end{minipage}\\ | 
| 1217 | 
  | 
  | 
 DIABU    & $m/sec/day$ &    Nrphys | 
| 1218 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1219 | 
  | 
  | 
      {Total Diabatic forcing on $u-Wind$}  | 
| 1220 | 
  | 
  | 
     \end{minipage}\\ | 
| 1221 | 
  | 
  | 
 DIABV    & $m/sec/day$ &    Nrphys | 
| 1222 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1223 | 
  | 
  | 
      {Total Diabatic forcing on $v-Wind$}  | 
| 1224 | 
  | 
  | 
     \end{minipage}\\ | 
| 1225 | 
  | 
  | 
 DIABT    & $deg/day$ &    Nrphys | 
| 1226 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1227 | 
  | 
  | 
      {Total Diabatic forcing on $Temperature$}  | 
| 1228 | 
  | 
  | 
     \end{minipage}\\ | 
| 1229 | 
  | 
  | 
 DIABQ    & $g/kg/day$ &    Nrphys | 
| 1230 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1231 | 
  | 
  | 
      {Total Diabatic forcing on $Specific \, \, Humidity$}  | 
| 1232 | 
  | 
  | 
     \end{minipage}\\ | 
| 1233 | 
  | 
  | 
 RFU      &    $m/sec/day$ &  Nrphys | 
| 1234 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1235 | 
  | 
  | 
      {U-Wind tendency due to Rayleigh Friction} | 
| 1236 | 
  | 
  | 
     \end{minipage}\\ | 
| 1237 | 
  | 
  | 
 RFV      &    $m/sec/day$ &  Nrphys | 
| 1238 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1239 | 
  | 
  | 
      {V-Wind tendency due to Rayleigh Friction} | 
| 1240 | 
  | 
  | 
     \end{minipage}\\ | 
| 1241 | 
  | 
  | 
 GWDU     &    $m/sec/day$ &  Nrphys | 
| 1242 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1243 | 
  | 
  | 
      {U-Wind tendency due to Gravity Wave Drag} | 
| 1244 | 
  | 
  | 
     \end{minipage}\\ | 
| 1245 | 
  | 
  | 
 GWDU     &    $m/sec/day$ &  Nrphys | 
| 1246 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1247 | 
  | 
  | 
      {V-Wind tendency due to Gravity Wave Drag} | 
| 1248 | 
  | 
  | 
     \end{minipage}\\ | 
| 1249 | 
  | 
  | 
 GWDUS    &    $N/m^2$ &  1 | 
| 1250 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1251 | 
  | 
  | 
      {U-Wind Gravity Wave Drag Stress at Surface} | 
| 1252 | 
  | 
  | 
     \end{minipage}\\ | 
| 1253 | 
  | 
  | 
 GWDVS    &    $N/m^2$ &  1 | 
| 1254 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1255 | 
  | 
  | 
      {V-Wind Gravity Wave Drag Stress at Surface} | 
| 1256 | 
  | 
  | 
     \end{minipage}\\ | 
| 1257 | 
  | 
  | 
 GWDUT    &    $N/m^2$ &  1 | 
| 1258 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1259 | 
  | 
  | 
      {U-Wind Gravity Wave Drag Stress at Top} | 
| 1260 | 
  | 
  | 
     \end{minipage}\\ | 
| 1261 | 
  | 
  | 
 GWDVT    &    $N/m^2$ &  1 | 
| 1262 | 
  | 
  | 
     &\begin{minipage}[t]{3in} | 
| 1263 | 
  | 
  | 
      {V-Wind Gravity Wave Drag Stress at Top} | 
| 1264 | 
  | 
  | 
     \end{minipage}\\ | 
| 1265 | 
  | 
  | 
 LZRAD    &    $mg/kg$ &  Nrphys | 
| 1266 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1267 | 
  | 
  | 
          {Estimated Cloud Liquid Water used in Radiation} | 
| 1268 | 
  | 
  | 
         \end{minipage}\\ | 
| 1269 | 
  | 
  | 
\end{tabular} | 
| 1270 | 
  | 
  | 
\vfill | 
| 1271 | 
  | 
  | 
 | 
| 1272 | 
  | 
  | 
\newpage | 
| 1273 | 
  | 
  | 
\vspace*{\fill} | 
| 1274 | 
  | 
  | 
\begin{tabular}{llll} | 
| 1275 | 
  | 
  | 
\hline\hline | 
| 1276 | 
  | 
  | 
 NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 1277 | 
  | 
  | 
\hline | 
| 1278 | 
  | 
  | 
 | 
| 1279 | 
  | 
  | 
&\\ | 
| 1280 | 
  | 
  | 
 SLP      &   $mb$  &    1 | 
| 1281 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1282 | 
  | 
  | 
          {Time-averaged Sea-level Pressure} | 
| 1283 | 
  | 
  | 
         \end{minipage}\\ | 
| 1284 | 
  | 
  | 
 CLDFRC  & $0-1$ &    1 | 
| 1285 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1286 | 
  | 
  | 
          {Total Cloud Fraction}  | 
| 1287 | 
  | 
  | 
         \end{minipage}\\ | 
| 1288 | 
  | 
  | 
 TPW     & $gm/cm^2$ &    1 | 
| 1289 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1290 | 
  | 
  | 
          {Precipitable water}  | 
| 1291 | 
  | 
  | 
         \end{minipage}\\ | 
| 1292 | 
  | 
  | 
 U2M     & $m/sec$ &    1 | 
| 1293 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1294 | 
  | 
  | 
          {U-Wind at 2 meters} | 
| 1295 | 
  | 
  | 
         \end{minipage}\\ | 
| 1296 | 
  | 
  | 
 V2M     & $m/sec$ &    1 | 
| 1297 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1298 | 
  | 
  | 
          {V-Wind at 2 meters} | 
| 1299 | 
  | 
  | 
         \end{minipage}\\ | 
| 1300 | 
  | 
  | 
 T2M     & $deg$ &    1 | 
| 1301 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1302 | 
  | 
  | 
          {Temperature at 2 meters} | 
| 1303 | 
  | 
  | 
         \end{minipage}\\ | 
| 1304 | 
  | 
  | 
 Q2M     & $g/kg$ &    1 | 
| 1305 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1306 | 
  | 
  | 
          {Specific Humidity at 2 meters} | 
| 1307 | 
  | 
  | 
         \end{minipage}\\ | 
| 1308 | 
  | 
  | 
 U10M    & $m/sec$ &    1 | 
| 1309 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1310 | 
  | 
  | 
          {U-Wind at 10 meters} | 
| 1311 | 
  | 
  | 
         \end{minipage}\\ | 
| 1312 | 
  | 
  | 
 V10M    & $m/sec$ &    1 | 
| 1313 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1314 | 
  | 
  | 
          {V-Wind at 10 meters} | 
| 1315 | 
  | 
  | 
         \end{minipage}\\ | 
| 1316 | 
  | 
  | 
 T10M    & $deg$ &    1 | 
| 1317 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1318 | 
  | 
  | 
          {Temperature at 10 meters} | 
| 1319 | 
  | 
  | 
         \end{minipage}\\ | 
| 1320 | 
  | 
  | 
 Q10M    & $g/kg$ &    1 | 
| 1321 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1322 | 
  | 
  | 
          {Specific Humidity at 10 meters} | 
| 1323 | 
  | 
  | 
         \end{minipage}\\ | 
| 1324 | 
  | 
  | 
 DTRAIN  & $kg/m^2$ &    Nrphys | 
| 1325 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1326 | 
  | 
  | 
          {Detrainment Cloud Mass Flux} | 
| 1327 | 
  | 
  | 
         \end{minipage}\\ | 
| 1328 | 
  | 
  | 
 QFILL   & $g/kg/day$ &    Nrphys | 
| 1329 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1330 | 
  | 
  | 
          {Filling of negative specific humidity} | 
| 1331 | 
  | 
  | 
         \end{minipage}\\ | 
| 1332 | 
  | 
  | 
\end{tabular} | 
| 1333 | 
  | 
  | 
\vspace{1.5in} | 
| 1334 | 
  | 
  | 
\vfill | 
| 1335 | 
  | 
  | 
 | 
| 1336 | 
  | 
  | 
\newpage | 
| 1337 | 
  | 
  | 
\vspace*{\fill} | 
| 1338 | 
  | 
  | 
\begin{tabular}{llll} | 
| 1339 | 
  | 
  | 
\hline\hline | 
| 1340 | 
  | 
  | 
 NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 1341 | 
  | 
  | 
\hline | 
| 1342 | 
  | 
  | 
 | 
| 1343 | 
  | 
  | 
&\\ | 
| 1344 | 
  | 
  | 
 DTCONV   & $deg/sec$ & Nr | 
| 1345 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1346 | 
  | 
  | 
          {Temp Change due to Convection}  | 
| 1347 | 
  | 
  | 
         \end{minipage}\\ | 
| 1348 | 
  | 
  | 
 DQCONV   & $g/kg/sec$ & Nr | 
| 1349 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1350 | 
  | 
  | 
          {Specific Humidity Change due to Convection}  | 
| 1351 | 
  | 
  | 
         \end{minipage}\\ | 
| 1352 | 
  | 
  | 
 RELHUM   & $percent$ & Nr | 
| 1353 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1354 | 
  | 
  | 
          {Relative Humidity}  | 
| 1355 | 
  | 
  | 
         \end{minipage}\\ | 
| 1356 | 
  | 
  | 
 PRECLS   & $g/m^2/sec$ & 1 | 
| 1357 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1358 | 
  | 
  | 
          {Large Scale Precipitation}  | 
| 1359 | 
  | 
  | 
         \end{minipage}\\ | 
| 1360 | 
  | 
  | 
 ENPREC   & $J/g$ & 1 | 
| 1361 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 1362 | 
  | 
  | 
          {Energy of Precipitation (snow, rain Temp)}  | 
| 1363 | 
  | 
  | 
         \end{minipage}\\ | 
| 1364 | 
  | 
  | 
\end{tabular} | 
| 1365 | 
  | 
  | 
\vspace{1.5in} | 
| 1366 | 
  | 
  | 
\vfill | 
| 1367 | 
  | 
  | 
 | 
| 1368 | 
  | 
  | 
\newpage | 
| 1369 | 
  | 
  | 
 | 
| 1370 | 
molod | 
1.9 | 
Fizhi Diagnostic Description: | 
| 1371 | 
molod | 
1.8 | 
 | 
| 1372 | 
  | 
  | 
In this section we list and describe the diagnostic quantities available within the  | 
| 1373 | 
  | 
  | 
GCM.  The diagnostics are listed in the order that they appear in the  | 
| 1374 | 
molod | 
1.14 | 
Diagnostic Menu, Section \ref{sec:pkg:fizhi:diagnostics}. | 
| 1375 | 
molod | 
1.8 | 
In all cases, each diagnostic as currently archived on the output datasets | 
| 1376 | 
  | 
  | 
is time-averaged over its diagnostic output frequency: | 
| 1377 | 
  | 
  | 
 | 
| 1378 | 
  | 
  | 
\[ | 
| 1379 | 
jmc | 
1.19 | 
{\bf DIAGNOSTIC} = \frac{1}{TTOT} \sum_{t=1}^{t=TTOT} diag(t) | 
| 1380 | 
molod | 
1.8 | 
\] | 
| 1381 | 
jmc | 
1.19 | 
where $TTOT = \frac{ {\bf NQDIAG} }{\Delta t}$, {\bf NQDIAG} is the  | 
| 1382 | 
molod | 
1.8 | 
output frequency of the diagnostic, and $\Delta t$ is | 
| 1383 | 
  | 
  | 
the timestep over which the diagnostic is updated.   | 
| 1384 | 
  | 
  | 
 | 
| 1385 | 
  | 
  | 
{ \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }  | 
| 1386 | 
  | 
  | 
 | 
| 1387 | 
  | 
  | 
The zonal wind stress is the turbulent flux of zonal momentum from  | 
| 1388 | 
  | 
  | 
the surface.  | 
| 1389 | 
  | 
  | 
\[ | 
| 1390 | 
  | 
  | 
{\bf UFLUX} =  - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u | 
| 1391 | 
  | 
  | 
\] | 
| 1392 | 
  | 
  | 
where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface | 
| 1393 | 
  | 
  | 
drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum  | 
| 1394 | 
  | 
  | 
(see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is  | 
| 1395 | 
  | 
  | 
the zonal wind in the lowest model layer. | 
| 1396 | 
  | 
  | 
\\ | 
| 1397 | 
  | 
  | 
 | 
| 1398 | 
  | 
  | 
 | 
| 1399 | 
  | 
  | 
{ \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }  | 
| 1400 | 
  | 
  | 
 | 
| 1401 | 
  | 
  | 
The meridional wind stress is the turbulent flux of meridional momentum from  | 
| 1402 | 
  | 
  | 
the surface.  | 
| 1403 | 
  | 
  | 
\[ | 
| 1404 | 
  | 
  | 
{\bf VFLUX} =  - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u | 
| 1405 | 
  | 
  | 
\] | 
| 1406 | 
  | 
  | 
where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface | 
| 1407 | 
  | 
  | 
drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum  | 
| 1408 | 
  | 
  | 
(see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is  | 
| 1409 | 
  | 
  | 
the meridional wind in the lowest model layer. | 
| 1410 | 
  | 
  | 
\\ | 
| 1411 | 
  | 
  | 
 | 
| 1412 | 
  | 
  | 
{ \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }  | 
| 1413 | 
  | 
  | 
 | 
| 1414 | 
  | 
  | 
The turbulent flux of sensible heat from the surface to the atmosphere is a function of the | 
| 1415 | 
  | 
  | 
gradient of virtual potential temperature and the eddy exchange coefficient: | 
| 1416 | 
  | 
  | 
\[ | 
| 1417 | 
  | 
  | 
{\bf HFLUX} =  P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys}) | 
| 1418 | 
  | 
  | 
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t | 
| 1419 | 
  | 
  | 
\] | 
| 1420 | 
  | 
  | 
where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific | 
| 1421 | 
  | 
  | 
heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the  | 
| 1422 | 
  | 
  | 
magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient  | 
| 1423 | 
  | 
  | 
for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient  | 
| 1424 | 
  | 
  | 
for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature  | 
| 1425 | 
  | 
  | 
at the surface and at the bottom model level. | 
| 1426 | 
  | 
  | 
\\ | 
| 1427 | 
  | 
  | 
 | 
| 1428 | 
  | 
  | 
 | 
| 1429 | 
  | 
  | 
{ \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }  | 
| 1430 | 
  | 
  | 
 | 
| 1431 | 
  | 
  | 
The turbulent flux of latent heat from the surface to the atmosphere is a function of the | 
| 1432 | 
  | 
  | 
gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient: | 
| 1433 | 
  | 
  | 
\[ | 
| 1434 | 
  | 
  | 
{\bf EFLUX} =  \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys}) | 
| 1435 | 
  | 
  | 
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t | 
| 1436 | 
  | 
  | 
\] | 
| 1437 | 
  | 
  | 
where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of | 
| 1438 | 
  | 
  | 
the potential evapotranspiration actually evaporated, L is the latent | 
| 1439 | 
  | 
  | 
heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the  | 
| 1440 | 
  | 
  | 
magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient  | 
| 1441 | 
  | 
  | 
for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient  | 
| 1442 | 
  | 
  | 
for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific | 
| 1443 | 
  | 
  | 
humidity at the surface and at the bottom model level, respectively. | 
| 1444 | 
  | 
  | 
\\ | 
| 1445 | 
  | 
  | 
 | 
| 1446 | 
  | 
  | 
{ \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }  | 
| 1447 | 
  | 
  | 
 | 
| 1448 | 
  | 
  | 
Over sea ice there is an additional source of energy at the surface due to the heat | 
| 1449 | 
  | 
  | 
conduction from the relatively warm ocean through the sea ice. The heat conduction | 
| 1450 | 
  | 
  | 
through sea ice represents an additional energy source term for the ground temperature equation. | 
| 1451 | 
  | 
  | 
 | 
| 1452 | 
  | 
  | 
\[ | 
| 1453 | 
jmc | 
1.19 | 
{\bf QICE} = \frac{C_{ti}}{H_i} (T_i-T_g) | 
| 1454 | 
molod | 
1.8 | 
\] | 
| 1455 | 
  | 
  | 
 | 
| 1456 | 
  | 
  | 
where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to | 
| 1457 | 
  | 
  | 
be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and | 
| 1458 | 
  | 
  | 
$T_g$ is the temperature of the sea ice. | 
| 1459 | 
  | 
  | 
 | 
| 1460 | 
  | 
  | 
NOTE: QICE is not available through model version 5.3, but is available in subsequent versions. | 
| 1461 | 
  | 
  | 
\\ | 
| 1462 | 
  | 
  | 
  | 
| 1463 | 
  | 
  | 
 | 
| 1464 | 
  | 
  | 
{ \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)} | 
| 1465 | 
  | 
  | 
 | 
| 1466 | 
  | 
  | 
\begin{eqnarray*} | 
| 1467 | 
  | 
  | 
{\bf RADLWG} & =  & F_{LW,Nrphys+1}^{Net} \\ | 
| 1468 | 
  | 
  | 
             & =  & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow | 
| 1469 | 
  | 
  | 
\end{eqnarray*} | 
| 1470 | 
  | 
  | 
\\ | 
| 1471 | 
  | 
  | 
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. | 
| 1472 | 
  | 
  | 
$F_{LW}^\uparrow$ is | 
| 1473 | 
  | 
  | 
the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux. | 
| 1474 | 
  | 
  | 
\\ | 
| 1475 | 
  | 
  | 
 | 
| 1476 | 
  | 
  | 
{ \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)} | 
| 1477 | 
  | 
  | 
 | 
| 1478 | 
  | 
  | 
\begin{eqnarray*} | 
| 1479 | 
  | 
  | 
{\bf RADSWG} & =  & F_{SW,Nrphys+1}^{Net} \\ | 
| 1480 | 
  | 
  | 
             & =  & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow | 
| 1481 | 
  | 
  | 
\end{eqnarray*} | 
| 1482 | 
  | 
  | 
\\ | 
| 1483 | 
  | 
  | 
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. | 
| 1484 | 
  | 
  | 
$F_{SW}^\downarrow$ is | 
| 1485 | 
  | 
  | 
the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux. | 
| 1486 | 
  | 
  | 
\\ | 
| 1487 | 
  | 
  | 
 | 
| 1488 | 
  | 
  | 
 | 
| 1489 | 
  | 
  | 
\noindent | 
| 1490 | 
  | 
  | 
{ \underline {RI} Richardson Number} ($dimensionless$) | 
| 1491 | 
  | 
  | 
 | 
| 1492 | 
  | 
  | 
\noindent | 
| 1493 | 
  | 
  | 
The non-dimensional stability indicator is the ratio of the buoyancy to the shear: | 
| 1494 | 
  | 
  | 
\[ | 
| 1495 | 
jmc | 
1.19 | 
{\bf RI} = \frac{ \frac{g}{\theta_v} \pp {\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 } | 
| 1496 | 
  | 
  | 
 =  \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 } | 
| 1497 | 
molod | 
1.8 | 
\] | 
| 1498 | 
  | 
  | 
\\ | 
| 1499 | 
  | 
  | 
where we used the hydrostatic equation:  | 
| 1500 | 
  | 
  | 
\[ | 
| 1501 | 
  | 
  | 
{\pp{\Phi}{P^ \kappa}} = c_p \theta_v | 
| 1502 | 
  | 
  | 
\] | 
| 1503 | 
  | 
  | 
Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$) | 
| 1504 | 
  | 
  | 
indicate dominantly unstable shear, and large positive values indicate dominantly stable | 
| 1505 | 
  | 
  | 
stratification. | 
| 1506 | 
  | 
  | 
\\ | 
| 1507 | 
  | 
  | 
 | 
| 1508 | 
  | 
  | 
\noindent | 
| 1509 | 
  | 
  | 
{ \underline {CT}  Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) } | 
| 1510 | 
  | 
  | 
 | 
| 1511 | 
  | 
  | 
\noindent | 
| 1512 | 
  | 
  | 
The surface exchange coefficient is obtained from the similarity functions for the stability | 
| 1513 | 
  | 
  | 
 dependant flux profile relationships: | 
| 1514 | 
  | 
  | 
\[ | 
| 1515 | 
jmc | 
1.19 | 
{\bf CT} = -\frac{( \overline{w^{\prime}\theta^{\prime}} ) }{ u_* \Delta \theta } =  | 
| 1516 | 
  | 
  | 
-\frac{( \overline{w^{\prime}q^{\prime}} ) }{ u_* \Delta q } =  | 
| 1517 | 
  | 
  | 
\frac{ k }{ (\psi_{h} + \psi_{g}) }  | 
| 1518 | 
molod | 
1.8 | 
\] | 
| 1519 | 
  | 
  | 
where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the | 
| 1520 | 
  | 
  | 
viscous sublayer non-dimensional temperature or moisture change: | 
| 1521 | 
  | 
  | 
\[ | 
| 1522 | 
jmc | 
1.19 | 
\psi_{h} = \int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta \hspace{1cm} and  | 
| 1523 | 
  | 
  | 
\hspace{1cm} \psi_{g} = \frac{ 0.55 (Pr^{2/3} - 0.2) }{ \nu^{1/2} }  | 
| 1524 | 
molod | 
1.8 | 
(h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2} | 
| 1525 | 
  | 
  | 
\] | 
| 1526 | 
  | 
  | 
and: | 
| 1527 | 
  | 
  | 
$h_{0} = 30z_{0}$ with a maximum value over land of 0.01 | 
| 1528 | 
  | 
  | 
 | 
| 1529 | 
  | 
  | 
\noindent | 
| 1530 | 
  | 
  | 
$\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of | 
| 1531 | 
  | 
  | 
the temperature and moisture gradients, specified differently for stable and unstable  | 
| 1532 | 
molod | 
1.10 | 
layers according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the  | 
| 1533 | 
molod | 
1.8 | 
non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular  | 
| 1534 | 
  | 
  | 
viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity  | 
| 1535 | 
  | 
  | 
(see diagnostic number 67), and the subscript ref refers to a reference value. | 
| 1536 | 
  | 
  | 
\\ | 
| 1537 | 
  | 
  | 
 | 
| 1538 | 
  | 
  | 
\noindent | 
| 1539 | 
  | 
  | 
{ \underline {CU}  Surface Exchange Coefficient for Momentum ($dimensionless$) } | 
| 1540 | 
  | 
  | 
 | 
| 1541 | 
  | 
  | 
\noindent | 
| 1542 | 
  | 
  | 
The surface exchange coefficient is obtained from the similarity functions for the stability | 
| 1543 | 
  | 
  | 
 dependant flux profile relationships: | 
| 1544 | 
  | 
  | 
\[ | 
| 1545 | 
jmc | 
1.19 | 
{\bf CU} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} }  | 
| 1546 | 
molod | 
1.8 | 
\] | 
| 1547 | 
  | 
  | 
where $\psi_m$ is the surface layer non-dimensional wind shear:  | 
| 1548 | 
  | 
  | 
\[ | 
| 1549 | 
jmc | 
1.19 | 
\psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta} | 
| 1550 | 
molod | 
1.8 | 
\] | 
| 1551 | 
  | 
  | 
\noindent | 
| 1552 | 
  | 
  | 
$\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of | 
| 1553 | 
  | 
  | 
the temperature and moisture gradients, specified differently for stable and unstable layers | 
| 1554 | 
molod | 
1.10 | 
according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the  | 
| 1555 | 
molod | 
1.8 | 
non-dimensional stability parameter, $u_*$ is the surface stress velocity  | 
| 1556 | 
  | 
  | 
(see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind. | 
| 1557 | 
  | 
  | 
\\ | 
| 1558 | 
  | 
  | 
 | 
| 1559 | 
  | 
  | 
\noindent | 
| 1560 | 
  | 
  | 
{ \underline {ET}  Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) } | 
| 1561 | 
  | 
  | 
 | 
| 1562 | 
  | 
  | 
\noindent | 
| 1563 | 
  | 
  | 
In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or | 
| 1564 | 
  | 
  | 
moisture flux for the atmosphere above the surface layer can be expressed as a turbulent  | 
| 1565 | 
  | 
  | 
diffusion coefficient $K_h$ times the negative of the gradient of potential temperature  | 
| 1566 | 
molod | 
1.10 | 
or moisture. In the \cite{helflab:88} adaptation of this closure, $K_h$  | 
| 1567 | 
molod | 
1.8 | 
takes the form: | 
| 1568 | 
  | 
  | 
\[ | 
| 1569 | 
jmc | 
1.19 | 
{\bf ET} = K_h = -\frac{( \overline{w^{\prime}\theta_v^{\prime}}) }{ \pp{\theta_v}{z} }  | 
| 1570 | 
molod | 
1.8 | 
 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence} | 
| 1571 | 
jmc | 
1.19 | 
\\ \frac{ q^2 }{ q_e } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right. | 
| 1572 | 
molod | 
1.8 | 
\] | 
| 1573 | 
  | 
  | 
where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}  | 
| 1574 | 
  | 
  | 
energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,  | 
| 1575 | 
  | 
  | 
which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer  | 
| 1576 | 
  | 
  | 
depth,  | 
| 1577 | 
  | 
  | 
$S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and | 
| 1578 | 
  | 
  | 
wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium  | 
| 1579 | 
  | 
  | 
dimensionless buoyancy and wind shear | 
| 1580 | 
  | 
  | 
parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,  | 
| 1581 | 
  | 
  | 
are functions of the Richardson number. | 
| 1582 | 
  | 
  | 
 | 
| 1583 | 
  | 
  | 
\noindent | 
| 1584 | 
  | 
  | 
For the detailed equations and derivations of the modified level 2.5 closure scheme, | 
| 1585 | 
molod | 
1.10 | 
see \cite{helflab:88}. | 
| 1586 | 
molod | 
1.8 | 
 | 
| 1587 | 
  | 
  | 
\noindent | 
| 1588 | 
  | 
  | 
In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture, | 
| 1589 | 
  | 
  | 
in units of $m/sec$, given by: | 
| 1590 | 
  | 
  | 
\[ | 
| 1591 | 
  | 
  | 
{\bf ET_{Nrphys}} =  C_t * u_* = C_H W_s | 
| 1592 | 
  | 
  | 
\] | 
| 1593 | 
  | 
  | 
\noindent | 
| 1594 | 
  | 
  | 
where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the  | 
| 1595 | 
  | 
  | 
surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface  | 
| 1596 | 
  | 
  | 
friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient, | 
| 1597 | 
  | 
  | 
and $W_s$ is the magnitude of the surface layer wind. | 
| 1598 | 
  | 
  | 
\\ | 
| 1599 | 
  | 
  | 
  | 
| 1600 | 
  | 
  | 
\noindent | 
| 1601 | 
  | 
  | 
{ \underline {EU}  Diffusivity Coefficient for Momentum ($m^2/sec$) } | 
| 1602 | 
  | 
  | 
  | 
| 1603 | 
  | 
  | 
\noindent   | 
| 1604 | 
  | 
  | 
In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat | 
| 1605 | 
  | 
  | 
momentum flux for the atmosphere above the surface layer can be expressed as a turbulent | 
| 1606 | 
  | 
  | 
diffusion coefficient $K_m$ times the negative of the gradient of the u-wind. | 
| 1607 | 
molod | 
1.10 | 
In the \cite{helflab:88} adaptation of this closure, $K_m$ | 
| 1608 | 
molod | 
1.8 | 
takes the form: | 
| 1609 | 
  | 
  | 
\[ | 
| 1610 | 
jmc | 
1.19 | 
{\bf EU} = K_m = -\frac{( \overline{u^{\prime}w^{\prime}} ) }{ \pp{U}{z} } | 
| 1611 | 
molod | 
1.8 | 
 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence} | 
| 1612 | 
jmc | 
1.19 | 
\\ \frac{ q^2 }{ q_e } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right. | 
| 1613 | 
molod | 
1.8 | 
\] | 
| 1614 | 
  | 
  | 
\noindent | 
| 1615 | 
  | 
  | 
where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm} | 
| 1616 | 
  | 
  | 
energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model, | 
| 1617 | 
  | 
  | 
which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer | 
| 1618 | 
  | 
  | 
depth,  | 
| 1619 | 
  | 
  | 
$S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and | 
| 1620 | 
  | 
  | 
wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium  | 
| 1621 | 
  | 
  | 
dimensionless buoyancy and wind shear | 
| 1622 | 
  | 
  | 
parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,  | 
| 1623 | 
  | 
  | 
are functions of the Richardson number. | 
| 1624 | 
  | 
  | 
 | 
| 1625 | 
  | 
  | 
\noindent | 
| 1626 | 
  | 
  | 
For the detailed equations and derivations of the modified level 2.5 closure scheme, | 
| 1627 | 
molod | 
1.10 | 
see \cite{helflab:88}. | 
| 1628 | 
molod | 
1.8 | 
  | 
| 1629 | 
  | 
  | 
\noindent | 
| 1630 | 
  | 
  | 
In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum, | 
| 1631 | 
  | 
  | 
in units of $m/sec$, given by: | 
| 1632 | 
  | 
  | 
\[ | 
| 1633 | 
  | 
  | 
{\bf EU_{Nrphys}} = C_u * u_* = C_D W_s | 
| 1634 | 
  | 
  | 
\] | 
| 1635 | 
  | 
  | 
\noindent | 
| 1636 | 
  | 
  | 
where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer  | 
| 1637 | 
  | 
  | 
similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity  | 
| 1638 | 
  | 
  | 
(see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the  | 
| 1639 | 
  | 
  | 
magnitude of the surface layer wind. | 
| 1640 | 
  | 
  | 
\\ | 
| 1641 | 
  | 
  | 
  | 
| 1642 | 
  | 
  | 
\noindent | 
| 1643 | 
  | 
  | 
{ \underline {TURBU}  Zonal U-Momentum changes due to Turbulence ($m/sec/day$) } | 
| 1644 | 
  | 
  | 
  | 
| 1645 | 
  | 
  | 
\noindent | 
| 1646 | 
  | 
  | 
The tendency of U-Momentum due to turbulence is written: | 
| 1647 | 
  | 
  | 
\[ | 
| 1648 | 
  | 
  | 
{\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})} | 
| 1649 | 
  | 
  | 
 = {\pp{}{z} }{(K_m \pp{u}{z})} | 
| 1650 | 
  | 
  | 
\] | 
| 1651 | 
  | 
  | 
 | 
| 1652 | 
  | 
  | 
\noindent | 
| 1653 | 
  | 
  | 
The Helfand and Labraga level 2.5 scheme models the turbulent | 
| 1654 | 
  | 
  | 
flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion | 
| 1655 | 
  | 
  | 
equation. | 
| 1656 | 
  | 
  | 
  | 
| 1657 | 
  | 
  | 
\noindent | 
| 1658 | 
  | 
  | 
{ \underline {TURBV}  Meridional V-Momentum changes due to Turbulence ($m/sec/day$) } | 
| 1659 | 
  | 
  | 
  | 
| 1660 | 
  | 
  | 
\noindent | 
| 1661 | 
  | 
  | 
The tendency of V-Momentum due to turbulence is written: | 
| 1662 | 
  | 
  | 
\[ | 
| 1663 | 
  | 
  | 
{\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})} | 
| 1664 | 
  | 
  | 
 = {\pp{}{z} }{(K_m \pp{v}{z})} | 
| 1665 | 
  | 
  | 
\] | 
| 1666 | 
  | 
  | 
 | 
| 1667 | 
  | 
  | 
\noindent | 
| 1668 | 
  | 
  | 
The Helfand and Labraga level 2.5 scheme models the turbulent | 
| 1669 | 
  | 
  | 
flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion | 
| 1670 | 
  | 
  | 
equation. | 
| 1671 | 
  | 
  | 
\\ | 
| 1672 | 
  | 
  | 
  | 
| 1673 | 
  | 
  | 
\noindent | 
| 1674 | 
  | 
  | 
{ \underline {TURBT}  Temperature changes due to Turbulence ($deg/day$) } | 
| 1675 | 
  | 
  | 
  | 
| 1676 | 
  | 
  | 
\noindent | 
| 1677 | 
  | 
  | 
The tendency of temperature due to turbulence is written: | 
| 1678 | 
  | 
  | 
\[ | 
| 1679 | 
  | 
  | 
{\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =  | 
| 1680 | 
  | 
  | 
P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})} | 
| 1681 | 
  | 
  | 
 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})} | 
| 1682 | 
  | 
  | 
\] | 
| 1683 | 
  | 
  | 
 | 
| 1684 | 
  | 
  | 
\noindent | 
| 1685 | 
  | 
  | 
The Helfand and Labraga level 2.5 scheme models the turbulent | 
| 1686 | 
  | 
  | 
flux of temperature in terms of $K_h$, and the equation has the form of a diffusion | 
| 1687 | 
  | 
  | 
equation. | 
| 1688 | 
  | 
  | 
\\ | 
| 1689 | 
  | 
  | 
  | 
| 1690 | 
  | 
  | 
\noindent | 
| 1691 | 
  | 
  | 
{ \underline {TURBQ}  Specific Humidity changes due to Turbulence ($g/kg/day$) } | 
| 1692 | 
  | 
  | 
  | 
| 1693 | 
  | 
  | 
\noindent | 
| 1694 | 
  | 
  | 
The tendency of specific humidity due to turbulence is written: | 
| 1695 | 
  | 
  | 
\[ | 
| 1696 | 
  | 
  | 
{\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})} | 
| 1697 | 
  | 
  | 
 = {\pp{}{z} }{(K_h \pp{q}{z})} | 
| 1698 | 
  | 
  | 
\] | 
| 1699 | 
  | 
  | 
 | 
| 1700 | 
  | 
  | 
\noindent | 
| 1701 | 
  | 
  | 
The Helfand and Labraga level 2.5 scheme models the turbulent | 
| 1702 | 
  | 
  | 
flux of temperature in terms of $K_h$, and the equation has the form of a diffusion | 
| 1703 | 
  | 
  | 
equation. | 
| 1704 | 
  | 
  | 
\\ | 
| 1705 | 
  | 
  | 
  | 
| 1706 | 
  | 
  | 
\noindent | 
| 1707 | 
  | 
  | 
{ \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }  | 
| 1708 | 
  | 
  | 
 | 
| 1709 | 
  | 
  | 
\noindent | 
| 1710 | 
  | 
  | 
\[ | 
| 1711 | 
  | 
  | 
{\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls} | 
| 1712 | 
  | 
  | 
\] | 
| 1713 | 
  | 
  | 
where: | 
| 1714 | 
  | 
  | 
\[ | 
| 1715 | 
jmc | 
1.19 | 
\left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{c_p} \Gamma_s \right)_i  | 
| 1716 | 
molod | 
1.8 | 
\hspace{.4cm} and  | 
| 1717 | 
jmc | 
1.19 | 
\hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = \frac{L}{c_p} (q^*-q) | 
| 1718 | 
molod | 
1.8 | 
\] | 
| 1719 | 
  | 
  | 
and | 
| 1720 | 
  | 
  | 
\[ | 
| 1721 | 
  | 
  | 
\Gamma_s = g \eta \pp{s}{p} | 
| 1722 | 
  | 
  | 
\] | 
| 1723 | 
  | 
  | 
 | 
| 1724 | 
  | 
  | 
\noindent | 
| 1725 | 
  | 
  | 
The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale | 
| 1726 | 
  | 
  | 
precipitation processes, or supersaturation rain.  | 
| 1727 | 
  | 
  | 
The summation refers to contributions from each cloud type called by RAS.   | 
| 1728 | 
  | 
  | 
The dry static energy is given  | 
| 1729 | 
  | 
  | 
as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is | 
| 1730 | 
  | 
  | 
given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},  | 
| 1731 | 
  | 
  | 
the description of the convective parameterization.  The fractional adjustment, or relaxation | 
| 1732 | 
  | 
  | 
parameter, for each cloud type is given as $\alpha$, while | 
| 1733 | 
  | 
  | 
$R$ is the rain re-evaporation adjustment. | 
| 1734 | 
  | 
  | 
\\ | 
| 1735 | 
  | 
  | 
 | 
| 1736 | 
  | 
  | 
\noindent | 
| 1737 | 
  | 
  | 
{ \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }  | 
| 1738 | 
  | 
  | 
 | 
| 1739 | 
  | 
  | 
\noindent | 
| 1740 | 
  | 
  | 
\[ | 
| 1741 | 
  | 
  | 
{\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls} | 
| 1742 | 
  | 
  | 
\] | 
| 1743 | 
  | 
  | 
where: | 
| 1744 | 
  | 
  | 
\[ | 
| 1745 | 
jmc | 
1.19 | 
\left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{L}(\Gamma_h-\Gamma_s) \right)_i  | 
| 1746 | 
molod | 
1.8 | 
\hspace{.4cm} and  | 
| 1747 | 
  | 
  | 
\hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q) | 
| 1748 | 
  | 
  | 
\] | 
| 1749 | 
  | 
  | 
and | 
| 1750 | 
  | 
  | 
\[ | 
| 1751 | 
  | 
  | 
\Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p} | 
| 1752 | 
  | 
  | 
\] | 
| 1753 | 
  | 
  | 
\noindent | 
| 1754 | 
  | 
  | 
The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale | 
| 1755 | 
  | 
  | 
precipitation processes, or supersaturation rain.  | 
| 1756 | 
  | 
  | 
The summation refers to contributions from each cloud type called by RAS.   | 
| 1757 | 
  | 
  | 
The dry static energy is given as $s$,  | 
| 1758 | 
  | 
  | 
the moist static energy is given as $h$,  | 
| 1759 | 
  | 
  | 
the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is | 
| 1760 | 
  | 
  | 
given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},  | 
| 1761 | 
  | 
  | 
the description of the convective parameterization.  The fractional adjustment, or relaxation | 
| 1762 | 
  | 
  | 
parameter, for each cloud type is given as $\alpha$, while | 
| 1763 | 
  | 
  | 
$R$ is the rain re-evaporation adjustment. | 
| 1764 | 
  | 
  | 
\\ | 
| 1765 | 
  | 
  | 
 | 
| 1766 | 
  | 
  | 
\noindent | 
| 1767 | 
  | 
  | 
{ \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) } | 
| 1768 | 
  | 
  | 
 | 
| 1769 | 
  | 
  | 
\noindent | 
| 1770 | 
  | 
  | 
The net longwave heating rate is calculated as the vertical divergence of the | 
| 1771 | 
  | 
  | 
net terrestrial radiative fluxes. | 
| 1772 | 
  | 
  | 
Both the clear-sky and cloudy-sky longwave fluxes are computed within the | 
| 1773 | 
  | 
  | 
longwave routine. | 
| 1774 | 
  | 
  | 
The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first. | 
| 1775 | 
  | 
  | 
For a given cloud fraction, | 
| 1776 | 
  | 
  | 
the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$  | 
| 1777 | 
  | 
  | 
to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$, | 
| 1778 | 
  | 
  | 
for the upward and downward radiative fluxes. | 
| 1779 | 
  | 
  | 
(see Section \ref{sec:fizhi:radcloud}). | 
| 1780 | 
  | 
  | 
The cloudy-sky flux is then obtained as: | 
| 1781 | 
  | 
  | 
    | 
| 1782 | 
  | 
  | 
\noindent | 
| 1783 | 
  | 
  | 
\[ | 
| 1784 | 
  | 
  | 
F_{LW} = C(p,p') \cdot F^{clearsky}_{LW}, | 
| 1785 | 
  | 
  | 
\] | 
| 1786 | 
  | 
  | 
 | 
| 1787 | 
  | 
  | 
\noindent | 
| 1788 | 
  | 
  | 
Finally, the net longwave heating rate is calculated as the vertical divergence of the | 
| 1789 | 
  | 
  | 
net terrestrial radiative fluxes: | 
| 1790 | 
  | 
  | 
\[ | 
| 1791 | 
jmc | 
1.19 | 
\pp{\rho c_p T}{t} = - \p{z} F_{LW}^{NET} , | 
| 1792 | 
molod | 
1.8 | 
\] | 
| 1793 | 
  | 
  | 
or | 
| 1794 | 
  | 
  | 
\[ | 
| 1795 | 
jmc | 
1.19 | 
{\bf RADLW} = \frac{g}{c_p \pi} \p{\sigma} F_{LW}^{NET} . | 
| 1796 | 
molod | 
1.8 | 
\] | 
| 1797 | 
  | 
  | 
 | 
| 1798 | 
  | 
  | 
\noindent | 
| 1799 | 
  | 
  | 
where $g$ is the accelation due to gravity, | 
| 1800 | 
  | 
  | 
$c_p$ is the heat capacity of air at constant pressure, | 
| 1801 | 
  | 
  | 
and | 
| 1802 | 
  | 
  | 
\[ | 
| 1803 | 
  | 
  | 
F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow | 
| 1804 | 
  | 
  | 
\] | 
| 1805 | 
  | 
  | 
\\ | 
| 1806 | 
  | 
  | 
 | 
| 1807 | 
  | 
  | 
 | 
| 1808 | 
  | 
  | 
\noindent | 
| 1809 | 
  | 
  | 
{ \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) } | 
| 1810 | 
  | 
  | 
 | 
| 1811 | 
  | 
  | 
\noindent | 
| 1812 | 
  | 
  | 
The net Shortwave heating rate is calculated as the vertical divergence of the | 
| 1813 | 
  | 
  | 
net solar radiative fluxes. | 
| 1814 | 
  | 
  | 
The clear-sky and cloudy-sky shortwave fluxes are calculated separately. | 
| 1815 | 
  | 
  | 
For the clear-sky case, the shortwave fluxes and heating rates are computed with | 
| 1816 | 
  | 
  | 
both CLMO (maximum overlap cloud fraction) and | 
| 1817 | 
  | 
  | 
CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}). | 
| 1818 | 
  | 
  | 
The shortwave routine is then called a second time, for the cloudy-sky case, with the | 
| 1819 | 
  | 
  | 
true time-averaged cloud fractions CLMO | 
| 1820 | 
  | 
  | 
and CLRO being used.  In all cases, a normalized incident shortwave flux is used as | 
| 1821 | 
  | 
  | 
input at the top of the atmosphere. | 
| 1822 | 
  | 
  | 
 | 
| 1823 | 
  | 
  | 
\noindent | 
| 1824 | 
  | 
  | 
The heating rate due to Shortwave Radiation under cloudy skies is defined as: | 
| 1825 | 
  | 
  | 
\[ | 
| 1826 | 
jmc | 
1.19 | 
\pp{\rho c_p T}{t} = - \p{z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT}, | 
| 1827 | 
molod | 
1.8 | 
\] | 
| 1828 | 
  | 
  | 
or | 
| 1829 | 
  | 
  | 
\[ | 
| 1830 | 
jmc | 
1.19 | 
{\bf RADSW} = \frac{g}{c_p \pi} \p{\sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} . | 
| 1831 | 
molod | 
1.8 | 
\] | 
| 1832 | 
  | 
  | 
 | 
| 1833 | 
  | 
  | 
\noindent | 
| 1834 | 
  | 
  | 
where $g$ is the accelation due to gravity, | 
| 1835 | 
  | 
  | 
$c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident | 
| 1836 | 
  | 
  | 
shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and | 
| 1837 | 
  | 
  | 
\[ | 
| 1838 | 
  | 
  | 
F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow | 
| 1839 | 
  | 
  | 
\] | 
| 1840 | 
  | 
  | 
\\ | 
| 1841 | 
  | 
  | 
 | 
| 1842 | 
  | 
  | 
\noindent | 
| 1843 | 
  | 
  | 
{ \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }  | 
| 1844 | 
  | 
  | 
 | 
| 1845 | 
  | 
  | 
\noindent | 
| 1846 | 
  | 
  | 
For a change in specific humidity due to moist processes, $\Delta q_{moist}$,  | 
| 1847 | 
  | 
  | 
the vertical integral or total precipitable amount is given by:    | 
| 1848 | 
  | 
  | 
\[ | 
| 1849 | 
  | 
  | 
{\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta  q_{moist} | 
| 1850 | 
jmc | 
1.19 | 
\frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{moist} dp | 
| 1851 | 
molod | 
1.8 | 
\] | 
| 1852 | 
  | 
  | 
\\ | 
| 1853 | 
  | 
  | 
 | 
| 1854 | 
  | 
  | 
\noindent | 
| 1855 | 
  | 
  | 
A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes | 
| 1856 | 
  | 
  | 
time step, scaled to $mm/day$. | 
| 1857 | 
  | 
  | 
\\ | 
| 1858 | 
  | 
  | 
 | 
| 1859 | 
  | 
  | 
\noindent | 
| 1860 | 
  | 
  | 
{ \underline {PRECON} Convective Precipition ($mm/day$) }  | 
| 1861 | 
  | 
  | 
 | 
| 1862 | 
  | 
  | 
\noindent | 
| 1863 | 
  | 
  | 
For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,  | 
| 1864 | 
  | 
  | 
the vertical integral or total precipitable amount is given by:    | 
| 1865 | 
  | 
  | 
\[ | 
| 1866 | 
  | 
  | 
{\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta  q_{cum} | 
| 1867 | 
jmc | 
1.19 | 
\frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{cum} dp | 
| 1868 | 
molod | 
1.8 | 
\] | 
| 1869 | 
  | 
  | 
\\ | 
| 1870 | 
  | 
  | 
 | 
| 1871 | 
  | 
  | 
\noindent | 
| 1872 | 
  | 
  | 
A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes | 
| 1873 | 
  | 
  | 
time step, scaled to $mm/day$. | 
| 1874 | 
  | 
  | 
\\ | 
| 1875 | 
  | 
  | 
 | 
| 1876 | 
  | 
  | 
\noindent | 
| 1877 | 
  | 
  | 
{ \underline {TUFLUX}  Turbulent Flux of U-Momentum ($Newton/m^2$) } | 
| 1878 | 
  | 
  | 
 | 
| 1879 | 
  | 
  | 
\noindent | 
| 1880 | 
  | 
  | 
The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes | 
| 1881 | 
  | 
  | 
 \hspace{.2cm} only$ from the eddy coefficient for momentum: | 
| 1882 | 
  | 
  | 
 | 
| 1883 | 
  | 
  | 
\[ | 
| 1884 | 
  | 
  | 
{\bf TUFLUX} =  {\rho } {(\overline{u^{\prime}w^{\prime}})} =   | 
| 1885 | 
  | 
  | 
{\rho } {(- K_m \pp{U}{z})} | 
| 1886 | 
  | 
  | 
\] | 
| 1887 | 
  | 
  | 
  | 
| 1888 | 
  | 
  | 
\noindent | 
| 1889 | 
  | 
  | 
where $\rho$ is the air density, and $K_m$ is the eddy coefficient. | 
| 1890 | 
  | 
  | 
\\ | 
| 1891 | 
  | 
  | 
 | 
| 1892 | 
  | 
  | 
\noindent | 
| 1893 | 
  | 
  | 
{ \underline {TVFLUX}  Turbulent Flux of V-Momentum ($Newton/m^2$) } | 
| 1894 | 
  | 
  | 
 | 
| 1895 | 
  | 
  | 
\noindent | 
| 1896 | 
  | 
  | 
The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes  | 
| 1897 | 
  | 
  | 
\hspace{.2cm} only$ from the eddy coefficient for momentum: | 
| 1898 | 
  | 
  | 
 | 
| 1899 | 
  | 
  | 
\[ | 
| 1900 | 
  | 
  | 
{\bf TVFLUX} =  {\rho } {(\overline{v^{\prime}w^{\prime}})} =  | 
| 1901 | 
  | 
  | 
 {\rho } {(- K_m \pp{V}{z})} | 
| 1902 | 
  | 
  | 
\] | 
| 1903 | 
  | 
  | 
  | 
| 1904 | 
  | 
  | 
\noindent | 
| 1905 | 
  | 
  | 
where $\rho$ is the air density, and $K_m$ is the eddy coefficient. | 
| 1906 | 
  | 
  | 
\\ | 
| 1907 | 
  | 
  | 
 | 
| 1908 | 
  | 
  | 
 | 
| 1909 | 
  | 
  | 
\noindent | 
| 1910 | 
  | 
  | 
{ \underline {TTFLUX}  Turbulent Flux of Sensible Heat ($Watts/m^2$) } | 
| 1911 | 
  | 
  | 
 | 
| 1912 | 
  | 
  | 
\noindent | 
| 1913 | 
  | 
  | 
The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes  | 
| 1914 | 
  | 
  | 
\hspace{.2cm} only$ from the eddy coefficient for heat and moisture: | 
| 1915 | 
  | 
  | 
 | 
| 1916 | 
  | 
  | 
\noindent | 
| 1917 | 
  | 
  | 
\[ | 
| 1918 | 
  | 
  | 
{\bf TTFLUX} = c_p {\rho }   | 
| 1919 | 
  | 
  | 
P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})} | 
| 1920 | 
  | 
  | 
 = c_p  {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})} | 
| 1921 | 
  | 
  | 
\] | 
| 1922 | 
  | 
  | 
  | 
| 1923 | 
  | 
  | 
\noindent | 
| 1924 | 
  | 
  | 
where $\rho$ is the air density, and $K_h$ is the eddy coefficient. | 
| 1925 | 
  | 
  | 
\\ | 
| 1926 | 
  | 
  | 
 | 
| 1927 | 
  | 
  | 
 | 
| 1928 | 
  | 
  | 
\noindent | 
| 1929 | 
  | 
  | 
{ \underline {TQFLUX}  Turbulent Flux of Latent Heat ($Watts/m^2$) } | 
| 1930 | 
  | 
  | 
 | 
| 1931 | 
  | 
  | 
\noindent | 
| 1932 | 
  | 
  | 
The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes  | 
| 1933 | 
  | 
  | 
\hspace{.2cm} only$ from the eddy coefficient for heat and moisture: | 
| 1934 | 
  | 
  | 
 | 
| 1935 | 
  | 
  | 
\noindent | 
| 1936 | 
  | 
  | 
\[ | 
| 1937 | 
  | 
  | 
{\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =  | 
| 1938 | 
  | 
  | 
{L {\rho }(- K_h \pp{q}{z})} | 
| 1939 | 
  | 
  | 
\] | 
| 1940 | 
  | 
  | 
  | 
| 1941 | 
  | 
  | 
\noindent | 
| 1942 | 
  | 
  | 
where $\rho$ is the air density, and $K_h$ is the eddy coefficient. | 
| 1943 | 
  | 
  | 
\\ | 
| 1944 | 
  | 
  | 
 | 
| 1945 | 
  | 
  | 
  | 
| 1946 | 
  | 
  | 
\noindent | 
| 1947 | 
  | 
  | 
{ \underline {CN}  Neutral Drag Coefficient ($dimensionless$) } | 
| 1948 | 
  | 
  | 
 | 
| 1949 | 
  | 
  | 
\noindent | 
| 1950 | 
  | 
  | 
The drag coefficient for momentum obtained by assuming a neutrally stable surface layer: | 
| 1951 | 
  | 
  | 
\[ | 
| 1952 | 
jmc | 
1.19 | 
{\bf CN} = \frac{ k }{ \ln(\frac{h }{z_0}) } | 
| 1953 | 
molod | 
1.8 | 
\] | 
| 1954 | 
  | 
  | 
 | 
| 1955 | 
  | 
  | 
\noindent | 
| 1956 | 
  | 
  | 
where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and | 
| 1957 | 
  | 
  | 
$z_0$ is the surface roughness.  | 
| 1958 | 
  | 
  | 
 | 
| 1959 | 
  | 
  | 
\noindent | 
| 1960 | 
  | 
  | 
NOTE: CN is not available through model version 5.3, but is available in subsequent | 
| 1961 | 
  | 
  | 
versions. | 
| 1962 | 
  | 
  | 
\\ | 
| 1963 | 
  | 
  | 
 | 
| 1964 | 
  | 
  | 
\noindent | 
| 1965 | 
  | 
  | 
{ \underline {WINDS}  Surface Wind Speed ($meter/sec$) } | 
| 1966 | 
  | 
  | 
 | 
| 1967 | 
  | 
  | 
\noindent | 
| 1968 | 
  | 
  | 
The surface wind speed is calculated for the last internal turbulence time step: | 
| 1969 | 
  | 
  | 
\[ | 
| 1970 | 
  | 
  | 
{\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2} | 
| 1971 | 
  | 
  | 
\] | 
| 1972 | 
  | 
  | 
 | 
| 1973 | 
  | 
  | 
\noindent | 
| 1974 | 
  | 
  | 
where the subscript $Nrphys$ refers to the lowest model level. | 
| 1975 | 
  | 
  | 
\\ | 
| 1976 | 
  | 
  | 
  | 
| 1977 | 
  | 
  | 
\noindent | 
| 1978 | 
  | 
  | 
{ \underline {DTSRF}  Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) } | 
| 1979 | 
  | 
  | 
 | 
| 1980 | 
  | 
  | 
\noindent | 
| 1981 | 
  | 
  | 
The air/surface virtual temperature difference measures the stability of the surface layer: | 
| 1982 | 
  | 
  | 
\[ | 
| 1983 | 
  | 
  | 
{\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf} | 
| 1984 | 
  | 
  | 
\] | 
| 1985 | 
  | 
  | 
\noindent | 
| 1986 | 
  | 
  | 
where | 
| 1987 | 
  | 
  | 
\[ | 
| 1988 | 
jmc | 
1.19 | 
\theta_{v{Nrphys+1}} = \frac{ T_g }{ P^{\kappa}_{surf} } (1 + .609 q_{Nrphys+1}) \hspace{1cm} | 
| 1989 | 
molod | 
1.8 | 
and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys}) | 
| 1990 | 
  | 
  | 
\] | 
| 1991 | 
  | 
  | 
 | 
| 1992 | 
  | 
  | 
\noindent | 
| 1993 | 
  | 
  | 
$\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans), | 
| 1994 | 
  | 
  | 
$q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature  | 
| 1995 | 
  | 
  | 
and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$  | 
| 1996 | 
  | 
  | 
refers to the surface. | 
| 1997 | 
  | 
  | 
\\ | 
| 1998 | 
  | 
  | 
 | 
| 1999 | 
  | 
  | 
  | 
| 2000 | 
  | 
  | 
\noindent | 
| 2001 | 
  | 
  | 
{ \underline {TG}  Ground Temperature ($deg \hspace{.1cm} K$) } | 
| 2002 | 
  | 
  | 
 | 
| 2003 | 
  | 
  | 
\noindent | 
| 2004 | 
  | 
  | 
The ground temperature equation is solved as part of the turbulence package | 
| 2005 | 
  | 
  | 
using a backward implicit time differencing scheme: | 
| 2006 | 
  | 
  | 
\[ | 
| 2007 | 
  | 
  | 
{\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm} | 
| 2008 | 
  | 
  | 
C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE | 
| 2009 | 
  | 
  | 
\] | 
| 2010 | 
  | 
  | 
 | 
| 2011 | 
  | 
  | 
\noindent | 
| 2012 | 
  | 
  | 
where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the | 
| 2013 | 
  | 
  | 
net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through | 
| 2014 | 
  | 
  | 
sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat | 
| 2015 | 
  | 
  | 
flux, and $C_g$ is the total heat capacity of the ground.  | 
| 2016 | 
  | 
  | 
$C_g$ is obtained by solving a heat diffusion equation  | 
| 2017 | 
molod | 
1.10 | 
for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by: | 
| 2018 | 
molod | 
1.8 | 
\[ | 
| 2019 | 
jmc | 
1.19 | 
C_g = \sqrt{ \frac{\lambda C_s }{ 2 \omega } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3} | 
| 2020 | 
  | 
  | 
\frac{86400.}{2\pi} } \, \, . | 
| 2021 | 
molod | 
1.8 | 
\] | 
| 2022 | 
  | 
  | 
\noindent | 
| 2023 | 
jmc | 
1.19 | 
Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ $\frac{ly}{sec}  | 
| 2024 | 
  | 
  | 
\frac{cm}{K}$,  | 
| 2025 | 
molod | 
1.8 | 
the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided  | 
| 2026 | 
  | 
  | 
by $2 \pi$ $radians/ | 
| 2027 | 
  | 
  | 
day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,  | 
| 2028 | 
  | 
  | 
is a function of the ground wetness, $W$.  | 
| 2029 | 
  | 
  | 
\\ | 
| 2030 | 
  | 
  | 
 | 
| 2031 | 
  | 
  | 
\noindent | 
| 2032 | 
  | 
  | 
{ \underline {TS}  Surface Temperature ($deg \hspace{.1cm} K$) } | 
| 2033 | 
  | 
  | 
 | 
| 2034 | 
  | 
  | 
\noindent | 
| 2035 | 
  | 
  | 
The surface temperature estimate is made by assuming that the model's lowest | 
| 2036 | 
  | 
  | 
layer is well-mixed, and therefore that $\theta$ is constant in that layer. | 
| 2037 | 
  | 
  | 
The surface temperature is therefore: | 
| 2038 | 
  | 
  | 
\[ | 
| 2039 | 
  | 
  | 
{\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf} | 
| 2040 | 
  | 
  | 
\] | 
| 2041 | 
  | 
  | 
\\ | 
| 2042 | 
  | 
  | 
  | 
| 2043 | 
  | 
  | 
\noindent | 
| 2044 | 
  | 
  | 
{ \underline {DTG}  Surface Temperature Adjustment ($deg \hspace{.1cm} K$) } | 
| 2045 | 
  | 
  | 
 | 
| 2046 | 
  | 
  | 
\noindent | 
| 2047 | 
  | 
  | 
The change in surface temperature from one turbulence time step to the next, solved | 
| 2048 | 
  | 
  | 
using the Ground Temperature Equation (see diagnostic number 30) is calculated: | 
| 2049 | 
  | 
  | 
\[ | 
| 2050 | 
  | 
  | 
{\bf DTG} = {T_g}^{n} - {T_g}^{n-1} | 
| 2051 | 
  | 
  | 
\] | 
| 2052 | 
  | 
  | 
 | 
| 2053 | 
  | 
  | 
\noindent | 
| 2054 | 
  | 
  | 
where superscript $n$ refers to the new, updated time level, and the superscript $n-1$ | 
| 2055 | 
  | 
  | 
refers to the value at the previous turbulence time level. | 
| 2056 | 
  | 
  | 
\\ | 
| 2057 | 
  | 
  | 
  | 
| 2058 | 
  | 
  | 
\noindent | 
| 2059 | 
  | 
  | 
{ \underline {QG}  Ground Specific Humidity ($g/kg$) } | 
| 2060 | 
  | 
  | 
 | 
| 2061 | 
  | 
  | 
\noindent | 
| 2062 | 
  | 
  | 
The ground specific humidity is obtained by interpolating between the specific | 
| 2063 | 
  | 
  | 
humidity at the lowest model level and the specific humidity of a saturated ground. | 
| 2064 | 
  | 
  | 
The interpolation is performed using the potential evapotranspiration function: | 
| 2065 | 
  | 
  | 
\[ | 
| 2066 | 
  | 
  | 
{\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys}) | 
| 2067 | 
  | 
  | 
\] | 
| 2068 | 
  | 
  | 
 | 
| 2069 | 
  | 
  | 
\noindent | 
| 2070 | 
  | 
  | 
where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),  | 
| 2071 | 
  | 
  | 
and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface | 
| 2072 | 
  | 
  | 
pressure. | 
| 2073 | 
  | 
  | 
\\ | 
| 2074 | 
  | 
  | 
  | 
| 2075 | 
  | 
  | 
\noindent | 
| 2076 | 
  | 
  | 
{ \underline {QS}  Saturation Surface Specific Humidity ($g/kg$) } | 
| 2077 | 
  | 
  | 
 | 
| 2078 | 
  | 
  | 
\noindent | 
| 2079 | 
  | 
  | 
The surface saturation specific humidity is the saturation specific humidity at | 
| 2080 | 
  | 
  | 
the ground temprature and surface pressure: | 
| 2081 | 
  | 
  | 
\[ | 
| 2082 | 
  | 
  | 
{\bf QS} = q^*(T_g,P_s) | 
| 2083 | 
  | 
  | 
\] | 
| 2084 | 
  | 
  | 
\\ | 
| 2085 | 
  | 
  | 
  | 
| 2086 | 
  | 
  | 
\noindent | 
| 2087 | 
  | 
  | 
{ \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave | 
| 2088 | 
  | 
  | 
 radiation subroutine (deg)} | 
| 2089 | 
  | 
  | 
\[ | 
| 2090 | 
  | 
  | 
{\bf TGRLW}  = T_g(\lambda , \phi ,n) | 
| 2091 | 
  | 
  | 
\] | 
| 2092 | 
  | 
  | 
\noindent | 
| 2093 | 
  | 
  | 
where $T_g$ is the model ground temperature at the current time step $n$. | 
| 2094 | 
  | 
  | 
\\ | 
| 2095 | 
  | 
  | 
  | 
| 2096 | 
  | 
  | 
  | 
| 2097 | 
  | 
  | 
\noindent | 
| 2098 | 
  | 
  | 
{ \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) } | 
| 2099 | 
  | 
  | 
\[ | 
| 2100 | 
  | 
  | 
{\bf ST4} = \sigma T^4 | 
| 2101 | 
  | 
  | 
\] | 
| 2102 | 
  | 
  | 
\noindent | 
| 2103 | 
  | 
  | 
where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature. | 
| 2104 | 
  | 
  | 
\\ | 
| 2105 | 
  | 
  | 
  | 
| 2106 | 
  | 
  | 
\noindent | 
| 2107 | 
  | 
  | 
{ \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) } | 
| 2108 | 
  | 
  | 
\[ | 
| 2109 | 
  | 
  | 
{\bf OLR}  =  F_{LW,top}^{NET} | 
| 2110 | 
  | 
  | 
\] | 
| 2111 | 
  | 
  | 
\noindent | 
| 2112 | 
  | 
  | 
where top indicates the top of the first model layer. | 
| 2113 | 
  | 
  | 
In the GCM, $p_{top}$ = 0.0 mb. | 
| 2114 | 
  | 
  | 
\\ | 
| 2115 | 
  | 
  | 
 | 
| 2116 | 
  | 
  | 
 | 
| 2117 | 
  | 
  | 
\noindent | 
| 2118 | 
  | 
  | 
{ \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) } | 
| 2119 | 
  | 
  | 
\[ | 
| 2120 | 
  | 
  | 
{\bf OLRCLR}  =  F(clearsky)_{LW,top}^{NET} | 
| 2121 | 
  | 
  | 
\] | 
| 2122 | 
  | 
  | 
\noindent | 
| 2123 | 
  | 
  | 
where top indicates the top of the first model layer. | 
| 2124 | 
  | 
  | 
In the GCM, $p_{top}$ = 0.0 mb. | 
| 2125 | 
  | 
  | 
\\ | 
| 2126 | 
  | 
  | 
 | 
| 2127 | 
  | 
  | 
\noindent | 
| 2128 | 
  | 
  | 
{ \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) } | 
| 2129 | 
  | 
  | 
 | 
| 2130 | 
  | 
  | 
\noindent | 
| 2131 | 
  | 
  | 
\begin{eqnarray*} | 
| 2132 | 
  | 
  | 
{\bf LWGCLR} & =  & F(clearsky)_{LW,Nrphys+1}^{Net} \\ | 
| 2133 | 
  | 
  | 
             & =  & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow | 
| 2134 | 
  | 
  | 
\end{eqnarray*} | 
| 2135 | 
  | 
  | 
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. | 
| 2136 | 
  | 
  | 
$F(clearsky)_{LW}^\uparrow$ is | 
| 2137 | 
  | 
  | 
the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux. | 
| 2138 | 
  | 
  | 
\\ | 
| 2139 | 
  | 
  | 
 | 
| 2140 | 
  | 
  | 
\noindent | 
| 2141 | 
  | 
  | 
{ \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) } | 
| 2142 | 
  | 
  | 
 | 
| 2143 | 
  | 
  | 
\noindent | 
| 2144 | 
  | 
  | 
The net longwave heating rate is calculated as the vertical divergence of the | 
| 2145 | 
  | 
  | 
net terrestrial radiative fluxes. | 
| 2146 | 
  | 
  | 
Both the clear-sky and cloudy-sky longwave fluxes are computed within the | 
| 2147 | 
  | 
  | 
longwave routine. | 
| 2148 | 
  | 
  | 
The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first. | 
| 2149 | 
  | 
  | 
For a given cloud fraction, | 
| 2150 | 
  | 
  | 
the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$  | 
| 2151 | 
  | 
  | 
to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$, | 
| 2152 | 
  | 
  | 
for the upward and downward radiative fluxes. | 
| 2153 | 
  | 
  | 
(see Section \ref{sec:fizhi:radcloud}). | 
| 2154 | 
  | 
  | 
The cloudy-sky flux is then obtained as: | 
| 2155 | 
  | 
  | 
    | 
| 2156 | 
  | 
  | 
\noindent | 
| 2157 | 
  | 
  | 
\[ | 
| 2158 | 
  | 
  | 
F_{LW} = C(p,p') \cdot F^{clearsky}_{LW}, | 
| 2159 | 
  | 
  | 
\] | 
| 2160 | 
  | 
  | 
 | 
| 2161 | 
  | 
  | 
\noindent | 
| 2162 | 
  | 
  | 
Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the  | 
| 2163 | 
  | 
  | 
vertical divergence of the | 
| 2164 | 
  | 
  | 
clear-sky longwave radiative flux: | 
| 2165 | 
  | 
  | 
\[ | 
| 2166 | 
jmc | 
1.19 | 
\pp{\rho c_p T}{t}_{clearsky} = - \p{z} F(clearsky)_{LW}^{NET} , | 
| 2167 | 
molod | 
1.8 | 
\] | 
| 2168 | 
  | 
  | 
or | 
| 2169 | 
  | 
  | 
\[ | 
| 2170 | 
jmc | 
1.19 | 
{\bf LWCLR} = \frac{g}{c_p \pi} \p{\sigma} F(clearsky)_{LW}^{NET} . | 
| 2171 | 
molod | 
1.8 | 
\] | 
| 2172 | 
  | 
  | 
 | 
| 2173 | 
  | 
  | 
\noindent | 
| 2174 | 
  | 
  | 
where $g$ is the accelation due to gravity, | 
| 2175 | 
  | 
  | 
$c_p$ is the heat capacity of air at constant pressure, | 
| 2176 | 
  | 
  | 
and | 
| 2177 | 
  | 
  | 
\[ | 
| 2178 | 
  | 
  | 
F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow | 
| 2179 | 
  | 
  | 
\] | 
| 2180 | 
  | 
  | 
\\ | 
| 2181 | 
  | 
  | 
 | 
| 2182 | 
  | 
  | 
  | 
| 2183 | 
  | 
  | 
\noindent | 
| 2184 | 
  | 
  | 
{ \underline {TLW} Instantaneous temperature used as input to the Longwave | 
| 2185 | 
  | 
  | 
 radiation subroutine (deg)} | 
| 2186 | 
  | 
  | 
\[ | 
| 2187 | 
  | 
  | 
{\bf TLW}  = T(\lambda , \phi ,level, n) | 
| 2188 | 
  | 
  | 
\] | 
| 2189 | 
  | 
  | 
\noindent | 
| 2190 | 
  | 
  | 
where $T$ is the model temperature at the current time step $n$. | 
| 2191 | 
  | 
  | 
\\ | 
| 2192 | 
  | 
  | 
  | 
| 2193 | 
  | 
  | 
  | 
| 2194 | 
  | 
  | 
\noindent | 
| 2195 | 
  | 
  | 
{ \underline {SHLW} Instantaneous specific humidity used as input to | 
| 2196 | 
  | 
  | 
 the Longwave radiation subroutine (kg/kg)} | 
| 2197 | 
  | 
  | 
\[ | 
| 2198 | 
  | 
  | 
{\bf SHLW}  = q(\lambda , \phi , level , n) | 
| 2199 | 
  | 
  | 
\] | 
| 2200 | 
  | 
  | 
\noindent | 
| 2201 | 
  | 
  | 
where $q$ is the model specific humidity at the current time step $n$. | 
| 2202 | 
  | 
  | 
\\ | 
| 2203 | 
  | 
  | 
  | 
| 2204 | 
  | 
  | 
  | 
| 2205 | 
  | 
  | 
\noindent | 
| 2206 | 
  | 
  | 
{ \underline {OZLW} Instantaneous ozone used as input to | 
| 2207 | 
  | 
  | 
 the Longwave radiation subroutine (kg/kg)} | 
| 2208 | 
  | 
  | 
\[ | 
| 2209 | 
  | 
  | 
{\bf OZLW}  = {\rm OZ}(\lambda , \phi , level , n) | 
| 2210 | 
  | 
  | 
\] | 
| 2211 | 
  | 
  | 
\noindent | 
| 2212 | 
  | 
  | 
where $\rm OZ$ is the interpolated ozone data set from the climatological monthly | 
| 2213 | 
  | 
  | 
mean zonally averaged ozone data set. | 
| 2214 | 
  | 
  | 
\\ | 
| 2215 | 
  | 
  | 
  | 
| 2216 | 
  | 
  | 
 | 
| 2217 | 
  | 
  | 
\noindent | 
| 2218 | 
  | 
  | 
{ \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) } | 
| 2219 | 
  | 
  | 
 | 
| 2220 | 
  | 
  | 
\noindent | 
| 2221 | 
  | 
  | 
{\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed | 
| 2222 | 
  | 
  | 
Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm.  These are | 
| 2223 | 
  | 
  | 
convective clouds whose radiative characteristics are assumed to be correlated in the vertical. | 
| 2224 | 
  | 
  | 
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. | 
| 2225 | 
  | 
  | 
\[ | 
| 2226 | 
  | 
  | 
{\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi,  level ) | 
| 2227 | 
  | 
  | 
\] | 
| 2228 | 
  | 
  | 
\\ | 
| 2229 | 
  | 
  | 
  | 
| 2230 | 
  | 
  | 
 | 
| 2231 | 
  | 
  | 
{ \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) } | 
| 2232 | 
  | 
  | 
 | 
| 2233 | 
  | 
  | 
{\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed | 
| 2234 | 
  | 
  | 
Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave | 
| 2235 | 
  | 
  | 
Radiation packages. | 
| 2236 | 
  | 
  | 
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. | 
| 2237 | 
  | 
  | 
\[ | 
| 2238 | 
  | 
  | 
{\bf CLDTOT} = F_{RAS} + F_{LS} | 
| 2239 | 
  | 
  | 
\] | 
| 2240 | 
  | 
  | 
\\ | 
| 2241 | 
  | 
  | 
where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the | 
| 2242 | 
  | 
  | 
time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes. | 
| 2243 | 
  | 
  | 
\\ | 
| 2244 | 
  | 
  | 
 | 
| 2245 | 
  | 
  | 
 | 
| 2246 | 
  | 
  | 
\noindent | 
| 2247 | 
  | 
  | 
{ \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) } | 
| 2248 | 
  | 
  | 
 | 
| 2249 | 
  | 
  | 
\noindent | 
| 2250 | 
  | 
  | 
{\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed | 
| 2251 | 
  | 
  | 
Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm.  These are | 
| 2252 | 
  | 
  | 
convective clouds whose radiative characteristics are assumed to be correlated in the vertical. | 
| 2253 | 
  | 
  | 
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. | 
| 2254 | 
  | 
  | 
\[ | 
| 2255 | 
  | 
  | 
{\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi,  level ) | 
| 2256 | 
  | 
  | 
\] | 
| 2257 | 
  | 
  | 
\\ | 
| 2258 | 
  | 
  | 
 | 
| 2259 | 
  | 
  | 
\noindent | 
| 2260 | 
  | 
  | 
{ \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) } | 
| 2261 | 
  | 
  | 
 | 
| 2262 | 
  | 
  | 
\noindent | 
| 2263 | 
  | 
  | 
{\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed | 
| 2264 | 
  | 
  | 
Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave  | 
| 2265 | 
  | 
  | 
Radiation algorithm.  These are | 
| 2266 | 
  | 
  | 
convective and large-scale clouds whose radiative characteristics are not  | 
| 2267 | 
  | 
  | 
assumed to be correlated in the vertical. | 
| 2268 | 
  | 
  | 
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. | 
| 2269 | 
  | 
  | 
\[ | 
| 2270 | 
  | 
  | 
{\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi,  level ) | 
| 2271 | 
  | 
  | 
\] | 
| 2272 | 
  | 
  | 
\\ | 
| 2273 | 
  | 
  | 
 | 
| 2274 | 
  | 
  | 
\noindent | 
| 2275 | 
  | 
  | 
{ \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) } | 
| 2276 | 
  | 
  | 
\[ | 
| 2277 | 
  | 
  | 
{\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z | 
| 2278 | 
  | 
  | 
\] | 
| 2279 | 
  | 
  | 
\noindent | 
| 2280 | 
  | 
  | 
where $S_0$, is the extra-terrestial solar contant, | 
| 2281 | 
  | 
  | 
$R_a$ is the earth-sun distance in Astronomical Units, | 
| 2282 | 
  | 
  | 
and $cos \phi_z$ is the cosine of the zenith angle. | 
| 2283 | 
  | 
  | 
It should be noted that {\bf RADSWT}, as well as | 
| 2284 | 
  | 
  | 
{\bf OSR} and {\bf OSRCLR},  | 
| 2285 | 
  | 
  | 
are calculated at the top of the atmosphere (p=0 mb).  However, the | 
| 2286 | 
  | 
  | 
{\bf OLR} and {\bf OLRCLR} diagnostics are currently | 
| 2287 | 
  | 
  | 
calculated at $p= p_{top}$ (0.0 mb for the GCM). | 
| 2288 | 
  | 
  | 
\\ | 
| 2289 | 
  | 
  | 
    | 
| 2290 | 
  | 
  | 
\noindent | 
| 2291 | 
  | 
  | 
{ \underline {EVAP}  Surface Evaporation ($mm/day$) } | 
| 2292 | 
  | 
  | 
 | 
| 2293 | 
  | 
  | 
\noindent | 
| 2294 | 
  | 
  | 
The surface evaporation is a function of the gradient of moisture, the potential  | 
| 2295 | 
  | 
  | 
evapotranspiration fraction and the eddy exchange coefficient: | 
| 2296 | 
  | 
  | 
\[ | 
| 2297 | 
  | 
  | 
{\bf EVAP} =  \rho \beta K_{h} (q_{surface} - q_{Nrphys}) | 
| 2298 | 
  | 
  | 
\] | 
| 2299 | 
  | 
  | 
where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of | 
| 2300 | 
  | 
  | 
the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the  | 
| 2301 | 
  | 
  | 
turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and  | 
| 2302 | 
  | 
  | 
$q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic | 
| 2303 | 
  | 
  | 
number 34) and at the bottom model level, respectively. | 
| 2304 | 
  | 
  | 
\\ | 
| 2305 | 
  | 
  | 
 | 
| 2306 | 
  | 
  | 
\noindent | 
| 2307 | 
  | 
  | 
{ \underline {DUDT} Total Zonal U-Wind Tendency  ($m/sec/day$) } | 
| 2308 | 
  | 
  | 
 | 
| 2309 | 
  | 
  | 
\noindent | 
| 2310 | 
  | 
  | 
{\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic, | 
| 2311 | 
  | 
  | 
and Analysis forcing. | 
| 2312 | 
  | 
  | 
\[ | 
| 2313 | 
  | 
  | 
{\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}  | 
| 2314 | 
  | 
  | 
\] | 
| 2315 | 
  | 
  | 
\\ | 
| 2316 | 
  | 
  | 
 | 
| 2317 | 
  | 
  | 
\noindent | 
| 2318 | 
  | 
  | 
{ \underline {DVDT} Total Zonal V-Wind Tendency  ($m/sec/day$) } | 
| 2319 | 
  | 
  | 
 | 
| 2320 | 
  | 
  | 
\noindent | 
| 2321 | 
  | 
  | 
{\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic, | 
| 2322 | 
  | 
  | 
and Analysis forcing. | 
| 2323 | 
  | 
  | 
\[ | 
| 2324 | 
  | 
  | 
{\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}  | 
| 2325 | 
  | 
  | 
\] | 
| 2326 | 
  | 
  | 
\\ | 
| 2327 | 
  | 
  | 
 | 
| 2328 | 
  | 
  | 
\noindent | 
| 2329 | 
  | 
  | 
{ \underline {DTDT} Total Temperature Tendency  ($deg/day$) } | 
| 2330 | 
  | 
  | 
 | 
| 2331 | 
  | 
  | 
\noindent | 
| 2332 | 
  | 
  | 
{\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic, | 
| 2333 | 
  | 
  | 
and Analysis forcing. | 
| 2334 | 
  | 
  | 
\begin{eqnarray*} | 
| 2335 | 
  | 
  | 
{\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\ | 
| 2336 | 
  | 
  | 
           & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}  | 
| 2337 | 
  | 
  | 
\end{eqnarray*} | 
| 2338 | 
  | 
  | 
\\ | 
| 2339 | 
  | 
  | 
 | 
| 2340 | 
  | 
  | 
\noindent | 
| 2341 | 
  | 
  | 
{ \underline {DQDT} Total Specific Humidity Tendency  ($g/kg/day$) } | 
| 2342 | 
  | 
  | 
 | 
| 2343 | 
  | 
  | 
\noindent | 
| 2344 | 
  | 
  | 
{\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic, | 
| 2345 | 
  | 
  | 
and Analysis forcing. | 
| 2346 | 
  | 
  | 
\[ | 
| 2347 | 
  | 
  | 
{\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}  | 
| 2348 | 
  | 
  | 
+ \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}  | 
| 2349 | 
  | 
  | 
\] | 
| 2350 | 
  | 
  | 
\\ | 
| 2351 | 
  | 
  | 
    | 
| 2352 | 
  | 
  | 
\noindent | 
| 2353 | 
  | 
  | 
{ \underline {USTAR}  Surface-Stress Velocity ($m/sec$) } | 
| 2354 | 
  | 
  | 
 | 
| 2355 | 
  | 
  | 
\noindent | 
| 2356 | 
  | 
  | 
The surface stress velocity, or the friction velocity, is the wind speed at  | 
| 2357 | 
  | 
  | 
the surface layer top impeded by the surface drag: | 
| 2358 | 
  | 
  | 
\[ | 
| 2359 | 
  | 
  | 
{\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}  | 
| 2360 | 
jmc | 
1.19 | 
C_u = \frac{k}{\psi_m} | 
| 2361 | 
molod | 
1.8 | 
\] | 
| 2362 | 
  | 
  | 
 | 
| 2363 | 
  | 
  | 
\noindent | 
| 2364 | 
  | 
  | 
$C_u$ is the non-dimensional surface drag coefficient (see diagnostic | 
| 2365 | 
  | 
  | 
number 10), and $W_s$ is the surface wind speed (see diagnostic number 28). | 
| 2366 | 
  | 
  | 
  | 
| 2367 | 
  | 
  | 
\noindent | 
| 2368 | 
  | 
  | 
{ \underline {Z0}  Surface Roughness Length ($m$) } | 
| 2369 | 
  | 
  | 
 | 
| 2370 | 
  | 
  | 
\noindent | 
| 2371 | 
  | 
  | 
Over the land surface, the surface roughness length is interpolated to the local | 
| 2372 | 
molod | 
1.10 | 
time from the monthly mean data of \cite{dorsell:89}. Over the ocean, | 
| 2373 | 
molod | 
1.8 | 
the roughness length is a function of the surface-stress velocity, $u_*$. | 
| 2374 | 
  | 
  | 
\[ | 
| 2375 | 
jmc | 
1.19 | 
{\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5}{u_*} | 
| 2376 | 
molod | 
1.8 | 
\] | 
| 2377 | 
  | 
  | 
 | 
| 2378 | 
  | 
  | 
\noindent | 
| 2379 | 
  | 
  | 
where the constants are chosen to interpolate between the reciprocal relation of | 
| 2380 | 
molod | 
1.10 | 
\cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81} | 
| 2381 | 
molod | 
1.8 | 
for moderate to large winds. | 
| 2382 | 
  | 
  | 
\\ | 
| 2383 | 
  | 
  | 
  | 
| 2384 | 
  | 
  | 
\noindent | 
| 2385 | 
  | 
  | 
{ \underline {FRQTRB}  Frequency of Turbulence ($0-1$) } | 
| 2386 | 
  | 
  | 
 | 
| 2387 | 
  | 
  | 
\noindent | 
| 2388 | 
  | 
  | 
The fraction of time when turbulence is present is defined as the fraction of | 
| 2389 | 
  | 
  | 
time when the turbulent kinetic energy exceeds some minimum value, defined here | 
| 2390 | 
  | 
  | 
to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is | 
| 2391 | 
  | 
  | 
incremented. The fraction over the averaging interval is reported. | 
| 2392 | 
  | 
  | 
\\ | 
| 2393 | 
  | 
  | 
  | 
| 2394 | 
  | 
  | 
\noindent | 
| 2395 | 
  | 
  | 
{ \underline {PBL}  Planetary Boundary Layer Depth ($mb$) } | 
| 2396 | 
  | 
  | 
 | 
| 2397 | 
  | 
  | 
\noindent | 
| 2398 | 
  | 
  | 
The depth of the PBL is defined by the turbulence parameterization to be the | 
| 2399 | 
  | 
  | 
depth at which the turbulent kinetic energy reduces to ten percent of its surface | 
| 2400 | 
  | 
  | 
value. | 
| 2401 | 
  | 
  | 
 | 
| 2402 | 
  | 
  | 
\[ | 
| 2403 | 
  | 
  | 
{\bf PBL} = P_{PBL} - P_{surface} | 
| 2404 | 
  | 
  | 
\] | 
| 2405 | 
  | 
  | 
 | 
| 2406 | 
  | 
  | 
\noindent | 
| 2407 | 
  | 
  | 
where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy | 
| 2408 | 
  | 
  | 
reaches one tenth of its surface value, and $P_s$ is the surface pressure. | 
| 2409 | 
  | 
  | 
\\ | 
| 2410 | 
  | 
  | 
  | 
| 2411 | 
  | 
  | 
\noindent | 
| 2412 | 
  | 
  | 
{ \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) } | 
| 2413 | 
  | 
  | 
 | 
| 2414 | 
  | 
  | 
\noindent | 
| 2415 | 
  | 
  | 
The net Shortwave heating rate is calculated as the vertical divergence of the | 
| 2416 | 
  | 
  | 
net solar radiative fluxes. | 
| 2417 | 
  | 
  | 
The clear-sky and cloudy-sky shortwave fluxes are calculated separately. | 
| 2418 | 
  | 
  | 
For the clear-sky case, the shortwave fluxes and heating rates are computed with | 
| 2419 | 
  | 
  | 
both CLMO (maximum overlap cloud fraction) and | 
| 2420 | 
  | 
  | 
CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}). | 
| 2421 | 
  | 
  | 
The shortwave routine is then called a second time, for the cloudy-sky case, with the | 
| 2422 | 
  | 
  | 
true time-averaged cloud fractions CLMO | 
| 2423 | 
  | 
  | 
and CLRO being used.  In all cases, a normalized incident shortwave flux is used as | 
| 2424 | 
  | 
  | 
input at the top of the atmosphere. | 
| 2425 | 
  | 
  | 
 | 
| 2426 | 
  | 
  | 
\noindent | 
| 2427 | 
  | 
  | 
The heating rate due to Shortwave Radiation under clear skies is defined as: | 
| 2428 | 
  | 
  | 
\[ | 
| 2429 | 
jmc | 
1.19 | 
\pp{\rho c_p T}{t} = - \p{z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT}, | 
| 2430 | 
molod | 
1.8 | 
\] | 
| 2431 | 
  | 
  | 
or | 
| 2432 | 
  | 
  | 
\[ | 
| 2433 | 
jmc | 
1.19 | 
{\bf SWCLR} = \frac{g}{c_p } \p{p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} . | 
| 2434 | 
molod | 
1.8 | 
\] | 
| 2435 | 
  | 
  | 
 | 
| 2436 | 
  | 
  | 
\noindent | 
| 2437 | 
  | 
  | 
where $g$ is the accelation due to gravity, | 
| 2438 | 
  | 
  | 
$c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident | 
| 2439 | 
  | 
  | 
shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and | 
| 2440 | 
  | 
  | 
\[ | 
| 2441 | 
  | 
  | 
F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow | 
| 2442 | 
  | 
  | 
\] | 
| 2443 | 
  | 
  | 
\\ | 
| 2444 | 
  | 
  | 
 | 
| 2445 | 
  | 
  | 
\noindent | 
| 2446 | 
  | 
  | 
{ \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) } | 
| 2447 | 
  | 
  | 
\[ | 
| 2448 | 
  | 
  | 
{\bf OSR}  =  F_{SW,top}^{NET} | 
| 2449 | 
  | 
  | 
\]                                                                                        | 
| 2450 | 
  | 
  | 
\noindent | 
| 2451 | 
  | 
  | 
where top indicates the top of the first model layer used in the shortwave radiation | 
| 2452 | 
  | 
  | 
routine. | 
| 2453 | 
  | 
  | 
In the GCM, $p_{SW_{top}}$ = 0 mb. | 
| 2454 | 
  | 
  | 
\\ | 
| 2455 | 
  | 
  | 
 | 
| 2456 | 
  | 
  | 
\noindent | 
| 2457 | 
  | 
  | 
{ \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) } | 
| 2458 | 
  | 
  | 
\[ | 
| 2459 | 
  | 
  | 
{\bf OSRCLR}  =  F(clearsky)_{SW,top}^{NET} | 
| 2460 | 
  | 
  | 
\] | 
| 2461 | 
  | 
  | 
\noindent | 
| 2462 | 
  | 
  | 
where top indicates the top of the first model layer used in the shortwave radiation | 
| 2463 | 
  | 
  | 
routine. | 
| 2464 | 
  | 
  | 
In the GCM, $p_{SW_{top}}$ = 0 mb. | 
| 2465 | 
  | 
  | 
\\ | 
| 2466 | 
  | 
  | 
 | 
| 2467 | 
  | 
  | 
 | 
| 2468 | 
  | 
  | 
\noindent | 
| 2469 | 
  | 
  | 
{ \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }  | 
| 2470 | 
  | 
  | 
 | 
| 2471 | 
  | 
  | 
\noindent | 
| 2472 | 
  | 
  | 
The amount of cloud mass moved per RAS timestep from all convective clouds is written: | 
| 2473 | 
  | 
  | 
\[ | 
| 2474 | 
  | 
  | 
{\bf CLDMAS} = \eta m_B | 
| 2475 | 
  | 
  | 
\] | 
| 2476 | 
  | 
  | 
where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is | 
| 2477 | 
  | 
  | 
the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the  | 
| 2478 | 
  | 
  | 
description of the convective parameterization. | 
| 2479 | 
  | 
  | 
\\ | 
| 2480 | 
  | 
  | 
 | 
| 2481 | 
  | 
  | 
 | 
| 2482 | 
  | 
  | 
 | 
| 2483 | 
  | 
  | 
\noindent | 
| 2484 | 
  | 
  | 
{ \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) } | 
| 2485 | 
  | 
  | 
 | 
| 2486 | 
  | 
  | 
\noindent | 
| 2487 | 
  | 
  | 
The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over | 
| 2488 | 
  | 
  | 
the {\bf NUAVE} output frequency.  This is contrasted to the instantaneous | 
| 2489 | 
  | 
  | 
Zonal U-Wind which is archived on the Prognostic Output data stream. | 
| 2490 | 
  | 
  | 
\[ | 
| 2491 | 
  | 
  | 
{\bf UAVE} = u(\lambda, \phi, level , t) | 
| 2492 | 
  | 
  | 
\] | 
| 2493 | 
  | 
  | 
\\ | 
| 2494 | 
  | 
  | 
Note, {\bf UAVE} is computed and stored on the staggered C-grid. | 
| 2495 | 
  | 
  | 
\\ | 
| 2496 | 
  | 
  | 
 | 
| 2497 | 
  | 
  | 
\noindent | 
| 2498 | 
  | 
  | 
{ \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) } | 
| 2499 | 
  | 
  | 
 | 
| 2500 | 
  | 
  | 
\noindent | 
| 2501 | 
  | 
  | 
The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over | 
| 2502 | 
  | 
  | 
the {\bf NVAVE} output frequency.  This is contrasted to the instantaneous | 
| 2503 | 
  | 
  | 
Meridional V-Wind which is archived on the Prognostic Output data stream. | 
| 2504 | 
  | 
  | 
\[ | 
| 2505 | 
  | 
  | 
{\bf VAVE} = v(\lambda, \phi, level , t) | 
| 2506 | 
  | 
  | 
\] | 
| 2507 | 
  | 
  | 
\\ | 
| 2508 | 
  | 
  | 
Note, {\bf VAVE} is computed and stored on the staggered C-grid. | 
| 2509 | 
  | 
  | 
\\ | 
| 2510 | 
  | 
  | 
 | 
| 2511 | 
  | 
  | 
\noindent | 
| 2512 | 
  | 
  | 
{ \underline {TAVE} Time-Averaged Temperature ($Kelvin$) } | 
| 2513 | 
  | 
  | 
 | 
| 2514 | 
  | 
  | 
\noindent | 
| 2515 | 
  | 
  | 
The diagnostic {\bf TAVE} is simply the time-averaged Temperature over | 
| 2516 | 
  | 
  | 
the {\bf NTAVE} output frequency.  This is contrasted to the instantaneous | 
| 2517 | 
  | 
  | 
Temperature which is archived on the Prognostic Output data stream. | 
| 2518 | 
  | 
  | 
\[ | 
| 2519 | 
  | 
  | 
{\bf TAVE} = T(\lambda, \phi, level , t) | 
| 2520 | 
  | 
  | 
\] | 
| 2521 | 
  | 
  | 
\\ | 
| 2522 | 
  | 
  | 
 | 
| 2523 | 
  | 
  | 
\noindent | 
| 2524 | 
  | 
  | 
{ \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) } | 
| 2525 | 
  | 
  | 
 | 
| 2526 | 
  | 
  | 
\noindent | 
| 2527 | 
  | 
  | 
The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over | 
| 2528 | 
  | 
  | 
the {\bf NQAVE} output frequency.  This is contrasted to the instantaneous | 
| 2529 | 
  | 
  | 
Specific Humidity which is archived on the Prognostic Output data stream. | 
| 2530 | 
  | 
  | 
\[ | 
| 2531 | 
  | 
  | 
{\bf QAVE} = q(\lambda, \phi, level , t) | 
| 2532 | 
  | 
  | 
\] | 
| 2533 | 
  | 
  | 
\\ | 
| 2534 | 
  | 
  | 
 | 
| 2535 | 
  | 
  | 
\noindent | 
| 2536 | 
  | 
  | 
{ \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) } | 
| 2537 | 
  | 
  | 
 | 
| 2538 | 
  | 
  | 
\noindent | 
| 2539 | 
  | 
  | 
The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over | 
| 2540 | 
  | 
  | 
the {\bf NPAVE} output frequency.  This is contrasted to the instantaneous | 
| 2541 | 
  | 
  | 
Surface Pressure - PTOP which is archived on the Prognostic Output data stream. | 
| 2542 | 
  | 
  | 
\begin{eqnarray*} | 
| 2543 | 
  | 
  | 
{\bf PAVE} & =  & \pi(\lambda, \phi, level , t) \\ | 
| 2544 | 
  | 
  | 
           & =  & p_s(\lambda, \phi, level , t) - p_T | 
| 2545 | 
  | 
  | 
\end{eqnarray*} | 
| 2546 | 
  | 
  | 
\\ | 
| 2547 | 
  | 
  | 
 | 
| 2548 | 
  | 
  | 
  | 
| 2549 | 
  | 
  | 
\noindent | 
| 2550 | 
  | 
  | 
{ \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ } | 
| 2551 | 
  | 
  | 
  | 
| 2552 | 
  | 
  | 
\noindent | 
| 2553 | 
  | 
  | 
The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy  | 
| 2554 | 
  | 
  | 
produced by the GCM Turbulence parameterization over | 
| 2555 | 
  | 
  | 
the {\bf NQQAVE} output frequency.  This is contrasted to the instantaneous | 
| 2556 | 
  | 
  | 
Turbulent Kinetic Energy which is archived on the Prognostic Output data stream. | 
| 2557 | 
  | 
  | 
\[ | 
| 2558 | 
  | 
  | 
{\bf QQAVE} = qq(\lambda, \phi, level , t) | 
| 2559 | 
  | 
  | 
\] | 
| 2560 | 
  | 
  | 
\\ | 
| 2561 | 
  | 
  | 
Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid. | 
| 2562 | 
  | 
  | 
\\ | 
| 2563 | 
  | 
  | 
  | 
| 2564 | 
  | 
  | 
\noindent | 
| 2565 | 
  | 
  | 
{ \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) } | 
| 2566 | 
  | 
  | 
 | 
| 2567 | 
  | 
  | 
\noindent | 
| 2568 | 
  | 
  | 
\begin{eqnarray*} | 
| 2569 | 
  | 
  | 
{\bf SWGCLR} & =  & F(clearsky)_{SW,Nrphys+1}^{Net} \\ | 
| 2570 | 
  | 
  | 
             & =  & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow | 
| 2571 | 
  | 
  | 
\end{eqnarray*} | 
| 2572 | 
  | 
  | 
\noindent | 
| 2573 | 
  | 
  | 
\\ | 
| 2574 | 
  | 
  | 
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. | 
| 2575 | 
  | 
  | 
$F(clearsky){SW}^\downarrow$ is | 
| 2576 | 
  | 
  | 
the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is  | 
| 2577 | 
  | 
  | 
the upward clearsky Shortwave flux. | 
| 2578 | 
  | 
  | 
\\ | 
| 2579 | 
  | 
  | 
 | 
| 2580 | 
  | 
  | 
\noindent | 
| 2581 | 
  | 
  | 
{ \underline {DIABU} Total Diabatic Zonal U-Wind Tendency  ($m/sec/day$) } | 
| 2582 | 
  | 
  | 
 | 
| 2583 | 
  | 
  | 
\noindent | 
| 2584 | 
  | 
  | 
{\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes | 
| 2585 | 
  | 
  | 
and the Analysis forcing. | 
| 2586 | 
  | 
  | 
\[ | 
| 2587 | 
  | 
  | 
{\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}  | 
| 2588 | 
  | 
  | 
\] | 
| 2589 | 
  | 
  | 
\\ | 
| 2590 | 
  | 
  | 
 | 
| 2591 | 
  | 
  | 
\noindent | 
| 2592 | 
  | 
  | 
{ \underline {DIABV} Total Diabatic Meridional V-Wind Tendency  ($m/sec/day$) } | 
| 2593 | 
  | 
  | 
 | 
| 2594 | 
  | 
  | 
\noindent | 
| 2595 | 
  | 
  | 
{\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes | 
| 2596 | 
  | 
  | 
and the Analysis forcing. | 
| 2597 | 
  | 
  | 
\[ | 
| 2598 | 
  | 
  | 
{\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}  | 
| 2599 | 
  | 
  | 
\] | 
| 2600 | 
  | 
  | 
\\ | 
| 2601 | 
  | 
  | 
 | 
| 2602 | 
  | 
  | 
\noindent | 
| 2603 | 
  | 
  | 
{ \underline {DIABT} Total Diabatic Temperature Tendency  ($deg/day$) } | 
| 2604 | 
  | 
  | 
 | 
| 2605 | 
  | 
  | 
\noindent | 
| 2606 | 
  | 
  | 
{\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes | 
| 2607 | 
  | 
  | 
and the Analysis forcing. | 
| 2608 | 
  | 
  | 
\begin{eqnarray*} | 
| 2609 | 
  | 
  | 
{\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\ | 
| 2610 | 
  | 
  | 
           & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}  | 
| 2611 | 
  | 
  | 
\end{eqnarray*} | 
| 2612 | 
  | 
  | 
\\ | 
| 2613 | 
  | 
  | 
If we define the time-tendency of Temperature due to Diabatic processes as | 
| 2614 | 
  | 
  | 
\begin{eqnarray*} | 
| 2615 | 
  | 
  | 
\pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\ | 
| 2616 | 
  | 
  | 
                     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} | 
| 2617 | 
  | 
  | 
\end{eqnarray*} | 
| 2618 | 
  | 
  | 
then, since there are no surface pressure changes due to Diabatic processes, we may write | 
| 2619 | 
  | 
  | 
\[ | 
| 2620 | 
jmc | 
1.19 | 
\pp{T}{t}_{Diabatic} = \frac{p^\kappa}{\pi}\pp{\pi \theta}{t}_{Diabatic} | 
| 2621 | 
molod | 
1.8 | 
\] | 
| 2622 | 
  | 
  | 
where $\theta = T/p^\kappa$.  Thus, {\bf DIABT} may be written as | 
| 2623 | 
  | 
  | 
\[ | 
| 2624 | 
jmc | 
1.19 | 
{\bf DIABT} = \frac{p^\kappa}{\pi} \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right) | 
| 2625 | 
molod | 
1.8 | 
\] | 
| 2626 | 
  | 
  | 
\\ | 
| 2627 | 
  | 
  | 
 | 
| 2628 | 
  | 
  | 
\noindent | 
| 2629 | 
  | 
  | 
{ \underline {DIABQ} Total Diabatic Specific Humidity Tendency  ($g/kg/day$) } | 
| 2630 | 
  | 
  | 
 | 
| 2631 | 
  | 
  | 
\noindent | 
| 2632 | 
  | 
  | 
{\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes | 
| 2633 | 
  | 
  | 
and the Analysis forcing. | 
| 2634 | 
  | 
  | 
\[ | 
| 2635 | 
  | 
  | 
{\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}  | 
| 2636 | 
  | 
  | 
\] | 
| 2637 | 
  | 
  | 
If we define the time-tendency of Specific Humidity due to Diabatic processes as | 
| 2638 | 
  | 
  | 
\[ | 
| 2639 | 
  | 
  | 
\pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} | 
| 2640 | 
  | 
  | 
\] | 
| 2641 | 
  | 
  | 
then, since there are no surface pressure changes due to Diabatic processes, we may write | 
| 2642 | 
  | 
  | 
\[ | 
| 2643 | 
jmc | 
1.19 | 
\pp{q}{t}_{Diabatic} = \frac{1}{\pi}\pp{\pi q}{t}_{Diabatic} | 
| 2644 | 
molod | 
1.8 | 
\] | 
| 2645 | 
  | 
  | 
Thus, {\bf DIABQ} may be written as | 
| 2646 | 
  | 
  | 
\[ | 
| 2647 | 
jmc | 
1.19 | 
{\bf DIABQ} = \frac{1}{\pi} \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right) | 
| 2648 | 
molod | 
1.8 | 
\] | 
| 2649 | 
  | 
  | 
\\ | 
| 2650 | 
  | 
  | 
 | 
| 2651 | 
  | 
  | 
\noindent | 
| 2652 | 
  | 
  | 
{ \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) } | 
| 2653 | 
  | 
  | 
 | 
| 2654 | 
  | 
  | 
\noindent | 
| 2655 | 
  | 
  | 
The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating | 
| 2656 | 
  | 
  | 
$u q$ over the depth of the atmosphere at each model timestep,  | 
| 2657 | 
  | 
  | 
and dividing by the total mass of the column. | 
| 2658 | 
  | 
  | 
\[ | 
| 2659 | 
  | 
  | 
{\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz  } { \int_{surf}^{top} \rho dz  } | 
| 2660 | 
  | 
  | 
\] | 
| 2661 | 
jmc | 
1.19 | 
Using $\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p$, we have  | 
| 2662 | 
molod | 
1.8 | 
\[ | 
| 2663 | 
  | 
  | 
{\bf VINTUQ} = { \int_0^1 u q dp  } | 
| 2664 | 
  | 
  | 
\] | 
| 2665 | 
  | 
  | 
\\ | 
| 2666 | 
  | 
  | 
 | 
| 2667 | 
  | 
  | 
 | 
| 2668 | 
  | 
  | 
\noindent | 
| 2669 | 
  | 
  | 
{ \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) } | 
| 2670 | 
  | 
  | 
 | 
| 2671 | 
  | 
  | 
\noindent | 
| 2672 | 
  | 
  | 
The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating | 
| 2673 | 
  | 
  | 
$v q$ over the depth of the atmosphere at each model timestep,  | 
| 2674 | 
  | 
  | 
and dividing by the total mass of the column. | 
| 2675 | 
  | 
  | 
\[ | 
| 2676 | 
  | 
  | 
{\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz  } { \int_{surf}^{top} \rho dz  } | 
| 2677 | 
  | 
  | 
\] | 
| 2678 | 
jmc | 
1.19 | 
Using $\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p$, we have  | 
| 2679 | 
molod | 
1.8 | 
\[ | 
| 2680 | 
  | 
  | 
{\bf VINTVQ} = { \int_0^1 v q dp  } | 
| 2681 | 
  | 
  | 
\] | 
| 2682 | 
  | 
  | 
\\ | 
| 2683 | 
  | 
  | 
 | 
| 2684 | 
  | 
  | 
 | 
| 2685 | 
  | 
  | 
\noindent | 
| 2686 | 
  | 
  | 
{ \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) } | 
| 2687 | 
  | 
  | 
 | 
| 2688 | 
  | 
  | 
\noindent | 
| 2689 | 
  | 
  | 
The vertically integrated heat flux due to the zonal u-wind is obtained by integrating | 
| 2690 | 
  | 
  | 
$u T$ over the depth of the atmosphere at each model timestep,  | 
| 2691 | 
  | 
  | 
and dividing by the total mass of the column. | 
| 2692 | 
  | 
  | 
\[ | 
| 2693 | 
  | 
  | 
{\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz  } { \int_{surf}^{top} \rho dz  } | 
| 2694 | 
  | 
  | 
\] | 
| 2695 | 
  | 
  | 
Or, | 
| 2696 | 
  | 
  | 
\[ | 
| 2697 | 
  | 
  | 
{\bf VINTUT} = { \int_0^1 u T dp  } | 
| 2698 | 
  | 
  | 
\] | 
| 2699 | 
  | 
  | 
\\ | 
| 2700 | 
  | 
  | 
 | 
| 2701 | 
  | 
  | 
\noindent | 
| 2702 | 
  | 
  | 
{ \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) } | 
| 2703 | 
  | 
  | 
 | 
| 2704 | 
  | 
  | 
\noindent | 
| 2705 | 
  | 
  | 
The vertically integrated heat flux due to the meridional v-wind is obtained by integrating | 
| 2706 | 
  | 
  | 
$v T$ over the depth of the atmosphere at each model timestep,  | 
| 2707 | 
  | 
  | 
and dividing by the total mass of the column. | 
| 2708 | 
  | 
  | 
\[ | 
| 2709 | 
  | 
  | 
{\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz  } { \int_{surf}^{top} \rho dz  } | 
| 2710 | 
  | 
  | 
\] | 
| 2711 | 
jmc | 
1.19 | 
Using $\rho \delta z = -\frac{\delta p}{g} $, we have  | 
| 2712 | 
molod | 
1.8 | 
\[ | 
| 2713 | 
  | 
  | 
{\bf VINTVT} = { \int_0^1 v T dp  } | 
| 2714 | 
  | 
  | 
\] | 
| 2715 | 
  | 
  | 
\\ | 
| 2716 | 
  | 
  | 
 | 
| 2717 | 
  | 
  | 
\noindent | 
| 2718 | 
  | 
  | 
{ \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) } | 
| 2719 | 
  | 
  | 
 | 
| 2720 | 
  | 
  | 
If we define the | 
| 2721 | 
  | 
  | 
time-averaged random and maximum overlapped cloudiness as CLRO and | 
| 2722 | 
  | 
  | 
CLMO respectively, then the probability of clear sky associated  | 
| 2723 | 
  | 
  | 
with random overlapped clouds at any level is (1-CLRO) while the probability of | 
| 2724 | 
  | 
  | 
clear sky associated with maximum overlapped clouds at any level is (1-CLMO).  | 
| 2725 | 
  | 
  | 
The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus | 
| 2726 | 
  | 
  | 
the total cloud fraction at each  level may be obtained by  | 
| 2727 | 
  | 
  | 
1-(1-CLRO)*(1-CLMO). | 
| 2728 | 
  | 
  | 
 | 
| 2729 | 
  | 
  | 
At any given level, we may define the clear line-of-site probability by | 
| 2730 | 
  | 
  | 
appropriately accounting for the maximum and random overlap | 
| 2731 | 
  | 
  | 
cloudiness.  The clear line-of-site probability is defined to be | 
| 2732 | 
  | 
  | 
equal to the product of the clear line-of-site probabilities | 
| 2733 | 
  | 
  | 
associated with random and maximum overlap cloudiness.  The clear | 
| 2734 | 
  | 
  | 
line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,  | 
| 2735 | 
  | 
  | 
from the current pressure $p$  | 
| 2736 | 
  | 
  | 
to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$, | 
| 2737 | 
  | 
  | 
is simply 1.0 minus the largest maximum overlap cloud value along  the | 
| 2738 | 
  | 
  | 
line-of-site, ie. | 
| 2739 | 
  | 
  | 
 | 
| 2740 | 
  | 
  | 
$$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$ | 
| 2741 | 
  | 
  | 
 | 
| 2742 | 
  | 
  | 
Thus, even in the time-averaged sense it is assumed that the | 
| 2743 | 
  | 
  | 
maximum overlap clouds are correlated in the vertical.  The clear | 
| 2744 | 
  | 
  | 
line-of-site probability associated with random overlap clouds is | 
| 2745 | 
  | 
  | 
defined to be the product of the clear sky probabilities at each | 
| 2746 | 
  | 
  | 
level along the line-of-site, ie.  | 
| 2747 | 
  | 
  | 
 | 
| 2748 | 
  | 
  | 
$$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$ | 
| 2749 | 
  | 
  | 
 | 
| 2750 | 
  | 
  | 
The total cloud fraction at a given level associated with a line- | 
| 2751 | 
  | 
  | 
of-site calculation is given by | 
| 2752 | 
  | 
  | 
 | 
| 2753 | 
  | 
  | 
$$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right) | 
| 2754 | 
  | 
  | 
    \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$ | 
| 2755 | 
  | 
  | 
 | 
| 2756 | 
  | 
  | 
 | 
| 2757 | 
  | 
  | 
\noindent | 
| 2758 | 
  | 
  | 
The 2-dimensional net cloud fraction as seen from the top of the | 
| 2759 | 
  | 
  | 
atmosphere is given by | 
| 2760 | 
  | 
  | 
\[ | 
| 2761 | 
  | 
  | 
{\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right) | 
| 2762 | 
  | 
  | 
    \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right) | 
| 2763 | 
  | 
  | 
\] | 
| 2764 | 
  | 
  | 
\\ | 
| 2765 | 
  | 
  | 
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. | 
| 2766 | 
  | 
  | 
 | 
| 2767 | 
  | 
  | 
 | 
| 2768 | 
  | 
  | 
\noindent | 
| 2769 | 
  | 
  | 
{ \underline {QINT} Total Precipitable Water ($gm/cm^2$) } | 
| 2770 | 
  | 
  | 
 | 
| 2771 | 
  | 
  | 
\noindent | 
| 2772 | 
  | 
  | 
The Total Precipitable Water is defined as the vertical integral of the specific humidity, | 
| 2773 | 
  | 
  | 
given by: | 
| 2774 | 
  | 
  | 
\begin{eqnarray*} | 
| 2775 | 
  | 
  | 
{\bf QINT} & = & \int_{surf}^{top} \rho q dz \\ | 
| 2776 | 
jmc | 
1.19 | 
           & = & \frac{\pi}{g} \int_0^1 q dp | 
| 2777 | 
molod | 
1.8 | 
\end{eqnarray*} | 
| 2778 | 
  | 
  | 
where we have used the hydrostatic relation  | 
| 2779 | 
jmc | 
1.19 | 
$\rho \delta z = -\frac{\delta p}{g} $. | 
| 2780 | 
molod | 
1.8 | 
\\ | 
| 2781 | 
  | 
  | 
 | 
| 2782 | 
  | 
  | 
 | 
| 2783 | 
  | 
  | 
\noindent | 
| 2784 | 
  | 
  | 
{ \underline {U2M}  Zonal U-Wind at 2 Meter Depth ($m/sec$) } | 
| 2785 | 
  | 
  | 
 | 
| 2786 | 
  | 
  | 
\noindent | 
| 2787 | 
  | 
  | 
The u-wind at the 2-meter depth is determined from the similarity theory: | 
| 2788 | 
  | 
  | 
\[ | 
| 2789 | 
jmc | 
1.19 | 
{\bf U2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{u_{sl}}{W_s} = | 
| 2790 | 
  | 
  | 
\frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }u_{sl} | 
| 2791 | 
molod | 
1.8 | 
\] | 
| 2792 | 
  | 
  | 
 | 
| 2793 | 
  | 
  | 
\noindent | 
| 2794 | 
  | 
  | 
where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript | 
| 2795 | 
  | 
  | 
$sl$ refers to the height of the top of the surface layer. If the roughness height | 
| 2796 | 
  | 
  | 
is above two meters, ${\bf U2M}$ is undefined. | 
| 2797 | 
  | 
  | 
\\ | 
| 2798 | 
  | 
  | 
  | 
| 2799 | 
  | 
  | 
\noindent | 
| 2800 | 
  | 
  | 
{ \underline {V2M}  Meridional V-Wind at 2 Meter Depth ($m/sec$) } | 
| 2801 | 
  | 
  | 
 | 
| 2802 | 
  | 
  | 
\noindent | 
| 2803 | 
  | 
  | 
The v-wind at the 2-meter depth is a determined from the similarity theory: | 
| 2804 | 
  | 
  | 
\[ | 
| 2805 | 
jmc | 
1.19 | 
{\bf V2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{v_{sl}}{W_s} = | 
| 2806 | 
  | 
  | 
\frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }v_{sl} | 
| 2807 | 
molod | 
1.8 | 
\] | 
| 2808 | 
  | 
  | 
 | 
| 2809 | 
  | 
  | 
\noindent | 
| 2810 | 
  | 
  | 
where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript | 
| 2811 | 
  | 
  | 
$sl$ refers to the height of the top of the surface layer. If the roughness height | 
| 2812 | 
  | 
  | 
is above two meters, ${\bf V2M}$ is undefined. | 
| 2813 | 
  | 
  | 
\\ | 
| 2814 | 
  | 
  | 
  | 
| 2815 | 
  | 
  | 
\noindent | 
| 2816 | 
  | 
  | 
{ \underline {T2M}  Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) } | 
| 2817 | 
  | 
  | 
 | 
| 2818 | 
  | 
  | 
\noindent | 
| 2819 | 
  | 
  | 
The temperature at the 2-meter depth is a determined from the similarity theory: | 
| 2820 | 
  | 
  | 
\[ | 
| 2821 | 
jmc | 
1.19 | 
{\bf T2M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =  | 
| 2822 | 
  | 
  | 
P^{\kappa}(\theta_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g } | 
| 2823 | 
  | 
  | 
(\theta_{sl} - \theta_{surf}) )  | 
| 2824 | 
molod | 
1.8 | 
\] | 
| 2825 | 
  | 
  | 
where: | 
| 2826 | 
  | 
  | 
\[ | 
| 2827 | 
jmc | 
1.19 | 
\theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* } | 
| 2828 | 
molod | 
1.8 | 
\] | 
| 2829 | 
  | 
  | 
 | 
| 2830 | 
  | 
  | 
\noindent | 
| 2831 | 
  | 
  | 
where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is | 
| 2832 | 
  | 
  | 
the non-dimensional temperature gradient in the viscous sublayer, and the subscript | 
| 2833 | 
  | 
  | 
$sl$ refers to the height of the top of the surface layer. If the roughness height | 
| 2834 | 
  | 
  | 
is above two meters, ${\bf T2M}$ is undefined. | 
| 2835 | 
  | 
  | 
\\ | 
| 2836 | 
  | 
  | 
  | 
| 2837 | 
  | 
  | 
\noindent | 
| 2838 | 
  | 
  | 
{ \underline {Q2M}  Specific Humidity at 2 Meter Depth ($g/kg$) } | 
| 2839 | 
  | 
  | 
 | 
| 2840 | 
  | 
  | 
\noindent | 
| 2841 | 
  | 
  | 
The specific humidity at the 2-meter depth is determined from the similarity theory: | 
| 2842 | 
  | 
  | 
\[ | 
| 2843 | 
jmc | 
1.19 | 
{\bf Q2M} = P^{\kappa} \frac({q_*}{k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =  | 
| 2844 | 
  | 
  | 
P^{\kappa}(q_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g } | 
| 2845 | 
molod | 
1.8 | 
(q_{sl} - q_{surf}))  | 
| 2846 | 
  | 
  | 
\] | 
| 2847 | 
  | 
  | 
where: | 
| 2848 | 
  | 
  | 
\[ | 
| 2849 | 
jmc | 
1.19 | 
q_* = - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* } | 
| 2850 | 
molod | 
1.8 | 
\] | 
| 2851 | 
  | 
  | 
 | 
| 2852 | 
  | 
  | 
\noindent | 
| 2853 | 
  | 
  | 
where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is | 
| 2854 | 
  | 
  | 
the non-dimensional temperature gradient in the viscous sublayer, and the subscript | 
| 2855 | 
  | 
  | 
$sl$ refers to the height of the top of the surface layer. If the roughness height | 
| 2856 | 
  | 
  | 
is above two meters, ${\bf Q2M}$ is undefined. | 
| 2857 | 
  | 
  | 
\\ | 
| 2858 | 
  | 
  | 
  | 
| 2859 | 
  | 
  | 
\noindent | 
| 2860 | 
  | 
  | 
{ \underline {U10M}  Zonal U-Wind at 10 Meter Depth ($m/sec$) } | 
| 2861 | 
  | 
  | 
 | 
| 2862 | 
  | 
  | 
\noindent | 
| 2863 | 
  | 
  | 
The u-wind at the 10-meter depth is an interpolation between the surface wind | 
| 2864 | 
  | 
  | 
and the model lowest level wind using the ratio of the non-dimensional wind shear | 
| 2865 | 
  | 
  | 
at the two levels: | 
| 2866 | 
  | 
  | 
\[ | 
| 2867 | 
jmc | 
1.19 | 
{\bf U10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{u_{sl}}{W_s} = | 
| 2868 | 
  | 
  | 
\frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }u_{sl} | 
| 2869 | 
molod | 
1.8 | 
\] | 
| 2870 | 
  | 
  | 
 | 
| 2871 | 
  | 
  | 
\noindent | 
| 2872 | 
  | 
  | 
where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript | 
| 2873 | 
  | 
  | 
$sl$ refers to the height of the top of the surface layer. | 
| 2874 | 
  | 
  | 
\\ | 
| 2875 | 
  | 
  | 
  | 
| 2876 | 
  | 
  | 
\noindent | 
| 2877 | 
  | 
  | 
{ \underline {V10M}  Meridional V-Wind at 10 Meter Depth ($m/sec$) } | 
| 2878 | 
  | 
  | 
 | 
| 2879 | 
  | 
  | 
\noindent | 
| 2880 | 
  | 
  | 
The v-wind at the 10-meter depth is an interpolation between the surface wind | 
| 2881 | 
  | 
  | 
and the model lowest level wind using the ratio of the non-dimensional wind shear | 
| 2882 | 
  | 
  | 
at the two levels: | 
| 2883 | 
  | 
  | 
\[ | 
| 2884 | 
jmc | 
1.19 | 
{\bf V10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{v_{sl}}{W_s} = | 
| 2885 | 
  | 
  | 
\frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }v_{sl} | 
| 2886 | 
molod | 
1.8 | 
\] | 
| 2887 | 
  | 
  | 
 | 
| 2888 | 
  | 
  | 
\noindent | 
| 2889 | 
  | 
  | 
where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript | 
| 2890 | 
  | 
  | 
$sl$ refers to the height of the top of the surface layer. | 
| 2891 | 
  | 
  | 
\\ | 
| 2892 | 
  | 
  | 
  | 
| 2893 | 
  | 
  | 
\noindent | 
| 2894 | 
  | 
  | 
{ \underline {T10M}  Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) } | 
| 2895 | 
  | 
  | 
 | 
| 2896 | 
  | 
  | 
\noindent | 
| 2897 | 
  | 
  | 
The temperature at the 10-meter depth is an interpolation between the surface potential  | 
| 2898 | 
  | 
  | 
temperature and the model lowest level potential temperature using the ratio of the  | 
| 2899 | 
  | 
  | 
non-dimensional temperature gradient at the two levels: | 
| 2900 | 
  | 
  | 
\[ | 
| 2901 | 
jmc | 
1.19 | 
{\bf T10M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =  | 
| 2902 | 
  | 
  | 
P^{\kappa}(\theta_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g} | 
| 2903 | 
molod | 
1.8 | 
(\theta_{sl} - \theta_{surf}))  | 
| 2904 | 
  | 
  | 
\] | 
| 2905 | 
  | 
  | 
where: | 
| 2906 | 
  | 
  | 
\[ | 
| 2907 | 
jmc | 
1.19 | 
\theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* } | 
| 2908 | 
molod | 
1.8 | 
\] | 
| 2909 | 
  | 
  | 
 | 
| 2910 | 
  | 
  | 
\noindent | 
| 2911 | 
  | 
  | 
where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is | 
| 2912 | 
  | 
  | 
the non-dimensional temperature gradient in the viscous sublayer, and the subscript | 
| 2913 | 
  | 
  | 
$sl$ refers to the height of the top of the surface layer. | 
| 2914 | 
  | 
  | 
\\ | 
| 2915 | 
  | 
  | 
  | 
| 2916 | 
  | 
  | 
\noindent | 
| 2917 | 
  | 
  | 
{ \underline {Q10M}  Specific Humidity at 10 Meter Depth ($g/kg$) } | 
| 2918 | 
  | 
  | 
 | 
| 2919 | 
  | 
  | 
\noindent | 
| 2920 | 
  | 
  | 
The specific humidity at the 10-meter depth is an interpolation between the surface specific  | 
| 2921 | 
  | 
  | 
humidity and the model lowest level specific humidity using the ratio of the  | 
| 2922 | 
  | 
  | 
non-dimensional temperature gradient at the two levels: | 
| 2923 | 
  | 
  | 
\[ | 
| 2924 | 
jmc | 
1.19 | 
{\bf Q10M} = P^{\kappa} (\frac{q_*}{k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =  | 
| 2925 | 
  | 
  | 
P^{\kappa}(q_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g} | 
| 2926 | 
molod | 
1.8 | 
(q_{sl} - q_{surf}))  | 
| 2927 | 
  | 
  | 
\] | 
| 2928 | 
  | 
  | 
where: | 
| 2929 | 
  | 
  | 
\[ | 
| 2930 | 
jmc | 
1.19 | 
q_* =  - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* } | 
| 2931 | 
molod | 
1.8 | 
\] | 
| 2932 | 
  | 
  | 
 | 
| 2933 | 
  | 
  | 
\noindent | 
| 2934 | 
  | 
  | 
where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is | 
| 2935 | 
  | 
  | 
the non-dimensional temperature gradient in the viscous sublayer, and the subscript | 
| 2936 | 
  | 
  | 
$sl$ refers to the height of the top of the surface layer. | 
| 2937 | 
  | 
  | 
\\ | 
| 2938 | 
  | 
  | 
  | 
| 2939 | 
  | 
  | 
\noindent | 
| 2940 | 
  | 
  | 
{ \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }  | 
| 2941 | 
  | 
  | 
 | 
| 2942 | 
  | 
  | 
The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written: | 
| 2943 | 
  | 
  | 
\[ | 
| 2944 | 
  | 
  | 
{\bf DTRAIN} = \eta_{r_D}m_B | 
| 2945 | 
  | 
  | 
\] | 
| 2946 | 
  | 
  | 
\noindent | 
| 2947 | 
  | 
  | 
where $r_D$ is the detrainment level,  | 
| 2948 | 
  | 
  | 
$m_B$ is the cloud base mass flux, and $\eta$ | 
| 2949 | 
  | 
  | 
is the entrainment, defined in Section \ref{sec:fizhi:mc}. | 
| 2950 | 
  | 
  | 
\\ | 
| 2951 | 
  | 
  | 
 | 
| 2952 | 
  | 
  | 
\noindent | 
| 2953 | 
  | 
  | 
{ \underline {QFILL}  Filling of negative Specific Humidity ($g/kg/day$) } | 
| 2954 | 
  | 
  | 
 | 
| 2955 | 
  | 
  | 
\noindent | 
| 2956 | 
  | 
  | 
Due to computational errors associated with the numerical scheme used for | 
| 2957 | 
  | 
  | 
the advection of moisture, negative values of specific humidity may be generated.  The | 
| 2958 | 
  | 
  | 
specific humidity is checked for negative values after every dynamics timestep.  If negative | 
| 2959 | 
  | 
  | 
values have been produced, a filling algorithm is invoked which redistributes moisture from | 
| 2960 | 
  | 
  | 
below.  Diagnostic {\bf QFILL} is equal to the net filling needed | 
| 2961 | 
  | 
  | 
to eliminate negative specific humidity, scaled to a per-day rate: | 
| 2962 | 
  | 
  | 
\[ | 
| 2963 | 
  | 
  | 
{\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial} | 
| 2964 | 
  | 
  | 
\] | 
| 2965 | 
  | 
  | 
where | 
| 2966 | 
  | 
  | 
\[ | 
| 2967 | 
  | 
  | 
q^{n+1} = (\pi q)^{n+1} / \pi^{n+1} | 
| 2968 | 
  | 
  | 
\] | 
| 2969 | 
  | 
  | 
 | 
| 2970 | 
  | 
  | 
 | 
| 2971 | 
molod | 
1.9 | 
\subsubsection{Key subroutines, parameters and files} | 
| 2972 | 
molod | 
1.6 | 
 | 
| 2973 | 
molod | 
1.9 | 
\subsubsection{Dos and donts} | 
| 2974 | 
molod | 
1.6 | 
 | 
| 2975 | 
molod | 
1.9 | 
\subsubsection{Fizhi Reference} | 
| 2976 | 
molod | 
1.17 | 
 | 
| 2977 | 
  | 
  | 
\subsubsection{Experiments and tutorials that use fizhi} | 
| 2978 | 
  | 
  | 
\label{sec:pkg:fizhi:experiments} | 
| 2979 | 
  | 
  | 
 | 
| 2980 | 
  | 
  | 
\begin{itemize} | 
| 2981 | 
  | 
  | 
\item{Global atmosphere experiment with realistic SST and topography in fizhi-cs-32x32x10 verification directory. } | 
| 2982 | 
  | 
  | 
\item{Global atmosphere aqua planet experiment in fizhi-cs-aqualev20 verification directory. } | 
| 2983 | 
  | 
  | 
\end{itemize} | 
| 2984 | 
  | 
  | 
 |