/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.17 - (hide annotations) (download) (as text)
Wed Jun 28 15:35:07 2006 UTC (17 years, 11 months ago) by molod
Branch: MAIN
Changes since 1.16: +12 -8 lines
File MIME type: application/x-tex
Rename files, connect packages and epxeriments that use them.

1 molod 1.9 \subsection{Fizhi: High-end Atmospheric Physics}
2 edhill 1.7 \label{sec:pkg:fizhi}
3     \begin{rawhtml}
4     <!-- CMIREDIR:package_fizhi: -->
5     \end{rawhtml}
6 molod 1.3 \input{texinputs/epsf.tex}
7 molod 1.1
8 molod 1.9 \subsubsection{Introduction}
9 molod 1.1 The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10     physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11 molod 1.11 boundary layer turbulence, and land surface processes. The collection of atmospheric
12     physics parameterizations were originally used together as part of the GEOS-3
13     (Goddard Earth Observing System-3) GCM developed at the NASA/Goddard Global Modelling
14     and Assimilation Office (GMAO).
15 molod 1.1
16     % *************************************************************************
17     % *************************************************************************
18    
19 molod 1.9 \subsubsection{Equations}
20 molod 1.1
21 molod 1.9 Moist Convective Processes:
22 molod 1.1
23 molod 1.5 \paragraph{Sub-grid and Large-scale Convection}
24 molod 1.1 \label{sec:fizhi:mc}
25    
26     Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
27 molod 1.10 Schubert (RAS) scheme of \cite{moorsz:92}, which is a linearized Arakawa Schubert
28 molod 1.1 type scheme. RAS predicts the mass flux from an ensemble of clouds. Each subensemble is identified
29     by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.
30    
31     The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are
32     the dry static energy, $s=c_pT +gz$, and the moist static energy, $h=c_p T + gz + Lq$.
33     The conceptual model behind RAS depicts each subensemble as a rising plume cloud, entraining
34     mass from the environment during ascent, and detraining all cloud air at the level of neutral
35     buoyancy. RAS assumes that the normalized cloud mass flux, $\eta$, normalized by the cloud base
36     mass flux, is a linear function of height, expressed as:
37     \[
38     \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
39     -{c_p \over {g}}\theta\lambda
40     \]
41     where we have used the hydrostatic equation written in the form:
42     \[
43     \pp{z}{P^{\kappa}} = -{c_p \over {g}}\theta
44     \]
45    
46     The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
47     detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral
48     buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal
49 molod 1.10 to the saturation moist static energy of the environment, $h^*$. Following \cite{moorsz:92},
50 molod 1.1 $\lambda$ may be written as
51     \[
52     \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,
53     \]
54    
55     where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.
56    
57    
58     The convective instability is measured in terms of the cloud work function $A$, defined as the
59     rate of change of cumulus kinetic energy. The cloud work function is
60     related to the buoyancy, or the difference
61     between the moist static energy in the cloud and in the environment:
62     \[
63     A = \int_{P_D}^{P_B} { {\eta \over {1 + \gamma} }
64     \left[ {{h_c-h^*} \over {P^{\kappa}}} \right] dP^{\kappa}}
65     \]
66    
67     where $\gamma$ is ${L \over {c_p}}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,
68     and the subscript $c$ refers to the value inside the cloud.
69    
70    
71     To determine the cloud base mass flux, the rate of change of $A$ in time {\em due to dissipation by
72     the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation
73     by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:
74     \[
75     m_B = {{- \left.{dA \over dt} \right|_{ls}} \over K}
76     \]
77    
78     where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per
79     unit cloud base mass flux, and is currently obtained by analytically differentiating the
80     expression for $A$ in time.
81     The rate of change of $A$ due to the generation by the large scale can be written as the
82     difference between the current $A(t+\Delta t)$ and its equillibrated value after the previous
83     convective time step
84     $A(t)$, divided by the time step. $A(t)$ is approximated as some critical $A_{crit}$,
85     computed by Lord (1982) from $in situ$ observations.
86    
87    
88     The predicted convective mass fluxes are used to solve grid-scale temperature
89     and moisture budget equations to determine the impact of convection on the large scale fields of
90     temperature (through latent heating and compensating subsidence) and moisture (through
91     precipitation and detrainment):
92     \[
93     \left.{\pp{\theta}{t}}\right|_{c} = \alpha { m_B \over {c_p P^{\kappa}}} \eta \pp{s}{p}
94     \]
95     and
96     \[
97     \left.{\pp{q}{t}}\right|_{c} = \alpha { m_B \over {L}} \eta (\pp{h}{p}-\pp{s}{p})
98     \]
99     where $\theta = {T \over P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.
100    
101     As an approximation to a full interaction between the different allowable subensembles,
102     many clouds are simulated frequently, each modifying the large scale environment some fraction
103     $\alpha$ of the total adjustment. The parameterization thereby ``relaxes'' the large scale environment
104     towards equillibrium.
105    
106     In addition to the RAS cumulus convection scheme, the fizhi package employs a
107 molod 1.10 Kessler-type scheme for the re-evaporation of falling rain (\cite{sudm:88}), which
108 molod 1.1 correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current
109     formulation assumes that all cloud water is deposited into the detrainment level as rain.
110     All of the rain is available for re-evaporation, which begins in the level below detrainment.
111     The scheme accounts for some microphysics such as
112     the rainfall intensity, the drop size distribution, as well as the temperature,
113     pressure and relative humidity of the surrounding air. The fraction of the moisture deficit
114     in any model layer into which the rain may re-evaporate is controlled by a free parameter,
115     which allows for a relatively efficient re-evaporation of liquid precipitate and larger rainout
116     for frozen precipitation.
117    
118     Due to the increased vertical resolution near the surface, the lowest model
119     layers are averaged to provide a 50 mb thick sub-cloud layer for RAS. Each time RAS is
120     invoked (every ten simulated minutes),
121     a number of randomly chosen subensembles are checked for the possibility
122     of convection, from just above cloud base to 10 mb.
123    
124     Supersaturation or large-scale precipitation is initiated in the fizhi package whenever
125     the relative humidity in any grid-box exceeds a critical value, currently 100 \%.
126     The large-scale precipitation re-evaporates during descent to partially saturate
127     lower layers in a process identical to the re-evaporation of convective rain.
128    
129    
130 molod 1.5 \paragraph{Cloud Formation}
131 molod 1.1 \label{sec:fizhi:clouds}
132    
133     Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined
134     diagnostically as part of the cumulus and large-scale parameterizations.
135     Convective cloud fractions produced by RAS are proportional to the
136     detrained liquid water amount given by
137    
138     \[
139     F_{RAS} = \min\left[ {l_{RAS}\over l_c}, 1.0 \right]
140     \]
141    
142     where $l_c$ is an assigned critical value equal to $1.25$ g/kg.
143     A memory is associated with convective clouds defined by:
144    
145     \[
146     F_{RAS}^n = \min\left[ F_{RAS} + (1-{\Delta t_{RAS}\over\tau})F_{RAS}^{n-1}, 1.0 \right]
147     \]
148    
149     where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction
150     from the previous RAS timestep. The memory coefficient is computed using a RAS cloud timescale,
151     $\tau$, equal to 1 hour. RAS cloud fractions are cleared when they fall below 5 \%.
152    
153     Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative
154     humidity:
155    
156     \[
157     F_{LS} = \min\left[ { \left( {RH-RH_c \over 1-RH_c} \right) }^2, 1.0 \right]
158     \]
159    
160     where
161    
162     \bqa
163     RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\
164     s & = & p/p_{surf} \nonumber \\
165     r & = & \left( {1.0-RH_{min} \over \alpha} \right) \nonumber \\
166     RH_{min} & = & 0.75 \nonumber \\
167     \alpha & = & 0.573285 \nonumber .
168     \eqa
169    
170     These cloud fractions are suppressed, however, in regions where the convective
171     sub-cloud layer is conditionally unstable. The functional form of $RH_c$ is shown in
172 molod 1.13 Figure (\ref{fig.rhcrit}).
173 molod 1.1
174     \begin{figure*}[htbp]
175     \vspace{0.4in}
176 molod 1.4 \centerline{ \epsfysize=4.0in \epsfbox{part6/rhcrit.ps}}
177 molod 1.1 \vspace{0.4in}
178 molod 1.13 \caption [Critical Relative Humidity for Clouds.]
179     {Critical Relative Humidity for Clouds.}
180     \label{fig.rhcrit}
181 molod 1.1 \end{figure*}
182    
183     The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:
184    
185     \[
186     F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] .
187     \]
188    
189     Finally, cloud fractions are time-averaged between calls to the radiation packages.
190    
191    
192 molod 1.9 Radiation:
193 molod 1.1
194     The parameterization of radiative heating in the fizhi package includes effects
195     from both shortwave and longwave processes.
196     Radiative fluxes are calculated at each
197     model edge-level in both up and down directions.
198     The heating rates/cooling rates are then obtained
199     from the vertical divergence of the net radiative fluxes.
200    
201     The net flux is
202     \[
203     F = F^\uparrow - F^\downarrow
204     \]
205     where $F$ is the net flux, $F^\uparrow$ is the upward flux and $F^\downarrow$ is
206     the downward flux.
207    
208     The heating rate due to the divergence of the radiative flux is given by
209     \[
210     \pp{\rho c_p T}{t} = - \pp{F}{z}
211     \]
212     or
213     \[
214     \pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}
215     \]
216     where $g$ is the accelation due to gravity
217     and $c_p$ is the heat capacity of air at constant pressure.
218    
219     The time tendency for Longwave
220     Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is updated once
221     every three hours assuming a normalized incident solar radiation, and subsequently modified at
222     every model time step by the true incident radiation.
223     The solar constant value used in the package is equal to 1365 $W/m^2$
224     and a $CO_2$ mixing ratio of 330 ppm.
225     For the ozone mixing ratio, monthly mean zonally averaged
226     climatological values specified as a function
227 molod 1.10 of latitude and height (\cite{rosen:87}) are linearly interpolated to the current time.
228 molod 1.1
229    
230 molod 1.5 \paragraph{Shortwave Radiation}
231 molod 1.1
232     The shortwave radiation package used in the package computes solar radiative
233     heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen,
234     clouds, and aerosols and due to the
235     scattering by clouds, aerosols, and gases.
236     The shortwave radiative processes are described by
237 molod 1.10 \cite{chou:90,chou:92}. This shortwave package
238 molod 1.1 uses the Delta-Eddington approximation to compute the
239     bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).
240     The transmittance and reflectance of diffuse radiation
241 molod 1.10 follow the procedures of Sagan and Pollock (JGR, 1967) and \cite{lhans:74}.
242 molod 1.1
243     Highly accurate heating rate calculations are obtained through the use
244     of an optimal grouping strategy of spectral bands. By grouping the UV and visible regions
245     as indicated in Table \ref{tab:fizhi:solar2}, the Rayleigh scattering and the ozone absorption of solar radiation
246     can be accurately computed in the ultraviolet region and the photosynthetically
247     active radiation (PAR) region.
248     The computation of solar flux in the infrared region is performed with a broadband
249     parameterization using the spectrum regions shown in Table \ref{tab:fizhi:solar1}.
250     The solar radiation algorithm used in the fizhi package can be applied not only for climate studies but
251     also for studies on the photolysis in the upper atmosphere and the photosynthesis in the biosphere.
252    
253     \begin{table}[htb]
254     \begin{center}
255     {\bf UV and Visible Spectral Regions} \\
256     \vspace{0.1in}
257     \begin{tabular}{|c|c|c|}
258     \hline
259     Region & Band & Wavelength (micron) \\ \hline
260     \hline
261     UV-C & 1. & .175 - .225 \\
262     & 2. & .225 - .245 \\
263     & & .260 - .280 \\
264     & 3. & .245 - .260 \\ \hline
265     UV-B & 4. & .280 - .295 \\
266     & 5. & .295 - .310 \\
267     & 6. & .310 - .320 \\ \hline
268     UV-A & 7. & .320 - .400 \\ \hline
269     PAR & 8. & .400 - .700 \\
270     \hline
271     \end{tabular}
272     \end{center}
273     \caption{UV and Visible Spectral Regions used in shortwave radiation package.}
274     \label{tab:fizhi:solar2}
275     \end{table}
276    
277     \begin{table}[htb]
278     \begin{center}
279     {\bf Infrared Spectral Regions} \\
280     \vspace{0.1in}
281     \begin{tabular}{|c|c|c|}
282     \hline
283     Band & Wavenumber(cm$^{-1}$) & Wavelength (micron) \\ \hline
284     \hline
285     1 & 1000-4400 & 2.27-10.0 \\
286     2 & 4400-8200 & 1.22-2.27 \\
287     3 & 8200-14300 & 0.70-1.22 \\
288     \hline
289     \end{tabular}
290     \end{center}
291     \caption{Infrared Spectral Regions used in shortwave radiation package.}
292     \label{tab:fizhi:solar1}
293     \end{table}
294    
295     Within the shortwave radiation package,
296     both ice and liquid cloud particles are allowed to co-exist in any of the model layers.
297     Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles.
298     Cloud parameters are defined as the cloud optical thickness and the effective cloud particle size.
299     In the fizhi package, the effective radius for water droplets is given as 10 microns,
300     while 65 microns is used for ice particles. The absorption due to aerosols is currently
301     set to zero.
302    
303     To simplify calculations in a cloudy atmosphere, clouds are
304     grouped into low ($p>700$ mb), middle (700 mb $\ge p > 400$ mb), and high ($p < 400$ mb) cloud regions.
305     Within each of the three regions, clouds are assumed maximally
306     overlapped, and the cloud cover of the group is the maximum
307     cloud cover of all the layers in the group. The optical thickness
308     of a given layer is then scaled for both the direct (as a function of the
309     solar zenith angle) and diffuse beam radiation
310     so that the grouped layer reflectance is the same as the original reflectance.
311 molod 1.13 The solar flux is computed for each of eight cloud realizations possible within this
312 molod 1.1 low/middle/high classification, and appropriately averaged to produce the net solar flux.
313    
314 molod 1.5 \paragraph{Longwave Radiation}
315 molod 1.1
316 molod 1.10 The longwave radiation package used in the fizhi package is thoroughly described by \cite{chsz:94}.
317 molod 1.1 As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
318     dioxide, and ozone. The spectral bands together with their absorbers and parameterization methods,
319     configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.
320    
321    
322     \begin{table}[htb]
323     \begin{center}
324     {\bf IR Spectral Bands} \\
325     \vspace{0.1in}
326     \begin{tabular}{|c|c|l|c| }
327     \hline
328     Band & Spectral Range (cm$^{-1}$) & Absorber & Method \\ \hline
329     \hline
330     1 & 0-340 & H$_2$O line & T \\ \hline
331     2 & 340-540 & H$_2$O line & T \\ \hline
332     3a & 540-620 & H$_2$O line & K \\
333     3b & 620-720 & H$_2$O continuum & S \\
334     3b & 720-800 & CO$_2$ & T \\ \hline
335     4 & 800-980 & H$_2$O line & K \\
336     & & H$_2$O continuum & S \\ \hline
337     & & H$_2$O line & K \\
338     5 & 980-1100 & H$_2$O continuum & S \\
339     & & O$_3$ & T \\ \hline
340     6 & 1100-1380 & H$_2$O line & K \\
341     & & H$_2$O continuum & S \\ \hline
342     7 & 1380-1900 & H$_2$O line & T \\ \hline
343     8 & 1900-3000 & H$_2$O line & K \\ \hline
344     \hline
345     \multicolumn{4}{|l|}{ \quad K: {\em k}-distribution method with linear pressure scaling } \\
346     \multicolumn{4}{|l|}{ \quad T: Table look-up with temperature and pressure scaling } \\
347     \multicolumn{4}{|l|}{ \quad S: One-parameter temperature scaling } \\
348     \hline
349     \end{tabular}
350     \end{center}
351     \vspace{0.1in}
352 molod 1.12 \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from \cite{chsz:94})}
353 molod 1.1 \label{tab:fizhi:longwave}
354     \end{table}
355    
356    
357     The longwave radiation package accurately computes cooling rates for the middle and
358     lower atmosphere from 0.01 mb to the surface. Errors are $<$ 0.4 C day$^{-1}$ in cooling
359     rates and $<$ 1\% in fluxes. From Chou and Suarez, it is estimated that the total effect of
360     neglecting all minor absorption bands and the effects of minor infrared absorbers such as
361     nitrous oxide (N$_2$O), methane (CH$_4$), and the chlorofluorocarbons (CFCs), is an underestimate
362     of $\approx$ 5 W/m$^2$ in the downward flux at the surface and an overestimate of $\approx$ 3 W/m$^2$
363     in the upward flux at the top of the atmosphere.
364    
365     Similar to the procedure used in the shortwave radiation package, clouds are grouped into
366     three regions catagorized as low/middle/high.
367     The net clear line-of-site probability $(P)$ between any two levels, $p_1$ and $p_2 \quad (p_2 > p_1)$,
368     assuming randomly overlapped cloud groups, is simply the product of the probabilities within each group:
369    
370     \[ P_{net} = P_{low} \times P_{mid} \times P_{hi} . \]
371    
372     Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within
373     a group is given by:
374    
375     \[ P_{group} = 1 - F_{max} , \]
376    
377     where $F_{max}$ is the maximum cloud fraction encountered between $p_1$ and $p_2$ within that group.
378     For groups and/or levels outside the range of $p_1$ and $p_2$, a clear line-of-site probability equal to 1 is
379     assigned.
380    
381    
382 molod 1.5 \paragraph{Cloud-Radiation Interaction}
383 molod 1.1 \label{sec:fizhi:radcloud}
384    
385     The cloud fractions and diagnosed cloud liquid water produced by moist processes
386     within the fizhi package are used in the radiation packages to produce cloud-radiative forcing.
387     The cloud optical thickness associated with large-scale cloudiness is made
388     proportional to the diagnosed large-scale liquid water, $\ell$, detrained due to super-saturation.
389     Two values are used corresponding to cloud ice particles and water droplets.
390     The range of optical thickness for these clouds is given as
391    
392     \[ 0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002 \quad\mbox{for}\quad 0 \le \ell \le 2 \quad\mbox{mg/kg} , \]
393     \[ 0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2 \quad\mbox{for}\quad 0 \le \ell \le 10 \quad\mbox{mg/kg} . \]
394    
395     The partitioning, $\alpha$, between ice particles and water droplets is achieved through a linear scaling
396     in temperature:
397    
398     \[ 0 \le \alpha \le 1 \quad\mbox{for}\quad 233.15 \le T \le 253.15 . \]
399    
400     The resulting optical depth associated with large-scale cloudiness is given as
401    
402     \[ \tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} . \]
403    
404     The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as
405    
406     \[ \tau_{RAS} = 0.16 \quad mb^{-1} . \]
407    
408     The total optical depth in a given model layer is computed as a weighted average between
409     the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the
410     layer:
411    
412     \[ \tau = \left( {F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} \over F_{RAS}+F_{LS} } \right) \Delta p, \]
413    
414     where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale
415     processes described in Section \ref{sec:fizhi:clouds}.
416     The optical thickness for the longwave radiative feedback is assumed to be 75 $\%$ of these values.
417    
418     The entire Moist Convective Processes Module is called with a frequency of 10 minutes.
419     The cloud fraction values are time-averaged over the period between Radiation calls (every 3
420     hours). Therefore, in a time-averaged sense, both convective and large-scale
421     cloudiness can exist in a given grid-box.
422    
423 molod 1.12 \paragraph{Turbulence}:
424 molod 1.9
425 molod 1.1 Turbulence is parameterized in the fizhi package to account for its contribution to the
426     vertical exchange of heat, moisture, and momentum.
427     The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
428     time scheme with an internal time step of 5 minutes.
429     The tendencies of atmospheric state variables due to turbulent diffusion are calculated using
430     the diffusion equations:
431    
432     \[
433     {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
434     = {\pp{}{z} }{(K_m \pp{u}{z})}
435     \]
436     \[
437     {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
438     = {\pp{}{z} }{(K_m \pp{v}{z})}
439     \]
440     \[
441     {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
442     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
443     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
444     \]
445     \[
446     {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
447     = {\pp{}{z} }{(K_h \pp{q}{z})}
448     \]
449    
450     Within the atmosphere, the time evolution
451     of second turbulent moments is explicitly modeled by representing the third moments in terms of
452     the first and second moments. This approach is known as a second-order closure modeling.
453     To simplify and streamline the computation of the second moments, the level 2.5 assumption
454 molod 1.10 of Mellor and Yamada (1974) and \cite{yam:77} is employed, in which only the turbulent
455 molod 1.1 kinetic energy (TKE),
456    
457     \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]
458    
459     is solved prognostically and the other second moments are solved diagnostically.
460     The prognostic equation for TKE allows the scheme to simulate
461     some of the transient and diffusive effects in the turbulence. The TKE budget equation
462     is solved numerically using an implicit backward computation of the terms linear in $q^2$
463     and is written:
464    
465     \[
466     {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ {5 \over 3} {{\lambda}_1} q { \pp {}{z}
467     ({\h}q^2)} })} =
468     {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
469     { \pp{V}{z} }} + {{g \over {\Theta_0}}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} }
470     - { q^3 \over {{\Lambda} _1} }
471     \]
472    
473     where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and
474     ${{\theta}^{\prime}}$ are the fluctuating parts of the velocity components and potential
475     temperature, $U$ and $V$ are the mean velocity components, ${\Theta_0}^{-1}$ is the
476     coefficient of thermal expansion, and ${{\lambda}_1}$ and ${{\Lambda} _1}$ are constant
477     multiples of the master length scale, $\ell$, which is designed to be a characteristic measure
478     of the vertical structure of the turbulent layers.
479    
480     The first term on the left-hand side represents the time rate of change of TKE, and
481     the second term is a representation of the triple correlation, or turbulent
482     transport term. The first three terms on the right-hand side represent the sources of
483     TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation
484     of TKE.
485    
486     In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the
487     wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and
488 molod 1.10 $K_m$, respectively. In the statisically realizable level 2.5 turbulence scheme of
489     \cite{helflab:88}, these diffusion coefficients are expressed as
490 molod 1.1
491     \[
492     K_h
493     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
494     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
495     \]
496    
497     and
498    
499     \[
500     K_m
501     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}
502     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
503     \]
504    
505     where the subscript $e$ refers to the value under conditions of local equillibrium
506     (obtained from the Level 2.0 Model), $\ell$ is the master length scale related to the
507     vertical structure of the atmosphere,
508     and $S_M$ and $S_H$ are functions of $G_H$ and $G_M$, the dimensionless buoyancy and
509     wind shear parameters, respectively.
510     Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
511     are functions of the Richardson number:
512    
513     \[
514     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
515     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } .
516     \]
517    
518     Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)
519     indicate dominantly unstable shear, and large positive values indicate dominantly stable
520     stratification.
521    
522     Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer,
523     which corresponds to the lowest GCM level (see \ref{tab:fizhi:sigma}),
524     are calculated using stability-dependant functions based on Monin-Obukhov theory:
525     \[
526     {K_m} (surface) = C_u \times u_* = C_D W_s
527     \]
528     and
529     \[
530     {K_h} (surface) = C_t \times u_* = C_H W_s
531     \]
532     where $u_*=C_uW_s$ is the surface friction velocity,
533     $C_D$ is termed the surface drag coefficient, $C_H$ the heat transfer coefficient,
534     and $W_s$ is the magnitude of the surface layer wind.
535    
536     $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
537     similarity functions:
538     \[
539     {C_u} = {u_* \over W_s} = { k \over \psi_{m} }
540     \]
541     where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional
542     wind shear given by
543     \[
544     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} .
545     \]
546     Here $\zeta$ is the non-dimensional stability parameter, and
547     $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of
548     the momentum gradient. The functional form of $\phi_m$ is specified differently for stable and unstable
549     layers.
550    
551     $C_t$ is the dimensionless exchange coefficient for heat and
552     moisture from the surface layer similarity functions:
553     \[
554     {C_t} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
555     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
556     { k \over { (\psi_{h} + \psi_{g}) } }
557     \]
558     where $\psi_h$ is the surface layer non-dimensional temperature gradient given by
559     \[
560     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} .
561     \]
562     Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
563     the temperature and moisture gradients, and is specified differently for stable and unstable
564 molod 1.10 layers according to \cite{helfschu:95}.
565 molod 1.1
566     $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,
567     which is the mosstly laminar region between the surface and the tops of the roughness
568     elements, in which temperature and moisture gradients can be quite large.
569 molod 1.10 Based on \cite{yagkad:74}:
570 molod 1.1 \[
571     \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
572     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
573     \]
574     where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the
575     surface roughness length, and the subscript {\em ref} refers to a reference value.
576     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
577    
578     The surface roughness length over oceans is is a function of the surface-stress velocity,
579     \[
580     {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
581     \]
582     where the constants are chosen to interpolate between the reciprocal relation of
583 molod 1.10 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
584 molod 1.1 for moderate to large winds. Roughness lengths over land are specified
585 molod 1.10 from the climatology of \cite{dorsell:89}.
586 molod 1.1
587     For an unstable surface layer, the stability functions, chosen to interpolate between the
588     condition of small values of $\beta$ and the convective limit, are the KEYPS function
589 molod 1.10 (\cite{pano:73}) for momentum, and its generalization for heat and moisture:
590 molod 1.1 \[
591     {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
592     {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .
593     \]
594     The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind
595     speed approaches zero.
596    
597     For a stable surface layer, the stability functions are the observationally
598 molod 1.10 based functions of \cite{clarke:70}, slightly modified for
599 molod 1.1 the momemtum flux:
600     \[
601     {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}
602     (1+ 5 {{\zeta}_1}) } } \hspace{1cm} ; \hspace{1cm}
603     {\phi_h} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {\zeta}
604     (1+ 5 {{\zeta}_1}) } } .
605     \]
606     The moisture flux also depends on a specified evapotranspiration
607     coefficient, set to unity over oceans and dependant on the climatological ground wetness over
608     land.
609    
610     Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically
611     using an implicit backward operator.
612    
613 molod 1.5 \paragraph{Atmospheric Boundary Layer}
614 molod 1.1
615     The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the
616     level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value.
617     The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers.
618    
619 molod 1.5 \paragraph{Surface Energy Budget}
620 molod 1.1
621     The ground temperature equation is solved as part of the turbulence package
622     using a backward implicit time differencing scheme:
623     \[
624     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
625     \]
626     where $R_{sw}$ is the net surface downward shortwave radiative flux and $R_{lw}$ is the
627     net surface upward longwave radiative flux.
628    
629     $H$ is the upward sensible heat flux, given by:
630     \[
631     {H} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY})
632     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
633     \]
634     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
635     heat of air at constant pressure, and $\theta$ represents the potential temperature
636     of the surface and of the lowest $\sigma$-level, respectively.
637    
638     The upward latent heat flux, $LE$, is given by
639     \[
640     {LE} = \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY})
641     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
642     \]
643     where $\beta$ is the fraction of the potential evapotranspiration actually evaporated,
644     L is the latent heat of evaporation, and $q_{surface}$ and $q_{NLAY}$ are the specific
645     humidity of the surface and of the lowest $\sigma$-level, respectively.
646    
647     The heat conduction through sea ice, $Q_{ice}$, is given by
648     \[
649     {Q_{ice}} = {C_{ti} \over {H_i}} (T_i-T_g)
650     \]
651     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
652     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the
653     surface temperature of the ice.
654    
655     $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
656 molod 1.10 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
657 molod 1.1 \[
658     C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
659     {86400 \over 2 \pi} } \, \, .
660     \]
661     Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ ${ly\over{ sec}}
662     {cm \over {^oK}}$,
663     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
664     by $2 \pi$ $radians/
665     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
666     is a function of the ground wetness, $W$.
667    
668 molod 1.9 Land Surface Processes:
669 molod 1.1
670 molod 1.5 \paragraph{Surface Type}
671 molod 1.10 The fizhi package surface Types are designated using the Koster-Suarez (\cite{ks:91,ks:92})
672     Land Surface Model (LSM) mosaic philosophy which allows multiple ``tiles'', or multiple surface
673     types, in any one grid cell. The Koster-Suarez LSM surface type classifications
674 molod 1.1 are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid
675     cell occupied by any surface type were derived from the surface classification of
676 molod 1.10 \cite{deftow:94}, and information about the location of permanent
677     ice was obtained from the classifications of \cite{dorsell:89}.
678 molod 1.13 The surface type map for a $1^\circ$ grid is shown in Figure \ref{fig:fizhi:surftype}.
679 molod 1.1 The determination of the land or sea category of surface type was made from NCAR's
680     10 minute by 10 minute Navy topography
681     dataset, which includes information about the percentage of water-cover at any point.
682 molod 1.13 The data were averaged to the model's grid resolutions,
683 molod 1.1 and any grid-box whose averaged water percentage was $\geq 60 \%$ was
684 molod 1.13 defined as a water point. The Land-Water designation was further modified
685 molod 1.1 subjectively to ensure sufficient representation from small but isolated land and water regions.
686    
687     \begin{table}
688     \begin{center}
689     {\bf Surface Type Designation} \\
690     \vspace{0.1in}
691     \begin{tabular}{ |c|l| }
692     \hline
693     Type & Vegetation Designation \\ \hline
694     \hline
695     1 & Broadleaf Evergreen Trees \\ \hline
696     2 & Broadleaf Deciduous Trees \\ \hline
697     3 & Needleleaf Trees \\ \hline
698     4 & Ground Cover \\ \hline
699     5 & Broadleaf Shrubs \\ \hline
700     6 & Dwarf Trees (Tundra) \\ \hline
701     7 & Bare Soil \\ \hline
702     8 & Desert (Bright) \\ \hline
703     9 & Glacier \\ \hline
704     10 & Desert (Dark) \\ \hline
705     100 & Ocean \\ \hline
706     \end{tabular}
707     \end{center}
708 molod 1.17 \caption{Surface type designations.}
709 molod 1.1 \label{tab:fizhi:surftype}
710     \end{table}
711    
712     \begin{figure*}[htbp]
713 molod 1.17 \centerline{ \epsfysize=4.0in \epsfbox{part6/surftype.eps}}
714 molod 1.13 \vspace{0.2in}
715 molod 1.17 \caption {Surface Type Combinations.}
716 molod 1.1 \label{fig:fizhi:surftype}
717     \end{figure*}
718    
719 molod 1.13 % \rotatebox{270}{\centerline{ \epsfysize=4in \epsfbox{part6/surftypes.eps}}}
720     % \rotatebox{270}{\centerline{ \epsfysize=4in \epsfbox{part6/surftypes.descrip.eps}}}
721     %\begin{figure*}[htbp]
722     % \centerline{ \epsfysize=4in \epsfbox{part6/surftypes.descrip.ps}}
723     % \vspace{0.3in}
724     % \caption {Surface Type Descriptions.}
725     % \label{fig:fizhi:surftype.desc}
726     %\end{figure*}
727 molod 1.1
728    
729 molod 1.5 \paragraph{Surface Roughness}
730 molod 1.1 The surface roughness length over oceans is computed iteratively with the wind
731 molod 1.10 stress by the surface layer parameterization (\cite{helfschu:95}).
732     It employs an interpolation between the functions of \cite{larpond:81}
733     for high winds and of \cite{kondo:75} for weak winds.
734 molod 1.1
735    
736 molod 1.5 \paragraph{Albedo}
737 molod 1.10 The surface albedo computation, described in \cite{ks:91},
738 molod 1.1 employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
739     Model which distinguishes between the direct and diffuse albedos in the visible
740     and in the near infra-red spectral ranges. The albedos are functions of the observed
741     leaf area index (a description of the relative orientation of the leaves to the
742     sun), the greenness fraction, the vegetation type, and the solar zenith angle.
743     Modifications are made to account for the presence of snow, and its depth relative
744     to the height of the vegetation elements.
745    
746 edhill 1.16 \paragraph{Gravity Wave Drag}
747 molod 1.9
748 molod 1.12 The fizhi package employs the gravity wave drag scheme of \cite{zhouetal:95}).
749 molod 1.1 This scheme is a modified version of Vernekar et al. (1992),
750     which was based on Alpert et al. (1988) and Helfand et al. (1987).
751     In this version, the gravity wave stress at the surface is
752     based on that derived by Pierrehumbert (1986) and is given by:
753    
754     \bq
755     |\vec{\tau}_{sfc}| = {\rho U^3\over{N \ell^*}} \left(F_r^2 \over{1+F_r^2}\right) \, \, ,
756     \eq
757    
758     where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the
759     surface wind speed, $h$ is the standard deviation of the sub-grid scale orography,
760     and $\ell^*$ is the wavelength of the monochromatic gravity wave in the direction of the low-level wind.
761     A modification introduced by Zhou et al. allows for the momentum flux to
762     escape through the top of the model, although this effect is small for the current 70-level model.
763     The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.
764    
765 molod 1.10 The effects of using this scheme within a GCM are shown in \cite{taksz:96}.
766 molod 1.1 Experiments using the gravity wave drag parameterization yielded significant and
767     beneficial impacts on both the time-mean flow and the transient statistics of the
768     a GCM climatology, and have eliminated most of the worst dynamically driven biases
769     in the a GCM simulation.
770     An examination of the angular momentum budget during climate runs indicates that the
771     resulting gravity wave torque is similar to the data-driven torque produced by a data
772     assimilation which was performed without gravity
773     wave drag. It was shown that the inclusion of gravity wave drag results in
774     large changes in both the mean flow and in eddy fluxes.
775     The result is a more
776     accurate simulation of surface stress (through a reduction in the surface wind strength),
777     of mountain torque (through a redistribution of mean sea-level pressure), and of momentum
778     convergence (through a reduction in the flux of westerly momentum by transient flow eddies).
779    
780    
781 molod 1.9 Boundary Conditions and other Input Data:
782 molod 1.1
783     Required fields which are not explicitly predicted or diagnosed during model execution must
784     either be prescribed internally or obtained from external data sets. In the fizhi package these
785     fields include: sea surface temperature, sea ice estent, surface geopotential variance,
786     vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,
787     and stratospheric moisture.
788    
789 molod 1.13 Boundary condition data sets are available at the model's
790 molod 1.1 resolutions for either climatological or yearly varying conditions.
791     Any frequency of boundary condition data can be used in the fizhi package;
792     however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@.
793     The time mean values are interpolated during each model timestep to the
794 molod 1.13 current time.
795 molod 1.1
796     \begin{table}[htb]
797     \begin{center}
798     {\bf Fizhi Input Datasets} \\
799     \vspace{0.1in}
800     \begin{tabular}{|l|c|r|} \hline
801     \multicolumn{1}{|c}{Variable} & \multicolumn{1}{|c}{Frequency} & \multicolumn{1}{|c|}{Years} \\ \hline\hline
802     Sea Ice Extent & monthly & 1979-current, climatology \\ \hline
803     Sea Ice Extent & weekly & 1982-current, climatology \\ \hline
804     Sea Surface Temperature & monthly & 1979-current, climatology \\ \hline
805     Sea Surface Temperature & weekly & 1982-current, climatology \\ \hline
806     Zonally Averaged Upper-Level Moisture & monthly & climatology \\ \hline
807     Zonally Averaged Ozone Concentration & monthly & climatology \\ \hline
808     \end{tabular}
809     \end{center}
810     \caption{Boundary conditions and other input data used in the fizhi package. Also noted are the
811     current years and frequencies available.}
812     \label{tab:fizhi:bcdata}
813     \end{table}
814    
815    
816 molod 1.5 \paragraph{Topography and Topography Variance}
817 molod 1.1
818     Surface geopotential heights are provided from an averaging of the Navy 10 minute
819     by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
820     model's grid resolution. The original topography is first rotated to the proper grid-orientation
821 molod 1.10 which is being run, and then averages the data to the model resolution.
822 molod 1.1
823 molod 1.10 The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute
824     data to the model's resolution and re-interpolating back to the 10 minute by 10 minute resolution.
825 molod 1.1 The sub-grid scale variance is constructed based on this smoothed dataset.
826    
827    
828 molod 1.5 \paragraph{Upper Level Moisture}
829 molod 1.1 The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas
830     Experiment (SAGE) as input into the model's radiation packages. The SAGE data is archived
831 edhill 1.15 as monthly zonal means at $5^\circ$ latitudinal resolution. The data is interpolated to the
832 molod 1.1 model's grid location and current time, and blended with the GCM's moisture data. Below 300 mb,
833     the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb,
834     a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
835    
836 molod 1.8
837 molod 1.9 \subsubsection{Fizhi Diagnostics}
838 molod 1.8
839 molod 1.9 Fizhi Diagnostic Menu:
840 molod 1.14 \label{sec:pkg:fizhi:diagnostics}
841 molod 1.8
842     \begin{tabular}{llll}
843     \hline\hline
844     NAME & UNITS & LEVELS & DESCRIPTION \\
845     \hline
846    
847     &\\
848     UFLUX & $Newton/m^2$ & 1
849     &\begin{minipage}[t]{3in}
850     {Surface U-Wind Stress on the atmosphere}
851     \end{minipage}\\
852     VFLUX & $Newton/m^2$ & 1
853     &\begin{minipage}[t]{3in}
854     {Surface V-Wind Stress on the atmosphere}
855     \end{minipage}\\
856     HFLUX & $Watts/m^2$ & 1
857     &\begin{minipage}[t]{3in}
858     {Surface Flux of Sensible Heat}
859     \end{minipage}\\
860     EFLUX & $Watts/m^2$ & 1
861     &\begin{minipage}[t]{3in}
862     {Surface Flux of Latent Heat}
863     \end{minipage}\\
864     QICE & $Watts/m^2$ & 1
865     &\begin{minipage}[t]{3in}
866     {Heat Conduction through Sea-Ice}
867     \end{minipage}\\
868     RADLWG & $Watts/m^2$ & 1
869     &\begin{minipage}[t]{3in}
870     {Net upward LW flux at the ground}
871     \end{minipage}\\
872     RADSWG & $Watts/m^2$ & 1
873     &\begin{minipage}[t]{3in}
874     {Net downward SW flux at the ground}
875     \end{minipage}\\
876     RI & $dimensionless$ & Nrphys
877     &\begin{minipage}[t]{3in}
878     {Richardson Number}
879     \end{minipage}\\
880     CT & $dimensionless$ & 1
881     &\begin{minipage}[t]{3in}
882     {Surface Drag coefficient for T and Q}
883     \end{minipage}\\
884     CU & $dimensionless$ & 1
885     &\begin{minipage}[t]{3in}
886     {Surface Drag coefficient for U and V}
887     \end{minipage}\\
888     ET & $m^2/sec$ & Nrphys
889     &\begin{minipage}[t]{3in}
890     {Diffusivity coefficient for T and Q}
891     \end{minipage}\\
892     EU & $m^2/sec$ & Nrphys
893     &\begin{minipage}[t]{3in}
894     {Diffusivity coefficient for U and V}
895     \end{minipage}\\
896     TURBU & $m/sec/day$ & Nrphys
897     &\begin{minipage}[t]{3in}
898     {U-Momentum Changes due to Turbulence}
899     \end{minipage}\\
900     TURBV & $m/sec/day$ & Nrphys
901     &\begin{minipage}[t]{3in}
902     {V-Momentum Changes due to Turbulence}
903     \end{minipage}\\
904     TURBT & $deg/day$ & Nrphys
905     &\begin{minipage}[t]{3in}
906     {Temperature Changes due to Turbulence}
907     \end{minipage}\\
908     TURBQ & $g/kg/day$ & Nrphys
909     &\begin{minipage}[t]{3in}
910     {Specific Humidity Changes due to Turbulence}
911     \end{minipage}\\
912     MOISTT & $deg/day$ & Nrphys
913     &\begin{minipage}[t]{3in}
914     {Temperature Changes due to Moist Processes}
915     \end{minipage}\\
916     MOISTQ & $g/kg/day$ & Nrphys
917     &\begin{minipage}[t]{3in}
918     {Specific Humidity Changes due to Moist Processes}
919     \end{minipage}\\
920     RADLW & $deg/day$ & Nrphys
921     &\begin{minipage}[t]{3in}
922     {Net Longwave heating rate for each level}
923     \end{minipage}\\
924     RADSW & $deg/day$ & Nrphys
925     &\begin{minipage}[t]{3in}
926     {Net Shortwave heating rate for each level}
927     \end{minipage}\\
928     PREACC & $mm/day$ & 1
929     &\begin{minipage}[t]{3in}
930     {Total Precipitation}
931     \end{minipage}\\
932     PRECON & $mm/day$ & 1
933     &\begin{minipage}[t]{3in}
934     {Convective Precipitation}
935     \end{minipage}\\
936     TUFLUX & $Newton/m^2$ & Nrphys
937     &\begin{minipage}[t]{3in}
938     {Turbulent Flux of U-Momentum}
939     \end{minipage}\\
940     TVFLUX & $Newton/m^2$ & Nrphys
941     &\begin{minipage}[t]{3in}
942     {Turbulent Flux of V-Momentum}
943     \end{minipage}\\
944     TTFLUX & $Watts/m^2$ & Nrphys
945     &\begin{minipage}[t]{3in}
946     {Turbulent Flux of Sensible Heat}
947     \end{minipage}\\
948     \end{tabular}
949    
950     \newpage
951     \vspace*{\fill}
952     \begin{tabular}{llll}
953     \hline\hline
954     NAME & UNITS & LEVELS & DESCRIPTION \\
955     \hline
956    
957     &\\
958     TQFLUX & $Watts/m^2$ & Nrphys
959     &\begin{minipage}[t]{3in}
960     {Turbulent Flux of Latent Heat}
961     \end{minipage}\\
962     CN & $dimensionless$ & 1
963     &\begin{minipage}[t]{3in}
964     {Neutral Drag Coefficient}
965     \end{minipage}\\
966     WINDS & $m/sec$ & 1
967     &\begin{minipage}[t]{3in}
968     {Surface Wind Speed}
969     \end{minipage}\\
970     DTSRF & $deg$ & 1
971     &\begin{minipage}[t]{3in}
972     {Air/Surface virtual temperature difference}
973     \end{minipage}\\
974     TG & $deg$ & 1
975     &\begin{minipage}[t]{3in}
976     {Ground temperature}
977     \end{minipage}\\
978     TS & $deg$ & 1
979     &\begin{minipage}[t]{3in}
980     {Surface air temperature (Adiabatic from lowest model layer)}
981     \end{minipage}\\
982     DTG & $deg$ & 1
983     &\begin{minipage}[t]{3in}
984     {Ground temperature adjustment}
985     \end{minipage}\\
986    
987     QG & $g/kg$ & 1
988     &\begin{minipage}[t]{3in}
989     {Ground specific humidity}
990     \end{minipage}\\
991     QS & $g/kg$ & 1
992     &\begin{minipage}[t]{3in}
993     {Saturation surface specific humidity}
994     \end{minipage}\\
995     TGRLW & $deg$ & 1
996     &\begin{minipage}[t]{3in}
997     {Instantaneous ground temperature used as input to the
998     Longwave radiation subroutine}
999     \end{minipage}\\
1000     ST4 & $Watts/m^2$ & 1
1001     &\begin{minipage}[t]{3in}
1002     {Upward Longwave flux at the ground ($\sigma T^4$)}
1003     \end{minipage}\\
1004     OLR & $Watts/m^2$ & 1
1005     &\begin{minipage}[t]{3in}
1006     {Net upward Longwave flux at the top of the model}
1007     \end{minipage}\\
1008     OLRCLR & $Watts/m^2$ & 1
1009     &\begin{minipage}[t]{3in}
1010     {Net upward clearsky Longwave flux at the top of the model}
1011     \end{minipage}\\
1012     LWGCLR & $Watts/m^2$ & 1
1013     &\begin{minipage}[t]{3in}
1014     {Net upward clearsky Longwave flux at the ground}
1015     \end{minipage}\\
1016     LWCLR & $deg/day$ & Nrphys
1017     &\begin{minipage}[t]{3in}
1018     {Net clearsky Longwave heating rate for each level}
1019     \end{minipage}\\
1020     TLW & $deg$ & Nrphys
1021     &\begin{minipage}[t]{3in}
1022     {Instantaneous temperature used as input to the Longwave radiation
1023     subroutine}
1024     \end{minipage}\\
1025     SHLW & $g/g$ & Nrphys
1026     &\begin{minipage}[t]{3in}
1027     {Instantaneous specific humidity used as input to the Longwave radiation
1028     subroutine}
1029     \end{minipage}\\
1030     OZLW & $g/g$ & Nrphys
1031     &\begin{minipage}[t]{3in}
1032     {Instantaneous ozone used as input to the Longwave radiation
1033     subroutine}
1034     \end{minipage}\\
1035     CLMOLW & $0-1$ & Nrphys
1036     &\begin{minipage}[t]{3in}
1037     {Maximum overlap cloud fraction used in the Longwave radiation
1038     subroutine}
1039     \end{minipage}\\
1040     CLDTOT & $0-1$ & Nrphys
1041     &\begin{minipage}[t]{3in}
1042     {Total cloud fraction used in the Longwave and Shortwave radiation
1043     subroutines}
1044     \end{minipage}\\
1045     LWGDOWN & $Watts/m^2$ & 1
1046     &\begin{minipage}[t]{3in}
1047     {Downwelling Longwave radiation at the ground}
1048     \end{minipage}\\
1049     GWDT & $deg/day$ & Nrphys
1050     &\begin{minipage}[t]{3in}
1051     {Temperature tendency due to Gravity Wave Drag}
1052     \end{minipage}\\
1053     RADSWT & $Watts/m^2$ & 1
1054     &\begin{minipage}[t]{3in}
1055     {Incident Shortwave radiation at the top of the atmosphere}
1056     \end{minipage}\\
1057     TAUCLD & $per 100 mb$ & Nrphys
1058     &\begin{minipage}[t]{3in}
1059     {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1060     \end{minipage}\\
1061     TAUCLDC & $Number$ & Nrphys
1062     &\begin{minipage}[t]{3in}
1063     {Cloud Optical Depth Counter}
1064     \end{minipage}\\
1065     \end{tabular}
1066     \vfill
1067    
1068     \newpage
1069     \vspace*{\fill}
1070     \begin{tabular}{llll}
1071     \hline\hline
1072     NAME & UNITS & LEVELS & DESCRIPTION \\
1073     \hline
1074    
1075     &\\
1076     CLDLOW & $0-1$ & Nrphys
1077     &\begin{minipage}[t]{3in}
1078     {Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)}
1079     \end{minipage}\\
1080     EVAP & $mm/day$ & 1
1081     &\begin{minipage}[t]{3in}
1082     {Surface evaporation}
1083     \end{minipage}\\
1084     DPDT & $hPa/day$ & 1
1085     &\begin{minipage}[t]{3in}
1086     {Surface Pressure tendency}
1087     \end{minipage}\\
1088     UAVE & $m/sec$ & Nrphys
1089     &\begin{minipage}[t]{3in}
1090     {Average U-Wind}
1091     \end{minipage}\\
1092     VAVE & $m/sec$ & Nrphys
1093     &\begin{minipage}[t]{3in}
1094     {Average V-Wind}
1095     \end{minipage}\\
1096     TAVE & $deg$ & Nrphys
1097     &\begin{minipage}[t]{3in}
1098     {Average Temperature}
1099     \end{minipage}\\
1100     QAVE & $g/kg$ & Nrphys
1101     &\begin{minipage}[t]{3in}
1102     {Average Specific Humidity}
1103     \end{minipage}\\
1104     OMEGA & $hPa/day$ & Nrphys
1105     &\begin{minipage}[t]{3in}
1106     {Vertical Velocity}
1107     \end{minipage}\\
1108     DUDT & $m/sec/day$ & Nrphys
1109     &\begin{minipage}[t]{3in}
1110     {Total U-Wind tendency}
1111     \end{minipage}\\
1112     DVDT & $m/sec/day$ & Nrphys
1113     &\begin{minipage}[t]{3in}
1114     {Total V-Wind tendency}
1115     \end{minipage}\\
1116     DTDT & $deg/day$ & Nrphys
1117     &\begin{minipage}[t]{3in}
1118     {Total Temperature tendency}
1119     \end{minipage}\\
1120     DQDT & $g/kg/day$ & Nrphys
1121     &\begin{minipage}[t]{3in}
1122     {Total Specific Humidity tendency}
1123     \end{minipage}\\
1124     VORT & $10^{-4}/sec$ & Nrphys
1125     &\begin{minipage}[t]{3in}
1126     {Relative Vorticity}
1127     \end{minipage}\\
1128     DTLS & $deg/day$ & Nrphys
1129     &\begin{minipage}[t]{3in}
1130     {Temperature tendency due to Stratiform Cloud Formation}
1131     \end{minipage}\\
1132     DQLS & $g/kg/day$ & Nrphys
1133     &\begin{minipage}[t]{3in}
1134     {Specific Humidity tendency due to Stratiform Cloud Formation}
1135     \end{minipage}\\
1136     USTAR & $m/sec$ & 1
1137     &\begin{minipage}[t]{3in}
1138     {Surface USTAR wind}
1139     \end{minipage}\\
1140     Z0 & $m$ & 1
1141     &\begin{minipage}[t]{3in}
1142     {Surface roughness}
1143     \end{minipage}\\
1144     FRQTRB & $0-1$ & Nrphys-1
1145     &\begin{minipage}[t]{3in}
1146     {Frequency of Turbulence}
1147     \end{minipage}\\
1148     PBL & $mb$ & 1
1149     &\begin{minipage}[t]{3in}
1150     {Planetary Boundary Layer depth}
1151     \end{minipage}\\
1152     SWCLR & $deg/day$ & Nrphys
1153     &\begin{minipage}[t]{3in}
1154     {Net clearsky Shortwave heating rate for each level}
1155     \end{minipage}\\
1156     OSR & $Watts/m^2$ & 1
1157     &\begin{minipage}[t]{3in}
1158     {Net downward Shortwave flux at the top of the model}
1159     \end{minipage}\\
1160     OSRCLR & $Watts/m^2$ & 1
1161     &\begin{minipage}[t]{3in}
1162     {Net downward clearsky Shortwave flux at the top of the model}
1163     \end{minipage}\\
1164     CLDMAS & $kg / m^2$ & Nrphys
1165     &\begin{minipage}[t]{3in}
1166     {Convective cloud mass flux}
1167     \end{minipage}\\
1168     UAVE & $m/sec$ & Nrphys
1169     &\begin{minipage}[t]{3in}
1170     {Time-averaged $u-Wind$}
1171     \end{minipage}\\
1172     \end{tabular}
1173     \vfill
1174    
1175     \newpage
1176     \vspace*{\fill}
1177     \begin{tabular}{llll}
1178     \hline\hline
1179     NAME & UNITS & LEVELS & DESCRIPTION \\
1180     \hline
1181    
1182     &\\
1183     VAVE & $m/sec$ & Nrphys
1184     &\begin{minipage}[t]{3in}
1185     {Time-averaged $v-Wind$}
1186     \end{minipage}\\
1187     TAVE & $deg$ & Nrphys
1188     &\begin{minipage}[t]{3in}
1189     {Time-averaged $Temperature$}
1190     \end{minipage}\\
1191     QAVE & $g/g$ & Nrphys
1192     &\begin{minipage}[t]{3in}
1193     {Time-averaged $Specific \, \, Humidity$}
1194     \end{minipage}\\
1195     RFT & $deg/day$ & Nrphys
1196     &\begin{minipage}[t]{3in}
1197     {Temperature tendency due Rayleigh Friction}
1198     \end{minipage}\\
1199     PS & $mb$ & 1
1200     &\begin{minipage}[t]{3in}
1201     {Surface Pressure}
1202     \end{minipage}\\
1203     QQAVE & $(m/sec)^2$ & Nrphys
1204     &\begin{minipage}[t]{3in}
1205     {Time-averaged $Turbulent Kinetic Energy$}
1206     \end{minipage}\\
1207     SWGCLR & $Watts/m^2$ & 1
1208     &\begin{minipage}[t]{3in}
1209     {Net downward clearsky Shortwave flux at the ground}
1210     \end{minipage}\\
1211     PAVE & $mb$ & 1
1212     &\begin{minipage}[t]{3in}
1213     {Time-averaged Surface Pressure}
1214     \end{minipage}\\
1215     DIABU & $m/sec/day$ & Nrphys
1216     &\begin{minipage}[t]{3in}
1217     {Total Diabatic forcing on $u-Wind$}
1218     \end{minipage}\\
1219     DIABV & $m/sec/day$ & Nrphys
1220     &\begin{minipage}[t]{3in}
1221     {Total Diabatic forcing on $v-Wind$}
1222     \end{minipage}\\
1223     DIABT & $deg/day$ & Nrphys
1224     &\begin{minipage}[t]{3in}
1225     {Total Diabatic forcing on $Temperature$}
1226     \end{minipage}\\
1227     DIABQ & $g/kg/day$ & Nrphys
1228     &\begin{minipage}[t]{3in}
1229     {Total Diabatic forcing on $Specific \, \, Humidity$}
1230     \end{minipage}\\
1231     RFU & $m/sec/day$ & Nrphys
1232     &\begin{minipage}[t]{3in}
1233     {U-Wind tendency due to Rayleigh Friction}
1234     \end{minipage}\\
1235     RFV & $m/sec/day$ & Nrphys
1236     &\begin{minipage}[t]{3in}
1237     {V-Wind tendency due to Rayleigh Friction}
1238     \end{minipage}\\
1239     GWDU & $m/sec/day$ & Nrphys
1240     &\begin{minipage}[t]{3in}
1241     {U-Wind tendency due to Gravity Wave Drag}
1242     \end{minipage}\\
1243     GWDU & $m/sec/day$ & Nrphys
1244     &\begin{minipage}[t]{3in}
1245     {V-Wind tendency due to Gravity Wave Drag}
1246     \end{minipage}\\
1247     GWDUS & $N/m^2$ & 1
1248     &\begin{minipage}[t]{3in}
1249     {U-Wind Gravity Wave Drag Stress at Surface}
1250     \end{minipage}\\
1251     GWDVS & $N/m^2$ & 1
1252     &\begin{minipage}[t]{3in}
1253     {V-Wind Gravity Wave Drag Stress at Surface}
1254     \end{minipage}\\
1255     GWDUT & $N/m^2$ & 1
1256     &\begin{minipage}[t]{3in}
1257     {U-Wind Gravity Wave Drag Stress at Top}
1258     \end{minipage}\\
1259     GWDVT & $N/m^2$ & 1
1260     &\begin{minipage}[t]{3in}
1261     {V-Wind Gravity Wave Drag Stress at Top}
1262     \end{minipage}\\
1263     LZRAD & $mg/kg$ & Nrphys
1264     &\begin{minipage}[t]{3in}
1265     {Estimated Cloud Liquid Water used in Radiation}
1266     \end{minipage}\\
1267     \end{tabular}
1268     \vfill
1269    
1270     \newpage
1271     \vspace*{\fill}
1272     \begin{tabular}{llll}
1273     \hline\hline
1274     NAME & UNITS & LEVELS & DESCRIPTION \\
1275     \hline
1276    
1277     &\\
1278     SLP & $mb$ & 1
1279     &\begin{minipage}[t]{3in}
1280     {Time-averaged Sea-level Pressure}
1281     \end{minipage}\\
1282     CLDFRC & $0-1$ & 1
1283     &\begin{minipage}[t]{3in}
1284     {Total Cloud Fraction}
1285     \end{minipage}\\
1286     TPW & $gm/cm^2$ & 1
1287     &\begin{minipage}[t]{3in}
1288     {Precipitable water}
1289     \end{minipage}\\
1290     U2M & $m/sec$ & 1
1291     &\begin{minipage}[t]{3in}
1292     {U-Wind at 2 meters}
1293     \end{minipage}\\
1294     V2M & $m/sec$ & 1
1295     &\begin{minipage}[t]{3in}
1296     {V-Wind at 2 meters}
1297     \end{minipage}\\
1298     T2M & $deg$ & 1
1299     &\begin{minipage}[t]{3in}
1300     {Temperature at 2 meters}
1301     \end{minipage}\\
1302     Q2M & $g/kg$ & 1
1303     &\begin{minipage}[t]{3in}
1304     {Specific Humidity at 2 meters}
1305     \end{minipage}\\
1306     U10M & $m/sec$ & 1
1307     &\begin{minipage}[t]{3in}
1308     {U-Wind at 10 meters}
1309     \end{minipage}\\
1310     V10M & $m/sec$ & 1
1311     &\begin{minipage}[t]{3in}
1312     {V-Wind at 10 meters}
1313     \end{minipage}\\
1314     T10M & $deg$ & 1
1315     &\begin{minipage}[t]{3in}
1316     {Temperature at 10 meters}
1317     \end{minipage}\\
1318     Q10M & $g/kg$ & 1
1319     &\begin{minipage}[t]{3in}
1320     {Specific Humidity at 10 meters}
1321     \end{minipage}\\
1322     DTRAIN & $kg/m^2$ & Nrphys
1323     &\begin{minipage}[t]{3in}
1324     {Detrainment Cloud Mass Flux}
1325     \end{minipage}\\
1326     QFILL & $g/kg/day$ & Nrphys
1327     &\begin{minipage}[t]{3in}
1328     {Filling of negative specific humidity}
1329     \end{minipage}\\
1330     \end{tabular}
1331     \vspace{1.5in}
1332     \vfill
1333    
1334     \newpage
1335     \vspace*{\fill}
1336     \begin{tabular}{llll}
1337     \hline\hline
1338     NAME & UNITS & LEVELS & DESCRIPTION \\
1339     \hline
1340    
1341     &\\
1342     DTCONV & $deg/sec$ & Nr
1343     &\begin{minipage}[t]{3in}
1344     {Temp Change due to Convection}
1345     \end{minipage}\\
1346     DQCONV & $g/kg/sec$ & Nr
1347     &\begin{minipage}[t]{3in}
1348     {Specific Humidity Change due to Convection}
1349     \end{minipage}\\
1350     RELHUM & $percent$ & Nr
1351     &\begin{minipage}[t]{3in}
1352     {Relative Humidity}
1353     \end{minipage}\\
1354     PRECLS & $g/m^2/sec$ & 1
1355     &\begin{minipage}[t]{3in}
1356     {Large Scale Precipitation}
1357     \end{minipage}\\
1358     ENPREC & $J/g$ & 1
1359     &\begin{minipage}[t]{3in}
1360     {Energy of Precipitation (snow, rain Temp)}
1361     \end{minipage}\\
1362     \end{tabular}
1363     \vspace{1.5in}
1364     \vfill
1365    
1366     \newpage
1367    
1368 molod 1.9 Fizhi Diagnostic Description:
1369 molod 1.8
1370     In this section we list and describe the diagnostic quantities available within the
1371     GCM. The diagnostics are listed in the order that they appear in the
1372 molod 1.14 Diagnostic Menu, Section \ref{sec:pkg:fizhi:diagnostics}.
1373 molod 1.8 In all cases, each diagnostic as currently archived on the output datasets
1374     is time-averaged over its diagnostic output frequency:
1375    
1376     \[
1377     {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1378     \]
1379     where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1380     output frequency of the diagnostic, and $\Delta t$ is
1381     the timestep over which the diagnostic is updated.
1382    
1383     { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1384    
1385     The zonal wind stress is the turbulent flux of zonal momentum from
1386     the surface.
1387     \[
1388     {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1389     \]
1390     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1391     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1392     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1393     the zonal wind in the lowest model layer.
1394     \\
1395    
1396    
1397     { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1398    
1399     The meridional wind stress is the turbulent flux of meridional momentum from
1400     the surface.
1401     \[
1402     {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1403     \]
1404     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1405     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1406     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1407     the meridional wind in the lowest model layer.
1408     \\
1409    
1410     { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1411    
1412     The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1413     gradient of virtual potential temperature and the eddy exchange coefficient:
1414     \[
1415     {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1416     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1417     \]
1418     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1419     heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1420     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1421     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1422     for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1423     at the surface and at the bottom model level.
1424     \\
1425    
1426    
1427     { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1428    
1429     The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1430     gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1431     \[
1432     {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1433     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1434     \]
1435     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1436     the potential evapotranspiration actually evaporated, L is the latent
1437     heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1438     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1439     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1440     for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1441     humidity at the surface and at the bottom model level, respectively.
1442     \\
1443    
1444     { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1445    
1446     Over sea ice there is an additional source of energy at the surface due to the heat
1447     conduction from the relatively warm ocean through the sea ice. The heat conduction
1448     through sea ice represents an additional energy source term for the ground temperature equation.
1449    
1450     \[
1451     {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1452     \]
1453    
1454     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1455     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1456     $T_g$ is the temperature of the sea ice.
1457    
1458     NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1459     \\
1460    
1461    
1462     { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1463    
1464     \begin{eqnarray*}
1465     {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
1466     & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1467     \end{eqnarray*}
1468     \\
1469     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1470     $F_{LW}^\uparrow$ is
1471     the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1472     \\
1473    
1474     { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1475    
1476     \begin{eqnarray*}
1477     {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
1478     & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1479     \end{eqnarray*}
1480     \\
1481     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1482     $F_{SW}^\downarrow$ is
1483     the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1484     \\
1485    
1486    
1487     \noindent
1488     { \underline {RI} Richardson Number} ($dimensionless$)
1489    
1490     \noindent
1491     The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1492     \[
1493     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1494     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1495     \]
1496     \\
1497     where we used the hydrostatic equation:
1498     \[
1499     {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1500     \]
1501     Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1502     indicate dominantly unstable shear, and large positive values indicate dominantly stable
1503     stratification.
1504     \\
1505    
1506     \noindent
1507     { \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1508    
1509     \noindent
1510     The surface exchange coefficient is obtained from the similarity functions for the stability
1511     dependant flux profile relationships:
1512     \[
1513     {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1514     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1515     { k \over { (\psi_{h} + \psi_{g}) } }
1516     \]
1517     where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1518     viscous sublayer non-dimensional temperature or moisture change:
1519     \[
1520     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1521     \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1522     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1523     \]
1524     and:
1525     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1526    
1527     \noindent
1528     $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1529     the temperature and moisture gradients, specified differently for stable and unstable
1530 molod 1.10 layers according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1531 molod 1.8 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1532     viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1533     (see diagnostic number 67), and the subscript ref refers to a reference value.
1534     \\
1535    
1536     \noindent
1537     { \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
1538    
1539     \noindent
1540     The surface exchange coefficient is obtained from the similarity functions for the stability
1541     dependant flux profile relationships:
1542     \[
1543     {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1544     \]
1545     where $\psi_m$ is the surface layer non-dimensional wind shear:
1546     \[
1547     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1548     \]
1549     \noindent
1550     $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1551     the temperature and moisture gradients, specified differently for stable and unstable layers
1552 molod 1.10 according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1553 molod 1.8 non-dimensional stability parameter, $u_*$ is the surface stress velocity
1554     (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1555     \\
1556    
1557     \noindent
1558     { \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1559    
1560     \noindent
1561     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1562     moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1563     diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1564 molod 1.10 or moisture. In the \cite{helflab:88} adaptation of this closure, $K_h$
1565 molod 1.8 takes the form:
1566     \[
1567     {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1568     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1569     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1570     \]
1571     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1572     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1573     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1574     depth,
1575     $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1576     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1577     dimensionless buoyancy and wind shear
1578     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1579     are functions of the Richardson number.
1580    
1581     \noindent
1582     For the detailed equations and derivations of the modified level 2.5 closure scheme,
1583 molod 1.10 see \cite{helflab:88}.
1584 molod 1.8
1585     \noindent
1586     In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1587     in units of $m/sec$, given by:
1588     \[
1589     {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
1590     \]
1591     \noindent
1592     where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1593     surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1594     friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1595     and $W_s$ is the magnitude of the surface layer wind.
1596     \\
1597    
1598     \noindent
1599     { \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
1600    
1601     \noindent
1602     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1603     momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1604     diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1605 molod 1.10 In the \cite{helflab:88} adaptation of this closure, $K_m$
1606 molod 1.8 takes the form:
1607     \[
1608     {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1609     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1610     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1611     \]
1612     \noindent
1613     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1614     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1615     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1616     depth,
1617     $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1618     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1619     dimensionless buoyancy and wind shear
1620     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1621     are functions of the Richardson number.
1622    
1623     \noindent
1624     For the detailed equations and derivations of the modified level 2.5 closure scheme,
1625 molod 1.10 see \cite{helflab:88}.
1626 molod 1.8
1627     \noindent
1628     In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1629     in units of $m/sec$, given by:
1630     \[
1631     {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1632     \]
1633     \noindent
1634     where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1635     similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1636     (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1637     magnitude of the surface layer wind.
1638     \\
1639    
1640     \noindent
1641     { \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1642    
1643     \noindent
1644     The tendency of U-Momentum due to turbulence is written:
1645     \[
1646     {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1647     = {\pp{}{z} }{(K_m \pp{u}{z})}
1648     \]
1649    
1650     \noindent
1651     The Helfand and Labraga level 2.5 scheme models the turbulent
1652     flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1653     equation.
1654    
1655     \noindent
1656     { \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1657    
1658     \noindent
1659     The tendency of V-Momentum due to turbulence is written:
1660     \[
1661     {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1662     = {\pp{}{z} }{(K_m \pp{v}{z})}
1663     \]
1664    
1665     \noindent
1666     The Helfand and Labraga level 2.5 scheme models the turbulent
1667     flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1668     equation.
1669     \\
1670    
1671     \noindent
1672     { \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1673    
1674     \noindent
1675     The tendency of temperature due to turbulence is written:
1676     \[
1677     {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1678     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1679     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1680     \]
1681    
1682     \noindent
1683     The Helfand and Labraga level 2.5 scheme models the turbulent
1684     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1685     equation.
1686     \\
1687    
1688     \noindent
1689     { \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1690    
1691     \noindent
1692     The tendency of specific humidity due to turbulence is written:
1693     \[
1694     {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1695     = {\pp{}{z} }{(K_h \pp{q}{z})}
1696     \]
1697    
1698     \noindent
1699     The Helfand and Labraga level 2.5 scheme models the turbulent
1700     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1701     equation.
1702     \\
1703    
1704     \noindent
1705     { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1706    
1707     \noindent
1708     \[
1709     {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1710     \]
1711     where:
1712     \[
1713     \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1714     \hspace{.4cm} and
1715     \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1716     \]
1717     and
1718     \[
1719     \Gamma_s = g \eta \pp{s}{p}
1720     \]
1721    
1722     \noindent
1723     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1724     precipitation processes, or supersaturation rain.
1725     The summation refers to contributions from each cloud type called by RAS.
1726     The dry static energy is given
1727     as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1728     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1729     the description of the convective parameterization. The fractional adjustment, or relaxation
1730     parameter, for each cloud type is given as $\alpha$, while
1731     $R$ is the rain re-evaporation adjustment.
1732     \\
1733    
1734     \noindent
1735     { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1736    
1737     \noindent
1738     \[
1739     {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1740     \]
1741     where:
1742     \[
1743     \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1744     \hspace{.4cm} and
1745     \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1746     \]
1747     and
1748     \[
1749     \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1750     \]
1751     \noindent
1752     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1753     precipitation processes, or supersaturation rain.
1754     The summation refers to contributions from each cloud type called by RAS.
1755     The dry static energy is given as $s$,
1756     the moist static energy is given as $h$,
1757     the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1758     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1759     the description of the convective parameterization. The fractional adjustment, or relaxation
1760     parameter, for each cloud type is given as $\alpha$, while
1761     $R$ is the rain re-evaporation adjustment.
1762     \\
1763    
1764     \noindent
1765     { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1766    
1767     \noindent
1768     The net longwave heating rate is calculated as the vertical divergence of the
1769     net terrestrial radiative fluxes.
1770     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1771     longwave routine.
1772     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1773     For a given cloud fraction,
1774     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1775     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1776     for the upward and downward radiative fluxes.
1777     (see Section \ref{sec:fizhi:radcloud}).
1778     The cloudy-sky flux is then obtained as:
1779    
1780     \noindent
1781     \[
1782     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1783     \]
1784    
1785     \noindent
1786     Finally, the net longwave heating rate is calculated as the vertical divergence of the
1787     net terrestrial radiative fluxes:
1788     \[
1789     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1790     \]
1791     or
1792     \[
1793     {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1794     \]
1795    
1796     \noindent
1797     where $g$ is the accelation due to gravity,
1798     $c_p$ is the heat capacity of air at constant pressure,
1799     and
1800     \[
1801     F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1802     \]
1803     \\
1804    
1805    
1806     \noindent
1807     { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1808    
1809     \noindent
1810     The net Shortwave heating rate is calculated as the vertical divergence of the
1811     net solar radiative fluxes.
1812     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1813     For the clear-sky case, the shortwave fluxes and heating rates are computed with
1814     both CLMO (maximum overlap cloud fraction) and
1815     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1816     The shortwave routine is then called a second time, for the cloudy-sky case, with the
1817     true time-averaged cloud fractions CLMO
1818     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1819     input at the top of the atmosphere.
1820    
1821     \noindent
1822     The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1823     \[
1824     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1825     \]
1826     or
1827     \[
1828     {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1829     \]
1830    
1831     \noindent
1832     where $g$ is the accelation due to gravity,
1833     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1834     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1835     \[
1836     F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1837     \]
1838     \\
1839    
1840     \noindent
1841     { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1842    
1843     \noindent
1844     For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1845     the vertical integral or total precipitable amount is given by:
1846     \[
1847     {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1848     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1849     \]
1850     \\
1851    
1852     \noindent
1853     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1854     time step, scaled to $mm/day$.
1855     \\
1856    
1857     \noindent
1858     { \underline {PRECON} Convective Precipition ($mm/day$) }
1859    
1860     \noindent
1861     For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1862     the vertical integral or total precipitable amount is given by:
1863     \[
1864     {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1865     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1866     \]
1867     \\
1868    
1869     \noindent
1870     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1871     time step, scaled to $mm/day$.
1872     \\
1873    
1874     \noindent
1875     { \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1876    
1877     \noindent
1878     The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1879     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1880    
1881     \[
1882     {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1883     {\rho } {(- K_m \pp{U}{z})}
1884     \]
1885    
1886     \noindent
1887     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1888     \\
1889    
1890     \noindent
1891     { \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1892    
1893     \noindent
1894     The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1895     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1896    
1897     \[
1898     {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1899     {\rho } {(- K_m \pp{V}{z})}
1900     \]
1901    
1902     \noindent
1903     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1904     \\
1905    
1906    
1907     \noindent
1908     { \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1909    
1910     \noindent
1911     The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1912     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1913    
1914     \noindent
1915     \[
1916     {\bf TTFLUX} = c_p {\rho }
1917     P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1918     = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1919     \]
1920    
1921     \noindent
1922     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1923     \\
1924    
1925    
1926     \noindent
1927     { \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1928    
1929     \noindent
1930     The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1931     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1932    
1933     \noindent
1934     \[
1935     {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1936     {L {\rho }(- K_h \pp{q}{z})}
1937     \]
1938    
1939     \noindent
1940     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1941     \\
1942    
1943    
1944     \noindent
1945     { \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1946    
1947     \noindent
1948     The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1949     \[
1950     {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1951     \]
1952    
1953     \noindent
1954     where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1955     $z_0$ is the surface roughness.
1956    
1957     \noindent
1958     NOTE: CN is not available through model version 5.3, but is available in subsequent
1959     versions.
1960     \\
1961    
1962     \noindent
1963     { \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1964    
1965     \noindent
1966     The surface wind speed is calculated for the last internal turbulence time step:
1967     \[
1968     {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1969     \]
1970    
1971     \noindent
1972     where the subscript $Nrphys$ refers to the lowest model level.
1973     \\
1974    
1975     \noindent
1976     { \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1977    
1978     \noindent
1979     The air/surface virtual temperature difference measures the stability of the surface layer:
1980     \[
1981     {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1982     \]
1983     \noindent
1984     where
1985     \[
1986     \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1987     and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1988     \]
1989    
1990     \noindent
1991     $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1992     $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1993     and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1994     refers to the surface.
1995     \\
1996    
1997    
1998     \noindent
1999     { \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
2000    
2001     \noindent
2002     The ground temperature equation is solved as part of the turbulence package
2003     using a backward implicit time differencing scheme:
2004     \[
2005     {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2006     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2007     \]
2008    
2009     \noindent
2010     where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2011     net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2012     sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2013     flux, and $C_g$ is the total heat capacity of the ground.
2014     $C_g$ is obtained by solving a heat diffusion equation
2015 molod 1.10 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
2016 molod 1.8 \[
2017     C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2018     { 86400. \over {2 \pi} } } \, \, .
2019     \]
2020     \noindent
2021     Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
2022     {cm \over {^oK}}$,
2023     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2024     by $2 \pi$ $radians/
2025     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2026     is a function of the ground wetness, $W$.
2027     \\
2028    
2029     \noindent
2030     { \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
2031    
2032     \noindent
2033     The surface temperature estimate is made by assuming that the model's lowest
2034     layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2035     The surface temperature is therefore:
2036     \[
2037     {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2038     \]
2039     \\
2040    
2041     \noindent
2042     { \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2043    
2044     \noindent
2045     The change in surface temperature from one turbulence time step to the next, solved
2046     using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2047     \[
2048     {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2049     \]
2050    
2051     \noindent
2052     where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2053     refers to the value at the previous turbulence time level.
2054     \\
2055    
2056     \noindent
2057     { \underline {QG} Ground Specific Humidity ($g/kg$) }
2058    
2059     \noindent
2060     The ground specific humidity is obtained by interpolating between the specific
2061     humidity at the lowest model level and the specific humidity of a saturated ground.
2062     The interpolation is performed using the potential evapotranspiration function:
2063     \[
2064     {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2065     \]
2066    
2067     \noindent
2068     where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2069     and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2070     pressure.
2071     \\
2072    
2073     \noindent
2074     { \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
2075    
2076     \noindent
2077     The surface saturation specific humidity is the saturation specific humidity at
2078     the ground temprature and surface pressure:
2079     \[
2080     {\bf QS} = q^*(T_g,P_s)
2081     \]
2082     \\
2083    
2084     \noindent
2085     { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2086     radiation subroutine (deg)}
2087     \[
2088     {\bf TGRLW} = T_g(\lambda , \phi ,n)
2089     \]
2090     \noindent
2091     where $T_g$ is the model ground temperature at the current time step $n$.
2092     \\
2093    
2094    
2095     \noindent
2096     { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2097     \[
2098     {\bf ST4} = \sigma T^4
2099     \]
2100     \noindent
2101     where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2102     \\
2103    
2104     \noindent
2105     { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2106     \[
2107     {\bf OLR} = F_{LW,top}^{NET}
2108     \]
2109     \noindent
2110     where top indicates the top of the first model layer.
2111     In the GCM, $p_{top}$ = 0.0 mb.
2112     \\
2113    
2114    
2115     \noindent
2116     { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2117     \[
2118     {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
2119     \]
2120     \noindent
2121     where top indicates the top of the first model layer.
2122     In the GCM, $p_{top}$ = 0.0 mb.
2123     \\
2124    
2125     \noindent
2126     { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2127    
2128     \noindent
2129     \begin{eqnarray*}
2130     {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2131     & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2132     \end{eqnarray*}
2133     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2134     $F(clearsky)_{LW}^\uparrow$ is
2135     the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2136     \\
2137    
2138     \noindent
2139     { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2140    
2141     \noindent
2142     The net longwave heating rate is calculated as the vertical divergence of the
2143     net terrestrial radiative fluxes.
2144     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2145     longwave routine.
2146     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2147     For a given cloud fraction,
2148     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2149     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2150     for the upward and downward radiative fluxes.
2151     (see Section \ref{sec:fizhi:radcloud}).
2152     The cloudy-sky flux is then obtained as:
2153    
2154     \noindent
2155     \[
2156     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2157     \]
2158    
2159     \noindent
2160     Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2161     vertical divergence of the
2162     clear-sky longwave radiative flux:
2163     \[
2164     \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2165     \]
2166     or
2167     \[
2168     {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2169     \]
2170    
2171     \noindent
2172     where $g$ is the accelation due to gravity,
2173     $c_p$ is the heat capacity of air at constant pressure,
2174     and
2175     \[
2176     F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2177     \]
2178     \\
2179    
2180    
2181     \noindent
2182     { \underline {TLW} Instantaneous temperature used as input to the Longwave
2183     radiation subroutine (deg)}
2184     \[
2185     {\bf TLW} = T(\lambda , \phi ,level, n)
2186     \]
2187     \noindent
2188     where $T$ is the model temperature at the current time step $n$.
2189     \\
2190    
2191    
2192     \noindent
2193     { \underline {SHLW} Instantaneous specific humidity used as input to
2194     the Longwave radiation subroutine (kg/kg)}
2195     \[
2196     {\bf SHLW} = q(\lambda , \phi , level , n)
2197     \]
2198     \noindent
2199     where $q$ is the model specific humidity at the current time step $n$.
2200     \\
2201    
2202    
2203     \noindent
2204     { \underline {OZLW} Instantaneous ozone used as input to
2205     the Longwave radiation subroutine (kg/kg)}
2206     \[
2207     {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
2208     \]
2209     \noindent
2210     where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2211     mean zonally averaged ozone data set.
2212     \\
2213    
2214    
2215     \noindent
2216     { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2217    
2218     \noindent
2219     {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2220     Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
2221     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2222     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2223     \[
2224     {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
2225     \]
2226     \\
2227    
2228    
2229     { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2230    
2231     {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2232     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2233     Radiation packages.
2234     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2235     \[
2236     {\bf CLDTOT} = F_{RAS} + F_{LS}
2237     \]
2238     \\
2239     where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2240     time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2241     \\
2242    
2243    
2244     \noindent
2245     { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2246    
2247     \noindent
2248     {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2249     Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
2250     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2251     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2252     \[
2253     {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
2254     \]
2255     \\
2256    
2257     \noindent
2258     { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2259    
2260     \noindent
2261     {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2262     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2263     Radiation algorithm. These are
2264     convective and large-scale clouds whose radiative characteristics are not
2265     assumed to be correlated in the vertical.
2266     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2267     \[
2268     {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
2269     \]
2270     \\
2271    
2272     \noindent
2273     { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2274     \[
2275     {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2276     \]
2277     \noindent
2278     where $S_0$, is the extra-terrestial solar contant,
2279     $R_a$ is the earth-sun distance in Astronomical Units,
2280     and $cos \phi_z$ is the cosine of the zenith angle.
2281     It should be noted that {\bf RADSWT}, as well as
2282     {\bf OSR} and {\bf OSRCLR},
2283     are calculated at the top of the atmosphere (p=0 mb). However, the
2284     {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2285     calculated at $p= p_{top}$ (0.0 mb for the GCM).
2286     \\
2287    
2288     \noindent
2289     { \underline {EVAP} Surface Evaporation ($mm/day$) }
2290    
2291     \noindent
2292     The surface evaporation is a function of the gradient of moisture, the potential
2293     evapotranspiration fraction and the eddy exchange coefficient:
2294     \[
2295     {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2296     \]
2297     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2298     the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2299     turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2300     $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2301     number 34) and at the bottom model level, respectively.
2302     \\
2303    
2304     \noindent
2305     { \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
2306    
2307     \noindent
2308     {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2309     and Analysis forcing.
2310     \[
2311     {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2312     \]
2313     \\
2314    
2315     \noindent
2316     { \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
2317    
2318     \noindent
2319     {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2320     and Analysis forcing.
2321     \[
2322     {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2323     \]
2324     \\
2325    
2326     \noindent
2327     { \underline {DTDT} Total Temperature Tendency ($deg/day$) }
2328    
2329     \noindent
2330     {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2331     and Analysis forcing.
2332     \begin{eqnarray*}
2333     {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2334     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2335     \end{eqnarray*}
2336     \\
2337    
2338     \noindent
2339     { \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
2340    
2341     \noindent
2342     {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2343     and Analysis forcing.
2344     \[
2345     {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2346     + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2347     \]
2348     \\
2349    
2350     \noindent
2351     { \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
2352    
2353     \noindent
2354     The surface stress velocity, or the friction velocity, is the wind speed at
2355     the surface layer top impeded by the surface drag:
2356     \[
2357     {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2358     C_u = {k \over {\psi_m} }
2359     \]
2360    
2361     \noindent
2362     $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2363     number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2364    
2365     \noindent
2366     { \underline {Z0} Surface Roughness Length ($m$) }
2367    
2368     \noindent
2369     Over the land surface, the surface roughness length is interpolated to the local
2370 molod 1.10 time from the monthly mean data of \cite{dorsell:89}. Over the ocean,
2371 molod 1.8 the roughness length is a function of the surface-stress velocity, $u_*$.
2372     \[
2373     {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2374     \]
2375    
2376     \noindent
2377     where the constants are chosen to interpolate between the reciprocal relation of
2378 molod 1.10 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
2379 molod 1.8 for moderate to large winds.
2380     \\
2381    
2382     \noindent
2383     { \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
2384    
2385     \noindent
2386     The fraction of time when turbulence is present is defined as the fraction of
2387     time when the turbulent kinetic energy exceeds some minimum value, defined here
2388     to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2389     incremented. The fraction over the averaging interval is reported.
2390     \\
2391    
2392     \noindent
2393     { \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
2394    
2395     \noindent
2396     The depth of the PBL is defined by the turbulence parameterization to be the
2397     depth at which the turbulent kinetic energy reduces to ten percent of its surface
2398     value.
2399    
2400     \[
2401     {\bf PBL} = P_{PBL} - P_{surface}
2402     \]
2403    
2404     \noindent
2405     where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2406     reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2407     \\
2408    
2409     \noindent
2410     { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2411    
2412     \noindent
2413     The net Shortwave heating rate is calculated as the vertical divergence of the
2414     net solar radiative fluxes.
2415     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2416     For the clear-sky case, the shortwave fluxes and heating rates are computed with
2417     both CLMO (maximum overlap cloud fraction) and
2418     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2419     The shortwave routine is then called a second time, for the cloudy-sky case, with the
2420     true time-averaged cloud fractions CLMO
2421     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
2422     input at the top of the atmosphere.
2423    
2424     \noindent
2425     The heating rate due to Shortwave Radiation under clear skies is defined as:
2426     \[
2427     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2428     \]
2429     or
2430     \[
2431     {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2432     \]
2433    
2434     \noindent
2435     where $g$ is the accelation due to gravity,
2436     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2437     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2438     \[
2439     F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2440     \]
2441     \\
2442    
2443     \noindent
2444     { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2445     \[
2446     {\bf OSR} = F_{SW,top}^{NET}
2447     \]
2448     \noindent
2449     where top indicates the top of the first model layer used in the shortwave radiation
2450     routine.
2451     In the GCM, $p_{SW_{top}}$ = 0 mb.
2452     \\
2453    
2454     \noindent
2455     { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2456     \[
2457     {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
2458     \]
2459     \noindent
2460     where top indicates the top of the first model layer used in the shortwave radiation
2461     routine.
2462     In the GCM, $p_{SW_{top}}$ = 0 mb.
2463     \\
2464    
2465    
2466     \noindent
2467     { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2468    
2469     \noindent
2470     The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2471     \[
2472     {\bf CLDMAS} = \eta m_B
2473     \]
2474     where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2475     the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2476     description of the convective parameterization.
2477     \\
2478    
2479    
2480    
2481     \noindent
2482     { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2483    
2484     \noindent
2485     The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2486     the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
2487     Zonal U-Wind which is archived on the Prognostic Output data stream.
2488     \[
2489     {\bf UAVE} = u(\lambda, \phi, level , t)
2490     \]
2491     \\
2492     Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2493     \\
2494    
2495     \noindent
2496     { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2497    
2498     \noindent
2499     The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2500     the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
2501     Meridional V-Wind which is archived on the Prognostic Output data stream.
2502     \[
2503     {\bf VAVE} = v(\lambda, \phi, level , t)
2504     \]
2505     \\
2506     Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2507     \\
2508    
2509     \noindent
2510     { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2511    
2512     \noindent
2513     The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2514     the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
2515     Temperature which is archived on the Prognostic Output data stream.
2516     \[
2517     {\bf TAVE} = T(\lambda, \phi, level , t)
2518     \]
2519     \\
2520    
2521     \noindent
2522     { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2523    
2524     \noindent
2525     The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2526     the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
2527     Specific Humidity which is archived on the Prognostic Output data stream.
2528     \[
2529     {\bf QAVE} = q(\lambda, \phi, level , t)
2530     \]
2531     \\
2532    
2533     \noindent
2534     { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2535    
2536     \noindent
2537     The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2538     the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
2539     Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2540     \begin{eqnarray*}
2541     {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
2542     & = & p_s(\lambda, \phi, level , t) - p_T
2543     \end{eqnarray*}
2544     \\
2545    
2546    
2547     \noindent
2548     { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2549    
2550     \noindent
2551     The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2552     produced by the GCM Turbulence parameterization over
2553     the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
2554     Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2555     \[
2556     {\bf QQAVE} = qq(\lambda, \phi, level , t)
2557     \]
2558     \\
2559     Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2560     \\
2561    
2562     \noindent
2563     { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2564    
2565     \noindent
2566     \begin{eqnarray*}
2567     {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2568     & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2569     \end{eqnarray*}
2570     \noindent
2571     \\
2572     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2573     $F(clearsky){SW}^\downarrow$ is
2574     the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2575     the upward clearsky Shortwave flux.
2576     \\
2577    
2578     \noindent
2579     { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2580    
2581     \noindent
2582     {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2583     and the Analysis forcing.
2584     \[
2585     {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2586     \]
2587     \\
2588    
2589     \noindent
2590     { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2591    
2592     \noindent
2593     {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2594     and the Analysis forcing.
2595     \[
2596     {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2597     \]
2598     \\
2599    
2600     \noindent
2601     { \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2602    
2603     \noindent
2604     {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2605     and the Analysis forcing.
2606     \begin{eqnarray*}
2607     {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2608     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2609     \end{eqnarray*}
2610     \\
2611     If we define the time-tendency of Temperature due to Diabatic processes as
2612     \begin{eqnarray*}
2613     \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2614     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2615     \end{eqnarray*}
2616     then, since there are no surface pressure changes due to Diabatic processes, we may write
2617     \[
2618     \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2619     \]
2620     where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2621     \[
2622     {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2623     \]
2624     \\
2625    
2626     \noindent
2627     { \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2628    
2629     \noindent
2630     {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2631     and the Analysis forcing.
2632     \[
2633     {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2634     \]
2635     If we define the time-tendency of Specific Humidity due to Diabatic processes as
2636     \[
2637     \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2638     \]
2639     then, since there are no surface pressure changes due to Diabatic processes, we may write
2640     \[
2641     \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2642     \]
2643     Thus, {\bf DIABQ} may be written as
2644     \[
2645     {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2646     \]
2647     \\
2648    
2649     \noindent
2650     { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2651    
2652     \noindent
2653     The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2654     $u q$ over the depth of the atmosphere at each model timestep,
2655     and dividing by the total mass of the column.
2656     \[
2657     {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2658     \]
2659     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2660     \[
2661     {\bf VINTUQ} = { \int_0^1 u q dp }
2662     \]
2663     \\
2664    
2665    
2666     \noindent
2667     { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2668    
2669     \noindent
2670     The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2671     $v q$ over the depth of the atmosphere at each model timestep,
2672     and dividing by the total mass of the column.
2673     \[
2674     {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2675     \]
2676     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2677     \[
2678     {\bf VINTVQ} = { \int_0^1 v q dp }
2679     \]
2680     \\
2681    
2682    
2683     \noindent
2684     { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2685    
2686     \noindent
2687     The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2688     $u T$ over the depth of the atmosphere at each model timestep,
2689     and dividing by the total mass of the column.
2690     \[
2691     {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2692     \]
2693     Or,
2694     \[
2695     {\bf VINTUT} = { \int_0^1 u T dp }
2696     \]
2697     \\
2698    
2699     \noindent
2700     { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2701    
2702     \noindent
2703     The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2704     $v T$ over the depth of the atmosphere at each model timestep,
2705     and dividing by the total mass of the column.
2706     \[
2707     {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2708     \]
2709     Using $\rho \delta z = -{\delta p \over g} $, we have
2710     \[
2711     {\bf VINTVT} = { \int_0^1 v T dp }
2712     \]
2713     \\
2714    
2715     \noindent
2716     { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2717    
2718     If we define the
2719     time-averaged random and maximum overlapped cloudiness as CLRO and
2720     CLMO respectively, then the probability of clear sky associated
2721     with random overlapped clouds at any level is (1-CLRO) while the probability of
2722     clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2723     The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2724     the total cloud fraction at each level may be obtained by
2725     1-(1-CLRO)*(1-CLMO).
2726    
2727     At any given level, we may define the clear line-of-site probability by
2728     appropriately accounting for the maximum and random overlap
2729     cloudiness. The clear line-of-site probability is defined to be
2730     equal to the product of the clear line-of-site probabilities
2731     associated with random and maximum overlap cloudiness. The clear
2732     line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2733     from the current pressure $p$
2734     to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2735     is simply 1.0 minus the largest maximum overlap cloud value along the
2736     line-of-site, ie.
2737    
2738     $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2739    
2740     Thus, even in the time-averaged sense it is assumed that the
2741     maximum overlap clouds are correlated in the vertical. The clear
2742     line-of-site probability associated with random overlap clouds is
2743     defined to be the product of the clear sky probabilities at each
2744     level along the line-of-site, ie.
2745    
2746     $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2747    
2748     The total cloud fraction at a given level associated with a line-
2749     of-site calculation is given by
2750    
2751     $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2752     \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2753    
2754    
2755     \noindent
2756     The 2-dimensional net cloud fraction as seen from the top of the
2757     atmosphere is given by
2758     \[
2759     {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2760     \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2761     \]
2762     \\
2763     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2764    
2765    
2766     \noindent
2767     { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2768    
2769     \noindent
2770     The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2771     given by:
2772     \begin{eqnarray*}
2773     {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2774     & = & {\pi \over g} \int_0^1 q dp
2775     \end{eqnarray*}
2776     where we have used the hydrostatic relation
2777     $\rho \delta z = -{\delta p \over g} $.
2778     \\
2779    
2780    
2781     \noindent
2782     { \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2783    
2784     \noindent
2785     The u-wind at the 2-meter depth is determined from the similarity theory:
2786     \[
2787     {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2788     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2789     \]
2790    
2791     \noindent
2792     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2793     $sl$ refers to the height of the top of the surface layer. If the roughness height
2794     is above two meters, ${\bf U2M}$ is undefined.
2795     \\
2796    
2797     \noindent
2798     { \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2799    
2800     \noindent
2801     The v-wind at the 2-meter depth is a determined from the similarity theory:
2802     \[
2803     {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2804     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2805     \]
2806    
2807     \noindent
2808     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2809     $sl$ refers to the height of the top of the surface layer. If the roughness height
2810     is above two meters, ${\bf V2M}$ is undefined.
2811     \\
2812    
2813     \noindent
2814     { \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2815    
2816     \noindent
2817     The temperature at the 2-meter depth is a determined from the similarity theory:
2818     \[
2819     {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2820     P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2821     (\theta_{sl} - \theta_{surf}))
2822     \]
2823     where:
2824     \[
2825     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2826     \]
2827    
2828     \noindent
2829     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2830     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2831     $sl$ refers to the height of the top of the surface layer. If the roughness height
2832     is above two meters, ${\bf T2M}$ is undefined.
2833     \\
2834    
2835     \noindent
2836     { \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2837    
2838     \noindent
2839     The specific humidity at the 2-meter depth is determined from the similarity theory:
2840     \[
2841     {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2842     P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2843     (q_{sl} - q_{surf}))
2844     \]
2845     where:
2846     \[
2847     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2848     \]
2849    
2850     \noindent
2851     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2852     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2853     $sl$ refers to the height of the top of the surface layer. If the roughness height
2854     is above two meters, ${\bf Q2M}$ is undefined.
2855     \\
2856    
2857     \noindent
2858     { \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2859    
2860     \noindent
2861     The u-wind at the 10-meter depth is an interpolation between the surface wind
2862     and the model lowest level wind using the ratio of the non-dimensional wind shear
2863     at the two levels:
2864     \[
2865     {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2866     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2867     \]
2868    
2869     \noindent
2870     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2871     $sl$ refers to the height of the top of the surface layer.
2872     \\
2873    
2874     \noindent
2875     { \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2876    
2877     \noindent
2878     The v-wind at the 10-meter depth is an interpolation between the surface wind
2879     and the model lowest level wind using the ratio of the non-dimensional wind shear
2880     at the two levels:
2881     \[
2882     {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2883     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2884     \]
2885    
2886     \noindent
2887     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2888     $sl$ refers to the height of the top of the surface layer.
2889     \\
2890    
2891     \noindent
2892     { \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2893    
2894     \noindent
2895     The temperature at the 10-meter depth is an interpolation between the surface potential
2896     temperature and the model lowest level potential temperature using the ratio of the
2897     non-dimensional temperature gradient at the two levels:
2898     \[
2899     {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2900     P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2901     (\theta_{sl} - \theta_{surf}))
2902     \]
2903     where:
2904     \[
2905     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2906     \]
2907    
2908     \noindent
2909     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2910     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2911     $sl$ refers to the height of the top of the surface layer.
2912     \\
2913    
2914     \noindent
2915     { \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2916    
2917     \noindent
2918     The specific humidity at the 10-meter depth is an interpolation between the surface specific
2919     humidity and the model lowest level specific humidity using the ratio of the
2920     non-dimensional temperature gradient at the two levels:
2921     \[
2922     {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2923     P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2924     (q_{sl} - q_{surf}))
2925     \]
2926     where:
2927     \[
2928     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2929     \]
2930    
2931     \noindent
2932     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2933     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2934     $sl$ refers to the height of the top of the surface layer.
2935     \\
2936    
2937     \noindent
2938     { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2939    
2940     The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2941     \[
2942     {\bf DTRAIN} = \eta_{r_D}m_B
2943     \]
2944     \noindent
2945     where $r_D$ is the detrainment level,
2946     $m_B$ is the cloud base mass flux, and $\eta$
2947     is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2948     \\
2949    
2950     \noindent
2951     { \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2952    
2953     \noindent
2954     Due to computational errors associated with the numerical scheme used for
2955     the advection of moisture, negative values of specific humidity may be generated. The
2956     specific humidity is checked for negative values after every dynamics timestep. If negative
2957     values have been produced, a filling algorithm is invoked which redistributes moisture from
2958     below. Diagnostic {\bf QFILL} is equal to the net filling needed
2959     to eliminate negative specific humidity, scaled to a per-day rate:
2960     \[
2961     {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2962     \]
2963     where
2964     \[
2965     q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2966     \]
2967    
2968    
2969 molod 1.9 \subsubsection{Key subroutines, parameters and files}
2970 molod 1.6
2971 molod 1.9 \subsubsection{Dos and donts}
2972 molod 1.6
2973 molod 1.9 \subsubsection{Fizhi Reference}
2974 molod 1.17
2975     \subsubsection{Experiments and tutorials that use fizhi}
2976     \label{sec:pkg:fizhi:experiments}
2977    
2978     \begin{itemize}
2979     \item{Global atmosphere experiment with realistic SST and topography in fizhi-cs-32x32x10 verification directory. }
2980     \item{Global atmosphere aqua planet experiment in fizhi-cs-aqualev20 verification directory. }
2981     \end{itemize}
2982    

  ViewVC Help
Powered by ViewVC 1.1.22