/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.15 - (hide annotations) (download) (as text)
Sat Apr 8 01:50:50 2006 UTC (18 years, 1 month ago) by edhill
Branch: MAIN
Changes since 1.14: +1 -1 lines
File MIME type: application/x-tex
LaTeX syntax cleanups:
 - the degree symbols ("\circ") are now properly raised after latex2html
 - don't use $...$ when it should be \textit{...}

1 molod 1.9 \subsection{Fizhi: High-end Atmospheric Physics}
2 edhill 1.7 \label{sec:pkg:fizhi}
3     \begin{rawhtml}
4     <!-- CMIREDIR:package_fizhi: -->
5     \end{rawhtml}
6 molod 1.3 \input{texinputs/epsf.tex}
7 molod 1.1
8 molod 1.9 \subsubsection{Introduction}
9 molod 1.1 The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10     physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11 molod 1.11 boundary layer turbulence, and land surface processes. The collection of atmospheric
12     physics parameterizations were originally used together as part of the GEOS-3
13     (Goddard Earth Observing System-3) GCM developed at the NASA/Goddard Global Modelling
14     and Assimilation Office (GMAO).
15 molod 1.1
16     % *************************************************************************
17     % *************************************************************************
18    
19 molod 1.9 \subsubsection{Equations}
20 molod 1.1
21 molod 1.9 Moist Convective Processes:
22 molod 1.1
23 molod 1.5 \paragraph{Sub-grid and Large-scale Convection}
24 molod 1.1 \label{sec:fizhi:mc}
25    
26     Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
27 molod 1.10 Schubert (RAS) scheme of \cite{moorsz:92}, which is a linearized Arakawa Schubert
28 molod 1.1 type scheme. RAS predicts the mass flux from an ensemble of clouds. Each subensemble is identified
29     by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.
30    
31     The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are
32     the dry static energy, $s=c_pT +gz$, and the moist static energy, $h=c_p T + gz + Lq$.
33     The conceptual model behind RAS depicts each subensemble as a rising plume cloud, entraining
34     mass from the environment during ascent, and detraining all cloud air at the level of neutral
35     buoyancy. RAS assumes that the normalized cloud mass flux, $\eta$, normalized by the cloud base
36     mass flux, is a linear function of height, expressed as:
37     \[
38     \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
39     -{c_p \over {g}}\theta\lambda
40     \]
41     where we have used the hydrostatic equation written in the form:
42     \[
43     \pp{z}{P^{\kappa}} = -{c_p \over {g}}\theta
44     \]
45    
46     The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
47     detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral
48     buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal
49 molod 1.10 to the saturation moist static energy of the environment, $h^*$. Following \cite{moorsz:92},
50 molod 1.1 $\lambda$ may be written as
51     \[
52     \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,
53     \]
54    
55     where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.
56    
57    
58     The convective instability is measured in terms of the cloud work function $A$, defined as the
59     rate of change of cumulus kinetic energy. The cloud work function is
60     related to the buoyancy, or the difference
61     between the moist static energy in the cloud and in the environment:
62     \[
63     A = \int_{P_D}^{P_B} { {\eta \over {1 + \gamma} }
64     \left[ {{h_c-h^*} \over {P^{\kappa}}} \right] dP^{\kappa}}
65     \]
66    
67     where $\gamma$ is ${L \over {c_p}}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,
68     and the subscript $c$ refers to the value inside the cloud.
69    
70    
71     To determine the cloud base mass flux, the rate of change of $A$ in time {\em due to dissipation by
72     the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation
73     by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:
74     \[
75     m_B = {{- \left.{dA \over dt} \right|_{ls}} \over K}
76     \]
77    
78     where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per
79     unit cloud base mass flux, and is currently obtained by analytically differentiating the
80     expression for $A$ in time.
81     The rate of change of $A$ due to the generation by the large scale can be written as the
82     difference between the current $A(t+\Delta t)$ and its equillibrated value after the previous
83     convective time step
84     $A(t)$, divided by the time step. $A(t)$ is approximated as some critical $A_{crit}$,
85     computed by Lord (1982) from $in situ$ observations.
86    
87    
88     The predicted convective mass fluxes are used to solve grid-scale temperature
89     and moisture budget equations to determine the impact of convection on the large scale fields of
90     temperature (through latent heating and compensating subsidence) and moisture (through
91     precipitation and detrainment):
92     \[
93     \left.{\pp{\theta}{t}}\right|_{c} = \alpha { m_B \over {c_p P^{\kappa}}} \eta \pp{s}{p}
94     \]
95     and
96     \[
97     \left.{\pp{q}{t}}\right|_{c} = \alpha { m_B \over {L}} \eta (\pp{h}{p}-\pp{s}{p})
98     \]
99     where $\theta = {T \over P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.
100    
101     As an approximation to a full interaction between the different allowable subensembles,
102     many clouds are simulated frequently, each modifying the large scale environment some fraction
103     $\alpha$ of the total adjustment. The parameterization thereby ``relaxes'' the large scale environment
104     towards equillibrium.
105    
106     In addition to the RAS cumulus convection scheme, the fizhi package employs a
107 molod 1.10 Kessler-type scheme for the re-evaporation of falling rain (\cite{sudm:88}), which
108 molod 1.1 correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current
109     formulation assumes that all cloud water is deposited into the detrainment level as rain.
110     All of the rain is available for re-evaporation, which begins in the level below detrainment.
111     The scheme accounts for some microphysics such as
112     the rainfall intensity, the drop size distribution, as well as the temperature,
113     pressure and relative humidity of the surrounding air. The fraction of the moisture deficit
114     in any model layer into which the rain may re-evaporate is controlled by a free parameter,
115     which allows for a relatively efficient re-evaporation of liquid precipitate and larger rainout
116     for frozen precipitation.
117    
118     Due to the increased vertical resolution near the surface, the lowest model
119     layers are averaged to provide a 50 mb thick sub-cloud layer for RAS. Each time RAS is
120     invoked (every ten simulated minutes),
121     a number of randomly chosen subensembles are checked for the possibility
122     of convection, from just above cloud base to 10 mb.
123    
124     Supersaturation or large-scale precipitation is initiated in the fizhi package whenever
125     the relative humidity in any grid-box exceeds a critical value, currently 100 \%.
126     The large-scale precipitation re-evaporates during descent to partially saturate
127     lower layers in a process identical to the re-evaporation of convective rain.
128    
129    
130 molod 1.5 \paragraph{Cloud Formation}
131 molod 1.1 \label{sec:fizhi:clouds}
132    
133     Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined
134     diagnostically as part of the cumulus and large-scale parameterizations.
135     Convective cloud fractions produced by RAS are proportional to the
136     detrained liquid water amount given by
137    
138     \[
139     F_{RAS} = \min\left[ {l_{RAS}\over l_c}, 1.0 \right]
140     \]
141    
142     where $l_c$ is an assigned critical value equal to $1.25$ g/kg.
143     A memory is associated with convective clouds defined by:
144    
145     \[
146     F_{RAS}^n = \min\left[ F_{RAS} + (1-{\Delta t_{RAS}\over\tau})F_{RAS}^{n-1}, 1.0 \right]
147     \]
148    
149     where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction
150     from the previous RAS timestep. The memory coefficient is computed using a RAS cloud timescale,
151     $\tau$, equal to 1 hour. RAS cloud fractions are cleared when they fall below 5 \%.
152    
153     Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative
154     humidity:
155    
156     \[
157     F_{LS} = \min\left[ { \left( {RH-RH_c \over 1-RH_c} \right) }^2, 1.0 \right]
158     \]
159    
160     where
161    
162     \bqa
163     RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\
164     s & = & p/p_{surf} \nonumber \\
165     r & = & \left( {1.0-RH_{min} \over \alpha} \right) \nonumber \\
166     RH_{min} & = & 0.75 \nonumber \\
167     \alpha & = & 0.573285 \nonumber .
168     \eqa
169    
170     These cloud fractions are suppressed, however, in regions where the convective
171     sub-cloud layer is conditionally unstable. The functional form of $RH_c$ is shown in
172 molod 1.13 Figure (\ref{fig.rhcrit}).
173 molod 1.1
174     \begin{figure*}[htbp]
175     \vspace{0.4in}
176 molod 1.4 \centerline{ \epsfysize=4.0in \epsfbox{part6/rhcrit.ps}}
177 molod 1.1 \vspace{0.4in}
178 molod 1.13 \caption [Critical Relative Humidity for Clouds.]
179     {Critical Relative Humidity for Clouds.}
180     \label{fig.rhcrit}
181 molod 1.1 \end{figure*}
182    
183     The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:
184    
185     \[
186     F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] .
187     \]
188    
189     Finally, cloud fractions are time-averaged between calls to the radiation packages.
190    
191    
192 molod 1.9 Radiation:
193 molod 1.1
194     The parameterization of radiative heating in the fizhi package includes effects
195     from both shortwave and longwave processes.
196     Radiative fluxes are calculated at each
197     model edge-level in both up and down directions.
198     The heating rates/cooling rates are then obtained
199     from the vertical divergence of the net radiative fluxes.
200    
201     The net flux is
202     \[
203     F = F^\uparrow - F^\downarrow
204     \]
205     where $F$ is the net flux, $F^\uparrow$ is the upward flux and $F^\downarrow$ is
206     the downward flux.
207    
208     The heating rate due to the divergence of the radiative flux is given by
209     \[
210     \pp{\rho c_p T}{t} = - \pp{F}{z}
211     \]
212     or
213     \[
214     \pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}
215     \]
216     where $g$ is the accelation due to gravity
217     and $c_p$ is the heat capacity of air at constant pressure.
218    
219     The time tendency for Longwave
220     Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is updated once
221     every three hours assuming a normalized incident solar radiation, and subsequently modified at
222     every model time step by the true incident radiation.
223     The solar constant value used in the package is equal to 1365 $W/m^2$
224     and a $CO_2$ mixing ratio of 330 ppm.
225     For the ozone mixing ratio, monthly mean zonally averaged
226     climatological values specified as a function
227 molod 1.10 of latitude and height (\cite{rosen:87}) are linearly interpolated to the current time.
228 molod 1.1
229    
230 molod 1.5 \paragraph{Shortwave Radiation}
231 molod 1.1
232     The shortwave radiation package used in the package computes solar radiative
233     heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen,
234     clouds, and aerosols and due to the
235     scattering by clouds, aerosols, and gases.
236     The shortwave radiative processes are described by
237 molod 1.10 \cite{chou:90,chou:92}. This shortwave package
238 molod 1.1 uses the Delta-Eddington approximation to compute the
239     bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).
240     The transmittance and reflectance of diffuse radiation
241 molod 1.10 follow the procedures of Sagan and Pollock (JGR, 1967) and \cite{lhans:74}.
242 molod 1.1
243     Highly accurate heating rate calculations are obtained through the use
244     of an optimal grouping strategy of spectral bands. By grouping the UV and visible regions
245     as indicated in Table \ref{tab:fizhi:solar2}, the Rayleigh scattering and the ozone absorption of solar radiation
246     can be accurately computed in the ultraviolet region and the photosynthetically
247     active radiation (PAR) region.
248     The computation of solar flux in the infrared region is performed with a broadband
249     parameterization using the spectrum regions shown in Table \ref{tab:fizhi:solar1}.
250     The solar radiation algorithm used in the fizhi package can be applied not only for climate studies but
251     also for studies on the photolysis in the upper atmosphere and the photosynthesis in the biosphere.
252    
253     \begin{table}[htb]
254     \begin{center}
255     {\bf UV and Visible Spectral Regions} \\
256     \vspace{0.1in}
257     \begin{tabular}{|c|c|c|}
258     \hline
259     Region & Band & Wavelength (micron) \\ \hline
260     \hline
261     UV-C & 1. & .175 - .225 \\
262     & 2. & .225 - .245 \\
263     & & .260 - .280 \\
264     & 3. & .245 - .260 \\ \hline
265     UV-B & 4. & .280 - .295 \\
266     & 5. & .295 - .310 \\
267     & 6. & .310 - .320 \\ \hline
268     UV-A & 7. & .320 - .400 \\ \hline
269     PAR & 8. & .400 - .700 \\
270     \hline
271     \end{tabular}
272     \end{center}
273     \caption{UV and Visible Spectral Regions used in shortwave radiation package.}
274     \label{tab:fizhi:solar2}
275     \end{table}
276    
277     \begin{table}[htb]
278     \begin{center}
279     {\bf Infrared Spectral Regions} \\
280     \vspace{0.1in}
281     \begin{tabular}{|c|c|c|}
282     \hline
283     Band & Wavenumber(cm$^{-1}$) & Wavelength (micron) \\ \hline
284     \hline
285     1 & 1000-4400 & 2.27-10.0 \\
286     2 & 4400-8200 & 1.22-2.27 \\
287     3 & 8200-14300 & 0.70-1.22 \\
288     \hline
289     \end{tabular}
290     \end{center}
291     \caption{Infrared Spectral Regions used in shortwave radiation package.}
292     \label{tab:fizhi:solar1}
293     \end{table}
294    
295     Within the shortwave radiation package,
296     both ice and liquid cloud particles are allowed to co-exist in any of the model layers.
297     Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles.
298     Cloud parameters are defined as the cloud optical thickness and the effective cloud particle size.
299     In the fizhi package, the effective radius for water droplets is given as 10 microns,
300     while 65 microns is used for ice particles. The absorption due to aerosols is currently
301     set to zero.
302    
303     To simplify calculations in a cloudy atmosphere, clouds are
304     grouped into low ($p>700$ mb), middle (700 mb $\ge p > 400$ mb), and high ($p < 400$ mb) cloud regions.
305     Within each of the three regions, clouds are assumed maximally
306     overlapped, and the cloud cover of the group is the maximum
307     cloud cover of all the layers in the group. The optical thickness
308     of a given layer is then scaled for both the direct (as a function of the
309     solar zenith angle) and diffuse beam radiation
310     so that the grouped layer reflectance is the same as the original reflectance.
311 molod 1.13 The solar flux is computed for each of eight cloud realizations possible within this
312 molod 1.1 low/middle/high classification, and appropriately averaged to produce the net solar flux.
313    
314 molod 1.5 \paragraph{Longwave Radiation}
315 molod 1.1
316 molod 1.10 The longwave radiation package used in the fizhi package is thoroughly described by \cite{chsz:94}.
317 molod 1.1 As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
318     dioxide, and ozone. The spectral bands together with their absorbers and parameterization methods,
319     configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.
320    
321    
322     \begin{table}[htb]
323     \begin{center}
324     {\bf IR Spectral Bands} \\
325     \vspace{0.1in}
326     \begin{tabular}{|c|c|l|c| }
327     \hline
328     Band & Spectral Range (cm$^{-1}$) & Absorber & Method \\ \hline
329     \hline
330     1 & 0-340 & H$_2$O line & T \\ \hline
331     2 & 340-540 & H$_2$O line & T \\ \hline
332     3a & 540-620 & H$_2$O line & K \\
333     3b & 620-720 & H$_2$O continuum & S \\
334     3b & 720-800 & CO$_2$ & T \\ \hline
335     4 & 800-980 & H$_2$O line & K \\
336     & & H$_2$O continuum & S \\ \hline
337     & & H$_2$O line & K \\
338     5 & 980-1100 & H$_2$O continuum & S \\
339     & & O$_3$ & T \\ \hline
340     6 & 1100-1380 & H$_2$O line & K \\
341     & & H$_2$O continuum & S \\ \hline
342     7 & 1380-1900 & H$_2$O line & T \\ \hline
343     8 & 1900-3000 & H$_2$O line & K \\ \hline
344     \hline
345     \multicolumn{4}{|l|}{ \quad K: {\em k}-distribution method with linear pressure scaling } \\
346     \multicolumn{4}{|l|}{ \quad T: Table look-up with temperature and pressure scaling } \\
347     \multicolumn{4}{|l|}{ \quad S: One-parameter temperature scaling } \\
348     \hline
349     \end{tabular}
350     \end{center}
351     \vspace{0.1in}
352 molod 1.12 \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from \cite{chsz:94})}
353 molod 1.1 \label{tab:fizhi:longwave}
354     \end{table}
355    
356    
357     The longwave radiation package accurately computes cooling rates for the middle and
358     lower atmosphere from 0.01 mb to the surface. Errors are $<$ 0.4 C day$^{-1}$ in cooling
359     rates and $<$ 1\% in fluxes. From Chou and Suarez, it is estimated that the total effect of
360     neglecting all minor absorption bands and the effects of minor infrared absorbers such as
361     nitrous oxide (N$_2$O), methane (CH$_4$), and the chlorofluorocarbons (CFCs), is an underestimate
362     of $\approx$ 5 W/m$^2$ in the downward flux at the surface and an overestimate of $\approx$ 3 W/m$^2$
363     in the upward flux at the top of the atmosphere.
364    
365     Similar to the procedure used in the shortwave radiation package, clouds are grouped into
366     three regions catagorized as low/middle/high.
367     The net clear line-of-site probability $(P)$ between any two levels, $p_1$ and $p_2 \quad (p_2 > p_1)$,
368     assuming randomly overlapped cloud groups, is simply the product of the probabilities within each group:
369    
370     \[ P_{net} = P_{low} \times P_{mid} \times P_{hi} . \]
371    
372     Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within
373     a group is given by:
374    
375     \[ P_{group} = 1 - F_{max} , \]
376    
377     where $F_{max}$ is the maximum cloud fraction encountered between $p_1$ and $p_2$ within that group.
378     For groups and/or levels outside the range of $p_1$ and $p_2$, a clear line-of-site probability equal to 1 is
379     assigned.
380    
381    
382 molod 1.5 \paragraph{Cloud-Radiation Interaction}
383 molod 1.1 \label{sec:fizhi:radcloud}
384    
385     The cloud fractions and diagnosed cloud liquid water produced by moist processes
386     within the fizhi package are used in the radiation packages to produce cloud-radiative forcing.
387     The cloud optical thickness associated with large-scale cloudiness is made
388     proportional to the diagnosed large-scale liquid water, $\ell$, detrained due to super-saturation.
389     Two values are used corresponding to cloud ice particles and water droplets.
390     The range of optical thickness for these clouds is given as
391    
392     \[ 0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002 \quad\mbox{for}\quad 0 \le \ell \le 2 \quad\mbox{mg/kg} , \]
393     \[ 0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2 \quad\mbox{for}\quad 0 \le \ell \le 10 \quad\mbox{mg/kg} . \]
394    
395     The partitioning, $\alpha$, between ice particles and water droplets is achieved through a linear scaling
396     in temperature:
397    
398     \[ 0 \le \alpha \le 1 \quad\mbox{for}\quad 233.15 \le T \le 253.15 . \]
399    
400     The resulting optical depth associated with large-scale cloudiness is given as
401    
402     \[ \tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} . \]
403    
404     The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as
405    
406     \[ \tau_{RAS} = 0.16 \quad mb^{-1} . \]
407    
408     The total optical depth in a given model layer is computed as a weighted average between
409     the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the
410     layer:
411    
412     \[ \tau = \left( {F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} \over F_{RAS}+F_{LS} } \right) \Delta p, \]
413    
414     where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale
415     processes described in Section \ref{sec:fizhi:clouds}.
416     The optical thickness for the longwave radiative feedback is assumed to be 75 $\%$ of these values.
417    
418     The entire Moist Convective Processes Module is called with a frequency of 10 minutes.
419     The cloud fraction values are time-averaged over the period between Radiation calls (every 3
420     hours). Therefore, in a time-averaged sense, both convective and large-scale
421     cloudiness can exist in a given grid-box.
422    
423 molod 1.12 \paragraph{Turbulence}:
424 molod 1.9
425 molod 1.1 Turbulence is parameterized in the fizhi package to account for its contribution to the
426     vertical exchange of heat, moisture, and momentum.
427     The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
428     time scheme with an internal time step of 5 minutes.
429     The tendencies of atmospheric state variables due to turbulent diffusion are calculated using
430     the diffusion equations:
431    
432     \[
433     {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
434     = {\pp{}{z} }{(K_m \pp{u}{z})}
435     \]
436     \[
437     {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
438     = {\pp{}{z} }{(K_m \pp{v}{z})}
439     \]
440     \[
441     {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
442     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
443     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
444     \]
445     \[
446     {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
447     = {\pp{}{z} }{(K_h \pp{q}{z})}
448     \]
449    
450     Within the atmosphere, the time evolution
451     of second turbulent moments is explicitly modeled by representing the third moments in terms of
452     the first and second moments. This approach is known as a second-order closure modeling.
453     To simplify and streamline the computation of the second moments, the level 2.5 assumption
454 molod 1.10 of Mellor and Yamada (1974) and \cite{yam:77} is employed, in which only the turbulent
455 molod 1.1 kinetic energy (TKE),
456    
457     \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]
458    
459     is solved prognostically and the other second moments are solved diagnostically.
460     The prognostic equation for TKE allows the scheme to simulate
461     some of the transient and diffusive effects in the turbulence. The TKE budget equation
462     is solved numerically using an implicit backward computation of the terms linear in $q^2$
463     and is written:
464    
465     \[
466     {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ {5 \over 3} {{\lambda}_1} q { \pp {}{z}
467     ({\h}q^2)} })} =
468     {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
469     { \pp{V}{z} }} + {{g \over {\Theta_0}}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} }
470     - { q^3 \over {{\Lambda} _1} }
471     \]
472    
473     where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and
474     ${{\theta}^{\prime}}$ are the fluctuating parts of the velocity components and potential
475     temperature, $U$ and $V$ are the mean velocity components, ${\Theta_0}^{-1}$ is the
476     coefficient of thermal expansion, and ${{\lambda}_1}$ and ${{\Lambda} _1}$ are constant
477     multiples of the master length scale, $\ell$, which is designed to be a characteristic measure
478     of the vertical structure of the turbulent layers.
479    
480     The first term on the left-hand side represents the time rate of change of TKE, and
481     the second term is a representation of the triple correlation, or turbulent
482     transport term. The first three terms on the right-hand side represent the sources of
483     TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation
484     of TKE.
485    
486     In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the
487     wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and
488 molod 1.10 $K_m$, respectively. In the statisically realizable level 2.5 turbulence scheme of
489     \cite{helflab:88}, these diffusion coefficients are expressed as
490 molod 1.1
491     \[
492     K_h
493     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
494     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
495     \]
496    
497     and
498    
499     \[
500     K_m
501     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}
502     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
503     \]
504    
505     where the subscript $e$ refers to the value under conditions of local equillibrium
506     (obtained from the Level 2.0 Model), $\ell$ is the master length scale related to the
507     vertical structure of the atmosphere,
508     and $S_M$ and $S_H$ are functions of $G_H$ and $G_M$, the dimensionless buoyancy and
509     wind shear parameters, respectively.
510     Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
511     are functions of the Richardson number:
512    
513     \[
514     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
515     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } .
516     \]
517    
518     Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)
519     indicate dominantly unstable shear, and large positive values indicate dominantly stable
520     stratification.
521    
522     Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer,
523     which corresponds to the lowest GCM level (see \ref{tab:fizhi:sigma}),
524     are calculated using stability-dependant functions based on Monin-Obukhov theory:
525     \[
526     {K_m} (surface) = C_u \times u_* = C_D W_s
527     \]
528     and
529     \[
530     {K_h} (surface) = C_t \times u_* = C_H W_s
531     \]
532     where $u_*=C_uW_s$ is the surface friction velocity,
533     $C_D$ is termed the surface drag coefficient, $C_H$ the heat transfer coefficient,
534     and $W_s$ is the magnitude of the surface layer wind.
535    
536     $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
537     similarity functions:
538     \[
539     {C_u} = {u_* \over W_s} = { k \over \psi_{m} }
540     \]
541     where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional
542     wind shear given by
543     \[
544     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} .
545     \]
546     Here $\zeta$ is the non-dimensional stability parameter, and
547     $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of
548     the momentum gradient. The functional form of $\phi_m$ is specified differently for stable and unstable
549     layers.
550    
551     $C_t$ is the dimensionless exchange coefficient for heat and
552     moisture from the surface layer similarity functions:
553     \[
554     {C_t} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
555     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
556     { k \over { (\psi_{h} + \psi_{g}) } }
557     \]
558     where $\psi_h$ is the surface layer non-dimensional temperature gradient given by
559     \[
560     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} .
561     \]
562     Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
563     the temperature and moisture gradients, and is specified differently for stable and unstable
564 molod 1.10 layers according to \cite{helfschu:95}.
565 molod 1.1
566     $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,
567     which is the mosstly laminar region between the surface and the tops of the roughness
568     elements, in which temperature and moisture gradients can be quite large.
569 molod 1.10 Based on \cite{yagkad:74}:
570 molod 1.1 \[
571     \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
572     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
573     \]
574     where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the
575     surface roughness length, and the subscript {\em ref} refers to a reference value.
576     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
577    
578     The surface roughness length over oceans is is a function of the surface-stress velocity,
579     \[
580     {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
581     \]
582     where the constants are chosen to interpolate between the reciprocal relation of
583 molod 1.10 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
584 molod 1.1 for moderate to large winds. Roughness lengths over land are specified
585 molod 1.10 from the climatology of \cite{dorsell:89}.
586 molod 1.1
587     For an unstable surface layer, the stability functions, chosen to interpolate between the
588     condition of small values of $\beta$ and the convective limit, are the KEYPS function
589 molod 1.10 (\cite{pano:73}) for momentum, and its generalization for heat and moisture:
590 molod 1.1 \[
591     {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
592     {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .
593     \]
594     The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind
595     speed approaches zero.
596    
597     For a stable surface layer, the stability functions are the observationally
598 molod 1.10 based functions of \cite{clarke:70}, slightly modified for
599 molod 1.1 the momemtum flux:
600     \[
601     {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}
602     (1+ 5 {{\zeta}_1}) } } \hspace{1cm} ; \hspace{1cm}
603     {\phi_h} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {\zeta}
604     (1+ 5 {{\zeta}_1}) } } .
605     \]
606     The moisture flux also depends on a specified evapotranspiration
607     coefficient, set to unity over oceans and dependant on the climatological ground wetness over
608     land.
609    
610     Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically
611     using an implicit backward operator.
612    
613 molod 1.5 \paragraph{Atmospheric Boundary Layer}
614 molod 1.1
615     The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the
616     level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value.
617     The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers.
618    
619 molod 1.5 \paragraph{Surface Energy Budget}
620 molod 1.1
621     The ground temperature equation is solved as part of the turbulence package
622     using a backward implicit time differencing scheme:
623     \[
624     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
625     \]
626     where $R_{sw}$ is the net surface downward shortwave radiative flux and $R_{lw}$ is the
627     net surface upward longwave radiative flux.
628    
629     $H$ is the upward sensible heat flux, given by:
630     \[
631     {H} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY})
632     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
633     \]
634     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
635     heat of air at constant pressure, and $\theta$ represents the potential temperature
636     of the surface and of the lowest $\sigma$-level, respectively.
637    
638     The upward latent heat flux, $LE$, is given by
639     \[
640     {LE} = \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY})
641     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
642     \]
643     where $\beta$ is the fraction of the potential evapotranspiration actually evaporated,
644     L is the latent heat of evaporation, and $q_{surface}$ and $q_{NLAY}$ are the specific
645     humidity of the surface and of the lowest $\sigma$-level, respectively.
646    
647     The heat conduction through sea ice, $Q_{ice}$, is given by
648     \[
649     {Q_{ice}} = {C_{ti} \over {H_i}} (T_i-T_g)
650     \]
651     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
652     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the
653     surface temperature of the ice.
654    
655     $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
656 molod 1.10 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
657 molod 1.1 \[
658     C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
659     {86400 \over 2 \pi} } \, \, .
660     \]
661     Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ ${ly\over{ sec}}
662     {cm \over {^oK}}$,
663     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
664     by $2 \pi$ $radians/
665     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
666     is a function of the ground wetness, $W$.
667    
668 molod 1.9 Land Surface Processes:
669 molod 1.1
670 molod 1.5 \paragraph{Surface Type}
671 molod 1.10 The fizhi package surface Types are designated using the Koster-Suarez (\cite{ks:91,ks:92})
672     Land Surface Model (LSM) mosaic philosophy which allows multiple ``tiles'', or multiple surface
673     types, in any one grid cell. The Koster-Suarez LSM surface type classifications
674 molod 1.1 are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid
675     cell occupied by any surface type were derived from the surface classification of
676 molod 1.10 \cite{deftow:94}, and information about the location of permanent
677     ice was obtained from the classifications of \cite{dorsell:89}.
678 molod 1.13 The surface type map for a $1^\circ$ grid is shown in Figure \ref{fig:fizhi:surftype}.
679 molod 1.1 The determination of the land or sea category of surface type was made from NCAR's
680     10 minute by 10 minute Navy topography
681     dataset, which includes information about the percentage of water-cover at any point.
682 molod 1.13 The data were averaged to the model's grid resolutions,
683 molod 1.1 and any grid-box whose averaged water percentage was $\geq 60 \%$ was
684 molod 1.13 defined as a water point. The Land-Water designation was further modified
685 molod 1.1 subjectively to ensure sufficient representation from small but isolated land and water regions.
686    
687     \begin{table}
688     \begin{center}
689     {\bf Surface Type Designation} \\
690     \vspace{0.1in}
691     \begin{tabular}{ |c|l| }
692     \hline
693     Type & Vegetation Designation \\ \hline
694     \hline
695     1 & Broadleaf Evergreen Trees \\ \hline
696     2 & Broadleaf Deciduous Trees \\ \hline
697     3 & Needleleaf Trees \\ \hline
698     4 & Ground Cover \\ \hline
699     5 & Broadleaf Shrubs \\ \hline
700     6 & Dwarf Trees (Tundra) \\ \hline
701     7 & Bare Soil \\ \hline
702     8 & Desert (Bright) \\ \hline
703     9 & Glacier \\ \hline
704     10 & Desert (Dark) \\ \hline
705     100 & Ocean \\ \hline
706     \end{tabular}
707     \end{center}
708     \caption{Surface type designations used to compute surface roughness (over land)
709     and surface albedo.}
710     \label{tab:fizhi:surftype}
711     \end{table}
712    
713    
714     \begin{figure*}[htbp]
715 molod 1.13 \begin{center}
716     \rotatebox{270}{\resizebox{90mm}{!}{\includegraphics{part6/surftypes.eps}}}
717     \rotatebox{270}{\resizebox{100mm}{!}{\includegraphics{part6/surftypes.descrip.eps}}}
718     \end{center}
719     \vspace{0.2in}
720     \caption {Surface Type Combinations at $1^\circ$ resolution.}
721 molod 1.1 \label{fig:fizhi:surftype}
722     \end{figure*}
723    
724 molod 1.13 % \rotatebox{270}{\centerline{ \epsfysize=4in \epsfbox{part6/surftypes.eps}}}
725     % \rotatebox{270}{\centerline{ \epsfysize=4in \epsfbox{part6/surftypes.descrip.eps}}}
726     %\begin{figure*}[htbp]
727     % \centerline{ \epsfysize=4in \epsfbox{part6/surftypes.descrip.ps}}
728     % \vspace{0.3in}
729     % \caption {Surface Type Descriptions.}
730     % \label{fig:fizhi:surftype.desc}
731     %\end{figure*}
732 molod 1.1
733    
734 molod 1.5 \paragraph{Surface Roughness}
735 molod 1.1 The surface roughness length over oceans is computed iteratively with the wind
736 molod 1.10 stress by the surface layer parameterization (\cite{helfschu:95}).
737     It employs an interpolation between the functions of \cite{larpond:81}
738     for high winds and of \cite{kondo:75} for weak winds.
739 molod 1.1
740    
741 molod 1.5 \paragraph{Albedo}
742 molod 1.10 The surface albedo computation, described in \cite{ks:91},
743 molod 1.1 employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
744     Model which distinguishes between the direct and diffuse albedos in the visible
745     and in the near infra-red spectral ranges. The albedos are functions of the observed
746     leaf area index (a description of the relative orientation of the leaves to the
747     sun), the greenness fraction, the vegetation type, and the solar zenith angle.
748     Modifications are made to account for the presence of snow, and its depth relative
749     to the height of the vegetation elements.
750    
751 molod 1.12 \paragraph{Gravity Wave Drag}:
752 molod 1.9
753 molod 1.12 The fizhi package employs the gravity wave drag scheme of \cite{zhouetal:95}).
754 molod 1.1 This scheme is a modified version of Vernekar et al. (1992),
755     which was based on Alpert et al. (1988) and Helfand et al. (1987).
756     In this version, the gravity wave stress at the surface is
757     based on that derived by Pierrehumbert (1986) and is given by:
758    
759     \bq
760     |\vec{\tau}_{sfc}| = {\rho U^3\over{N \ell^*}} \left(F_r^2 \over{1+F_r^2}\right) \, \, ,
761     \eq
762    
763     where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the
764     surface wind speed, $h$ is the standard deviation of the sub-grid scale orography,
765     and $\ell^*$ is the wavelength of the monochromatic gravity wave in the direction of the low-level wind.
766     A modification introduced by Zhou et al. allows for the momentum flux to
767     escape through the top of the model, although this effect is small for the current 70-level model.
768     The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.
769    
770 molod 1.10 The effects of using this scheme within a GCM are shown in \cite{taksz:96}.
771 molod 1.1 Experiments using the gravity wave drag parameterization yielded significant and
772     beneficial impacts on both the time-mean flow and the transient statistics of the
773     a GCM climatology, and have eliminated most of the worst dynamically driven biases
774     in the a GCM simulation.
775     An examination of the angular momentum budget during climate runs indicates that the
776     resulting gravity wave torque is similar to the data-driven torque produced by a data
777     assimilation which was performed without gravity
778     wave drag. It was shown that the inclusion of gravity wave drag results in
779     large changes in both the mean flow and in eddy fluxes.
780     The result is a more
781     accurate simulation of surface stress (through a reduction in the surface wind strength),
782     of mountain torque (through a redistribution of mean sea-level pressure), and of momentum
783     convergence (through a reduction in the flux of westerly momentum by transient flow eddies).
784    
785    
786 molod 1.9 Boundary Conditions and other Input Data:
787 molod 1.1
788     Required fields which are not explicitly predicted or diagnosed during model execution must
789     either be prescribed internally or obtained from external data sets. In the fizhi package these
790     fields include: sea surface temperature, sea ice estent, surface geopotential variance,
791     vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,
792     and stratospheric moisture.
793    
794 molod 1.13 Boundary condition data sets are available at the model's
795 molod 1.1 resolutions for either climatological or yearly varying conditions.
796     Any frequency of boundary condition data can be used in the fizhi package;
797     however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@.
798     The time mean values are interpolated during each model timestep to the
799 molod 1.13 current time.
800 molod 1.1
801     \begin{table}[htb]
802     \begin{center}
803     {\bf Fizhi Input Datasets} \\
804     \vspace{0.1in}
805     \begin{tabular}{|l|c|r|} \hline
806     \multicolumn{1}{|c}{Variable} & \multicolumn{1}{|c}{Frequency} & \multicolumn{1}{|c|}{Years} \\ \hline\hline
807     Sea Ice Extent & monthly & 1979-current, climatology \\ \hline
808     Sea Ice Extent & weekly & 1982-current, climatology \\ \hline
809     Sea Surface Temperature & monthly & 1979-current, climatology \\ \hline
810     Sea Surface Temperature & weekly & 1982-current, climatology \\ \hline
811     Zonally Averaged Upper-Level Moisture & monthly & climatology \\ \hline
812     Zonally Averaged Ozone Concentration & monthly & climatology \\ \hline
813     \end{tabular}
814     \end{center}
815     \caption{Boundary conditions and other input data used in the fizhi package. Also noted are the
816     current years and frequencies available.}
817     \label{tab:fizhi:bcdata}
818     \end{table}
819    
820    
821 molod 1.5 \paragraph{Topography and Topography Variance}
822 molod 1.1
823     Surface geopotential heights are provided from an averaging of the Navy 10 minute
824     by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
825     model's grid resolution. The original topography is first rotated to the proper grid-orientation
826 molod 1.10 which is being run, and then averages the data to the model resolution.
827 molod 1.1
828 molod 1.10 The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute
829     data to the model's resolution and re-interpolating back to the 10 minute by 10 minute resolution.
830 molod 1.1 The sub-grid scale variance is constructed based on this smoothed dataset.
831    
832    
833 molod 1.5 \paragraph{Upper Level Moisture}
834 molod 1.1 The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas
835     Experiment (SAGE) as input into the model's radiation packages. The SAGE data is archived
836 edhill 1.15 as monthly zonal means at $5^\circ$ latitudinal resolution. The data is interpolated to the
837 molod 1.1 model's grid location and current time, and blended with the GCM's moisture data. Below 300 mb,
838     the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb,
839     a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
840    
841 molod 1.8
842 molod 1.9 \subsubsection{Fizhi Diagnostics}
843 molod 1.8
844 molod 1.9 Fizhi Diagnostic Menu:
845 molod 1.14 \label{sec:pkg:fizhi:diagnostics}
846 molod 1.8
847     \begin{tabular}{llll}
848     \hline\hline
849     NAME & UNITS & LEVELS & DESCRIPTION \\
850     \hline
851    
852     &\\
853     UFLUX & $Newton/m^2$ & 1
854     &\begin{minipage}[t]{3in}
855     {Surface U-Wind Stress on the atmosphere}
856     \end{minipage}\\
857     VFLUX & $Newton/m^2$ & 1
858     &\begin{minipage}[t]{3in}
859     {Surface V-Wind Stress on the atmosphere}
860     \end{minipage}\\
861     HFLUX & $Watts/m^2$ & 1
862     &\begin{minipage}[t]{3in}
863     {Surface Flux of Sensible Heat}
864     \end{minipage}\\
865     EFLUX & $Watts/m^2$ & 1
866     &\begin{minipage}[t]{3in}
867     {Surface Flux of Latent Heat}
868     \end{minipage}\\
869     QICE & $Watts/m^2$ & 1
870     &\begin{minipage}[t]{3in}
871     {Heat Conduction through Sea-Ice}
872     \end{minipage}\\
873     RADLWG & $Watts/m^2$ & 1
874     &\begin{minipage}[t]{3in}
875     {Net upward LW flux at the ground}
876     \end{minipage}\\
877     RADSWG & $Watts/m^2$ & 1
878     &\begin{minipage}[t]{3in}
879     {Net downward SW flux at the ground}
880     \end{minipage}\\
881     RI & $dimensionless$ & Nrphys
882     &\begin{minipage}[t]{3in}
883     {Richardson Number}
884     \end{minipage}\\
885     CT & $dimensionless$ & 1
886     &\begin{minipage}[t]{3in}
887     {Surface Drag coefficient for T and Q}
888     \end{minipage}\\
889     CU & $dimensionless$ & 1
890     &\begin{minipage}[t]{3in}
891     {Surface Drag coefficient for U and V}
892     \end{minipage}\\
893     ET & $m^2/sec$ & Nrphys
894     &\begin{minipage}[t]{3in}
895     {Diffusivity coefficient for T and Q}
896     \end{minipage}\\
897     EU & $m^2/sec$ & Nrphys
898     &\begin{minipage}[t]{3in}
899     {Diffusivity coefficient for U and V}
900     \end{minipage}\\
901     TURBU & $m/sec/day$ & Nrphys
902     &\begin{minipage}[t]{3in}
903     {U-Momentum Changes due to Turbulence}
904     \end{minipage}\\
905     TURBV & $m/sec/day$ & Nrphys
906     &\begin{minipage}[t]{3in}
907     {V-Momentum Changes due to Turbulence}
908     \end{minipage}\\
909     TURBT & $deg/day$ & Nrphys
910     &\begin{minipage}[t]{3in}
911     {Temperature Changes due to Turbulence}
912     \end{minipage}\\
913     TURBQ & $g/kg/day$ & Nrphys
914     &\begin{minipage}[t]{3in}
915     {Specific Humidity Changes due to Turbulence}
916     \end{minipage}\\
917     MOISTT & $deg/day$ & Nrphys
918     &\begin{minipage}[t]{3in}
919     {Temperature Changes due to Moist Processes}
920     \end{minipage}\\
921     MOISTQ & $g/kg/day$ & Nrphys
922     &\begin{minipage}[t]{3in}
923     {Specific Humidity Changes due to Moist Processes}
924     \end{minipage}\\
925     RADLW & $deg/day$ & Nrphys
926     &\begin{minipage}[t]{3in}
927     {Net Longwave heating rate for each level}
928     \end{minipage}\\
929     RADSW & $deg/day$ & Nrphys
930     &\begin{minipage}[t]{3in}
931     {Net Shortwave heating rate for each level}
932     \end{minipage}\\
933     PREACC & $mm/day$ & 1
934     &\begin{minipage}[t]{3in}
935     {Total Precipitation}
936     \end{minipage}\\
937     PRECON & $mm/day$ & 1
938     &\begin{minipage}[t]{3in}
939     {Convective Precipitation}
940     \end{minipage}\\
941     TUFLUX & $Newton/m^2$ & Nrphys
942     &\begin{minipage}[t]{3in}
943     {Turbulent Flux of U-Momentum}
944     \end{minipage}\\
945     TVFLUX & $Newton/m^2$ & Nrphys
946     &\begin{minipage}[t]{3in}
947     {Turbulent Flux of V-Momentum}
948     \end{minipage}\\
949     TTFLUX & $Watts/m^2$ & Nrphys
950     &\begin{minipage}[t]{3in}
951     {Turbulent Flux of Sensible Heat}
952     \end{minipage}\\
953     \end{tabular}
954    
955     \newpage
956     \vspace*{\fill}
957     \begin{tabular}{llll}
958     \hline\hline
959     NAME & UNITS & LEVELS & DESCRIPTION \\
960     \hline
961    
962     &\\
963     TQFLUX & $Watts/m^2$ & Nrphys
964     &\begin{minipage}[t]{3in}
965     {Turbulent Flux of Latent Heat}
966     \end{minipage}\\
967     CN & $dimensionless$ & 1
968     &\begin{minipage}[t]{3in}
969     {Neutral Drag Coefficient}
970     \end{minipage}\\
971     WINDS & $m/sec$ & 1
972     &\begin{minipage}[t]{3in}
973     {Surface Wind Speed}
974     \end{minipage}\\
975     DTSRF & $deg$ & 1
976     &\begin{minipage}[t]{3in}
977     {Air/Surface virtual temperature difference}
978     \end{minipage}\\
979     TG & $deg$ & 1
980     &\begin{minipage}[t]{3in}
981     {Ground temperature}
982     \end{minipage}\\
983     TS & $deg$ & 1
984     &\begin{minipage}[t]{3in}
985     {Surface air temperature (Adiabatic from lowest model layer)}
986     \end{minipage}\\
987     DTG & $deg$ & 1
988     &\begin{minipage}[t]{3in}
989     {Ground temperature adjustment}
990     \end{minipage}\\
991    
992     QG & $g/kg$ & 1
993     &\begin{minipage}[t]{3in}
994     {Ground specific humidity}
995     \end{minipage}\\
996     QS & $g/kg$ & 1
997     &\begin{minipage}[t]{3in}
998     {Saturation surface specific humidity}
999     \end{minipage}\\
1000     TGRLW & $deg$ & 1
1001     &\begin{minipage}[t]{3in}
1002     {Instantaneous ground temperature used as input to the
1003     Longwave radiation subroutine}
1004     \end{minipage}\\
1005     ST4 & $Watts/m^2$ & 1
1006     &\begin{minipage}[t]{3in}
1007     {Upward Longwave flux at the ground ($\sigma T^4$)}
1008     \end{minipage}\\
1009     OLR & $Watts/m^2$ & 1
1010     &\begin{minipage}[t]{3in}
1011     {Net upward Longwave flux at the top of the model}
1012     \end{minipage}\\
1013     OLRCLR & $Watts/m^2$ & 1
1014     &\begin{minipage}[t]{3in}
1015     {Net upward clearsky Longwave flux at the top of the model}
1016     \end{minipage}\\
1017     LWGCLR & $Watts/m^2$ & 1
1018     &\begin{minipage}[t]{3in}
1019     {Net upward clearsky Longwave flux at the ground}
1020     \end{minipage}\\
1021     LWCLR & $deg/day$ & Nrphys
1022     &\begin{minipage}[t]{3in}
1023     {Net clearsky Longwave heating rate for each level}
1024     \end{minipage}\\
1025     TLW & $deg$ & Nrphys
1026     &\begin{minipage}[t]{3in}
1027     {Instantaneous temperature used as input to the Longwave radiation
1028     subroutine}
1029     \end{minipage}\\
1030     SHLW & $g/g$ & Nrphys
1031     &\begin{minipage}[t]{3in}
1032     {Instantaneous specific humidity used as input to the Longwave radiation
1033     subroutine}
1034     \end{minipage}\\
1035     OZLW & $g/g$ & Nrphys
1036     &\begin{minipage}[t]{3in}
1037     {Instantaneous ozone used as input to the Longwave radiation
1038     subroutine}
1039     \end{minipage}\\
1040     CLMOLW & $0-1$ & Nrphys
1041     &\begin{minipage}[t]{3in}
1042     {Maximum overlap cloud fraction used in the Longwave radiation
1043     subroutine}
1044     \end{minipage}\\
1045     CLDTOT & $0-1$ & Nrphys
1046     &\begin{minipage}[t]{3in}
1047     {Total cloud fraction used in the Longwave and Shortwave radiation
1048     subroutines}
1049     \end{minipage}\\
1050     LWGDOWN & $Watts/m^2$ & 1
1051     &\begin{minipage}[t]{3in}
1052     {Downwelling Longwave radiation at the ground}
1053     \end{minipage}\\
1054     GWDT & $deg/day$ & Nrphys
1055     &\begin{minipage}[t]{3in}
1056     {Temperature tendency due to Gravity Wave Drag}
1057     \end{minipage}\\
1058     RADSWT & $Watts/m^2$ & 1
1059     &\begin{minipage}[t]{3in}
1060     {Incident Shortwave radiation at the top of the atmosphere}
1061     \end{minipage}\\
1062     TAUCLD & $per 100 mb$ & Nrphys
1063     &\begin{minipage}[t]{3in}
1064     {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1065     \end{minipage}\\
1066     TAUCLDC & $Number$ & Nrphys
1067     &\begin{minipage}[t]{3in}
1068     {Cloud Optical Depth Counter}
1069     \end{minipage}\\
1070     \end{tabular}
1071     \vfill
1072    
1073     \newpage
1074     \vspace*{\fill}
1075     \begin{tabular}{llll}
1076     \hline\hline
1077     NAME & UNITS & LEVELS & DESCRIPTION \\
1078     \hline
1079    
1080     &\\
1081     CLDLOW & $0-1$ & Nrphys
1082     &\begin{minipage}[t]{3in}
1083     {Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)}
1084     \end{minipage}\\
1085     EVAP & $mm/day$ & 1
1086     &\begin{minipage}[t]{3in}
1087     {Surface evaporation}
1088     \end{minipage}\\
1089     DPDT & $hPa/day$ & 1
1090     &\begin{minipage}[t]{3in}
1091     {Surface Pressure tendency}
1092     \end{minipage}\\
1093     UAVE & $m/sec$ & Nrphys
1094     &\begin{minipage}[t]{3in}
1095     {Average U-Wind}
1096     \end{minipage}\\
1097     VAVE & $m/sec$ & Nrphys
1098     &\begin{minipage}[t]{3in}
1099     {Average V-Wind}
1100     \end{minipage}\\
1101     TAVE & $deg$ & Nrphys
1102     &\begin{minipage}[t]{3in}
1103     {Average Temperature}
1104     \end{minipage}\\
1105     QAVE & $g/kg$ & Nrphys
1106     &\begin{minipage}[t]{3in}
1107     {Average Specific Humidity}
1108     \end{minipage}\\
1109     OMEGA & $hPa/day$ & Nrphys
1110     &\begin{minipage}[t]{3in}
1111     {Vertical Velocity}
1112     \end{minipage}\\
1113     DUDT & $m/sec/day$ & Nrphys
1114     &\begin{minipage}[t]{3in}
1115     {Total U-Wind tendency}
1116     \end{minipage}\\
1117     DVDT & $m/sec/day$ & Nrphys
1118     &\begin{minipage}[t]{3in}
1119     {Total V-Wind tendency}
1120     \end{minipage}\\
1121     DTDT & $deg/day$ & Nrphys
1122     &\begin{minipage}[t]{3in}
1123     {Total Temperature tendency}
1124     \end{minipage}\\
1125     DQDT & $g/kg/day$ & Nrphys
1126     &\begin{minipage}[t]{3in}
1127     {Total Specific Humidity tendency}
1128     \end{minipage}\\
1129     VORT & $10^{-4}/sec$ & Nrphys
1130     &\begin{minipage}[t]{3in}
1131     {Relative Vorticity}
1132     \end{minipage}\\
1133     DTLS & $deg/day$ & Nrphys
1134     &\begin{minipage}[t]{3in}
1135     {Temperature tendency due to Stratiform Cloud Formation}
1136     \end{minipage}\\
1137     DQLS & $g/kg/day$ & Nrphys
1138     &\begin{minipage}[t]{3in}
1139     {Specific Humidity tendency due to Stratiform Cloud Formation}
1140     \end{minipage}\\
1141     USTAR & $m/sec$ & 1
1142     &\begin{minipage}[t]{3in}
1143     {Surface USTAR wind}
1144     \end{minipage}\\
1145     Z0 & $m$ & 1
1146     &\begin{minipage}[t]{3in}
1147     {Surface roughness}
1148     \end{minipage}\\
1149     FRQTRB & $0-1$ & Nrphys-1
1150     &\begin{minipage}[t]{3in}
1151     {Frequency of Turbulence}
1152     \end{minipage}\\
1153     PBL & $mb$ & 1
1154     &\begin{minipage}[t]{3in}
1155     {Planetary Boundary Layer depth}
1156     \end{minipage}\\
1157     SWCLR & $deg/day$ & Nrphys
1158     &\begin{minipage}[t]{3in}
1159     {Net clearsky Shortwave heating rate for each level}
1160     \end{minipage}\\
1161     OSR & $Watts/m^2$ & 1
1162     &\begin{minipage}[t]{3in}
1163     {Net downward Shortwave flux at the top of the model}
1164     \end{minipage}\\
1165     OSRCLR & $Watts/m^2$ & 1
1166     &\begin{minipage}[t]{3in}
1167     {Net downward clearsky Shortwave flux at the top of the model}
1168     \end{minipage}\\
1169     CLDMAS & $kg / m^2$ & Nrphys
1170     &\begin{minipage}[t]{3in}
1171     {Convective cloud mass flux}
1172     \end{minipage}\\
1173     UAVE & $m/sec$ & Nrphys
1174     &\begin{minipage}[t]{3in}
1175     {Time-averaged $u-Wind$}
1176     \end{minipage}\\
1177     \end{tabular}
1178     \vfill
1179    
1180     \newpage
1181     \vspace*{\fill}
1182     \begin{tabular}{llll}
1183     \hline\hline
1184     NAME & UNITS & LEVELS & DESCRIPTION \\
1185     \hline
1186    
1187     &\\
1188     VAVE & $m/sec$ & Nrphys
1189     &\begin{minipage}[t]{3in}
1190     {Time-averaged $v-Wind$}
1191     \end{minipage}\\
1192     TAVE & $deg$ & Nrphys
1193     &\begin{minipage}[t]{3in}
1194     {Time-averaged $Temperature$}
1195     \end{minipage}\\
1196     QAVE & $g/g$ & Nrphys
1197     &\begin{minipage}[t]{3in}
1198     {Time-averaged $Specific \, \, Humidity$}
1199     \end{minipage}\\
1200     RFT & $deg/day$ & Nrphys
1201     &\begin{minipage}[t]{3in}
1202     {Temperature tendency due Rayleigh Friction}
1203     \end{minipage}\\
1204     PS & $mb$ & 1
1205     &\begin{minipage}[t]{3in}
1206     {Surface Pressure}
1207     \end{minipage}\\
1208     QQAVE & $(m/sec)^2$ & Nrphys
1209     &\begin{minipage}[t]{3in}
1210     {Time-averaged $Turbulent Kinetic Energy$}
1211     \end{minipage}\\
1212     SWGCLR & $Watts/m^2$ & 1
1213     &\begin{minipage}[t]{3in}
1214     {Net downward clearsky Shortwave flux at the ground}
1215     \end{minipage}\\
1216     PAVE & $mb$ & 1
1217     &\begin{minipage}[t]{3in}
1218     {Time-averaged Surface Pressure}
1219     \end{minipage}\\
1220     DIABU & $m/sec/day$ & Nrphys
1221     &\begin{minipage}[t]{3in}
1222     {Total Diabatic forcing on $u-Wind$}
1223     \end{minipage}\\
1224     DIABV & $m/sec/day$ & Nrphys
1225     &\begin{minipage}[t]{3in}
1226     {Total Diabatic forcing on $v-Wind$}
1227     \end{minipage}\\
1228     DIABT & $deg/day$ & Nrphys
1229     &\begin{minipage}[t]{3in}
1230     {Total Diabatic forcing on $Temperature$}
1231     \end{minipage}\\
1232     DIABQ & $g/kg/day$ & Nrphys
1233     &\begin{minipage}[t]{3in}
1234     {Total Diabatic forcing on $Specific \, \, Humidity$}
1235     \end{minipage}\\
1236     RFU & $m/sec/day$ & Nrphys
1237     &\begin{minipage}[t]{3in}
1238     {U-Wind tendency due to Rayleigh Friction}
1239     \end{minipage}\\
1240     RFV & $m/sec/day$ & Nrphys
1241     &\begin{minipage}[t]{3in}
1242     {V-Wind tendency due to Rayleigh Friction}
1243     \end{minipage}\\
1244     GWDU & $m/sec/day$ & Nrphys
1245     &\begin{minipage}[t]{3in}
1246     {U-Wind tendency due to Gravity Wave Drag}
1247     \end{minipage}\\
1248     GWDU & $m/sec/day$ & Nrphys
1249     &\begin{minipage}[t]{3in}
1250     {V-Wind tendency due to Gravity Wave Drag}
1251     \end{minipage}\\
1252     GWDUS & $N/m^2$ & 1
1253     &\begin{minipage}[t]{3in}
1254     {U-Wind Gravity Wave Drag Stress at Surface}
1255     \end{minipage}\\
1256     GWDVS & $N/m^2$ & 1
1257     &\begin{minipage}[t]{3in}
1258     {V-Wind Gravity Wave Drag Stress at Surface}
1259     \end{minipage}\\
1260     GWDUT & $N/m^2$ & 1
1261     &\begin{minipage}[t]{3in}
1262     {U-Wind Gravity Wave Drag Stress at Top}
1263     \end{minipage}\\
1264     GWDVT & $N/m^2$ & 1
1265     &\begin{minipage}[t]{3in}
1266     {V-Wind Gravity Wave Drag Stress at Top}
1267     \end{minipage}\\
1268     LZRAD & $mg/kg$ & Nrphys
1269     &\begin{minipage}[t]{3in}
1270     {Estimated Cloud Liquid Water used in Radiation}
1271     \end{minipage}\\
1272     \end{tabular}
1273     \vfill
1274    
1275     \newpage
1276     \vspace*{\fill}
1277     \begin{tabular}{llll}
1278     \hline\hline
1279     NAME & UNITS & LEVELS & DESCRIPTION \\
1280     \hline
1281    
1282     &\\
1283     SLP & $mb$ & 1
1284     &\begin{minipage}[t]{3in}
1285     {Time-averaged Sea-level Pressure}
1286     \end{minipage}\\
1287     CLDFRC & $0-1$ & 1
1288     &\begin{minipage}[t]{3in}
1289     {Total Cloud Fraction}
1290     \end{minipage}\\
1291     TPW & $gm/cm^2$ & 1
1292     &\begin{minipage}[t]{3in}
1293     {Precipitable water}
1294     \end{minipage}\\
1295     U2M & $m/sec$ & 1
1296     &\begin{minipage}[t]{3in}
1297     {U-Wind at 2 meters}
1298     \end{minipage}\\
1299     V2M & $m/sec$ & 1
1300     &\begin{minipage}[t]{3in}
1301     {V-Wind at 2 meters}
1302     \end{minipage}\\
1303     T2M & $deg$ & 1
1304     &\begin{minipage}[t]{3in}
1305     {Temperature at 2 meters}
1306     \end{minipage}\\
1307     Q2M & $g/kg$ & 1
1308     &\begin{minipage}[t]{3in}
1309     {Specific Humidity at 2 meters}
1310     \end{minipage}\\
1311     U10M & $m/sec$ & 1
1312     &\begin{minipage}[t]{3in}
1313     {U-Wind at 10 meters}
1314     \end{minipage}\\
1315     V10M & $m/sec$ & 1
1316     &\begin{minipage}[t]{3in}
1317     {V-Wind at 10 meters}
1318     \end{minipage}\\
1319     T10M & $deg$ & 1
1320     &\begin{minipage}[t]{3in}
1321     {Temperature at 10 meters}
1322     \end{minipage}\\
1323     Q10M & $g/kg$ & 1
1324     &\begin{minipage}[t]{3in}
1325     {Specific Humidity at 10 meters}
1326     \end{minipage}\\
1327     DTRAIN & $kg/m^2$ & Nrphys
1328     &\begin{minipage}[t]{3in}
1329     {Detrainment Cloud Mass Flux}
1330     \end{minipage}\\
1331     QFILL & $g/kg/day$ & Nrphys
1332     &\begin{minipage}[t]{3in}
1333     {Filling of negative specific humidity}
1334     \end{minipage}\\
1335     \end{tabular}
1336     \vspace{1.5in}
1337     \vfill
1338    
1339     \newpage
1340     \vspace*{\fill}
1341     \begin{tabular}{llll}
1342     \hline\hline
1343     NAME & UNITS & LEVELS & DESCRIPTION \\
1344     \hline
1345    
1346     &\\
1347     DTCONV & $deg/sec$ & Nr
1348     &\begin{minipage}[t]{3in}
1349     {Temp Change due to Convection}
1350     \end{minipage}\\
1351     DQCONV & $g/kg/sec$ & Nr
1352     &\begin{minipage}[t]{3in}
1353     {Specific Humidity Change due to Convection}
1354     \end{minipage}\\
1355     RELHUM & $percent$ & Nr
1356     &\begin{minipage}[t]{3in}
1357     {Relative Humidity}
1358     \end{minipage}\\
1359     PRECLS & $g/m^2/sec$ & 1
1360     &\begin{minipage}[t]{3in}
1361     {Large Scale Precipitation}
1362     \end{minipage}\\
1363     ENPREC & $J/g$ & 1
1364     &\begin{minipage}[t]{3in}
1365     {Energy of Precipitation (snow, rain Temp)}
1366     \end{minipage}\\
1367     \end{tabular}
1368     \vspace{1.5in}
1369     \vfill
1370    
1371     \newpage
1372    
1373 molod 1.9 Fizhi Diagnostic Description:
1374 molod 1.8
1375     In this section we list and describe the diagnostic quantities available within the
1376     GCM. The diagnostics are listed in the order that they appear in the
1377 molod 1.14 Diagnostic Menu, Section \ref{sec:pkg:fizhi:diagnostics}.
1378 molod 1.8 In all cases, each diagnostic as currently archived on the output datasets
1379     is time-averaged over its diagnostic output frequency:
1380    
1381     \[
1382     {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1383     \]
1384     where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1385     output frequency of the diagnostic, and $\Delta t$ is
1386     the timestep over which the diagnostic is updated.
1387    
1388     { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1389    
1390     The zonal wind stress is the turbulent flux of zonal momentum from
1391     the surface.
1392     \[
1393     {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1394     \]
1395     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1396     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1397     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1398     the zonal wind in the lowest model layer.
1399     \\
1400    
1401    
1402     { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1403    
1404     The meridional wind stress is the turbulent flux of meridional momentum from
1405     the surface.
1406     \[
1407     {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1408     \]
1409     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1410     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1411     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1412     the meridional wind in the lowest model layer.
1413     \\
1414    
1415     { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1416    
1417     The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1418     gradient of virtual potential temperature and the eddy exchange coefficient:
1419     \[
1420     {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1421     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1422     \]
1423     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1424     heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1425     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1426     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1427     for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1428     at the surface and at the bottom model level.
1429     \\
1430    
1431    
1432     { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1433    
1434     The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1435     gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1436     \[
1437     {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1438     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1439     \]
1440     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1441     the potential evapotranspiration actually evaporated, L is the latent
1442     heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1443     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1444     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1445     for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1446     humidity at the surface and at the bottom model level, respectively.
1447     \\
1448    
1449     { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1450    
1451     Over sea ice there is an additional source of energy at the surface due to the heat
1452     conduction from the relatively warm ocean through the sea ice. The heat conduction
1453     through sea ice represents an additional energy source term for the ground temperature equation.
1454    
1455     \[
1456     {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1457     \]
1458    
1459     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1460     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1461     $T_g$ is the temperature of the sea ice.
1462    
1463     NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1464     \\
1465    
1466    
1467     { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1468    
1469     \begin{eqnarray*}
1470     {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
1471     & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1472     \end{eqnarray*}
1473     \\
1474     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1475     $F_{LW}^\uparrow$ is
1476     the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1477     \\
1478    
1479     { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1480    
1481     \begin{eqnarray*}
1482     {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
1483     & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1484     \end{eqnarray*}
1485     \\
1486     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1487     $F_{SW}^\downarrow$ is
1488     the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1489     \\
1490    
1491    
1492     \noindent
1493     { \underline {RI} Richardson Number} ($dimensionless$)
1494    
1495     \noindent
1496     The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1497     \[
1498     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1499     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1500     \]
1501     \\
1502     where we used the hydrostatic equation:
1503     \[
1504     {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1505     \]
1506     Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1507     indicate dominantly unstable shear, and large positive values indicate dominantly stable
1508     stratification.
1509     \\
1510    
1511     \noindent
1512     { \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1513    
1514     \noindent
1515     The surface exchange coefficient is obtained from the similarity functions for the stability
1516     dependant flux profile relationships:
1517     \[
1518     {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1519     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1520     { k \over { (\psi_{h} + \psi_{g}) } }
1521     \]
1522     where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1523     viscous sublayer non-dimensional temperature or moisture change:
1524     \[
1525     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1526     \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1527     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1528     \]
1529     and:
1530     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1531    
1532     \noindent
1533     $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1534     the temperature and moisture gradients, specified differently for stable and unstable
1535 molod 1.10 layers according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1536 molod 1.8 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1537     viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1538     (see diagnostic number 67), and the subscript ref refers to a reference value.
1539     \\
1540    
1541     \noindent
1542     { \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
1543    
1544     \noindent
1545     The surface exchange coefficient is obtained from the similarity functions for the stability
1546     dependant flux profile relationships:
1547     \[
1548     {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1549     \]
1550     where $\psi_m$ is the surface layer non-dimensional wind shear:
1551     \[
1552     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1553     \]
1554     \noindent
1555     $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1556     the temperature and moisture gradients, specified differently for stable and unstable layers
1557 molod 1.10 according to \cite{helfschu:95}. k is the Von Karman constant, $\zeta$ is the
1558 molod 1.8 non-dimensional stability parameter, $u_*$ is the surface stress velocity
1559     (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1560     \\
1561    
1562     \noindent
1563     { \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1564    
1565     \noindent
1566     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1567     moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1568     diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1569 molod 1.10 or moisture. In the \cite{helflab:88} adaptation of this closure, $K_h$
1570 molod 1.8 takes the form:
1571     \[
1572     {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1573     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1574     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1575     \]
1576     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1577     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1578     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1579     depth,
1580     $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1581     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1582     dimensionless buoyancy and wind shear
1583     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1584     are functions of the Richardson number.
1585    
1586     \noindent
1587     For the detailed equations and derivations of the modified level 2.5 closure scheme,
1588 molod 1.10 see \cite{helflab:88}.
1589 molod 1.8
1590     \noindent
1591     In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1592     in units of $m/sec$, given by:
1593     \[
1594     {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
1595     \]
1596     \noindent
1597     where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1598     surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1599     friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1600     and $W_s$ is the magnitude of the surface layer wind.
1601     \\
1602    
1603     \noindent
1604     { \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
1605    
1606     \noindent
1607     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1608     momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1609     diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1610 molod 1.10 In the \cite{helflab:88} adaptation of this closure, $K_m$
1611 molod 1.8 takes the form:
1612     \[
1613     {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1614     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1615     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1616     \]
1617     \noindent
1618     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1619     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1620     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1621     depth,
1622     $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1623     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1624     dimensionless buoyancy and wind shear
1625     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1626     are functions of the Richardson number.
1627    
1628     \noindent
1629     For the detailed equations and derivations of the modified level 2.5 closure scheme,
1630 molod 1.10 see \cite{helflab:88}.
1631 molod 1.8
1632     \noindent
1633     In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1634     in units of $m/sec$, given by:
1635     \[
1636     {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1637     \]
1638     \noindent
1639     where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1640     similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1641     (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1642     magnitude of the surface layer wind.
1643     \\
1644    
1645     \noindent
1646     { \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1647    
1648     \noindent
1649     The tendency of U-Momentum due to turbulence is written:
1650     \[
1651     {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1652     = {\pp{}{z} }{(K_m \pp{u}{z})}
1653     \]
1654    
1655     \noindent
1656     The Helfand and Labraga level 2.5 scheme models the turbulent
1657     flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1658     equation.
1659    
1660     \noindent
1661     { \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1662    
1663     \noindent
1664     The tendency of V-Momentum due to turbulence is written:
1665     \[
1666     {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1667     = {\pp{}{z} }{(K_m \pp{v}{z})}
1668     \]
1669    
1670     \noindent
1671     The Helfand and Labraga level 2.5 scheme models the turbulent
1672     flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1673     equation.
1674     \\
1675    
1676     \noindent
1677     { \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1678    
1679     \noindent
1680     The tendency of temperature due to turbulence is written:
1681     \[
1682     {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1683     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1684     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1685     \]
1686    
1687     \noindent
1688     The Helfand and Labraga level 2.5 scheme models the turbulent
1689     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1690     equation.
1691     \\
1692    
1693     \noindent
1694     { \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1695    
1696     \noindent
1697     The tendency of specific humidity due to turbulence is written:
1698     \[
1699     {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1700     = {\pp{}{z} }{(K_h \pp{q}{z})}
1701     \]
1702    
1703     \noindent
1704     The Helfand and Labraga level 2.5 scheme models the turbulent
1705     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1706     equation.
1707     \\
1708    
1709     \noindent
1710     { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1711    
1712     \noindent
1713     \[
1714     {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1715     \]
1716     where:
1717     \[
1718     \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1719     \hspace{.4cm} and
1720     \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1721     \]
1722     and
1723     \[
1724     \Gamma_s = g \eta \pp{s}{p}
1725     \]
1726    
1727     \noindent
1728     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1729     precipitation processes, or supersaturation rain.
1730     The summation refers to contributions from each cloud type called by RAS.
1731     The dry static energy is given
1732     as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1733     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1734     the description of the convective parameterization. The fractional adjustment, or relaxation
1735     parameter, for each cloud type is given as $\alpha$, while
1736     $R$ is the rain re-evaporation adjustment.
1737     \\
1738    
1739     \noindent
1740     { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1741    
1742     \noindent
1743     \[
1744     {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1745     \]
1746     where:
1747     \[
1748     \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1749     \hspace{.4cm} and
1750     \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1751     \]
1752     and
1753     \[
1754     \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1755     \]
1756     \noindent
1757     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1758     precipitation processes, or supersaturation rain.
1759     The summation refers to contributions from each cloud type called by RAS.
1760     The dry static energy is given as $s$,
1761     the moist static energy is given as $h$,
1762     the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1763     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1764     the description of the convective parameterization. The fractional adjustment, or relaxation
1765     parameter, for each cloud type is given as $\alpha$, while
1766     $R$ is the rain re-evaporation adjustment.
1767     \\
1768    
1769     \noindent
1770     { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1771    
1772     \noindent
1773     The net longwave heating rate is calculated as the vertical divergence of the
1774     net terrestrial radiative fluxes.
1775     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1776     longwave routine.
1777     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1778     For a given cloud fraction,
1779     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1780     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1781     for the upward and downward radiative fluxes.
1782     (see Section \ref{sec:fizhi:radcloud}).
1783     The cloudy-sky flux is then obtained as:
1784    
1785     \noindent
1786     \[
1787     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1788     \]
1789    
1790     \noindent
1791     Finally, the net longwave heating rate is calculated as the vertical divergence of the
1792     net terrestrial radiative fluxes:
1793     \[
1794     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1795     \]
1796     or
1797     \[
1798     {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1799     \]
1800    
1801     \noindent
1802     where $g$ is the accelation due to gravity,
1803     $c_p$ is the heat capacity of air at constant pressure,
1804     and
1805     \[
1806     F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1807     \]
1808     \\
1809    
1810    
1811     \noindent
1812     { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1813    
1814     \noindent
1815     The net Shortwave heating rate is calculated as the vertical divergence of the
1816     net solar radiative fluxes.
1817     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1818     For the clear-sky case, the shortwave fluxes and heating rates are computed with
1819     both CLMO (maximum overlap cloud fraction) and
1820     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1821     The shortwave routine is then called a second time, for the cloudy-sky case, with the
1822     true time-averaged cloud fractions CLMO
1823     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1824     input at the top of the atmosphere.
1825    
1826     \noindent
1827     The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1828     \[
1829     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1830     \]
1831     or
1832     \[
1833     {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1834     \]
1835    
1836     \noindent
1837     where $g$ is the accelation due to gravity,
1838     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1839     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1840     \[
1841     F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1842     \]
1843     \\
1844    
1845     \noindent
1846     { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1847    
1848     \noindent
1849     For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1850     the vertical integral or total precipitable amount is given by:
1851     \[
1852     {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1853     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1854     \]
1855     \\
1856    
1857     \noindent
1858     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1859     time step, scaled to $mm/day$.
1860     \\
1861    
1862     \noindent
1863     { \underline {PRECON} Convective Precipition ($mm/day$) }
1864    
1865     \noindent
1866     For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1867     the vertical integral or total precipitable amount is given by:
1868     \[
1869     {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1870     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1871     \]
1872     \\
1873    
1874     \noindent
1875     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1876     time step, scaled to $mm/day$.
1877     \\
1878    
1879     \noindent
1880     { \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1881    
1882     \noindent
1883     The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1884     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1885    
1886     \[
1887     {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1888     {\rho } {(- K_m \pp{U}{z})}
1889     \]
1890    
1891     \noindent
1892     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1893     \\
1894    
1895     \noindent
1896     { \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1897    
1898     \noindent
1899     The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1900     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1901    
1902     \[
1903     {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1904     {\rho } {(- K_m \pp{V}{z})}
1905     \]
1906    
1907     \noindent
1908     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1909     \\
1910    
1911    
1912     \noindent
1913     { \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1914    
1915     \noindent
1916     The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1917     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1918    
1919     \noindent
1920     \[
1921     {\bf TTFLUX} = c_p {\rho }
1922     P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1923     = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1924     \]
1925    
1926     \noindent
1927     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1928     \\
1929    
1930    
1931     \noindent
1932     { \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1933    
1934     \noindent
1935     The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1936     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1937    
1938     \noindent
1939     \[
1940     {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1941     {L {\rho }(- K_h \pp{q}{z})}
1942     \]
1943    
1944     \noindent
1945     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1946     \\
1947    
1948    
1949     \noindent
1950     { \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1951    
1952     \noindent
1953     The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1954     \[
1955     {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1956     \]
1957    
1958     \noindent
1959     where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1960     $z_0$ is the surface roughness.
1961    
1962     \noindent
1963     NOTE: CN is not available through model version 5.3, but is available in subsequent
1964     versions.
1965     \\
1966    
1967     \noindent
1968     { \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1969    
1970     \noindent
1971     The surface wind speed is calculated for the last internal turbulence time step:
1972     \[
1973     {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1974     \]
1975    
1976     \noindent
1977     where the subscript $Nrphys$ refers to the lowest model level.
1978     \\
1979    
1980     \noindent
1981     { \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1982    
1983     \noindent
1984     The air/surface virtual temperature difference measures the stability of the surface layer:
1985     \[
1986     {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1987     \]
1988     \noindent
1989     where
1990     \[
1991     \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1992     and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1993     \]
1994    
1995     \noindent
1996     $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1997     $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1998     and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1999     refers to the surface.
2000     \\
2001    
2002    
2003     \noindent
2004     { \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
2005    
2006     \noindent
2007     The ground temperature equation is solved as part of the turbulence package
2008     using a backward implicit time differencing scheme:
2009     \[
2010     {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2011     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2012     \]
2013    
2014     \noindent
2015     where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2016     net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2017     sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2018     flux, and $C_g$ is the total heat capacity of the ground.
2019     $C_g$ is obtained by solving a heat diffusion equation
2020 molod 1.10 for the penetration of the diurnal cycle into the ground (\cite{black:77}), and is given by:
2021 molod 1.8 \[
2022     C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2023     { 86400. \over {2 \pi} } } \, \, .
2024     \]
2025     \noindent
2026     Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
2027     {cm \over {^oK}}$,
2028     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2029     by $2 \pi$ $radians/
2030     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2031     is a function of the ground wetness, $W$.
2032     \\
2033    
2034     \noindent
2035     { \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
2036    
2037     \noindent
2038     The surface temperature estimate is made by assuming that the model's lowest
2039     layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2040     The surface temperature is therefore:
2041     \[
2042     {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2043     \]
2044     \\
2045    
2046     \noindent
2047     { \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2048    
2049     \noindent
2050     The change in surface temperature from one turbulence time step to the next, solved
2051     using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2052     \[
2053     {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2054     \]
2055    
2056     \noindent
2057     where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2058     refers to the value at the previous turbulence time level.
2059     \\
2060    
2061     \noindent
2062     { \underline {QG} Ground Specific Humidity ($g/kg$) }
2063    
2064     \noindent
2065     The ground specific humidity is obtained by interpolating between the specific
2066     humidity at the lowest model level and the specific humidity of a saturated ground.
2067     The interpolation is performed using the potential evapotranspiration function:
2068     \[
2069     {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2070     \]
2071    
2072     \noindent
2073     where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2074     and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2075     pressure.
2076     \\
2077    
2078     \noindent
2079     { \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
2080    
2081     \noindent
2082     The surface saturation specific humidity is the saturation specific humidity at
2083     the ground temprature and surface pressure:
2084     \[
2085     {\bf QS} = q^*(T_g,P_s)
2086     \]
2087     \\
2088    
2089     \noindent
2090     { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2091     radiation subroutine (deg)}
2092     \[
2093     {\bf TGRLW} = T_g(\lambda , \phi ,n)
2094     \]
2095     \noindent
2096     where $T_g$ is the model ground temperature at the current time step $n$.
2097     \\
2098    
2099    
2100     \noindent
2101     { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2102     \[
2103     {\bf ST4} = \sigma T^4
2104     \]
2105     \noindent
2106     where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2107     \\
2108    
2109     \noindent
2110     { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2111     \[
2112     {\bf OLR} = F_{LW,top}^{NET}
2113     \]
2114     \noindent
2115     where top indicates the top of the first model layer.
2116     In the GCM, $p_{top}$ = 0.0 mb.
2117     \\
2118    
2119    
2120     \noindent
2121     { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2122     \[
2123     {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
2124     \]
2125     \noindent
2126     where top indicates the top of the first model layer.
2127     In the GCM, $p_{top}$ = 0.0 mb.
2128     \\
2129    
2130     \noindent
2131     { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2132    
2133     \noindent
2134     \begin{eqnarray*}
2135     {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2136     & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2137     \end{eqnarray*}
2138     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2139     $F(clearsky)_{LW}^\uparrow$ is
2140     the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2141     \\
2142    
2143     \noindent
2144     { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2145    
2146     \noindent
2147     The net longwave heating rate is calculated as the vertical divergence of the
2148     net terrestrial radiative fluxes.
2149     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2150     longwave routine.
2151     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2152     For a given cloud fraction,
2153     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2154     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2155     for the upward and downward radiative fluxes.
2156     (see Section \ref{sec:fizhi:radcloud}).
2157     The cloudy-sky flux is then obtained as:
2158    
2159     \noindent
2160     \[
2161     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2162     \]
2163    
2164     \noindent
2165     Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2166     vertical divergence of the
2167     clear-sky longwave radiative flux:
2168     \[
2169     \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2170     \]
2171     or
2172     \[
2173     {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2174     \]
2175    
2176     \noindent
2177     where $g$ is the accelation due to gravity,
2178     $c_p$ is the heat capacity of air at constant pressure,
2179     and
2180     \[
2181     F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2182     \]
2183     \\
2184    
2185    
2186     \noindent
2187     { \underline {TLW} Instantaneous temperature used as input to the Longwave
2188     radiation subroutine (deg)}
2189     \[
2190     {\bf TLW} = T(\lambda , \phi ,level, n)
2191     \]
2192     \noindent
2193     where $T$ is the model temperature at the current time step $n$.
2194     \\
2195    
2196    
2197     \noindent
2198     { \underline {SHLW} Instantaneous specific humidity used as input to
2199     the Longwave radiation subroutine (kg/kg)}
2200     \[
2201     {\bf SHLW} = q(\lambda , \phi , level , n)
2202     \]
2203     \noindent
2204     where $q$ is the model specific humidity at the current time step $n$.
2205     \\
2206    
2207    
2208     \noindent
2209     { \underline {OZLW} Instantaneous ozone used as input to
2210     the Longwave radiation subroutine (kg/kg)}
2211     \[
2212     {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
2213     \]
2214     \noindent
2215     where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2216     mean zonally averaged ozone data set.
2217     \\
2218    
2219    
2220     \noindent
2221     { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2222    
2223     \noindent
2224     {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2225     Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
2226     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2227     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2228     \[
2229     {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
2230     \]
2231     \\
2232    
2233    
2234     { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2235    
2236     {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2237     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2238     Radiation packages.
2239     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2240     \[
2241     {\bf CLDTOT} = F_{RAS} + F_{LS}
2242     \]
2243     \\
2244     where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2245     time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2246     \\
2247    
2248    
2249     \noindent
2250     { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2251    
2252     \noindent
2253     {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2254     Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
2255     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2256     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2257     \[
2258     {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
2259     \]
2260     \\
2261    
2262     \noindent
2263     { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2264    
2265     \noindent
2266     {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2267     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2268     Radiation algorithm. These are
2269     convective and large-scale clouds whose radiative characteristics are not
2270     assumed to be correlated in the vertical.
2271     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2272     \[
2273     {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
2274     \]
2275     \\
2276    
2277     \noindent
2278     { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2279     \[
2280     {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2281     \]
2282     \noindent
2283     where $S_0$, is the extra-terrestial solar contant,
2284     $R_a$ is the earth-sun distance in Astronomical Units,
2285     and $cos \phi_z$ is the cosine of the zenith angle.
2286     It should be noted that {\bf RADSWT}, as well as
2287     {\bf OSR} and {\bf OSRCLR},
2288     are calculated at the top of the atmosphere (p=0 mb). However, the
2289     {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2290     calculated at $p= p_{top}$ (0.0 mb for the GCM).
2291     \\
2292    
2293     \noindent
2294     { \underline {EVAP} Surface Evaporation ($mm/day$) }
2295    
2296     \noindent
2297     The surface evaporation is a function of the gradient of moisture, the potential
2298     evapotranspiration fraction and the eddy exchange coefficient:
2299     \[
2300     {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2301     \]
2302     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2303     the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2304     turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2305     $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2306     number 34) and at the bottom model level, respectively.
2307     \\
2308    
2309     \noindent
2310     { \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
2311    
2312     \noindent
2313     {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2314     and Analysis forcing.
2315     \[
2316     {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2317     \]
2318     \\
2319    
2320     \noindent
2321     { \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
2322    
2323     \noindent
2324     {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2325     and Analysis forcing.
2326     \[
2327     {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2328     \]
2329     \\
2330    
2331     \noindent
2332     { \underline {DTDT} Total Temperature Tendency ($deg/day$) }
2333    
2334     \noindent
2335     {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2336     and Analysis forcing.
2337     \begin{eqnarray*}
2338     {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2339     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2340     \end{eqnarray*}
2341     \\
2342    
2343     \noindent
2344     { \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
2345    
2346     \noindent
2347     {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2348     and Analysis forcing.
2349     \[
2350     {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2351     + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2352     \]
2353     \\
2354    
2355     \noindent
2356     { \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
2357    
2358     \noindent
2359     The surface stress velocity, or the friction velocity, is the wind speed at
2360     the surface layer top impeded by the surface drag:
2361     \[
2362     {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2363     C_u = {k \over {\psi_m} }
2364     \]
2365    
2366     \noindent
2367     $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2368     number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2369    
2370     \noindent
2371     { \underline {Z0} Surface Roughness Length ($m$) }
2372    
2373     \noindent
2374     Over the land surface, the surface roughness length is interpolated to the local
2375 molod 1.10 time from the monthly mean data of \cite{dorsell:89}. Over the ocean,
2376 molod 1.8 the roughness length is a function of the surface-stress velocity, $u_*$.
2377     \[
2378     {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2379     \]
2380    
2381     \noindent
2382     where the constants are chosen to interpolate between the reciprocal relation of
2383 molod 1.10 \cite{kondo:75} for weak winds, and the piecewise linear relation of \cite{larpond:81}
2384 molod 1.8 for moderate to large winds.
2385     \\
2386    
2387     \noindent
2388     { \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
2389    
2390     \noindent
2391     The fraction of time when turbulence is present is defined as the fraction of
2392     time when the turbulent kinetic energy exceeds some minimum value, defined here
2393     to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2394     incremented. The fraction over the averaging interval is reported.
2395     \\
2396    
2397     \noindent
2398     { \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
2399    
2400     \noindent
2401     The depth of the PBL is defined by the turbulence parameterization to be the
2402     depth at which the turbulent kinetic energy reduces to ten percent of its surface
2403     value.
2404    
2405     \[
2406     {\bf PBL} = P_{PBL} - P_{surface}
2407     \]
2408    
2409     \noindent
2410     where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2411     reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2412     \\
2413    
2414     \noindent
2415     { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2416    
2417     \noindent
2418     The net Shortwave heating rate is calculated as the vertical divergence of the
2419     net solar radiative fluxes.
2420     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2421     For the clear-sky case, the shortwave fluxes and heating rates are computed with
2422     both CLMO (maximum overlap cloud fraction) and
2423     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2424     The shortwave routine is then called a second time, for the cloudy-sky case, with the
2425     true time-averaged cloud fractions CLMO
2426     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
2427     input at the top of the atmosphere.
2428    
2429     \noindent
2430     The heating rate due to Shortwave Radiation under clear skies is defined as:
2431     \[
2432     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2433     \]
2434     or
2435     \[
2436     {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2437     \]
2438    
2439     \noindent
2440     where $g$ is the accelation due to gravity,
2441     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2442     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2443     \[
2444     F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2445     \]
2446     \\
2447    
2448     \noindent
2449     { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2450     \[
2451     {\bf OSR} = F_{SW,top}^{NET}
2452     \]
2453     \noindent
2454     where top indicates the top of the first model layer used in the shortwave radiation
2455     routine.
2456     In the GCM, $p_{SW_{top}}$ = 0 mb.
2457     \\
2458    
2459     \noindent
2460     { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2461     \[
2462     {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
2463     \]
2464     \noindent
2465     where top indicates the top of the first model layer used in the shortwave radiation
2466     routine.
2467     In the GCM, $p_{SW_{top}}$ = 0 mb.
2468     \\
2469    
2470    
2471     \noindent
2472     { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2473    
2474     \noindent
2475     The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2476     \[
2477     {\bf CLDMAS} = \eta m_B
2478     \]
2479     where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2480     the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2481     description of the convective parameterization.
2482     \\
2483    
2484    
2485    
2486     \noindent
2487     { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2488    
2489     \noindent
2490     The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2491     the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
2492     Zonal U-Wind which is archived on the Prognostic Output data stream.
2493     \[
2494     {\bf UAVE} = u(\lambda, \phi, level , t)
2495     \]
2496     \\
2497     Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2498     \\
2499    
2500     \noindent
2501     { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2502    
2503     \noindent
2504     The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2505     the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
2506     Meridional V-Wind which is archived on the Prognostic Output data stream.
2507     \[
2508     {\bf VAVE} = v(\lambda, \phi, level , t)
2509     \]
2510     \\
2511     Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2512     \\
2513    
2514     \noindent
2515     { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2516    
2517     \noindent
2518     The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2519     the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
2520     Temperature which is archived on the Prognostic Output data stream.
2521     \[
2522     {\bf TAVE} = T(\lambda, \phi, level , t)
2523     \]
2524     \\
2525    
2526     \noindent
2527     { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2528    
2529     \noindent
2530     The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2531     the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
2532     Specific Humidity which is archived on the Prognostic Output data stream.
2533     \[
2534     {\bf QAVE} = q(\lambda, \phi, level , t)
2535     \]
2536     \\
2537    
2538     \noindent
2539     { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2540    
2541     \noindent
2542     The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2543     the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
2544     Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2545     \begin{eqnarray*}
2546     {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
2547     & = & p_s(\lambda, \phi, level , t) - p_T
2548     \end{eqnarray*}
2549     \\
2550    
2551    
2552     \noindent
2553     { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2554    
2555     \noindent
2556     The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2557     produced by the GCM Turbulence parameterization over
2558     the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
2559     Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2560     \[
2561     {\bf QQAVE} = qq(\lambda, \phi, level , t)
2562     \]
2563     \\
2564     Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2565     \\
2566    
2567     \noindent
2568     { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2569    
2570     \noindent
2571     \begin{eqnarray*}
2572     {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2573     & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2574     \end{eqnarray*}
2575     \noindent
2576     \\
2577     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2578     $F(clearsky){SW}^\downarrow$ is
2579     the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2580     the upward clearsky Shortwave flux.
2581     \\
2582    
2583     \noindent
2584     { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2585    
2586     \noindent
2587     {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2588     and the Analysis forcing.
2589     \[
2590     {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2591     \]
2592     \\
2593    
2594     \noindent
2595     { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2596    
2597     \noindent
2598     {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2599     and the Analysis forcing.
2600     \[
2601     {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2602     \]
2603     \\
2604    
2605     \noindent
2606     { \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2607    
2608     \noindent
2609     {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2610     and the Analysis forcing.
2611     \begin{eqnarray*}
2612     {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2613     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2614     \end{eqnarray*}
2615     \\
2616     If we define the time-tendency of Temperature due to Diabatic processes as
2617     \begin{eqnarray*}
2618     \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2619     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2620     \end{eqnarray*}
2621     then, since there are no surface pressure changes due to Diabatic processes, we may write
2622     \[
2623     \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2624     \]
2625     where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2626     \[
2627     {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2628     \]
2629     \\
2630    
2631     \noindent
2632     { \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2633    
2634     \noindent
2635     {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2636     and the Analysis forcing.
2637     \[
2638     {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2639     \]
2640     If we define the time-tendency of Specific Humidity due to Diabatic processes as
2641     \[
2642     \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2643     \]
2644     then, since there are no surface pressure changes due to Diabatic processes, we may write
2645     \[
2646     \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2647     \]
2648     Thus, {\bf DIABQ} may be written as
2649     \[
2650     {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2651     \]
2652     \\
2653    
2654     \noindent
2655     { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2656    
2657     \noindent
2658     The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2659     $u q$ over the depth of the atmosphere at each model timestep,
2660     and dividing by the total mass of the column.
2661     \[
2662     {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2663     \]
2664     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2665     \[
2666     {\bf VINTUQ} = { \int_0^1 u q dp }
2667     \]
2668     \\
2669    
2670    
2671     \noindent
2672     { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2673    
2674     \noindent
2675     The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2676     $v q$ over the depth of the atmosphere at each model timestep,
2677     and dividing by the total mass of the column.
2678     \[
2679     {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2680     \]
2681     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2682     \[
2683     {\bf VINTVQ} = { \int_0^1 v q dp }
2684     \]
2685     \\
2686    
2687    
2688     \noindent
2689     { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2690    
2691     \noindent
2692     The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2693     $u T$ over the depth of the atmosphere at each model timestep,
2694     and dividing by the total mass of the column.
2695     \[
2696     {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2697     \]
2698     Or,
2699     \[
2700     {\bf VINTUT} = { \int_0^1 u T dp }
2701     \]
2702     \\
2703    
2704     \noindent
2705     { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2706    
2707     \noindent
2708     The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2709     $v T$ over the depth of the atmosphere at each model timestep,
2710     and dividing by the total mass of the column.
2711     \[
2712     {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2713     \]
2714     Using $\rho \delta z = -{\delta p \over g} $, we have
2715     \[
2716     {\bf VINTVT} = { \int_0^1 v T dp }
2717     \]
2718     \\
2719    
2720     \noindent
2721     { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2722    
2723     If we define the
2724     time-averaged random and maximum overlapped cloudiness as CLRO and
2725     CLMO respectively, then the probability of clear sky associated
2726     with random overlapped clouds at any level is (1-CLRO) while the probability of
2727     clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2728     The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2729     the total cloud fraction at each level may be obtained by
2730     1-(1-CLRO)*(1-CLMO).
2731    
2732     At any given level, we may define the clear line-of-site probability by
2733     appropriately accounting for the maximum and random overlap
2734     cloudiness. The clear line-of-site probability is defined to be
2735     equal to the product of the clear line-of-site probabilities
2736     associated with random and maximum overlap cloudiness. The clear
2737     line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2738     from the current pressure $p$
2739     to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2740     is simply 1.0 minus the largest maximum overlap cloud value along the
2741     line-of-site, ie.
2742    
2743     $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2744    
2745     Thus, even in the time-averaged sense it is assumed that the
2746     maximum overlap clouds are correlated in the vertical. The clear
2747     line-of-site probability associated with random overlap clouds is
2748     defined to be the product of the clear sky probabilities at each
2749     level along the line-of-site, ie.
2750    
2751     $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2752    
2753     The total cloud fraction at a given level associated with a line-
2754     of-site calculation is given by
2755    
2756     $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2757     \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2758    
2759    
2760     \noindent
2761     The 2-dimensional net cloud fraction as seen from the top of the
2762     atmosphere is given by
2763     \[
2764     {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2765     \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2766     \]
2767     \\
2768     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2769    
2770    
2771     \noindent
2772     { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2773    
2774     \noindent
2775     The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2776     given by:
2777     \begin{eqnarray*}
2778     {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2779     & = & {\pi \over g} \int_0^1 q dp
2780     \end{eqnarray*}
2781     where we have used the hydrostatic relation
2782     $\rho \delta z = -{\delta p \over g} $.
2783     \\
2784    
2785    
2786     \noindent
2787     { \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2788    
2789     \noindent
2790     The u-wind at the 2-meter depth is determined from the similarity theory:
2791     \[
2792     {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2793     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2794     \]
2795    
2796     \noindent
2797     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2798     $sl$ refers to the height of the top of the surface layer. If the roughness height
2799     is above two meters, ${\bf U2M}$ is undefined.
2800     \\
2801    
2802     \noindent
2803     { \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2804    
2805     \noindent
2806     The v-wind at the 2-meter depth is a determined from the similarity theory:
2807     \[
2808     {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2809     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2810     \]
2811    
2812     \noindent
2813     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2814     $sl$ refers to the height of the top of the surface layer. If the roughness height
2815     is above two meters, ${\bf V2M}$ is undefined.
2816     \\
2817    
2818     \noindent
2819     { \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2820    
2821     \noindent
2822     The temperature at the 2-meter depth is a determined from the similarity theory:
2823     \[
2824     {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2825     P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2826     (\theta_{sl} - \theta_{surf}))
2827     \]
2828     where:
2829     \[
2830     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2831     \]
2832    
2833     \noindent
2834     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2835     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2836     $sl$ refers to the height of the top of the surface layer. If the roughness height
2837     is above two meters, ${\bf T2M}$ is undefined.
2838     \\
2839    
2840     \noindent
2841     { \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2842    
2843     \noindent
2844     The specific humidity at the 2-meter depth is determined from the similarity theory:
2845     \[
2846     {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2847     P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2848     (q_{sl} - q_{surf}))
2849     \]
2850     where:
2851     \[
2852     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2853     \]
2854    
2855     \noindent
2856     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2857     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2858     $sl$ refers to the height of the top of the surface layer. If the roughness height
2859     is above two meters, ${\bf Q2M}$ is undefined.
2860     \\
2861    
2862     \noindent
2863     { \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2864    
2865     \noindent
2866     The u-wind at the 10-meter depth is an interpolation between the surface wind
2867     and the model lowest level wind using the ratio of the non-dimensional wind shear
2868     at the two levels:
2869     \[
2870     {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2871     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2872     \]
2873    
2874     \noindent
2875     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2876     $sl$ refers to the height of the top of the surface layer.
2877     \\
2878    
2879     \noindent
2880     { \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2881    
2882     \noindent
2883     The v-wind at the 10-meter depth is an interpolation between the surface wind
2884     and the model lowest level wind using the ratio of the non-dimensional wind shear
2885     at the two levels:
2886     \[
2887     {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2888     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2889     \]
2890    
2891     \noindent
2892     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2893     $sl$ refers to the height of the top of the surface layer.
2894     \\
2895    
2896     \noindent
2897     { \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2898    
2899     \noindent
2900     The temperature at the 10-meter depth is an interpolation between the surface potential
2901     temperature and the model lowest level potential temperature using the ratio of the
2902     non-dimensional temperature gradient at the two levels:
2903     \[
2904     {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2905     P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2906     (\theta_{sl} - \theta_{surf}))
2907     \]
2908     where:
2909     \[
2910     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2911     \]
2912    
2913     \noindent
2914     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2915     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2916     $sl$ refers to the height of the top of the surface layer.
2917     \\
2918    
2919     \noindent
2920     { \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2921    
2922     \noindent
2923     The specific humidity at the 10-meter depth is an interpolation between the surface specific
2924     humidity and the model lowest level specific humidity using the ratio of the
2925     non-dimensional temperature gradient at the two levels:
2926     \[
2927     {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2928     P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2929     (q_{sl} - q_{surf}))
2930     \]
2931     where:
2932     \[
2933     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2934     \]
2935    
2936     \noindent
2937     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2938     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2939     $sl$ refers to the height of the top of the surface layer.
2940     \\
2941    
2942     \noindent
2943     { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2944    
2945     The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2946     \[
2947     {\bf DTRAIN} = \eta_{r_D}m_B
2948     \]
2949     \noindent
2950     where $r_D$ is the detrainment level,
2951     $m_B$ is the cloud base mass flux, and $\eta$
2952     is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2953     \\
2954    
2955     \noindent
2956     { \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2957    
2958     \noindent
2959     Due to computational errors associated with the numerical scheme used for
2960     the advection of moisture, negative values of specific humidity may be generated. The
2961     specific humidity is checked for negative values after every dynamics timestep. If negative
2962     values have been produced, a filling algorithm is invoked which redistributes moisture from
2963     below. Diagnostic {\bf QFILL} is equal to the net filling needed
2964     to eliminate negative specific humidity, scaled to a per-day rate:
2965     \[
2966     {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2967     \]
2968     where
2969     \[
2970     q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2971     \]
2972    
2973    
2974 molod 1.9 \subsubsection{Key subroutines, parameters and files}
2975 molod 1.6
2976 molod 1.9 \subsubsection{Dos and donts}
2977 molod 1.6
2978 molod 1.9 \subsubsection{Fizhi Reference}

  ViewVC Help
Powered by ViewVC 1.1.22