/[MITgcm]/manual/s_phys_pkgs/text/exf.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/exf.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (show annotations) (download) (as text)
Thu Jul 14 22:04:52 2005 UTC (20 years ago) by heimbach
Branch: MAIN
Changes since 1.1: +44 -8 lines
File MIME type: application/x-tex
Updating

1 \section{EXF: The external forcing package
2 \label{sec:pkg:exf}}
3 \begin{rawhtml}
4 <!-- CMIREDIR:sectionexf: -->
5 \end{rawhtml}
6
7
8 \subsection{Introduction
9 \label{sec:pkg:exf:intro}}
10
11 The external forcing package, in conjunction with the
12 calendar package (cal), enables the handling of real-time
13 (or ``model-time'') forcing
14 fields of differing temporal forcing patterns.
15 It comprises climatological restoring and relaxation.
16 Bulk formulae are implemented to convert atmospheric fields
17 to surface fluxes.
18 An interpolation routine provides on-the-fly interpolation of
19 forcing fields an arbitrary grid onto the model grid.
20
21 CPP options enable or disable different aspects of the package
22 (Section \ref{sec:pkg:exf:config}).
23 Runtime options, flags, filenames and field-related dates/times are
24 set in \texttt{data.exf} and \texttt{data.exf\_clim}
25 (Section \ref{sec:pkg:exf:runtime}).
26 A description of key subroutines is given in Section
27 \ref{sec:pkg:exf:subroutines}.
28 Input fields, units and sign conventions are summarized in
29 Section \ref{sec:pkg:exf:fields_units}, and available diagnostics
30 output is listed in Section \ref{sec:pkg:exf:fields_diagnostics}.
31
32 %----------------------------------------------------------------------
33
34 \subsection{EXF configuration, compiling \& running}
35
36 \subsubsection{Compile-time options
37 \label{sec:pkg:exf:config}}
38
39 As with all MITgcm packages, EXF can be turned on or off at compile time
40 using the \texttt{packages.conf} file or the \texttt{genmake2}
41 \texttt{-enable=exf} or \texttt{-disable=exf} switches.
42
43 Parts of the exf code can be enabled or disabled at compile time
44 via CPP preprocessor flags. These options are set in either
45 \texttt{EXF\_OPTIONS.h} or in \texttt{ECCO\_CPPOPTIONS.h}.
46 Table \ref{tab:pkg:exf:cpp} summarizes these options.
47
48 \begin{table}[b!]
49 \label{tab:pkg:exf:cpp}
50 {\footnotesize
51 \begin{tabular}{|l|l|}
52 \hline
53 \textbf{CPP option} & \textbf{Description} \\
54 \hline \hline
55 \texttt{EXF\_VERBOSE} &
56 verbose mode (recommended only for testing) \\
57 \texttt{ALLOW\_ATM\_TEMP} &
58 compute heat/freshwater fluxes from atmos. state input \\
59 \texttt{ALLOW\_ATM\_WIND} &
60 compute wind stress from wind speed input\\
61 \texttt{ALLOW\_BULKFORMULAE} &
62 is used if either ALLOW\_ATM\_TEMP or ALLOW\_ATM\_WIND is enabled \\
63 \texttt{EXF\_READ\_EVAP} & read evaporation instead of computing it \\
64 \texttt{ALLOW\_RUNOFF} & read time-constant river/glacier run-off field \\
65 \texttt{ALLOW\_DOWNWARD\_RADIATION} & compute net from downward or downward from net radiation \\
66 \texttt{USE\_EXF\_INTERPOLATION} & enable on-the-fly bilinear or bicubic interpolation of input fields \\
67 \hline
68 \texttt{ALLOW\_CLIMTEMP\_RELAXATION} &
69 relaxation to 3-D potential temperature climatology \\
70 \texttt{ALLOW\_CLIMSALT\_RELAXATION} &
71 relaxation to 3-D salinity climatology \\
72 \texttt{ALLOW\_CLIMSST\_RELAXATION} &
73 relaxation to 2-D SST climatology \\
74 \texttt{ALLOW\_CLIMSSS\_RELAXATION} &
75 relaxation to 2-D SSS climatology \\
76 \hline
77 \texttt{SHORTWAVE\_HEATING} & in \texttt{CPP\_OPTIONS.h}: enable shortwave radiation \\
78 \texttt{ATMOSPHERIC\_LOADING} & in \texttt{CPP\_OPTIONS.h}: enable surface pressure forcing \\
79 \hline
80 \end{tabular}
81 }
82 \caption{~}
83 \end{table}
84
85
86 %----------------------------------------------------------------------
87
88 \subsubsection{Run-time parameters
89 \label{sec:pkg:exf:runtime}}
90
91 Run-time parameters are set in files \texttt{data.pkg},
92 and \texttt{data.pkg\_clim} (for relaxation/climatological fields).
93 Run-time parameters may be broken into 2 categories:
94 (i) general flags and parameters, and
95 (ii) attributes for each forcing and climatological field.
96
97 \paragraph{General flags and parameters}
98
99 \begin{table}[h!]
100 \label{tab:pkg:exf:runtime_flags}
101 {\footnotesize
102 \begin{tabular}{|l|cl|}
103 \hline
104 \textbf{Flag/parameter} & \textbf{default} & \textbf{Description} \\
105 \hline \hline
106 useExfCheckRange & \texttt{.TRUE.} & ~ \\
107 useExfYearlyFields & \texttt{.FALSE.} & ~ \\
108 twoDigitYear & \texttt{.FALSE.} & ~ \\
109 repeatPeriod & \texttt{0.0} & ~ \\
110 windstressmax & \texttt{2.0} & ~ \\
111 exf\_albedo & \texttt{0.1} & ~ \\
112 exf\_iprec & \texttt{32} & ~ \\
113 exf\_yftype & \texttt{'RL'} & ~ \\
114 \hline
115 \end{tabular}
116 }
117 \caption{~}
118 \end{table}
119
120
121 \paragraph{Field attributes}
122
123
124
125 %----------------------------------------------------------------------
126
127 \subsection{EXF fields and units
128 \label{sec:pkg:exf:fields_units}}
129
130 The following list is taken from the header file \texttt{exf\_fields.h}.
131
132 {\footnotesize
133 \begin{verbatim}
134
135
136
137 c ustress :: Zonal surface wind stress in N/m^2
138 c > 0 for increase in uVel, which is west to
139 c east for cartesian and spherical polar grids
140 c Typical range: -0.5 < ustress < 0.5
141 c Southwest C-grid U point
142 c Input field
143 c
144 c vstress :: Meridional surface wind stress in N/m^2
145 c > 0 for increase in vVel, which is south to
146 c north for cartesian and spherical polar grids
147 c Typical range: -0.5 < vstress < 0.5
148 c Southwest C-grid V point
149 c Input field
150 c
151 c hflux :: Net upward surface heat flux in W/m^2
152 c excluding shortwave (on input)
153 c hflux = latent + sensible + lwflux
154 c > 0 for decrease in theta (ocean cooling)
155 c Typical range: -250 < hflux < 600
156 c Southwest C-grid tracer point
157 c Input field
158 c
159 c sflux :: Net upward freshwater flux in m/s
160 c sflux = evap - precip - runoff
161 c > 0 for increase in salt (ocean salinity)
162 c Typical range: -1e-7 < sflux < 1e-7
163 c Southwest C-grid tracer point
164 c Input field
165 c
166 c swflux :: Net upward shortwave radiation in W/m^2
167 c swflux = - ( swdown - ice and snow absorption - reflected )
168 c > 0 for decrease in theta (ocean cooling)
169 c Typical range: -350 < swflux < 0
170 c Southwest C-grid tracer point
171 c Input field
172 c
173 c uwind :: Surface (10-m) zonal wind velocity in m/s
174 c > 0 for increase in uVel, which is west to
175 c east for cartesian and spherical polar grids
176 c Typical range: -10 < uwind < 10
177 c Southwest C-grid U point
178 c Input or input/output field
179 c
180 c vwind :: Surface (10-m) meridional wind velocity in m/s
181 c > 0 for increase in vVel, which is south to
182 c north for cartesian and spherical polar grids
183 c Typical range: -10 < vwind < 10
184 c Southwest C-grid V point
185 c Input or input/output field
186 c
187 c atemp :: Surface (2-m) air temperature in deg K
188 c Typical range: 200 < atemp < 300
189 c Southwest C-grid tracer point
190 c Input or input/output field
191 c
192 c aqh :: Surface (2m) specific humidity in kg/kg
193 c Typical range: 0 < aqh < 0.02
194 c Southwest C-grid tracer point
195 c Input or input/output field
196 c
197 c lwflux :: Net upward longwave radiation in W/m^2
198 c lwflux = - ( lwdown - ice and snow absorption - emitted )
199 c > 0 for decrease in theta (ocean cooling)
200 c Typical range: -20 < lwflux < 170
201 c Southwest C-grid tracer point
202 c Input field
203 c
204 c evap :: Evaporation in m/s
205 c > 0 for increase in salt (ocean salinity)
206 c Typical range: 0 < evap < 2.5e-7
207 c Southwest C-grid tracer point
208 c Input, input/output, or output field
209 c
210 c precip :: Precipitation in m/s
211 c > 0 for decrease in salt (ocean salinity)
212 c Typical range: 0 < precip < 5e-7
213 c Southwest C-grid tracer point
214 c Input or input/output field
215 c
216 c runoff :: River and glacier runoff in m/s
217 c > 0 for decrease in salt (ocean salinity)
218 c Typical range: 0 < runoff < ????
219 c Southwest C-grid tracer point
220 c Input or input/output field
221 c !!! WATCH OUT: Default exf_inscal_runoff !!!
222 c !!! in exf_readparms.F is not 1.0 !!!
223 c
224 c swdown :: Downward shortwave radiation in W/m^2
225 c > 0 for increase in theta (ocean warming)
226 c Typical range: 0 < swdown < 450
227 c Southwest C-grid tracer point
228 c Input/output field
229 c
230 c lwdown :: Downward longwave radiation in W/m^2
231 c > 0 for increase in theta (ocean warming)
232 c Typical range: 50 < lwdown < 450
233 c Southwest C-grid tracer point
234 c Input/output field
235 c
236 c apressure :: Atmospheric pressure field in N/m^2
237 c > 0 for ????
238 c Typical range: ???? < apressure < ????
239 c Southwest C-grid tracer point
240 c Input field
241 C
242 C
243 c NOTES:
244 c ======
245 c
246 c Input and output units and sign conventions can be customized
247 c using variables exf_inscal_* and exf_outscal_*, which are set
248 c by exf_readparms.F
249 c
250 c Output fields fu, fv, Qnet, Qsw, and EmPmR are
251 c defined in FFIELDS.h
252 c
253 c #ifndef SHORTWAVE_HEATING, hflux includes shortwave,
254 c that is, hflux = latent + sensible + lwflux +swflux
255 c
256 c If (EXFwindOnBgrid .EQ. .TRUE.), uwind and vwind are
257 c defined on northeast B-grid U and V points, respectively.
258 c
259 c Arrays *0 and *1 below are used for temporal interpolation.
260 \end{verbatim}
261 }
262
263 %----------------------------------------------------------------------
264
265 \subsection{Key subroutines
266 \label{sec:pkg:exf:subroutines}}
267
268 %----------------------------------------------------------------------
269
270 \subsection{EXF diagnostics
271 \label{sec:pkg:exf:diagnostics}}
272
273 Diagnostics output is available via the diagnostics package
274 (see Section \ref{sec:pkg:diagnostics}).
275 Available output fields are summarized in
276 Table \ref{tab:pkg:exf:diagnostics}.
277
278 \begin{table}
279 \label{tab:pkg:exf:diagnostics}
280 \caption{~}
281 {\footnotesize
282 \begin{verbatim}
283 ------------------------------------------------------
284 <-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)
285 ------------------------------------------------------
286 EXFlwdn | 1 | SM |W/m^2 |Downward longwave radiation, >0 increases theta
287 EXFswdn | 1 | SM |W/m^2 |Downward shortwave radiation, >0 increases theta
288 EXFqnet | 1 | SM |W/m^2 |Net upward heat flux (turb+rad), >0 decreases theta
289 EXFtaux | 1 | SU |N/m^2 |zonal surface wind stress, >0 increases uVel
290 EXFtauy | 1 | SV |N/m^2 |meridional surface wind stress, >0 increases vVel
291 EXFuwind| 1 | SM |m/s |zonal 10-m wind speed, >0 increases uVel
292 EXFvwind| 1 | SM |m/s |meridional 10-m wind speed, >0 increases uVel
293 EXFatemp| 1 | SM |degK |surface (2-m) air temperature
294 EXFaqh | 1 | SM |kg/kg |surface (2-m) specific humidity
295 EXFevap | 1 | SM |m/s |evaporation, > 0 increases salinity
296 EXFpreci| 1 | SM |m/s |evaporation, > 0 decreases salinity
297 EXFempmr| 1 | SM |m/s |net upward freshwater flux, > 0 increases salinity
298 EXFpress| 1 | SM |N/m^2 |atmospheric pressure field
299 \end{verbatim}
300 }
301 \end{table}
302
303 %----------------------------------------------------------------------
304
305 \subsection{Reference experiments}
306
307 %----------------------------------------------------------------------
308
309 \subsection{References}

  ViewVC Help
Powered by ViewVC 1.1.22