/[MITgcm]/manual/s_phys_pkgs/text/exf.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/exf.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.12 - (show annotations) (download) (as text)
Tue Jan 27 15:47:59 2009 UTC (16 years, 6 months ago) by jmc
Branch: MAIN
Changes since 1.11: +2 -2 lines
File MIME type: application/x-tex
rename thetaMin,phiMin -> xgOrigin,ygOrigin

1 \subsection{EXF: The external forcing package
2 \label{sec:pkg:exf}}
3 \begin{rawhtml}
4 <!-- CMIREDIR:sectionexf: -->
5 \end{rawhtml}
6
7 Authors: Patrick Heimbach and Dimitris Menemenlis
8
9 \subsubsection{Introduction
10 \label{sec:pkg:exf:intro}}
11
12 The external forcing package, in conjunction with the
13 calendar package (cal), enables the handling of real-time
14 (or ``model-time'') forcing
15 fields of differing temporal forcing patterns.
16 It comprises climatological restoring and relaxation.
17 Bulk formulae are implemented to convert atmospheric fields
18 to surface fluxes.
19 An interpolation routine provides on-the-fly interpolation of
20 forcing fields an arbitrary grid onto the model grid.
21
22 CPP options enable or disable different aspects of the package
23 (Section \ref{sec:pkg:exf:config}).
24 Runtime options, flags, filenames and field-related dates/times are
25 set in \texttt{data.exf}
26 (Section \ref{sec:pkg:exf:runtime}).
27 A description of key subroutines is given in Section
28 \ref{sec:pkg:exf:subroutines}.
29 Input fields, units and sign conventions are summarized in
30 Section \ref{sec:pkg:exf:fields_units}, and available diagnostics
31 output is listed in Section \ref{sec:pkg:exf:fields_diagnostics}.
32
33 %----------------------------------------------------------------------
34
35 \subsubsection{EXF configuration, compiling \& running}
36
37 \paragraph{Compile-time options
38 \label{sec:pkg:exf:config}}
39 ~
40
41 As with all MITgcm packages, EXF can be turned on or off at compile time
42 %
43 \begin{itemize}
44 %
45 \item
46 using the \texttt{packages.conf} file by adding \texttt{exf} to it,
47 %
48 \item
49 or using \texttt{genmake2} adding
50 \texttt{-enable=exf} or \texttt{-disable=exf} switches
51 %
52 \item
53 \textit{required packages and CPP options}: \\
54 EXF requires the calendar package \texttt{cal} to be enabled;
55 no additional CPP options are required.
56 %
57 \end{itemize}
58 (see Section \ref{sect:buildingCode}).
59
60 Parts of the EXF code can be enabled or disabled at compile time
61 via CPP preprocessor flags. These options are set in either
62 \texttt{EXF\_OPTIONS.h} or in \texttt{ECCO\_CPPOPTIONS.h}.
63 Table \ref{tab:pkg:exf:cpp} summarizes these options.
64
65 \begin{table}[b!]
66 \centering
67 \label{tab:pkg:exf:cpp}
68 {\footnotesize
69 \begin{tabular}{|l|l|}
70 \hline
71 \textbf{CPP option} & \textbf{Description} \\
72 \hline \hline
73 \texttt{EXF\_VERBOSE} &
74 verbose mode (recommended only for testing) \\
75 \texttt{ALLOW\_ATM\_TEMP} &
76 compute heat/freshwater fluxes from atmos. state input \\
77 \texttt{ALLOW\_ATM\_WIND} &
78 compute wind stress from wind speed input\\
79 \texttt{ALLOW\_BULKFORMULAE} &
80 is used if \texttt{ALLOW\_ATM\_TEMP} or
81 \texttt{ALLOW\_ATM\_WIND} is enabled \\
82 \texttt{EXF\_READ\_EVAP} & read evaporation instead of computing it \\
83 \texttt{ALLOW\_RUNOFF} & read time-constant river/glacier run-off field \\
84 \texttt{ALLOW\_DOWNWARD\_RADIATION} & compute net from downward or downward from net radiation \\
85 \texttt{USE\_EXF\_INTERPOLATION} & enable on-the-fly bilinear or bicubic interpolation of input fields \\
86 \hline
87 \multicolumn{2}{|c|}{\textit{used in conjunction with relaxation to prescribed (climatological) fields}} \\
88 \hline
89 \texttt{ALLOW\_CLIMSST\_RELAXATION} &
90 relaxation to 2-D SST climatology \\
91 \texttt{ALLOW\_CLIMSSS\_RELAXATION} &
92 relaxation to 2-D SSS climatology \\
93 \hline
94 \multicolumn{2}{|c|}{\textit{these are set outside of EXF in} \texttt{CPP\_OPTIONS.h}} \\
95 \hline
96 \texttt{SHORTWAVE\_HEATING} & enable shortwave radiation \\
97 \texttt{ATMOSPHERIC\_LOADING} & enable surface pressure forcing \\
98 \hline
99 \end{tabular}
100 }
101 \caption{~}
102 \end{table}
103
104
105 %----------------------------------------------------------------------
106
107 \subsubsection{Run-time parameters
108 \label{sec:pkg:exf:runtime}}
109
110 Run-time parameters are set in files
111 \texttt{data.pkg}, \texttt{data.exf}, and
112 \texttt{data.exf\_clim} (for relaxation/climatological fields)
113 which are read in \texttt{exf\_readparms.F}.
114 Run-time parameters may be broken into 3 categories:
115 (i) switching on/off the package at runtime,
116 (ii) general flags and parameters, and
117 (iii) attributes for each forcing and climatological field.
118
119 \paragraph{Enabling the package}
120 ~ \\
121 %
122 A package is switched on/off at runtime by setting
123 (e.g. for EXF) \texttt{useEXF = .TRUE.} in \texttt{data.pkg}.
124
125 \paragraph{General flags and parameters}
126 ~ \\
127 %
128 \begin{table}[h!]
129 \centering
130 \label{tab:pkg:exf:runtime_flags}
131 {\footnotesize
132 \begin{tabular}{|l|c|l|}
133 \hline
134 \textbf{Flag/parameter} & \textbf{default} & \textbf{Description} \\
135 \hline \hline
136 useExfCheckRange & \texttt{.TRUE.} &
137 check range of input fields and stop if out of range \\
138 useExfYearlyFields & \texttt{.FALSE.} &
139 append current year postfix of form \texttt{\_YYYY} on filename \\
140 twoDigitYear & \texttt{.FALSE.} &
141 instead of appending \texttt{\_YYYY} append \texttt{YY} \\
142 repeatPeriod & \texttt{0.0} & $ > 0 $ :
143 cycle through all input fields at the same period (in seconds) \\
144 ~ & ~ & $ = 0 $ :
145 use period assigned to each field \\
146 exf\_offset\_atemp & \texttt{0.0} & set to 273.16 to convert from deg. Kelvin (assumed input) to Celsius \\
147 windstressmax & \texttt{2.0} &
148 max. allowed wind stress $N/m^2$ \\
149 exf\_albedo & \texttt{0.1} &
150 surface albedo used to compute downward vs. net radiative fluxes \\
151 climtempfreeze & \texttt{-1.9} &
152 ??? \\
153 ocean\_emissivity & \texttt{} &
154 longwave ocean-surface emissivity \\
155 ice\_emissivity & \texttt{} &
156 longwave seaice emissivity \\
157 snow\_emissivity & \texttt{} &
158 longwave snow emissivity \\
159 exf\_iceCd & \texttt{1.63E-3} &
160 drag coefficient over sea-ice \\
161 exf\_iceCe & \texttt{1.63E-3} &
162 evaporation transfer coeff. over sea-ice \\
163 exf\_iceCh & \texttt{1.63E-3} &
164 sensible heat transfer coeff. over sea-ice \\
165 exf\_scal\_BulkCdn & \texttt{1.} &
166 overall scaling of neutral drag coeff. \\
167 useStabilityFct\_overIce & \texttt{.FALSE.} &
168 compute turbulent transfer coeff. over sea-ice \\
169 readStressOnAgrid & \texttt{.FALSE.} &
170 read wind-streess located on model-grid, A-grid point \\
171 readStressOnCgrid & \texttt{.FALSE.} &
172 read wind-streess located on model-grid, C-grid point \\
173 useRelativeWind & \texttt{.FALSE.} &
174 subtract [U/V]VEL or [U/VICE from U/V]WIND before \\
175 ~ & ~ & computing [U/V]STRESS \\
176 zref & \texttt{10.} &
177 reference height \\
178 hu & \texttt{10.} &
179 height of mean wind \\
180 ht & \texttt{2.} &
181 height of mean temperature and rel. humidity \\
182 umin & \texttt{0.5} &
183 minimum absolute wind speed for computing Cd \\
184 atmrho & \texttt{1.2} &
185 mean atmospheric density [kg/m\^3] \\
186 atmcp & \texttt{1005.} &
187 mean atmospheric specific heat [J/kg/K] \\
188 cdrag\_[n] & \texttt{???} &
189 n = 1,2,3; parameters for drag coeff. function \\
190 cstanton\_[n] & \texttt{???} &
191 n = 1,2; parameters for Stanton number function \\
192 cdalton & \texttt{???} &
193 parameter for Dalton number function \\
194 flamb & \texttt{2500000.} &
195 latent heat of evaporation [J/kg] \\
196 flami & \texttt{334000.} &
197 latent heat of melting of pure ice [J/kg] \\
198 zolmin & \texttt{-100.} &
199 minimum stability parameter \\
200 cvapor\_fac & \texttt{640380.} &
201 ~ \\
202 cvapor\_exp & \texttt{5107.4} &
203 ~ \\
204 cvapor\_fac\_ice & \texttt{11637800.} &
205 ~ \\
206 cvapor\_fac\_ice & \texttt{5897.8} &
207 ~ \\
208 humid\_fac & \texttt{0.606} &
209 parameter for virtual temperature calculation \\
210 gamma\_blk & \texttt{0.010} &
211 adiabatic lapse rate \\
212 saltsat & \texttt{0.980} &
213 reduction of saturation vapor pressure over salt-water \\
214 psim\_fac & \texttt{5.} &
215 ~ \\
216 exf\_monFreq & \texttt{monitorFreq} &
217 output frequency [s] \\
218 exf\_iprec & \texttt{32} &
219 precision of input fields (32-bit or 64-bit) \\
220 exf\_yftype & \texttt{'RL'} &
221 precision of arrays ('RL' vs. 'RS') \\
222 \hline
223 \end{tabular}
224 }
225 \caption{~}
226 \end{table}
227
228
229 \paragraph{Field attributes}
230 ~ \\
231 %
232 All EXF fields are listed in Section \ref{sec:pkg:exf:fields_units}.
233 Each field has a number of attributes which can be customized.
234 They are summarized in
235 Table \ref{tab:pkg:exf:runtime_attributes}.
236 To obtain an attribute for a specific field, e.g. \texttt{uwind}
237 prepend the field name to the listed attribute, e.g. for attribute
238 \texttt{period} this yields \texttt{uwindperiod}:
239 %
240 \begin{eqnarray*}
241 \begin{array}{cccccc}
242 ~ & \texttt{field} & \& & \texttt{attribute} & \longrightarrow & \texttt{parameter} \\
243 \text{e.g.} & \text{uwind} & \& & \text{period} & \longrightarrow & \text{uwindperiod} \\
244 \end{array}
245 \end{eqnarray*}
246 %
247
248 \begin{table}[h!]
249 \centering
250 \label{tab:pkg:exf:runtime_attributes}
251 {\footnotesize
252 \begin{tabular}{|l|c|l|}
253 \hline
254 \textbf{attribute} & \textbf{Default} & \textbf{Description} \\
255 \hline \hline
256 \textit{field}\texttt{file} & ' ' &
257 filename; if left empty no file will be read; \texttt{const} will be used instead \\
258 \textit{field}\texttt{const} & 0. &
259 constant that will be used if no file is read \\
260 \textit{field}\texttt{startdate1} & 0. &
261 format: \texttt{YYYYMMDD}; start year (YYYY), month (MM), day (YY) \\
262 ~&~& of field to determine record number \\
263 \textit{field}\texttt{startdate2} & 0. &
264 format: \texttt{HHMMSS}; start hour (HH), minute (MM), second(SS) \\
265 ~&~& of field to determine record number\\
266 \textit{field}\texttt{period} & 0. &
267 interval in seconds between two records \\
268 \texttt{exf\_inscal\_}\textit{field}& ~ &
269 optional rescaling of input fields to comply with EXF units \\
270 \texttt{exf\_outscal\_}\textit{field}& ~ &
271 optional rescaling of EXF fields when mapped onto MITgcm fields \\
272 \hline
273 \multicolumn{3}{|c|}{\textit{used in conjunction with}
274 \texttt{EXF\_USE\_INTERPOLATION}} \\
275 \hline
276 \textit{field}\texttt{\_lon0} & $xgOrigin+delX/2$ &
277 starting longitude of input \\
278 \textit{field}\texttt{\_lon\_inc} & $delX$ &
279 increment in longitude of input \\
280 \textit{field}\texttt{\_lat0} & $ygOrigin+delY/2$ &
281 starting latitude of input \\
282 \textit{field}\texttt{\_lat\_inc} & $delY$ &
283 increment in latitude of input \\
284 \textit{field}\texttt{\_nlon} & $Nx$ &
285 number of grid points in longitude of input \\
286 \textit{field}\texttt{\_nlat} & $Ny$ &
287 number of grid points in longitude of input \\
288 \hline
289 \end{tabular}
290 }
291 \caption{\newline
292 Note one exception for the default of
293 \texttt{atempconst} = celsius2K = 273.16}
294 \end{table}
295
296 \paragraph{Example configuration} ~ \\
297 %
298 The following block is taken from the \texttt{data.exf} file
299 of the veification experiment \texttt{global\_with\_exf/}.
300 It defines attributes for the heat flux variable \texttt{hflux}:
301
302 \begin{verbatim}
303 hfluxfile = 'ncep_qnet.bin',
304 hfluxstartdate1 = 19920101,
305 hfluxstartdate2 = 000000,
306 hfluxperiod = 2592000.0,
307 hflux_lon0 = 2
308 hflux_lon_inc = 4
309 hflux_lat0 = -78
310 hflux_lat_inc = 39*4
311 hflux_nlon = 90
312 hflux_nlat = 40
313 \end{verbatim}
314
315 EXF will read a file of name 'ncep\_qnet.bin'.
316 Its first record represents January 1st, 1991 at 00:00 UTC.
317 Next record is 2592000 seconds (or 30 days) later.
318 Interpolation on-the-fly is used (in the present case trivially
319 on the same grid, but included nevertheless for illustration),
320 and input field grid starting coordinates and increments are
321 supplied as well.
322
323 %----------------------------------------------------------------------
324
325 \subsubsection{EXF bulk formulae
326 \label{sec:pkg:exf:bulk_formulae}}
327
328 T.B.D. (cross-ref. to parameter list table)
329
330 %----------------------------------------------------------------------
331
332 \subsubsection{EXF input fields and units
333 \label{sec:pkg:exf:fields_units}}
334
335 The following list is taken from the header file \texttt{exf\_fields.h}.
336 It comprises all EXF input fields.
337
338 Output fields which EXF provides to the MITgcm are fields
339 \textbf{fu}, \textbf{fv}, \textbf{Qnet}, \textbf{Qsw}, \textbf{EmPmR},
340 and \textbf{pload}. They are defined in \texttt{FFIELDS.h}.
341
342 {\footnotesize
343 \begin{verbatim}
344
345 c----------------------------------------------------------------------
346 c |
347 c field :: Description
348 c |
349 c----------------------------------------------------------------------
350 c ustress :: Zonal surface wind stress in N/m^2
351 c | > 0 for increase in uVel, which is west to
352 c | east for cartesian and spherical polar grids
353 c | Typical range: -0.5 < ustress < 0.5
354 c | Southwest C-grid U point
355 c | Input field
356 c----------------------------------------------------------------------
357 c vstress :: Meridional surface wind stress in N/m^2
358 c | > 0 for increase in vVel, which is south to
359 c | north for cartesian and spherical polar grids
360 c | Typical range: -0.5 < vstress < 0.5
361 c | Southwest C-grid V point
362 c | Input field
363 c----------------------------------------------------------------------
364 c hs :: sensible heat flux into ocean in W/m^2
365 c | > 0 for increase in theta (ocean warming)
366 c----------------------------------------------------------------------
367 c hl :: latent heat flux into ocean in W/m^2
368 c | > 0 for increase in theta (ocean warming)
369 c----------------------------------------------------------------------
370 c hflux :: Net upward surface heat flux in W/m^2
371 c | excluding shortwave (on input)
372 c | hflux = latent + sensible + lwflux
373 c | > 0 for decrease in theta (ocean cooling)
374 c | Typical range: -250 < hflux < 600
375 c | Southwest C-grid tracer point
376 c | Input field
377 c----------------------------------------------------------------------
378 c sflux :: Net upward freshwater flux in m/s
379 c | sflux = evap - precip - runoff
380 c | > 0 for increase in salt (ocean salinity)
381 c | Typical range: -1e-7 < sflux < 1e-7
382 c | Southwest C-grid tracer point
383 c | Input field
384 c----------------------------------------------------------------------
385 c swflux :: Net upward shortwave radiation in W/m^2
386 c | swflux = - ( swdown - ice and snow absorption - reflected )
387 c | > 0 for decrease in theta (ocean cooling)
388 c | Typical range: -350 < swflux < 0
389 c | Southwest C-grid tracer point
390 c | Input field
391 c----------------------------------------------------------------------
392 c uwind :: Surface (10-m) zonal wind velocity in m/s
393 c | > 0 for increase in uVel, which is west to
394 c | east for cartesian and spherical polar grids
395 c | Typical range: -10 < uwind < 10
396 c | Southwest C-grid U point
397 c | Input or input/output field
398 c----------------------------------------------------------------------
399 c vwind :: Surface (10-m) meridional wind velocity in m/s
400 c | > 0 for increase in vVel, which is south to
401 c | north for cartesian and spherical polar grids
402 c | Typical range: -10 < vwind < 10
403 c | Southwest C-grid V point
404 c | Input or input/output field
405 c----------------------------------------------------------------------
406 c wspeed :: Surface (10-m) wind speed in m/s
407 c | >= 0 sqrt(u^2+v^2)
408 c | Typical range: 0 < wspeed < 10
409 c | Input or input/output field
410 c----------------------------------------------------------------------
411 c atemp :: Surface (2-m) air temperature in deg K
412 c | Typical range: 200 < atemp < 300
413 c | Southwest C-grid tracer point
414 c | Input or input/output field
415 c----------------------------------------------------------------------
416 c aqh :: Surface (2m) specific humidity in kg/kg
417 c | Typical range: 0 < aqh < 0.02
418 c | Southwest C-grid tracer point
419 c | Input or input/output field
420 c----------------------------------------------------------------------
421 c lwflux :: Net upward longwave radiation in W/m^2
422 c | lwflux = - ( lwdown - ice and snow absorption - emitted )
423 c | > 0 for decrease in theta (ocean cooling)
424 c | Typical range: -20 < lwflux < 170
425 c | Southwest C-grid tracer point
426 c | Input field
427 c----------------------------------------------------------------------
428 c evap :: Evaporation in m/s
429 c | > 0 for increase in salt (ocean salinity)
430 c | Typical range: 0 < evap < 2.5e-7
431 c | Southwest C-grid tracer point
432 c | Input, input/output, or output field
433 c----------------------------------------------------------------------
434 c precip :: Precipitation in m/s
435 c | > 0 for decrease in salt (ocean salinity)
436 c | Typical range: 0 < precip < 5e-7
437 c | Southwest C-grid tracer point
438 c | Input or input/output field
439 c----------------------------------------------------------------------
440 c snowprecip :: snow in m/s
441 c | > 0 for decrease in salt (ocean salinity)
442 c | Typical range: 0 < precip < 5e-7
443 c | Input or input/output field
444 c----------------------------------------------------------------------
445 c runoff :: River and glacier runoff in m/s
446 c | > 0 for decrease in salt (ocean salinity)
447 c | Typical range: 0 < runoff < ????
448 c | Southwest C-grid tracer point
449 c | Input or input/output field
450 c | !!! WATCH OUT: Default exf_inscal_runoff !!!
451 c | !!! in exf_readparms.F is not 1.0 !!!
452 c----------------------------------------------------------------------
453 c swdown :: Downward shortwave radiation in W/m^2
454 c | > 0 for increase in theta (ocean warming)
455 c | Typical range: 0 < swdown < 450
456 c | Southwest C-grid tracer point
457 c | Input/output field
458 c----------------------------------------------------------------------
459 c lwdown :: Downward longwave radiation in W/m^2
460 c | > 0 for increase in theta (ocean warming)
461 c | Typical range: 50 < lwdown < 450
462 c | Southwest C-grid tracer point
463 c | Input/output field
464 c----------------------------------------------------------------------
465 c apressure :: Atmospheric pressure field in N/m^2
466 c | > 0 for ????
467 c | Typical range: ???? < apressure < ????
468 c | Southwest C-grid tracer point
469 c | Input field
470 c----------------------------------------------------------------------
471
472 \end{verbatim}
473 }
474
475 %----------------------------------------------------------------------
476
477 \subsubsection{Key subroutines
478 \label{sec:pkg:exf:subroutines}}
479
480 Top-level routine: \texttt{exf\_getforcing.F}
481
482 {\footnotesize
483 \begin{verbatim}
484
485 C !CALLING SEQUENCE:
486 c ...
487 c exf_getforcing (TOP LEVEL ROUTINE)
488 c |
489 c |-- exf_getclim (get climatological fields used e.g. for relax.)
490 c | |--- exf_set_climsst (relax. to 2-D SST field)
491 c | |--- exf_set_climsss (relax. to 2-D SSS field)
492 c | o
493 c |
494 c |-- exf_getffields <- this one does almost everything
495 c | | 1. reads in fields, either flux or atmos. state,
496 c | | depending on CPP options (for each variable two fields
497 c | | consecutive in time are read in and interpolated onto
498 c | | current time step).
499 c | | 2. If forcing is atmos. state and control is atmos. state,
500 c | | then the control variable anomalies are read here via ctrl_get_gen
501 c | | (atemp, aqh, precip, swflux, swdown, uwind, vwind).
502 c | | If forcing and control are fluxes, then
503 c | | controls are added later.
504 c | o
505 c |
506 c |-- exf_radiation
507 c | | Compute net or downwelling radiative fluxes via
508 c | | Stefan-Boltzmann law in case only one is known.
509 c | o
510 c |-- exf_wind
511 c | | Computes wind speed and stresses, if required.
512 c | o
513 c |
514 c |-- exf_bulkformulae
515 c | | Compute air-sea buoyancy fluxes from
516 c | | atmospheric state following Large and Pond, JPO, 1981/82
517 c | o
518 c |
519 c |-- < hflux is sum of sensible, latent, longwave rad. >
520 c |-- < sflux is sum of evap. minus precip. minus runoff >
521 c |
522 c |-- exf_getsurfacefluxes
523 c | If forcing and control is flux, then the
524 c | control vector anomalies are read here via ctrl_get_gen
525 c | (hflux, sflux, ustress, vstress)
526 c |
527 c |-- < update tile edges here >
528 c |
529 c |-- exf_check_range
530 c | | Check whether read fields are within assumed range
531 c | | (may capture mismatches in units)
532 c | o
533 c |
534 c |-- < add shortwave to hflux for diagnostics >
535 c |
536 c |-- exf_diagnostics_fill
537 c | | Do EXF-related diagnostics output here.
538 c | o
539 c |
540 c |-- exf_mapfields
541 c | | Forcing fields from exf package are mapped onto
542 c | | mitgcm forcing arrays.
543 c | | Mapping enables a runtime rescaling of fields
544 c | o
545 C o
546 \end{verbatim}
547 }
548
549 Radiation calculation: \texttt{exf\_radiation.F}
550
551 Wind speed and stress calculation: \texttt{exf\_wind.F}
552
553 Bulk formula: \texttt{exf\_bulkformulae.F}
554
555 Generic I/O: \texttt{exf\_set\_gen.F}
556
557 Interpolation: \texttt{exf\_interp.F}
558
559 Header routines
560
561 %----------------------------------------------------------------------
562
563 \subsubsection{EXF diagnostics
564 \label{sec:pkg:exf:diagnostics}}
565
566 Diagnostics output is available via the diagnostics package
567 (see Section \ref{sec:pkg:diagnostics}).
568 Available output fields are summarized in
569 Table \ref{tab:pkg:exf:diagnostics}.
570
571 \begin{table}[h!]
572 \centering
573 \label{tab:pkg:exf:diagnostics}
574 {\footnotesize
575 \begin{verbatim}
576 ---------+----+----+----------------+-----------------
577 <-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)
578 ---------+----+----+----------------+-----------------
579 EXFhs | 1 | SM | W/m^2 | Sensible heat flux into ocean, >0 increases theta
580 EXFhl | 1 | SM | W/m^2 | Latent heat flux into ocean, >0 increases theta
581 EXFlwnet| 1 | SM | W/m^2 | Net upward longwave radiation, >0 decreases theta
582 EXFswnet| 1 | SM | W/m^2 | Net upward shortwave radiation, >0 decreases theta
583 EXFlwdn | 1 | SM | W/m^2 | Downward longwave radiation, >0 increases theta
584 EXFswdn | 1 | SM | W/m^2 | Downward shortwave radiation, >0 increases theta
585 EXFqnet | 1 | SM | W/m^2 | Net upward heat flux (turb+rad), >0 decreases theta
586 EXFtaux | 1 | SU | N/m^2 | zonal surface wind stress, >0 increases uVel
587 EXFtauy | 1 | SV | N/m^2 | meridional surface wind stress, >0 increases vVel
588 EXFuwind| 1 | SM | m/s | zonal 10-m wind speed, >0 increases uVel
589 EXFvwind| 1 | SM | m/s | meridional 10-m wind speed, >0 increases uVel
590 EXFwspee| 1 | SM | m/s | 10-m wind speed modulus ( >= 0 )
591 EXFatemp| 1 | SM | degK | surface (2-m) air temperature
592 EXFaqh | 1 | SM | kg/kg | surface (2-m) specific humidity
593 EXFevap | 1 | SM | m/s | evaporation, > 0 increases salinity
594 EXFpreci| 1 | SM | m/s | evaporation, > 0 decreases salinity
595 EXFsnow | 1 | SM | m/s | snow precipitation, > 0 decreases salinity
596 EXFempmr| 1 | SM | m/s | net upward freshwater flux, > 0 increases salinity
597 EXFpress| 1 | SM | N/m^2 | atmospheric pressure field
598 \end{verbatim}
599 }
600 \caption{~}
601 \end{table}
602
603 %----------------------------------------------------------------------
604
605 \subsubsection{Experiments and tutorials that use exf}
606 \label{sec:pkg:exf:experiments}
607
608 \begin{itemize}
609 \item{Global Ocean experiment, in global\_with\_exf verification directory }
610 \item{Labrador Sea experiment, in lab\_sea verification directory }
611 \end{itemize}
612
613 %----------------------------------------------------------------------
614
615 \subsubsection{References}

  ViewVC Help
Powered by ViewVC 1.1.22