| 1 | 
\subsection{EXF: The external forcing package | 
| 2 | 
\label{sec:pkg:exf}} | 
| 3 | 
\begin{rawhtml} | 
| 4 | 
<!-- CMIREDIR:sectionexf: --> | 
| 5 | 
\end{rawhtml} | 
| 6 | 
 | 
| 7 | 
Authors: Patrick Heimbach and Dimitris Menemenlis | 
| 8 | 
 | 
| 9 | 
\subsubsection{Introduction | 
| 10 | 
\label{sec:pkg:exf:intro}} | 
| 11 | 
 | 
| 12 | 
The external forcing package, in conjunction with the | 
| 13 | 
calendar package (cal), enables the handling of real-time | 
| 14 | 
(or ``model-time'') forcing | 
| 15 | 
fields of differing temporal forcing patterns. | 
| 16 | 
It comprises climatological restoring and relaxation. | 
| 17 | 
Bulk formulae are implemented to convert atmospheric fields | 
| 18 | 
to surface fluxes. | 
| 19 | 
An interpolation routine provides on-the-fly interpolation of | 
| 20 | 
forcing fields an arbitrary grid onto the model grid. | 
| 21 | 
 | 
| 22 | 
CPP options enable or disable different aspects of the package | 
| 23 | 
(Section \ref{sec:pkg:exf:config}). | 
| 24 | 
Runtime options, flags, filenames and field-related dates/times are | 
| 25 | 
set in \texttt{data.exf} | 
| 26 | 
(Section \ref{sec:pkg:exf:runtime}). | 
| 27 | 
A description of key subroutines is given in Section | 
| 28 | 
\ref{sec:pkg:exf:subroutines}. | 
| 29 | 
Input fields, units and sign conventions are summarized in | 
| 30 | 
Section \ref{sec:pkg:exf:fields_units}, and available diagnostics | 
| 31 | 
output is listed in Section \ref{sec:pkg:exf:diagnostics}. | 
| 32 | 
 | 
| 33 | 
%---------------------------------------------------------------------- | 
| 34 | 
 | 
| 35 | 
\subsubsection{EXF configuration, compiling \& running} | 
| 36 | 
 | 
| 37 | 
\paragraph{Compile-time options | 
| 38 | 
\label{sec:pkg:exf:config}} | 
| 39 | 
~ | 
| 40 | 
 | 
| 41 | 
As with all MITgcm packages, EXF can be turned on or off at compile time | 
| 42 | 
% | 
| 43 | 
\begin{itemize} | 
| 44 | 
% | 
| 45 | 
\item | 
| 46 | 
using the \texttt{packages.conf} file by adding \texttt{exf} to it, | 
| 47 | 
% | 
| 48 | 
\item | 
| 49 | 
or using \texttt{genmake2} adding | 
| 50 | 
\texttt{-enable=exf} or \texttt{-disable=exf} switches | 
| 51 | 
% | 
| 52 | 
\item | 
| 53 | 
\textit{required packages and CPP options}: \\ | 
| 54 | 
EXF requires the calendar package \texttt{cal} to be enabled; | 
| 55 | 
no additional CPP options are required. | 
| 56 | 
% | 
| 57 | 
\end{itemize} | 
| 58 | 
(see Section \ref{sec:buildingCode}). | 
| 59 | 
 | 
| 60 | 
Parts of the EXF code can be enabled or disabled at compile time | 
| 61 | 
via CPP preprocessor flags. These options are set in either | 
| 62 | 
\texttt{EXF\_OPTIONS.h} or in \texttt{ECCO\_CPPOPTIONS.h}. | 
| 63 | 
Table \ref{tab:pkg:exf:cpp} summarizes these options. | 
| 64 | 
 | 
| 65 | 
\begin{table}[b!] | 
| 66 | 
  \centering | 
| 67 | 
  {\footnotesize | 
| 68 | 
    \begin{tabular}{|l|l|} | 
| 69 | 
      \hline  | 
| 70 | 
      \textbf{CPP option}  &  \textbf{Description}  \\ | 
| 71 | 
      \hline \hline | 
| 72 | 
        \texttt{EXF\_VERBOSE} &  | 
| 73 | 
          verbose mode (recommended only for testing) \\ | 
| 74 | 
        \texttt{ALLOW\_ATM\_TEMP} &  | 
| 75 | 
          compute heat/freshwater fluxes from atmos. state input \\ | 
| 76 | 
        \texttt{ALLOW\_ATM\_WIND} &  | 
| 77 | 
          compute wind stress from wind speed input\\ | 
| 78 | 
        \texttt{ALLOW\_BULKFORMULAE} &  | 
| 79 | 
          is used if \texttt{ALLOW\_ATM\_TEMP} or  | 
| 80 | 
          \texttt{ALLOW\_ATM\_WIND} is enabled \\ | 
| 81 | 
        \texttt{EXF\_READ\_EVAP} & read evaporation instead of computing it \\ | 
| 82 | 
        \texttt{ALLOW\_RUNOFF} & read time-constant river/glacier run-off field \\ | 
| 83 | 
        \texttt{ALLOW\_DOWNWARD\_RADIATION} & compute net from downward or downward from net radiation \\ | 
| 84 | 
        \texttt{USE\_EXF\_INTERPOLATION} & enable on-the-fly bilinear or bicubic interpolation of input fields \\ | 
| 85 | 
      \hline | 
| 86 | 
         \multicolumn{2}{|c|}{\textit{used in conjunction with relaxation to prescribed (climatological) fields}} \\ | 
| 87 | 
         \hline | 
| 88 | 
        \texttt{ALLOW\_CLIMSST\_RELAXATION} & | 
| 89 | 
          relaxation to 2-D SST climatology \\ | 
| 90 | 
        \texttt{ALLOW\_CLIMSSS\_RELAXATION} & | 
| 91 | 
          relaxation to 2-D SSS climatology  \\ | 
| 92 | 
      \hline | 
| 93 | 
         \multicolumn{2}{|c|}{\textit{these are set outside of EXF in} \texttt{CPP\_OPTIONS.h}} \\ | 
| 94 | 
         \hline | 
| 95 | 
        \texttt{SHORTWAVE\_HEATING} & enable shortwave radiation \\ | 
| 96 | 
        \texttt{ATMOSPHERIC\_LOADING} & enable surface pressure forcing \\ | 
| 97 | 
      \hline | 
| 98 | 
    \end{tabular} | 
| 99 | 
  } | 
| 100 | 
  \caption{~} | 
| 101 | 
  \label{tab:pkg:exf:cpp} | 
| 102 | 
\end{table} | 
| 103 | 
 | 
| 104 | 
 | 
| 105 | 
%---------------------------------------------------------------------- | 
| 106 | 
 | 
| 107 | 
\subsubsection{Run-time parameters | 
| 108 | 
\label{sec:pkg:exf:runtime}} | 
| 109 | 
 | 
| 110 | 
Run-time parameters are set in files  | 
| 111 | 
\texttt{data.pkg}, \texttt{data.exf}, and  | 
| 112 | 
\texttt{data.exf\_clim} (for relaxation/climatological fields) | 
| 113 | 
which are read in \texttt{exf\_readparms.F}. | 
| 114 | 
Run-time parameters may be broken into 3 categories: | 
| 115 | 
(i) switching on/off the package at runtime, | 
| 116 | 
(ii) general flags and parameters, and | 
| 117 | 
(iii) attributes for each forcing and climatological field. | 
| 118 | 
 | 
| 119 | 
\paragraph{Enabling the package} | 
| 120 | 
~ \\ | 
| 121 | 
% | 
| 122 | 
A package is switched on/off at runtime by setting | 
| 123 | 
(e.g. for EXF) \texttt{useEXF = .TRUE.} in \texttt{data.pkg}. | 
| 124 | 
 | 
| 125 | 
\paragraph{General flags and parameters} | 
| 126 | 
~ \\ | 
| 127 | 
% | 
| 128 | 
\begin{table}[!ht] | 
| 129 | 
  \centering | 
| 130 | 
  {\footnotesize | 
| 131 | 
    \begin{tabular}{|l|c|l|} | 
| 132 | 
      \hline  | 
| 133 | 
      \textbf{Flag/parameter} & \textbf{default} &  \textbf{Description}  \\ | 
| 134 | 
      \hline \hline | 
| 135 | 
        useExfCheckRange & \texttt{.TRUE.} &  | 
| 136 | 
           check range of input fields and stop if out of range \\ | 
| 137 | 
        useExfYearlyFields & \texttt{.FALSE.} &  | 
| 138 | 
           append current year postfix of form \texttt{\_YYYY} on filename \\ | 
| 139 | 
        twoDigitYear & \texttt{.FALSE.} &  | 
| 140 | 
           instead of appending \texttt{\_YYYY} append  \texttt{YY} \\ | 
| 141 | 
        repeatPeriod & \texttt{0.0} & $ > 0 $ :  | 
| 142 | 
           cycle through all input fields at the same period (in seconds) \\ | 
| 143 | 
        ~            & ~            & $ = 0 $ : | 
| 144 | 
           use period assigned to each field \\ | 
| 145 | 
        exf\_offset\_atemp & \texttt{0.0} & set to 273.16 to convert from deg. Kelvin (assumed input) to Celsius \\ | 
| 146 | 
        windstressmax & \texttt{2.0} &  | 
| 147 | 
           max. allowed wind stress $N/m^2$ \\ | 
| 148 | 
        exf\_albedo & \texttt{0.1} &  | 
| 149 | 
          surface albedo used to compute downward vs. net radiative fluxes \\ | 
| 150 | 
        climtempfreeze & \texttt{-1.9} &  | 
| 151 | 
          ??? \\ | 
| 152 | 
        ocean\_emissivity & \texttt{} &  | 
| 153 | 
          longwave ocean-surface emissivity \\ | 
| 154 | 
        ice\_emissivity & \texttt{} &  | 
| 155 | 
          longwave seaice emissivity \\ | 
| 156 | 
        snow\_emissivity & \texttt{} &  | 
| 157 | 
          longwave  snow  emissivity \\ | 
| 158 | 
        exf\_iceCd & \texttt{1.63E-3} &  | 
| 159 | 
          drag coefficient over sea-ice \\ | 
| 160 | 
        exf\_iceCe & \texttt{1.63E-3} &  | 
| 161 | 
          evaporation transfer coeff. over sea-ice \\ | 
| 162 | 
        exf\_iceCh & \texttt{1.63E-3} &  | 
| 163 | 
          sensible heat transfer coeff. over sea-ice \\ | 
| 164 | 
        exf\_scal\_BulkCdn & \texttt{1.} &  | 
| 165 | 
          overall scaling of neutral drag coeff. \\ | 
| 166 | 
        useStabilityFct\_overIce  & \texttt{.FALSE.} &  | 
| 167 | 
          compute turbulent transfer coeff. over sea-ice \\ | 
| 168 | 
        readStressOnAgrid & \texttt{.FALSE.} &  | 
| 169 | 
          read wind-streess located on model-grid, A-grid point \\ | 
| 170 | 
        readStressOnCgrid & \texttt{.FALSE.} &  | 
| 171 | 
          read wind-streess located on model-grid, C-grid point \\ | 
| 172 | 
        useRelativeWind & \texttt{.FALSE.} &  | 
| 173 | 
          subtract [U/V]VEL or [U/VICE from U/V]WIND before \\ | 
| 174 | 
        ~ & ~ &  computing [U/V]STRESS \\ | 
| 175 | 
        zref & \texttt{10.} &  | 
| 176 | 
          reference height \\ | 
| 177 | 
        hu & \texttt{10.} &  | 
| 178 | 
          height of mean wind \\ | 
| 179 | 
        ht & \texttt{2.} &  | 
| 180 | 
          height of mean temperature and rel. humidity \\ | 
| 181 | 
        umin & \texttt{0.5} &  | 
| 182 | 
          minimum absolute wind speed for computing Cd \\ | 
| 183 | 
        atmrho & \texttt{1.2} &  | 
| 184 | 
          mean atmospheric density [kg/m\^3] \\ | 
| 185 | 
        atmcp & \texttt{1005.} &  | 
| 186 | 
          mean atmospheric specific heat [J/kg/K] \\ | 
| 187 | 
        cdrag\_[n] & \texttt{???} &  | 
| 188 | 
          n = 1,2,3; parameters for drag coeff. function \\ | 
| 189 | 
        cstanton\_[n] & \texttt{???} &  | 
| 190 | 
          n = 1,2; parameters for Stanton number function \\ | 
| 191 | 
        cdalton & \texttt{???} &  | 
| 192 | 
          parameter for Dalton number function \\ | 
| 193 | 
        flamb & \texttt{2500000.} &  | 
| 194 | 
          latent heat of evaporation [J/kg] \\ | 
| 195 | 
        flami & \texttt{334000.} &  | 
| 196 | 
          latent heat of melting of pure ice [J/kg] \\ | 
| 197 | 
        zolmin & \texttt{-100.} &  | 
| 198 | 
          minimum stability parameter \\ | 
| 199 | 
        cvapor\_fac & \texttt{640380.} &  | 
| 200 | 
          ~ \\ | 
| 201 | 
        cvapor\_exp & \texttt{5107.4} &  | 
| 202 | 
          ~ \\ | 
| 203 | 
        cvapor\_fac\_ice & \texttt{11637800.} &  | 
| 204 | 
          ~ \\ | 
| 205 | 
        cvapor\_fac\_ice & \texttt{5897.8} &  | 
| 206 | 
          ~ \\ | 
| 207 | 
        humid\_fac & \texttt{0.606} &  | 
| 208 | 
          parameter for virtual temperature calculation \\ | 
| 209 | 
        gamma\_blk & \texttt{0.010} &  | 
| 210 | 
          adiabatic lapse rate \\ | 
| 211 | 
        saltsat & \texttt{0.980} &  | 
| 212 | 
          reduction of saturation vapor pressure over salt-water \\           | 
| 213 | 
        psim\_fac & \texttt{5.} &  | 
| 214 | 
          ~ \\           | 
| 215 | 
        exf\_monFreq & \texttt{monitorFreq} &  | 
| 216 | 
          output frequency [s] \\ | 
| 217 | 
        exf\_iprec  & \texttt{32} &  | 
| 218 | 
          precision of input fields (32-bit or 64-bit) \\ | 
| 219 | 
        exf\_yftype & \texttt{'RL'} &  | 
| 220 | 
          precision of arrays ('RL' vs. 'RS') \\ | 
| 221 | 
      \hline | 
| 222 | 
    \end{tabular} | 
| 223 | 
  } | 
| 224 | 
  \caption{~} | 
| 225 | 
  \label{tab:pkg:exf:runtime_flags} | 
| 226 | 
\end{table} | 
| 227 | 
 | 
| 228 | 
 | 
| 229 | 
\paragraph{Field attributes}  | 
| 230 | 
~ \\ | 
| 231 | 
% | 
| 232 | 
All EXF fields are listed in Section \ref{sec:pkg:exf:fields_units}. | 
| 233 | 
Each field has a number of attributes which can be customized. | 
| 234 | 
They are summarized in | 
| 235 | 
Table \ref{tab:pkg:exf:runtime_attributes}. | 
| 236 | 
To obtain an attribute for a specific field, e.g. \texttt{uwind} | 
| 237 | 
prepend the field name to the listed attribute, e.g. for attribute | 
| 238 | 
\texttt{period} this yields \texttt{uwindperiod}: | 
| 239 | 
% | 
| 240 | 
\begin{eqnarray*} | 
| 241 | 
  \begin{array}{cccccc} | 
| 242 | 
    ~ & \texttt{field} & \& & \texttt{attribute} & \longrightarrow & \texttt{parameter} \\ | 
| 243 | 
    \text{e.g.} & \text{uwind} & \& & \text{period} & \longrightarrow & \text{uwindperiod} \\ | 
| 244 | 
  \end{array} | 
| 245 | 
\end{eqnarray*} | 
| 246 | 
% | 
| 247 | 
 | 
| 248 | 
\begin{table}[!ht] | 
| 249 | 
  \centering | 
| 250 | 
  {\footnotesize | 
| 251 | 
    \begin{tabular}{|l|c|l|} | 
| 252 | 
      \hline  | 
| 253 | 
      \textbf{attribute} &  \textbf{Default} &  \textbf{Description}  \\ | 
| 254 | 
      \hline \hline | 
| 255 | 
         \textit{field}\texttt{file} & ' ' &  | 
| 256 | 
           filename; if left empty no file will be read; \texttt{const} will be used instead \\ | 
| 257 | 
         \textit{field}\texttt{const} & 0. & | 
| 258 | 
           constant that will be used if no file is read  \\ | 
| 259 | 
         \textit{field}\texttt{startdate1} & 0. &  | 
| 260 | 
           format: \texttt{YYYYMMDD}; start year (YYYY), month (MM), day (YY) \\ | 
| 261 | 
           ~&~& of field to determine record number \\ | 
| 262 | 
         \textit{field}\texttt{startdate2} & 0. & | 
| 263 | 
           format: \texttt{HHMMSS}; start hour (HH), minute (MM), second(SS) \\ | 
| 264 | 
           ~&~& of field to determine record number\\ | 
| 265 | 
         \textit{field}\texttt{period} & 0. & | 
| 266 | 
           interval in seconds between two records \\ | 
| 267 | 
         \texttt{exf\_inscal\_}\textit{field}& ~ &  | 
| 268 | 
           optional rescaling of input fields to comply with EXF units \\ | 
| 269 | 
         \texttt{exf\_outscal\_}\textit{field}& ~ & | 
| 270 | 
           optional rescaling of EXF fields when mapped onto MITgcm fields \\ | 
| 271 | 
         \hline | 
| 272 | 
         \multicolumn{3}{|c|}{\textit{used in conjunction with}  | 
| 273 | 
                              \texttt{EXF\_USE\_INTERPOLATION}} \\ | 
| 274 | 
         \hline | 
| 275 | 
         \textit{field}\texttt{\_lon0} & $xgOrigin+delX/2$  &  | 
| 276 | 
           starting longitude of input \\ | 
| 277 | 
         \textit{field}\texttt{\_lon\_inc} & $delX$ & | 
| 278 | 
           increment in longitude of input \\ | 
| 279 | 
         \textit{field}\texttt{\_lat0} &  $ygOrigin+delY/2$ & | 
| 280 | 
           starting latitude of input \\ | 
| 281 | 
         \textit{field}\texttt{\_lat\_inc} & $delY$ & | 
| 282 | 
           increment in latitude of input \\ | 
| 283 | 
         \textit{field}\texttt{\_nlon} & $Nx$ & | 
| 284 | 
           number of grid points in longitude of input \\ | 
| 285 | 
         \textit{field}\texttt{\_nlat} & $Ny$ & | 
| 286 | 
           number of grid points in longitude of input \\ | 
| 287 | 
      \hline | 
| 288 | 
    \end{tabular} | 
| 289 | 
   } | 
| 290 | 
  \caption{\newline | 
| 291 | 
           Note one exception for the default of  | 
| 292 | 
           \texttt{atempconst} = celsius2K = 273.16} | 
| 293 | 
  \label{tab:pkg:exf:runtime_attributes} | 
| 294 | 
\end{table} | 
| 295 | 
 | 
| 296 | 
\paragraph{Example configuration} ~ \\ | 
| 297 | 
% | 
| 298 | 
The following block is taken from the \texttt{data.exf} file | 
| 299 | 
of the veification experiment \texttt{global\_with\_exf/}. | 
| 300 | 
It defines attributes for the heat flux variable \texttt{hflux}: | 
| 301 | 
 | 
| 302 | 
\begin{verbatim} | 
| 303 | 
 hfluxfile       = 'ncep_qnet.bin', | 
| 304 | 
 hfluxstartdate1 = 19920101, | 
| 305 | 
 hfluxstartdate2 = 000000, | 
| 306 | 
 hfluxperiod     = 2592000.0, | 
| 307 | 
 hflux_lon0      = 2 | 
| 308 | 
 hflux_lon_inc   = 4 | 
| 309 | 
 hflux_lat0      = -78 | 
| 310 | 
 hflux_lat_inc   = 39*4 | 
| 311 | 
 hflux_nlon      = 90 | 
| 312 | 
 hflux_nlat      = 40 | 
| 313 | 
\end{verbatim} | 
| 314 | 
 | 
| 315 | 
EXF will read a file of name 'ncep\_qnet.bin'. | 
| 316 | 
Its first record represents January 1st, 1991 at 00:00 UTC. | 
| 317 | 
Next record is 2592000 seconds (or 30 days) later. | 
| 318 | 
Interpolation on-the-fly is used (in the present case trivially | 
| 319 | 
on the same grid, but included nevertheless for illustration),  | 
| 320 | 
and input field grid starting coordinates and increments are  | 
| 321 | 
supplied as well. | 
| 322 | 
 | 
| 323 | 
%---------------------------------------------------------------------- | 
| 324 | 
 | 
| 325 | 
\subsubsection{EXF bulk formulae | 
| 326 | 
\label{sec:pkg:exf:bulk_formulae}} | 
| 327 | 
 | 
| 328 | 
T.B.D. (cross-ref. to parameter list table) | 
| 329 | 
 | 
| 330 | 
%---------------------------------------------------------------------- | 
| 331 | 
 | 
| 332 | 
\subsubsection{EXF input fields and units | 
| 333 | 
\label{sec:pkg:exf:fields_units}} | 
| 334 | 
 | 
| 335 | 
The following list is taken from the header file \texttt{exf\_fields.h}. | 
| 336 | 
It comprises all EXF input fields. | 
| 337 | 
 | 
| 338 | 
Output fields which EXF provides to the MITgcm are fields | 
| 339 | 
\textbf{fu}, \textbf{fv}, \textbf{Qnet}, \textbf{Qsw}, \textbf{EmPmR}, | 
| 340 | 
and \textbf{pload}. They are defined in \texttt{FFIELDS.h}. | 
| 341 | 
 | 
| 342 | 
{\footnotesize | 
| 343 | 
\begin{verbatim} | 
| 344 | 
 | 
| 345 | 
c---------------------------------------------------------------------- | 
| 346 | 
c               | | 
| 347 | 
c     field     :: Description | 
| 348 | 
c               | | 
| 349 | 
c---------------------------------------------------------------------- | 
| 350 | 
c     ustress   :: Zonal surface wind stress in N/m^2 | 
| 351 | 
c               |  > 0 for increase in uVel, which is west to | 
| 352 | 
c               |      east for cartesian and spherical polar grids | 
| 353 | 
c               |  Typical range: -0.5 < ustress < 0.5 | 
| 354 | 
c               |  Southwest C-grid U point | 
| 355 | 
c               |  Input field | 
| 356 | 
c---------------------------------------------------------------------- | 
| 357 | 
c     vstress   :: Meridional surface wind stress in N/m^2 | 
| 358 | 
c               |  > 0 for increase in vVel, which is south to | 
| 359 | 
c               |      north for cartesian and spherical polar grids | 
| 360 | 
c               |  Typical range: -0.5 < vstress < 0.5 | 
| 361 | 
c               |  Southwest C-grid V point | 
| 362 | 
c               |  Input field | 
| 363 | 
c---------------------------------------------------------------------- | 
| 364 | 
c     hs        :: sensible heat flux into ocean in W/m^2 | 
| 365 | 
c               |  > 0 for increase in theta (ocean warming) | 
| 366 | 
c---------------------------------------------------------------------- | 
| 367 | 
c     hl        :: latent   heat flux into ocean in W/m^2 | 
| 368 | 
c               |  > 0 for increase in theta (ocean warming) | 
| 369 | 
c---------------------------------------------------------------------- | 
| 370 | 
c     hflux     :: Net upward surface heat flux in W/m^2  | 
| 371 | 
c               |  excluding shortwave (on input) | 
| 372 | 
c               |  hflux = latent + sensible + lwflux | 
| 373 | 
c               |  > 0 for decrease in theta (ocean cooling) | 
| 374 | 
c               |  Typical range: -250 < hflux < 600 | 
| 375 | 
c               |  Southwest C-grid tracer point | 
| 376 | 
c               |  Input field | 
| 377 | 
c---------------------------------------------------------------------- | 
| 378 | 
c     sflux     :: Net upward freshwater flux in m/s | 
| 379 | 
c               |  sflux = evap - precip - runoff | 
| 380 | 
c               |  > 0 for increase in salt (ocean salinity) | 
| 381 | 
c               |  Typical range: -1e-7 < sflux < 1e-7 | 
| 382 | 
c               |  Southwest C-grid tracer point | 
| 383 | 
c               |  Input field | 
| 384 | 
c---------------------------------------------------------------------- | 
| 385 | 
c     swflux    :: Net upward shortwave radiation in W/m^2 | 
| 386 | 
c               |  swflux = - ( swdown - ice and snow absorption - reflected ) | 
| 387 | 
c               |  > 0 for decrease in theta (ocean cooling) | 
| 388 | 
c               |  Typical range: -350 < swflux < 0 | 
| 389 | 
c               |  Southwest C-grid tracer point | 
| 390 | 
c               |  Input field | 
| 391 | 
c---------------------------------------------------------------------- | 
| 392 | 
c     uwind     :: Surface (10-m) zonal wind velocity in m/s | 
| 393 | 
c               |  > 0 for increase in uVel, which is west to | 
| 394 | 
c               |      east for cartesian and spherical polar grids | 
| 395 | 
c               |  Typical range: -10 < uwind < 10 | 
| 396 | 
c               |  Southwest C-grid U point | 
| 397 | 
c               |  Input or input/output field | 
| 398 | 
c---------------------------------------------------------------------- | 
| 399 | 
c     vwind     :: Surface (10-m) meridional wind velocity in m/s | 
| 400 | 
c               |  > 0 for increase in vVel, which is south to | 
| 401 | 
c               |      north for cartesian and spherical polar grids | 
| 402 | 
c               |  Typical range: -10 < vwind < 10 | 
| 403 | 
c               |  Southwest C-grid V point | 
| 404 | 
c               |  Input or input/output field | 
| 405 | 
c---------------------------------------------------------------------- | 
| 406 | 
c     wspeed    :: Surface (10-m) wind speed in m/s | 
| 407 | 
c               |  >= 0 sqrt(u^2+v^2) | 
| 408 | 
c               |  Typical range: 0 < wspeed < 10 | 
| 409 | 
c               |  Input or input/output field | 
| 410 | 
c---------------------------------------------------------------------- | 
| 411 | 
c     atemp     :: Surface (2-m) air temperature in deg K | 
| 412 | 
c               |  Typical range: 200 < atemp < 300 | 
| 413 | 
c               |  Southwest C-grid tracer point | 
| 414 | 
c               |  Input or input/output field | 
| 415 | 
c---------------------------------------------------------------------- | 
| 416 | 
c     aqh       :: Surface (2m) specific humidity in kg/kg | 
| 417 | 
c               |  Typical range: 0 < aqh < 0.02 | 
| 418 | 
c               |  Southwest C-grid tracer point | 
| 419 | 
c               |  Input or input/output field | 
| 420 | 
c---------------------------------------------------------------------- | 
| 421 | 
c     lwflux    :: Net upward longwave radiation in W/m^2 | 
| 422 | 
c               |  lwflux = - ( lwdown - ice and snow absorption - emitted ) | 
| 423 | 
c               |  > 0 for decrease in theta (ocean cooling) | 
| 424 | 
c               |  Typical range: -20 < lwflux < 170 | 
| 425 | 
c               |  Southwest C-grid tracer point | 
| 426 | 
c               |  Input field | 
| 427 | 
c---------------------------------------------------------------------- | 
| 428 | 
c     evap      :: Evaporation in m/s | 
| 429 | 
c               |  > 0 for increase in salt (ocean salinity) | 
| 430 | 
c               |  Typical range: 0 < evap < 2.5e-7 | 
| 431 | 
c               |  Southwest C-grid tracer point | 
| 432 | 
c               |  Input, input/output, or output field | 
| 433 | 
c---------------------------------------------------------------------- | 
| 434 | 
c     precip    :: Precipitation in m/s | 
| 435 | 
c               |  > 0 for decrease in salt (ocean salinity) | 
| 436 | 
c               |  Typical range: 0 < precip < 5e-7 | 
| 437 | 
c               |  Southwest C-grid tracer point | 
| 438 | 
c               |  Input or input/output field | 
| 439 | 
c---------------------------------------------------------------------- | 
| 440 | 
c    snowprecip :: snow in m/s | 
| 441 | 
c               |  > 0 for decrease in salt (ocean salinity) | 
| 442 | 
c               |  Typical range: 0 < precip < 5e-7 | 
| 443 | 
c               |  Input or input/output field | 
| 444 | 
c---------------------------------------------------------------------- | 
| 445 | 
c     runoff    :: River and glacier runoff in m/s | 
| 446 | 
c               |  > 0 for decrease in salt (ocean salinity) | 
| 447 | 
c               |  Typical range: 0 < runoff < ???? | 
| 448 | 
c               |  Southwest C-grid tracer point | 
| 449 | 
c               |  Input or input/output field | 
| 450 | 
c               |  !!! WATCH OUT: Default exf_inscal_runoff !!! | 
| 451 | 
c               |  !!! in exf_readparms.F is not 1.0        !!! | 
| 452 | 
c---------------------------------------------------------------------- | 
| 453 | 
c     swdown    :: Downward shortwave radiation in W/m^2 | 
| 454 | 
c               |  > 0 for increase in theta (ocean warming) | 
| 455 | 
c               |  Typical range: 0 < swdown < 450 | 
| 456 | 
c               |  Southwest C-grid tracer point | 
| 457 | 
c               |  Input/output field | 
| 458 | 
c---------------------------------------------------------------------- | 
| 459 | 
c     lwdown    :: Downward longwave radiation in W/m^2 | 
| 460 | 
c               |  > 0 for increase in theta (ocean warming) | 
| 461 | 
c               |  Typical range: 50 < lwdown < 450 | 
| 462 | 
c               |  Southwest C-grid tracer point | 
| 463 | 
c               |  Input/output field | 
| 464 | 
c---------------------------------------------------------------------- | 
| 465 | 
c     apressure :: Atmospheric pressure field in N/m^2 | 
| 466 | 
c               |  > 0 for ???? | 
| 467 | 
c               |  Typical range: ???? < apressure < ???? | 
| 468 | 
c               |  Southwest C-grid tracer point | 
| 469 | 
c               |  Input field | 
| 470 | 
c---------------------------------------------------------------------- | 
| 471 | 
 | 
| 472 | 
\end{verbatim} | 
| 473 | 
} | 
| 474 | 
 | 
| 475 | 
%---------------------------------------------------------------------- | 
| 476 | 
 | 
| 477 | 
\subsubsection{Key subroutines | 
| 478 | 
\label{sec:pkg:exf:subroutines}} | 
| 479 | 
 | 
| 480 | 
Top-level routine: \texttt{exf\_getforcing.F} | 
| 481 | 
 | 
| 482 | 
{\footnotesize | 
| 483 | 
\begin{verbatim} | 
| 484 | 
 | 
| 485 | 
C     !CALLING SEQUENCE: | 
| 486 | 
c ... | 
| 487 | 
c  exf_getforcing (TOP LEVEL ROUTINE) | 
| 488 | 
c  | | 
| 489 | 
c  |-- exf_getclim (get climatological fields used e.g. for relax.) | 
| 490 | 
c  |   |--- exf_set_climsst  (relax. to 2-D SST field) | 
| 491 | 
c  |   |--- exf_set_climsss  (relax. to 2-D SSS field) | 
| 492 | 
c  |   o | 
| 493 | 
c  | | 
| 494 | 
c  |-- exf_getffields <- this one does almost everything | 
| 495 | 
c  |   |   1. reads in fields, either flux or atmos. state, | 
| 496 | 
c  |   |      depending on CPP options (for each variable two fields | 
| 497 | 
c  |   |      consecutive in time are read in and interpolated onto | 
| 498 | 
c  |   |      current time step). | 
| 499 | 
c  |   |   2. If forcing is atmos. state and control is atmos. state, | 
| 500 | 
c  |   |      then the control variable anomalies are read here via ctrl_get_gen | 
| 501 | 
c  |   |      (atemp, aqh, precip, swflux, swdown, uwind, vwind). | 
| 502 | 
c  |   |      If forcing and control are fluxes, then | 
| 503 | 
c  |   |      controls are added later. | 
| 504 | 
c  |   o | 
| 505 | 
c  | | 
| 506 | 
c  |-- exf_radiation | 
| 507 | 
c  |   |    Compute net or downwelling radiative fluxes via | 
| 508 | 
c  |   |    Stefan-Boltzmann law in case only one is known. | 
| 509 | 
c  |   o | 
| 510 | 
c  |-- exf_wind | 
| 511 | 
c  |   |   Computes wind speed and stresses, if required. | 
| 512 | 
c  |   o | 
| 513 | 
c  | | 
| 514 | 
c  |-- exf_bulkformulae | 
| 515 | 
c  |   |   Compute air-sea buoyancy fluxes from | 
| 516 | 
c  |   |   atmospheric state following Large and Pond, JPO, 1981/82 | 
| 517 | 
c  |   o | 
| 518 | 
c  | | 
| 519 | 
c  |-- < hflux is sum of sensible, latent, longwave rad. > | 
| 520 | 
c  |-- < sflux is sum of evap. minus precip. minus runoff  > | 
| 521 | 
c  | | 
| 522 | 
c  |-- exf_getsurfacefluxes | 
| 523 | 
c  |   If forcing and control is flux, then the | 
| 524 | 
c  |   control vector anomalies are read here via ctrl_get_gen | 
| 525 | 
c  |   (hflux, sflux, ustress, vstress) | 
| 526 | 
c  | | 
| 527 | 
c  |-- < update tile edges here > | 
| 528 | 
c  | | 
| 529 | 
c  |-- exf_check_range | 
| 530 | 
c  |   |   Check whether read fields are within assumed range | 
| 531 | 
c  |   |   (may capture mismatches in units) | 
| 532 | 
c  |   o | 
| 533 | 
c  | | 
| 534 | 
c  |-- < add shortwave to hflux for diagnostics > | 
| 535 | 
c  | | 
| 536 | 
c  |-- exf_diagnostics_fill | 
| 537 | 
c  |   |   Do EXF-related diagnostics output here. | 
| 538 | 
c  |   o | 
| 539 | 
c  | | 
| 540 | 
c  |-- exf_mapfields | 
| 541 | 
c  |   |   Forcing fields from exf package are mapped onto | 
| 542 | 
c  |   |   mitgcm forcing arrays. | 
| 543 | 
c  |   |   Mapping enables a runtime rescaling of fields | 
| 544 | 
c  |   o | 
| 545 | 
C  o | 
| 546 | 
\end{verbatim} | 
| 547 | 
} | 
| 548 | 
 | 
| 549 | 
Radiation calculation: \texttt{exf\_radiation.F} | 
| 550 | 
 | 
| 551 | 
Wind speed and stress calculation: \texttt{exf\_wind.F} | 
| 552 | 
 | 
| 553 | 
Bulk formula: \texttt{exf\_bulkformulae.F} | 
| 554 | 
 | 
| 555 | 
Generic I/O: \texttt{exf\_set\_gen.F} | 
| 556 | 
 | 
| 557 | 
Interpolation: \texttt{exf\_interp.F} | 
| 558 | 
 | 
| 559 | 
Header routines | 
| 560 | 
 | 
| 561 | 
%---------------------------------------------------------------------- | 
| 562 | 
 | 
| 563 | 
\subsubsection{EXF diagnostics | 
| 564 | 
\label{sec:pkg:exf:diagnostics}} | 
| 565 | 
 | 
| 566 | 
Diagnostics output is available via the diagnostics package | 
| 567 | 
(see Section \ref{sec:pkg:diagnostics}). | 
| 568 | 
Available output fields are summarized in  | 
| 569 | 
Table \ref{tab:pkg:exf:diagnostics}. | 
| 570 | 
 | 
| 571 | 
\begin{table}[!ht] | 
| 572 | 
\centering | 
| 573 | 
{\footnotesize | 
| 574 | 
\begin{verbatim} | 
| 575 | 
---------+----+----+----------------+----------------- | 
| 576 | 
 <-Name->|Levs|grid|<--  Units   -->|<- Tile (max=80c) | 
| 577 | 
---------+----+----+----------------+----------------- | 
| 578 | 
 EXFhs   |  1 | SM | W/m^2          | Sensible heat flux into ocean, >0 increases theta | 
| 579 | 
 EXFhl   |  1 | SM | W/m^2          | Latent heat flux into ocean, >0 increases theta | 
| 580 | 
 EXFlwnet|  1 | SM | W/m^2          | Net upward longwave radiation, >0 decreases theta | 
| 581 | 
 EXFswnet|  1 | SM | W/m^2          | Net upward shortwave radiation, >0 decreases theta | 
| 582 | 
 EXFlwdn |  1 | SM | W/m^2          | Downward longwave radiation, >0 increases theta | 
| 583 | 
 EXFswdn |  1 | SM | W/m^2          | Downward shortwave radiation, >0 increases theta | 
| 584 | 
 EXFqnet |  1 | SM | W/m^2          | Net upward heat flux (turb+rad), >0 decreases theta | 
| 585 | 
 EXFtaux |  1 | SU | N/m^2          | zonal surface wind stress, >0 increases uVel | 
| 586 | 
 EXFtauy |  1 | SV | N/m^2          | meridional surface wind stress, >0 increases vVel | 
| 587 | 
 EXFuwind|  1 | SM | m/s            | zonal 10-m wind speed, >0 increases uVel | 
| 588 | 
 EXFvwind|  1 | SM | m/s            | meridional 10-m wind speed, >0 increases uVel | 
| 589 | 
 EXFwspee|  1 | SM | m/s            | 10-m wind speed modulus ( >= 0 ) | 
| 590 | 
 EXFatemp|  1 | SM | degK           | surface (2-m) air temperature | 
| 591 | 
 EXFaqh  |  1 | SM | kg/kg          | surface (2-m) specific humidity | 
| 592 | 
 EXFevap |  1 | SM | m/s            | evaporation, > 0 increases salinity | 
| 593 | 
 EXFpreci|  1 | SM | m/s            | evaporation, > 0 decreases salinity | 
| 594 | 
 EXFsnow |  1 | SM | m/s            | snow precipitation, > 0 decreases salinity | 
| 595 | 
 EXFempmr|  1 | SM | m/s            | net upward freshwater flux, > 0 increases salinity | 
| 596 | 
 EXFpress|  1 | SM | N/m^2          | atmospheric pressure field | 
| 597 | 
\end{verbatim} | 
| 598 | 
} | 
| 599 | 
\caption{~} | 
| 600 | 
\label{tab:pkg:exf:diagnostics} | 
| 601 | 
\end{table} | 
| 602 | 
 | 
| 603 | 
%---------------------------------------------------------------------- | 
| 604 | 
 | 
| 605 | 
\subsubsection{Experiments and tutorials that use exf} | 
| 606 | 
\label{sec:pkg:exf:experiments} | 
| 607 | 
 | 
| 608 | 
\begin{itemize} | 
| 609 | 
\item{Global Ocean experiment, in global\_with\_exf verification directory } | 
| 610 | 
\item{Labrador Sea experiment, in lab\_sea verification directory } | 
| 611 | 
\end{itemize} | 
| 612 | 
 | 
| 613 | 
%---------------------------------------------------------------------- | 
| 614 | 
 | 
| 615 | 
\subsubsection{References} |