| 1 | 
\section{EXF: The external forcing package | 
| 2 | 
\label{sec:pkg:exf}} | 
| 3 | 
\begin{rawhtml} | 
| 4 | 
<!-- CMIREDIR:sectionexf: --> | 
| 5 | 
\end{rawhtml} | 
| 6 | 
 | 
| 7 | 
 | 
| 8 | 
\subsection{Introduction | 
| 9 | 
\label{sec:pkg:exf:intro}} | 
| 10 | 
 | 
| 11 | 
The external forcing package, in conjunction with the | 
| 12 | 
calendar package (cal), enables the handling of real-time | 
| 13 | 
(or ``model-time'') forcing | 
| 14 | 
fields of differing temporal forcing patterns. | 
| 15 | 
It comprises climatological restoring and relaxation. | 
| 16 | 
Bulk formulae are implemented to convert atmospheric fields | 
| 17 | 
to surface fluxes. | 
| 18 | 
An interpolation routine provides on-the-fly interpolation of | 
| 19 | 
forcing fields an arbitrary grid onto the model grid. | 
| 20 | 
 | 
| 21 | 
CPP options enable or disable different aspects of the package | 
| 22 | 
(Section \ref{sec:pkg:exf:config}). | 
| 23 | 
Runtime options, flags, filenames and field-related dates/times are | 
| 24 | 
set in \texttt{data.exf} and \texttt{data.exf\_clim} | 
| 25 | 
(Section \ref{sec:pkg:exf:runtime}). | 
| 26 | 
A description of key subroutines is given in Section | 
| 27 | 
\ref{sec:pkg:exf:subroutines}. | 
| 28 | 
Input fields, units and sign conventions are summarized in | 
| 29 | 
Section \ref{sec:pkg:exf:fields_units}, and available diagnostics | 
| 30 | 
output is listed in Section \ref{sec:pkg:exf:fields_diagnostics}. | 
| 31 | 
 | 
| 32 | 
%---------------------------------------------------------------------- | 
| 33 | 
 | 
| 34 | 
\subsection{EXF configuration \& compiling | 
| 35 | 
\label{sec:pkg:exf:config}} | 
| 36 | 
 | 
| 37 | 
As with all MITgcm packages, EXF can be turned on or off at compile time | 
| 38 | 
using the \texttt{packages.conf} file or the \texttt{genmake2} | 
| 39 | 
\texttt{-enable=exf} or \texttt{-disable=exf} switches. | 
| 40 | 
 | 
| 41 | 
Parts of the exf code can be enabled or disabled at compile time | 
| 42 | 
via CPP preprocessor flags. These options are set in either | 
| 43 | 
\texttt{EXF\_OPTIONS.h} or in \texttt{ECCO\_CPPOPTIONS.h}. | 
| 44 | 
Table \ref{tab:pkg:exf:cpp} summarizes these options. | 
| 45 | 
 | 
| 46 | 
\begin{table}[b!] | 
| 47 | 
  \label{tab:pkg:exf:cpp} | 
| 48 | 
  {\footnotesize | 
| 49 | 
    \begin{tabular}{|l|l|} | 
| 50 | 
      \hline | 
| 51 | 
      \textbf{CPP option}  &  \textbf{Description}  \\ | 
| 52 | 
      \hline | 
| 53 | 
        \texttt{EXF\_VERBOSE} &  | 
| 54 | 
          verbose mode (recommended only for testing) \\ | 
| 55 | 
        \texttt{ALLOW\_ATM\_TEMP} &  | 
| 56 | 
          compute heat/freshwater fluxes from atmos. state input \\ | 
| 57 | 
        \texttt{ALLOW\_ATM\_WIND} &  | 
| 58 | 
          compute wind stress from wind speed input\\ | 
| 59 | 
        \texttt{ALLOW\_BULKFORMULAE} &  | 
| 60 | 
          is used if either ALLOW\_ATM\_TEMP or ALLOW\_ATM\_WIND is enabled \\ | 
| 61 | 
        \texttt{EXF\_READ\_EVAP} & read evaporation instead of computing it \\ | 
| 62 | 
        \texttt{ALLOW\_RUNOFF} & read time-constant river/glacier run-off field \\ | 
| 63 | 
        \texttt{ALLOW\_DOWNWARD\_RADIATION} & compute net from downward or downward from net radiation \\ | 
| 64 | 
        \texttt{USE\_EXF\_INTERPOLATION} & enable on-the-fly bilinear or bicubic interpolation of input fields \\ | 
| 65 | 
      \hline | 
| 66 | 
        \texttt{ALLOW\_CLIMTEMP\_RELAXATION} &  | 
| 67 | 
          relaxation to 3-D potential temperature field \\ | 
| 68 | 
        \texttt{ALLOW\_CLIMSALT\_RELAXATION} &  | 
| 69 | 
          relaxation to 3-D salinity field \\ | 
| 70 | 
        \texttt{ALLOW\_CLIMSST\_RELAXATION} & | 
| 71 | 
          relaxation to 2-D SST relaxation \\ | 
| 72 | 
        \texttt{ALLOW\_CLIMSSS\_RELAXATION} & | 
| 73 | 
          relaxation to 2-D SSS relaxation  \\ | 
| 74 | 
      \hline | 
| 75 | 
        \texttt{SHORTWAVE\_HEATING} & in \texttt{CPP\_OPTIONS.h}: enable shortwave radiation \\ | 
| 76 | 
        \texttt{ATMOSPHERIC\_LOADING} &  in \texttt{CPP\_OPTIONS.h}: enable surface pressure forcing \\ | 
| 77 | 
      \hline | 
| 78 | 
    \end{tabular} | 
| 79 | 
  } | 
| 80 | 
  \caption{~} | 
| 81 | 
\end{table} | 
| 82 | 
 | 
| 83 | 
 | 
| 84 | 
%---------------------------------------------------------------------- | 
| 85 | 
 | 
| 86 | 
\subsection{EXF runtime parameters | 
| 87 | 
\label{sec:pkg:exf:runtime}} | 
| 88 | 
 | 
| 89 | 
%---------------------------------------------------------------------- | 
| 90 | 
 | 
| 91 | 
\subsection{EXF fields and units | 
| 92 | 
\label{sec:pkg:exf:fields_units}} | 
| 93 | 
 | 
| 94 | 
The following list is taken from the header file \texttt{exf\_fields.h}. | 
| 95 | 
 | 
| 96 | 
{\footnotesize | 
| 97 | 
\begin{verbatim} | 
| 98 | 
 | 
| 99 | 
 | 
| 100 | 
 | 
| 101 | 
c     ustress   :: Zonal surface wind stress in N/m^2 | 
| 102 | 
c                  > 0 for increase in uVel, which is west to | 
| 103 | 
c                      east for cartesian and spherical polar grids | 
| 104 | 
c                  Typical range: -0.5 < ustress < 0.5 | 
| 105 | 
c                  Southwest C-grid U point | 
| 106 | 
c                  Input field | 
| 107 | 
c | 
| 108 | 
c     vstress   :: Meridional surface wind stress in N/m^2 | 
| 109 | 
c                  > 0 for increase in vVel, which is south to | 
| 110 | 
c                      north for cartesian and spherical polar grids | 
| 111 | 
c                  Typical range: -0.5 < vstress < 0.5 | 
| 112 | 
c                  Southwest C-grid V point | 
| 113 | 
c                  Input field | 
| 114 | 
c | 
| 115 | 
c     hflux     :: Net upward surface heat flux in W/m^2  | 
| 116 | 
c                  excluding shortwave (on input) | 
| 117 | 
c                  hflux = latent + sensible + lwflux | 
| 118 | 
c                  > 0 for decrease in theta (ocean cooling) | 
| 119 | 
c                  Typical range: -250 < hflux < 600 | 
| 120 | 
c                  Southwest C-grid tracer point | 
| 121 | 
c                  Input field | 
| 122 | 
c | 
| 123 | 
c     sflux     :: Net upward freshwater flux in m/s | 
| 124 | 
c                  sflux = evap - precip - runoff | 
| 125 | 
c                  > 0 for increase in salt (ocean salinity) | 
| 126 | 
c                  Typical range: -1e-7 < sflux < 1e-7 | 
| 127 | 
c                  Southwest C-grid tracer point | 
| 128 | 
c                  Input field | 
| 129 | 
c | 
| 130 | 
c     swflux    :: Net upward shortwave radiation in W/m^2 | 
| 131 | 
c                  swflux = - ( swdown - ice and snow absorption - reflected ) | 
| 132 | 
c                  > 0 for decrease in theta (ocean cooling) | 
| 133 | 
c                  Typical range: -350 < swflux < 0 | 
| 134 | 
c                  Southwest C-grid tracer point | 
| 135 | 
c                  Input field | 
| 136 | 
c | 
| 137 | 
c     uwind     :: Surface (10-m) zonal wind velocity in m/s | 
| 138 | 
c                  > 0 for increase in uVel, which is west to | 
| 139 | 
c                      east for cartesian and spherical polar grids | 
| 140 | 
c                  Typical range: -10 < uwind < 10 | 
| 141 | 
c                  Southwest C-grid U point | 
| 142 | 
c                  Input or input/output field | 
| 143 | 
c | 
| 144 | 
c     vwind     :: Surface (10-m) meridional wind velocity in m/s | 
| 145 | 
c                  > 0 for increase in vVel, which is south to | 
| 146 | 
c                      north for cartesian and spherical polar grids | 
| 147 | 
c                  Typical range: -10 < vwind < 10 | 
| 148 | 
c                  Southwest C-grid V point | 
| 149 | 
c                  Input or input/output field | 
| 150 | 
c | 
| 151 | 
c     atemp     :: Surface (2-m) air temperature in deg K | 
| 152 | 
c                  Typical range: 200 < atemp < 300 | 
| 153 | 
c                  Southwest C-grid tracer point | 
| 154 | 
c                  Input or input/output field | 
| 155 | 
c | 
| 156 | 
c     aqh       :: Surface (2m) specific humidity in kg/kg | 
| 157 | 
c                  Typical range: 0 < aqh < 0.02 | 
| 158 | 
c                  Southwest C-grid tracer point | 
| 159 | 
c                  Input or input/output field | 
| 160 | 
c | 
| 161 | 
c     lwflux    :: Net upward longwave radiation in W/m^2 | 
| 162 | 
c                  lwflux = - ( lwdown - ice and snow absorption - emitted ) | 
| 163 | 
c                  > 0 for decrease in theta (ocean cooling) | 
| 164 | 
c                  Typical range: -20 < lwflux < 170 | 
| 165 | 
c                  Southwest C-grid tracer point | 
| 166 | 
c                  Input field | 
| 167 | 
c | 
| 168 | 
c     evap      :: Evaporation in m/s | 
| 169 | 
c                  > 0 for increase in salt (ocean salinity) | 
| 170 | 
c                  Typical range: 0 < evap < 2.5e-7 | 
| 171 | 
c                  Southwest C-grid tracer point | 
| 172 | 
c                  Input, input/output, or output field | 
| 173 | 
c | 
| 174 | 
c     precip    :: Precipitation in m/s | 
| 175 | 
c                  > 0 for decrease in salt (ocean salinity) | 
| 176 | 
c                  Typical range: 0 < precip < 5e-7 | 
| 177 | 
c                  Southwest C-grid tracer point | 
| 178 | 
c                  Input or input/output field | 
| 179 | 
c | 
| 180 | 
c     runoff    :: River and glacier runoff in m/s | 
| 181 | 
c                  > 0 for decrease in salt (ocean salinity) | 
| 182 | 
c                  Typical range: 0 < runoff < ???? | 
| 183 | 
c                  Southwest C-grid tracer point | 
| 184 | 
c                  Input or input/output field | 
| 185 | 
c                  !!! WATCH OUT: Default exf_inscal_runoff !!! | 
| 186 | 
c                  !!! in exf_readparms.F is not 1.0        !!! | 
| 187 | 
c | 
| 188 | 
c     swdown    :: Downward shortwave radiation in W/m^2 | 
| 189 | 
c                  > 0 for increase in theta (ocean warming) | 
| 190 | 
c                  Typical range: 0 < swdown < 450 | 
| 191 | 
c                  Southwest C-grid tracer point | 
| 192 | 
c                  Input/output field | 
| 193 | 
c | 
| 194 | 
c     lwdown    :: Downward longwave radiation in W/m^2 | 
| 195 | 
c                  > 0 for increase in theta (ocean warming) | 
| 196 | 
c                  Typical range: 50 < lwdown < 450 | 
| 197 | 
c                  Southwest C-grid tracer point | 
| 198 | 
c                  Input/output field | 
| 199 | 
c | 
| 200 | 
c     apressure :: Atmospheric pressure field in N/m^2 | 
| 201 | 
c                  > 0 for ???? | 
| 202 | 
c                  Typical range: ???? < apressure < ???? | 
| 203 | 
c                  Southwest C-grid tracer point | 
| 204 | 
c                  Input field | 
| 205 | 
C | 
| 206 | 
C | 
| 207 | 
c     NOTES: | 
| 208 | 
c     ====== | 
| 209 | 
c | 
| 210 | 
c     Input and output units and sign conventions can be customized | 
| 211 | 
c     using variables exf_inscal_* and exf_outscal_*, which are set | 
| 212 | 
c     by exf_readparms.F | 
| 213 | 
c | 
| 214 | 
c     Output fields fu, fv, Qnet, Qsw, and EmPmR are | 
| 215 | 
c     defined in FFIELDS.h | 
| 216 | 
c | 
| 217 | 
c     #ifndef SHORTWAVE_HEATING, hflux includes shortwave, | 
| 218 | 
c     that is, hflux = latent + sensible + lwflux +swflux | 
| 219 | 
c | 
| 220 | 
c     If (EXFwindOnBgrid .EQ. .TRUE.), uwind and vwind are | 
| 221 | 
c     defined on northeast B-grid U and V points, respectively. | 
| 222 | 
c | 
| 223 | 
c     Arrays *0 and *1 below are used for temporal interpolation. | 
| 224 | 
\end{verbatim} | 
| 225 | 
} | 
| 226 | 
 | 
| 227 | 
%---------------------------------------------------------------------- | 
| 228 | 
 | 
| 229 | 
\subsection{Key subroutines | 
| 230 | 
\label{sec:pkg:exf:subroutines}} | 
| 231 | 
 | 
| 232 | 
%---------------------------------------------------------------------- | 
| 233 | 
 | 
| 234 | 
\subsection{EXF diagnostics | 
| 235 | 
\label{sec:pkg:exf:diagnostics}} | 
| 236 | 
 | 
| 237 | 
Diagnostics output is available via the diagnostics package | 
| 238 | 
(see Section \ref{sec:pkg:diagnostics}). | 
| 239 | 
Available output fields are summarized in  | 
| 240 | 
Table \ref{tab:pkg:exf:diagnostics}. | 
| 241 | 
 | 
| 242 | 
\begin{table} | 
| 243 | 
\label{tab:pkg:exf:diagnostics} | 
| 244 | 
\caption{~} | 
| 245 | 
{\footnotesize | 
| 246 | 
\begin{verbatim} | 
| 247 | 
------------------------------------------------------ | 
| 248 | 
 <-Name->|Levs|grid|<--  Units   -->|<- Tile (max=80c) | 
| 249 | 
------------------------------------------------------ | 
| 250 | 
 EXFlwdn |  1 | SM |W/m^2           |Downward longwave radiation, >0 increases theta | 
| 251 | 
 EXFswdn |  1 | SM |W/m^2           |Downward shortwave radiation, >0 increases theta | 
| 252 | 
 EXFqnet |  1 | SM |W/m^2           |Net upward heat flux (turb+rad), >0 decreases theta | 
| 253 | 
 EXFtaux |  1 | SU |N/m^2           |zonal surface wind stress, >0 increases uVel | 
| 254 | 
 EXFtauy |  1 | SV |N/m^2           |meridional surface wind stress, >0 increases vVel | 
| 255 | 
 EXFuwind|  1 | SM |m/s             |zonal 10-m wind speed, >0 increases uVel | 
| 256 | 
 EXFvwind|  1 | SM |m/s             |meridional 10-m wind speed, >0 increases uVel | 
| 257 | 
 EXFatemp|  1 | SM |degK            |surface (2-m) air temperature | 
| 258 | 
 EXFaqh  |  1 | SM |kg/kg           |surface (2-m) specific humidity | 
| 259 | 
 EXFevap |  1 | SM |m/s             |evaporation, > 0 increases salinity | 
| 260 | 
 EXFpreci|  1 | SM |m/s             |evaporation, > 0 decreases salinity | 
| 261 | 
 EXFempmr|  1 | SM |m/s             |net upward freshwater flux, > 0 increases salinity | 
| 262 | 
 EXFpress|  1 | SM |N/m^2           |atmospheric pressure field | 
| 263 | 
\end{verbatim} | 
| 264 | 
} | 
| 265 | 
\end{table} | 
| 266 | 
 | 
| 267 | 
%---------------------------------------------------------------------- | 
| 268 | 
 | 
| 269 | 
\subsection{Reference experiments} | 
| 270 | 
 | 
| 271 | 
%---------------------------------------------------------------------- | 
| 272 | 
 | 
| 273 | 
\subsection{References} |