| 1 |
heimbach |
1.1 |
\section{EXF: The external forcing package |
| 2 |
|
|
\label{sec:pkg:exf}} |
| 3 |
|
|
\begin{rawhtml} |
| 4 |
|
|
<!-- CMIREDIR:sectionexf: --> |
| 5 |
|
|
\end{rawhtml} |
| 6 |
|
|
|
| 7 |
|
|
|
| 8 |
|
|
\subsection{Introduction |
| 9 |
|
|
\label{sec:pkg:exf:intro}} |
| 10 |
|
|
|
| 11 |
|
|
The external forcing package, in conjunction with the |
| 12 |
|
|
calendar package (cal), enables the handling of real-time |
| 13 |
|
|
(or ``model-time'') forcing |
| 14 |
|
|
fields of differing temporal forcing patterns. |
| 15 |
|
|
It comprises climatological restoring and relaxation. |
| 16 |
|
|
Bulk formulae are implemented to convert atmospheric fields |
| 17 |
|
|
to surface fluxes. |
| 18 |
|
|
An interpolation routine provides on-the-fly interpolation of |
| 19 |
|
|
forcing fields an arbitrary grid onto the model grid. |
| 20 |
|
|
|
| 21 |
|
|
CPP options enable or disable different aspects of the package |
| 22 |
|
|
(Section \ref{sec:pkg:exf:config}). |
| 23 |
|
|
Runtime options, flags, filenames and field-related dates/times are |
| 24 |
|
|
set in \texttt{data.exf} and \texttt{data.exf\_clim} |
| 25 |
|
|
(Section \ref{sec:pkg:exf:runtime}). |
| 26 |
|
|
A description of key subroutines is given in Section |
| 27 |
|
|
\ref{sec:pkg:exf:subroutines}. |
| 28 |
|
|
Input fields, units and sign conventions are summarized in |
| 29 |
|
|
Section \ref{sec:pkg:exf:fields_units}, and available diagnostics |
| 30 |
|
|
output is listed in Section \ref{sec:pkg:exf:fields_diagnostics}. |
| 31 |
|
|
|
| 32 |
|
|
%---------------------------------------------------------------------- |
| 33 |
|
|
|
| 34 |
heimbach |
1.2 |
\subsection{EXF configuration, compiling \& running} |
| 35 |
|
|
|
| 36 |
|
|
\subsubsection{Compile-time options |
| 37 |
heimbach |
1.1 |
\label{sec:pkg:exf:config}} |
| 38 |
|
|
|
| 39 |
|
|
As with all MITgcm packages, EXF can be turned on or off at compile time |
| 40 |
|
|
using the \texttt{packages.conf} file or the \texttt{genmake2} |
| 41 |
|
|
\texttt{-enable=exf} or \texttt{-disable=exf} switches. |
| 42 |
|
|
|
| 43 |
|
|
Parts of the exf code can be enabled or disabled at compile time |
| 44 |
|
|
via CPP preprocessor flags. These options are set in either |
| 45 |
|
|
\texttt{EXF\_OPTIONS.h} or in \texttt{ECCO\_CPPOPTIONS.h}. |
| 46 |
|
|
Table \ref{tab:pkg:exf:cpp} summarizes these options. |
| 47 |
|
|
|
| 48 |
|
|
\begin{table}[b!] |
| 49 |
|
|
\label{tab:pkg:exf:cpp} |
| 50 |
|
|
{\footnotesize |
| 51 |
|
|
\begin{tabular}{|l|l|} |
| 52 |
heimbach |
1.2 |
\hline |
| 53 |
heimbach |
1.1 |
\textbf{CPP option} & \textbf{Description} \\ |
| 54 |
heimbach |
1.2 |
\hline \hline |
| 55 |
heimbach |
1.1 |
\texttt{EXF\_VERBOSE} & |
| 56 |
|
|
verbose mode (recommended only for testing) \\ |
| 57 |
|
|
\texttt{ALLOW\_ATM\_TEMP} & |
| 58 |
|
|
compute heat/freshwater fluxes from atmos. state input \\ |
| 59 |
|
|
\texttt{ALLOW\_ATM\_WIND} & |
| 60 |
|
|
compute wind stress from wind speed input\\ |
| 61 |
|
|
\texttt{ALLOW\_BULKFORMULAE} & |
| 62 |
|
|
is used if either ALLOW\_ATM\_TEMP or ALLOW\_ATM\_WIND is enabled \\ |
| 63 |
|
|
\texttt{EXF\_READ\_EVAP} & read evaporation instead of computing it \\ |
| 64 |
|
|
\texttt{ALLOW\_RUNOFF} & read time-constant river/glacier run-off field \\ |
| 65 |
|
|
\texttt{ALLOW\_DOWNWARD\_RADIATION} & compute net from downward or downward from net radiation \\ |
| 66 |
|
|
\texttt{USE\_EXF\_INTERPOLATION} & enable on-the-fly bilinear or bicubic interpolation of input fields \\ |
| 67 |
|
|
\hline |
| 68 |
|
|
\texttt{ALLOW\_CLIMTEMP\_RELAXATION} & |
| 69 |
heimbach |
1.2 |
relaxation to 3-D potential temperature climatology \\ |
| 70 |
heimbach |
1.1 |
\texttt{ALLOW\_CLIMSALT\_RELAXATION} & |
| 71 |
heimbach |
1.2 |
relaxation to 3-D salinity climatology \\ |
| 72 |
heimbach |
1.1 |
\texttt{ALLOW\_CLIMSST\_RELAXATION} & |
| 73 |
heimbach |
1.2 |
relaxation to 2-D SST climatology \\ |
| 74 |
heimbach |
1.1 |
\texttt{ALLOW\_CLIMSSS\_RELAXATION} & |
| 75 |
heimbach |
1.2 |
relaxation to 2-D SSS climatology \\ |
| 76 |
heimbach |
1.1 |
\hline |
| 77 |
|
|
\texttt{SHORTWAVE\_HEATING} & in \texttt{CPP\_OPTIONS.h}: enable shortwave radiation \\ |
| 78 |
|
|
\texttt{ATMOSPHERIC\_LOADING} & in \texttt{CPP\_OPTIONS.h}: enable surface pressure forcing \\ |
| 79 |
|
|
\hline |
| 80 |
|
|
\end{tabular} |
| 81 |
|
|
} |
| 82 |
|
|
\caption{~} |
| 83 |
|
|
\end{table} |
| 84 |
|
|
|
| 85 |
|
|
|
| 86 |
|
|
%---------------------------------------------------------------------- |
| 87 |
|
|
|
| 88 |
heimbach |
1.2 |
\subsubsection{Run-time parameters |
| 89 |
heimbach |
1.1 |
\label{sec:pkg:exf:runtime}} |
| 90 |
|
|
|
| 91 |
heimbach |
1.2 |
Run-time parameters are set in files \texttt{data.pkg}, |
| 92 |
|
|
and \texttt{data.pkg\_clim} (for relaxation/climatological fields). |
| 93 |
|
|
Run-time parameters may be broken into 2 categories: |
| 94 |
|
|
(i) general flags and parameters, and |
| 95 |
|
|
(ii) attributes for each forcing and climatological field. |
| 96 |
|
|
|
| 97 |
|
|
\paragraph{General flags and parameters} |
| 98 |
|
|
|
| 99 |
|
|
\begin{table}[h!] |
| 100 |
|
|
\label{tab:pkg:exf:runtime_flags} |
| 101 |
|
|
{\footnotesize |
| 102 |
|
|
\begin{tabular}{|l|cl|} |
| 103 |
|
|
\hline |
| 104 |
|
|
\textbf{Flag/parameter} & \textbf{default} & \textbf{Description} \\ |
| 105 |
|
|
\hline \hline |
| 106 |
|
|
useExfCheckRange & \texttt{.TRUE.} & ~ \\ |
| 107 |
|
|
useExfYearlyFields & \texttt{.FALSE.} & ~ \\ |
| 108 |
|
|
twoDigitYear & \texttt{.FALSE.} & ~ \\ |
| 109 |
|
|
repeatPeriod & \texttt{0.0} & ~ \\ |
| 110 |
|
|
windstressmax & \texttt{2.0} & ~ \\ |
| 111 |
|
|
exf\_albedo & \texttt{0.1} & ~ \\ |
| 112 |
|
|
exf\_iprec & \texttt{32} & ~ \\ |
| 113 |
|
|
exf\_yftype & \texttt{'RL'} & ~ \\ |
| 114 |
|
|
\hline |
| 115 |
|
|
\end{tabular} |
| 116 |
|
|
} |
| 117 |
|
|
\caption{~} |
| 118 |
|
|
\end{table} |
| 119 |
|
|
|
| 120 |
|
|
|
| 121 |
|
|
\paragraph{Field attributes} |
| 122 |
|
|
|
| 123 |
|
|
|
| 124 |
|
|
|
| 125 |
heimbach |
1.1 |
%---------------------------------------------------------------------- |
| 126 |
|
|
|
| 127 |
|
|
\subsection{EXF fields and units |
| 128 |
|
|
\label{sec:pkg:exf:fields_units}} |
| 129 |
|
|
|
| 130 |
|
|
The following list is taken from the header file \texttt{exf\_fields.h}. |
| 131 |
|
|
|
| 132 |
|
|
{\footnotesize |
| 133 |
|
|
\begin{verbatim} |
| 134 |
|
|
|
| 135 |
|
|
|
| 136 |
|
|
|
| 137 |
|
|
c ustress :: Zonal surface wind stress in N/m^2 |
| 138 |
|
|
c > 0 for increase in uVel, which is west to |
| 139 |
|
|
c east for cartesian and spherical polar grids |
| 140 |
|
|
c Typical range: -0.5 < ustress < 0.5 |
| 141 |
|
|
c Southwest C-grid U point |
| 142 |
|
|
c Input field |
| 143 |
|
|
c |
| 144 |
|
|
c vstress :: Meridional surface wind stress in N/m^2 |
| 145 |
|
|
c > 0 for increase in vVel, which is south to |
| 146 |
|
|
c north for cartesian and spherical polar grids |
| 147 |
|
|
c Typical range: -0.5 < vstress < 0.5 |
| 148 |
|
|
c Southwest C-grid V point |
| 149 |
|
|
c Input field |
| 150 |
|
|
c |
| 151 |
|
|
c hflux :: Net upward surface heat flux in W/m^2 |
| 152 |
|
|
c excluding shortwave (on input) |
| 153 |
|
|
c hflux = latent + sensible + lwflux |
| 154 |
|
|
c > 0 for decrease in theta (ocean cooling) |
| 155 |
|
|
c Typical range: -250 < hflux < 600 |
| 156 |
|
|
c Southwest C-grid tracer point |
| 157 |
|
|
c Input field |
| 158 |
|
|
c |
| 159 |
|
|
c sflux :: Net upward freshwater flux in m/s |
| 160 |
|
|
c sflux = evap - precip - runoff |
| 161 |
|
|
c > 0 for increase in salt (ocean salinity) |
| 162 |
|
|
c Typical range: -1e-7 < sflux < 1e-7 |
| 163 |
|
|
c Southwest C-grid tracer point |
| 164 |
|
|
c Input field |
| 165 |
|
|
c |
| 166 |
|
|
c swflux :: Net upward shortwave radiation in W/m^2 |
| 167 |
|
|
c swflux = - ( swdown - ice and snow absorption - reflected ) |
| 168 |
|
|
c > 0 for decrease in theta (ocean cooling) |
| 169 |
|
|
c Typical range: -350 < swflux < 0 |
| 170 |
|
|
c Southwest C-grid tracer point |
| 171 |
|
|
c Input field |
| 172 |
|
|
c |
| 173 |
|
|
c uwind :: Surface (10-m) zonal wind velocity in m/s |
| 174 |
|
|
c > 0 for increase in uVel, which is west to |
| 175 |
|
|
c east for cartesian and spherical polar grids |
| 176 |
|
|
c Typical range: -10 < uwind < 10 |
| 177 |
|
|
c Southwest C-grid U point |
| 178 |
|
|
c Input or input/output field |
| 179 |
|
|
c |
| 180 |
|
|
c vwind :: Surface (10-m) meridional wind velocity in m/s |
| 181 |
|
|
c > 0 for increase in vVel, which is south to |
| 182 |
|
|
c north for cartesian and spherical polar grids |
| 183 |
|
|
c Typical range: -10 < vwind < 10 |
| 184 |
|
|
c Southwest C-grid V point |
| 185 |
|
|
c Input or input/output field |
| 186 |
|
|
c |
| 187 |
|
|
c atemp :: Surface (2-m) air temperature in deg K |
| 188 |
|
|
c Typical range: 200 < atemp < 300 |
| 189 |
|
|
c Southwest C-grid tracer point |
| 190 |
|
|
c Input or input/output field |
| 191 |
|
|
c |
| 192 |
|
|
c aqh :: Surface (2m) specific humidity in kg/kg |
| 193 |
|
|
c Typical range: 0 < aqh < 0.02 |
| 194 |
|
|
c Southwest C-grid tracer point |
| 195 |
|
|
c Input or input/output field |
| 196 |
|
|
c |
| 197 |
|
|
c lwflux :: Net upward longwave radiation in W/m^2 |
| 198 |
|
|
c lwflux = - ( lwdown - ice and snow absorption - emitted ) |
| 199 |
|
|
c > 0 for decrease in theta (ocean cooling) |
| 200 |
|
|
c Typical range: -20 < lwflux < 170 |
| 201 |
|
|
c Southwest C-grid tracer point |
| 202 |
|
|
c Input field |
| 203 |
|
|
c |
| 204 |
|
|
c evap :: Evaporation in m/s |
| 205 |
|
|
c > 0 for increase in salt (ocean salinity) |
| 206 |
|
|
c Typical range: 0 < evap < 2.5e-7 |
| 207 |
|
|
c Southwest C-grid tracer point |
| 208 |
|
|
c Input, input/output, or output field |
| 209 |
|
|
c |
| 210 |
|
|
c precip :: Precipitation in m/s |
| 211 |
|
|
c > 0 for decrease in salt (ocean salinity) |
| 212 |
|
|
c Typical range: 0 < precip < 5e-7 |
| 213 |
|
|
c Southwest C-grid tracer point |
| 214 |
|
|
c Input or input/output field |
| 215 |
|
|
c |
| 216 |
|
|
c runoff :: River and glacier runoff in m/s |
| 217 |
|
|
c > 0 for decrease in salt (ocean salinity) |
| 218 |
|
|
c Typical range: 0 < runoff < ???? |
| 219 |
|
|
c Southwest C-grid tracer point |
| 220 |
|
|
c Input or input/output field |
| 221 |
|
|
c !!! WATCH OUT: Default exf_inscal_runoff !!! |
| 222 |
|
|
c !!! in exf_readparms.F is not 1.0 !!! |
| 223 |
|
|
c |
| 224 |
|
|
c swdown :: Downward shortwave radiation in W/m^2 |
| 225 |
|
|
c > 0 for increase in theta (ocean warming) |
| 226 |
|
|
c Typical range: 0 < swdown < 450 |
| 227 |
|
|
c Southwest C-grid tracer point |
| 228 |
|
|
c Input/output field |
| 229 |
|
|
c |
| 230 |
|
|
c lwdown :: Downward longwave radiation in W/m^2 |
| 231 |
|
|
c > 0 for increase in theta (ocean warming) |
| 232 |
|
|
c Typical range: 50 < lwdown < 450 |
| 233 |
|
|
c Southwest C-grid tracer point |
| 234 |
|
|
c Input/output field |
| 235 |
|
|
c |
| 236 |
|
|
c apressure :: Atmospheric pressure field in N/m^2 |
| 237 |
|
|
c > 0 for ???? |
| 238 |
|
|
c Typical range: ???? < apressure < ???? |
| 239 |
|
|
c Southwest C-grid tracer point |
| 240 |
|
|
c Input field |
| 241 |
|
|
C |
| 242 |
|
|
C |
| 243 |
|
|
c NOTES: |
| 244 |
|
|
c ====== |
| 245 |
|
|
c |
| 246 |
|
|
c Input and output units and sign conventions can be customized |
| 247 |
|
|
c using variables exf_inscal_* and exf_outscal_*, which are set |
| 248 |
|
|
c by exf_readparms.F |
| 249 |
|
|
c |
| 250 |
|
|
c Output fields fu, fv, Qnet, Qsw, and EmPmR are |
| 251 |
|
|
c defined in FFIELDS.h |
| 252 |
|
|
c |
| 253 |
|
|
c #ifndef SHORTWAVE_HEATING, hflux includes shortwave, |
| 254 |
|
|
c that is, hflux = latent + sensible + lwflux +swflux |
| 255 |
|
|
c |
| 256 |
|
|
c If (EXFwindOnBgrid .EQ. .TRUE.), uwind and vwind are |
| 257 |
|
|
c defined on northeast B-grid U and V points, respectively. |
| 258 |
|
|
c |
| 259 |
|
|
c Arrays *0 and *1 below are used for temporal interpolation. |
| 260 |
|
|
\end{verbatim} |
| 261 |
|
|
} |
| 262 |
|
|
|
| 263 |
|
|
%---------------------------------------------------------------------- |
| 264 |
|
|
|
| 265 |
|
|
\subsection{Key subroutines |
| 266 |
|
|
\label{sec:pkg:exf:subroutines}} |
| 267 |
|
|
|
| 268 |
|
|
%---------------------------------------------------------------------- |
| 269 |
|
|
|
| 270 |
|
|
\subsection{EXF diagnostics |
| 271 |
|
|
\label{sec:pkg:exf:diagnostics}} |
| 272 |
|
|
|
| 273 |
|
|
Diagnostics output is available via the diagnostics package |
| 274 |
|
|
(see Section \ref{sec:pkg:diagnostics}). |
| 275 |
|
|
Available output fields are summarized in |
| 276 |
|
|
Table \ref{tab:pkg:exf:diagnostics}. |
| 277 |
|
|
|
| 278 |
|
|
\begin{table} |
| 279 |
|
|
\label{tab:pkg:exf:diagnostics} |
| 280 |
|
|
\caption{~} |
| 281 |
|
|
{\footnotesize |
| 282 |
|
|
\begin{verbatim} |
| 283 |
|
|
------------------------------------------------------ |
| 284 |
|
|
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c) |
| 285 |
|
|
------------------------------------------------------ |
| 286 |
|
|
EXFlwdn | 1 | SM |W/m^2 |Downward longwave radiation, >0 increases theta |
| 287 |
|
|
EXFswdn | 1 | SM |W/m^2 |Downward shortwave radiation, >0 increases theta |
| 288 |
|
|
EXFqnet | 1 | SM |W/m^2 |Net upward heat flux (turb+rad), >0 decreases theta |
| 289 |
|
|
EXFtaux | 1 | SU |N/m^2 |zonal surface wind stress, >0 increases uVel |
| 290 |
|
|
EXFtauy | 1 | SV |N/m^2 |meridional surface wind stress, >0 increases vVel |
| 291 |
|
|
EXFuwind| 1 | SM |m/s |zonal 10-m wind speed, >0 increases uVel |
| 292 |
|
|
EXFvwind| 1 | SM |m/s |meridional 10-m wind speed, >0 increases uVel |
| 293 |
|
|
EXFatemp| 1 | SM |degK |surface (2-m) air temperature |
| 294 |
|
|
EXFaqh | 1 | SM |kg/kg |surface (2-m) specific humidity |
| 295 |
|
|
EXFevap | 1 | SM |m/s |evaporation, > 0 increases salinity |
| 296 |
|
|
EXFpreci| 1 | SM |m/s |evaporation, > 0 decreases salinity |
| 297 |
|
|
EXFempmr| 1 | SM |m/s |net upward freshwater flux, > 0 increases salinity |
| 298 |
|
|
EXFpress| 1 | SM |N/m^2 |atmospheric pressure field |
| 299 |
|
|
\end{verbatim} |
| 300 |
|
|
} |
| 301 |
|
|
\end{table} |
| 302 |
|
|
|
| 303 |
|
|
%---------------------------------------------------------------------- |
| 304 |
|
|
|
| 305 |
|
|
\subsection{Reference experiments} |
| 306 |
|
|
|
| 307 |
|
|
%---------------------------------------------------------------------- |
| 308 |
|
|
|
| 309 |
|
|
\subsection{References} |