/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.29 - (hide annotations) (download) (as text)
Mon Aug 30 23:09:21 2010 UTC (13 years, 8 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint01, HEAD
Changes since 1.28: +6 -6 lines
File MIME type: application/x-tex
clean-up latex built:
 (remove multiple definition of label; fix missing reference; replace
  non-standard latex stuff; ...)

1 jmc 1.29 % $Header: /u/gcmpack/manual/s_phys_pkgs/text/exch2.tex,v 1.28 2010/08/27 13:15:37 jmc Exp $
2 afe 1.1 % $Name: $
3    
4     %% * Introduction
5     %% o what it does, citations (refs go into mitgcm_manual.bib,
6     %% preferably in alphabetic order)
7     %% o Equations
8     %% * Key subroutines and parameters
9     %% * Reference material (auto generated from Protex and structured comments)
10     %% o automatically inserted at \section{Reference}
11    
12    
13 molod 1.24 \subsection{exch2: Extended Cubed Sphere \mbox{Topology}}
14 afe 1.3 \label{sec:exch2}
15    
16 afe 1.1
17 molod 1.24 \subsubsection{Introduction}
18 afe 1.2
19 afe 1.17 The \texttt{exch2} package extends the original cubed sphere topology
20     configuration to allow more flexible domain decomposition and
21     parallelization. Cube faces (also called subdomains) may be divided
22     into any number of tiles that divide evenly into the grid point
23     dimensions of the subdomain. Furthermore, the tiles can run on
24     separate processors individually or in groups, which provides for
25     manual compile-time load balancing across a relatively arbitrary
26 edhill 1.25 number of processors.
27 edhill 1.8
28     The exchange parameters are declared in
29     \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
30     and assigned in
31 afe 1.9 \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
32 afe 1.11 validity of the cube topology depends on the \file{SIZE.h} file as
33 afe 1.12 detailed below. The default files provided in the release configure a
34     cubed sphere topology of six tiles, one per subdomain, each with
35 afe 1.18 32$\times$32 grid points, with all tiles running on a single processor. Both
36 afe 1.12 files are generated by Matlab scripts in
37 afe 1.11 \file{utils/exch2/matlab-topology-generator}; see Section
38     \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
39 afe 1.12 for details on creating alternate topologies. Pregenerated examples
40     of these files with alternate topologies are provided under
41 afe 1.11 \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
42     file for single-processor execution.
43 afe 1.9
44 molod 1.24 \subsubsection{Invoking exch2}
45 afe 1.9
46 afe 1.10 To use exch2 with the cubed sphere, the following conditions must be
47 edhill 1.25 met:
48 afe 1.9
49 edhill 1.25 \begin{itemize}
50     \item The exch2 package is included when \file{genmake2} is run. The
51     easiest way to do this is to add the line \code{exch2} to the
52 jmc 1.29 \file{packages.conf} file -- see Section \ref{sec:buildingCode}
53 edhill 1.25 \sectiontitle{Building the code} for general
54     details.
55 afe 1.23
56 edhill 1.25 \item An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
57 afe 1.17 \file{w2\_e2setup.F} must reside in a directory containing files
58 edhill 1.25 symbolically linked by the \file{genmake2} script. The safest place
59     to put these is the directory indicated in the \code{-mods=DIR}
60     command line modifier (typically \file{../code}), or the build
61     directory. The default versions of these files reside in
62     \file{pkg/exch2} and are linked automatically if no other versions
63     exist elsewhere in the build path, but they should be left untouched
64     to avoid breaking configurations other than the one you intend to
65     modify.
66    
67     \item Files containing grid parameters, named \file{tile00$n$.mitgrid}
68     where $n$=\code{(1:6)} (one per subdomain), must be in the working
69     directory when the MITgcm executable is run. These files are
70     provided in the example experiments for cubed sphere configurations
71     with 32$\times$32 cube sides -- please contact MITgcm support if you
72     want to generate files for other configurations.
73    
74     \item As always when compiling MITgcm, the file \file{SIZE.h} must be
75     placed where \file{genmake2} will find it. In particular for exch2,
76     the domain decomposition specified in \file{SIZE.h} must correspond
77     with the particular configuration's topology specified in
78 afe 1.12 \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}. Domain
79     decomposition issues particular to exch2 are addressed in Section
80     \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
81 edhill 1.25 and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
82     Multiprocessing}; a more general background on the subject
83     relevant to MITgcm is presented in Section
84 jmc 1.29 \ref{sec:specifying_a_decomposition}
85 edhill 1.25 \sectiontitle{Specifying a decomposition}.
86     \end{itemize}
87 afe 1.9
88 afe 1.17 At the time of this writing the following examples use exch2 and may
89     be used for guidance:
90 afe 1.9
91     \begin{verbatim}
92     verification/adjust_nlfs.cs-32x32x1
93     verification/adjustment.cs-32x32x1
94     verification/aim.5l_cs
95     verification/global_ocean.cs32x15
96     verification/hs94.cs-32x32x5
97     \end{verbatim}
98    
99    
100    
101    
102 molod 1.24 \subsubsection{Generating Topology Files for exch2}
103 afe 1.10 \label{sec:topogen}
104    
105     Alternate cubed sphere topologies may be created using the Matlab
106 afe 1.11 scripts in \file{utils/exch2/matlab-topology-generator}. Running the
107 afe 1.12 m-file
108     \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
109     from the Matlab prompt (there are no parameters to pass) generates
110     exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
111     \file{w2\_e2setup.F} in the working directory and displays a figure of
112 jmc 1.27 the topology via Matlab -- figures \ref{fig:6tile}, \ref{fig:18tile},
113     and \ref{fig:48tile} are examples of the generated diagrams. The other
114 afe 1.19 m-files in the directory are
115     subroutines called from \file{driver.m} and should not be run ``bare'' except
116 afe 1.12 for development purposes. \\
117 afe 1.10
118     The parameters that determine the dimensions and topology of the
119 afe 1.11 generated configuration are \code{nr}, \code{nb}, \code{ng},
120 afe 1.12 \code{tnx} and \code{tny}, and all are assigned early in the script. \\
121 afe 1.10
122 afe 1.19 The first three determine the height and width of the subdomains and
123 afe 1.10 hence the size of the overall domain. Each one determines the number
124     of grid points, and therefore the resolution, along the subdomain
125 afe 1.18 sides in a ``great circle'' around each the three spatial axes of the cube. At the time
126 afe 1.10 of this writing MITgcm requires these three parameters to be equal,
127 afe 1.12 but they provide for future releases to accomodate different
128 afe 1.19 resolutions around the axes to allow subdomains with differing resolutions.\\
129 afe 1.10
130 afe 1.18 The parameters \code{tnx} and \code{tny} determine the width and height of
131 afe 1.11 the tiles into which the subdomains are decomposed, and must evenly
132     divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
133     The result is a rectangular tiling of the subdomain. Figure
134 jmc 1.27 \ref{fig:48tile} shows one possible topology for a twenty-four-tile
135     cube, and figure \ref{fig:6tile} shows one for six tiles. \\
136 afe 1.10
137     \begin{figure}
138     \begin{center}
139 jmc 1.27 \resizebox{6in}{!}{
140 jmc 1.28 % \includegraphics{s_phys_pkgs/figs/s24t_16x16.ps}
141     \includegraphics{s_phys_pkgs/figs/adjust_cs.ps}
142 afe 1.10 }
143     \end{center}
144 afe 1.12
145 afe 1.13 \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
146 afe 1.17 divided into six 32$\times$32 subdomains, each of which is divided
147 jmc 1.27 into eight tiles of width \code{tnx=16} and height \code{tny=8} for a
148     total of forty-eight tiles. The colored borders of the subdomains
149     represent the parameters \code{nr} (red), \code{ng} (green), and
150     \code{nb} (blue).
151     This tiling is used in the example
152     verification/adjustment.cs-32x32x1/
153     with the option (blanklist.txt) to remove the land-only 4 tiles
154     (11,12,13,14) which are filled in red on the plot.
155     } \label{fig:48tile}
156 afe 1.10 \end{figure}
157    
158     \begin{figure}
159     \begin{center}
160 jmc 1.27 \resizebox{6in}{!}{
161 jmc 1.28 % \includegraphics{s_phys_pkgs/figs/s12t_16x32.ps}
162     \includegraphics{s_phys_pkgs/figs/polarcap.ps}
163 afe 1.10 }
164     \end{center}
165 jmc 1.27 \caption{Plot of a non-square cubed sphere topology with
166     6 subdomains of different size (nr=90,ng=360,nb=90),
167     divided into one to four tiles each
168     (\code{tnx=90, tny=90}), resulting in a total of 18 tiles.
169     } \label{fig:18tile}
170 afe 1.10 \end{figure}
171    
172 afe 1.13 \begin{figure}
173     \begin{center}
174     \resizebox{4in}{!}{
175 jmc 1.28 % \includegraphics{s_phys_pkgs/figs/s6t_32x32.ps}
176     \includegraphics{s_phys_pkgs/figs/s6t_32x32.ps}
177 afe 1.13 }
178     \end{center}
179     \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
180     divided into six 32$\times$32 subdomains with one tile each
181     (\code{tnx=32, tny=32}). This is the default configuration.
182     }
183     \label{fig:6tile}
184     \end{figure}
185    
186    
187 afe 1.10 Tiles can be selected from the topology to be omitted from being
188 afe 1.12 allocated memory and processors. This tuning is useful in ocean
189     modeling for omitting tiles that fall entirely on land. The tiles
190     omitted are specified in the file
191     \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
192     by their tile number in the topology, separated by a newline. \\
193    
194 afe 1.10
195    
196    
197 molod 1.24 \subsubsection{exch2, SIZE.h, and Multiprocessing}
198 afe 1.12 \label{sec:exch2mpi}
199    
200     Once the topology configuration files are created, the Fortran
201 afe 1.13 \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
202 jmc 1.29 Section \ref{sec:specifying_a_decomposition} \sectiontitle{Specifying
203 edhill 1.25 a decomposition} provides a general description of domain
204 afe 1.13 decomposition within MITgcm and its relation to \file{SIZE.h}. The
205 edhill 1.25 current section specifies constraints that the exch2 package imposes
206     and describes how to enable parallel execution with MPI.
207 afe 1.12
208     As in the general case, the parameters \varlink{sNx}{sNx} and
209     \varlink{sNy}{sNy} define the size of the individual tiles, and so
210     must be assigned the same respective values as \code{tnx} and
211 edhill 1.25 \code{tny} in \file{driver.m}.
212 afe 1.12
213     The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
214     have no special bearing on exch2 and may be assigned as in the general
215 edhill 1.25 case. The same holds for \varlink{Nr}{Nr}, the number of vertical
216     levels in the model.
217 afe 1.12
218     The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
219     \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
220     tiles and how they are distributed on processors. When using exch2,
221 afe 1.19 the tiles are stored in the $x$ dimension, and so
222 afe 1.12 \code{\varlink{nSy}{nSy}=1} in all cases. Since the tiles as
223     configured by exch2 cannot be split up accross processors without
224 edhill 1.25 regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well.
225 afe 1.12
226     The number of tiles MITgcm allocates and how they are distributed
227     between processors depends on \varlink{nPx}{nPx} and
228     \varlink{nSx}{nSx}. \varlink{nSx}{nSx} is the number of tiles per
229 afe 1.23 processor and \varlink{nPx}{nPx} is the number of processors. The
230     total number of tiles in the topology minus those listed in
231     \file{blanklist.txt} must equal \code{nSx*nPx}. Note that in order to
232 afe 1.19 obtain maximum usage from a given number of processors in some cases,
233 afe 1.23 this restriction might entail sharing a processor with a tile that
234     would otherwise be excluded because it is topographically outside of
235     the domain and therefore in \file{blanklist.txt}. For example,
236     suppose you have five processors and a domain decomposition of
237     thirty-six tiles that allows you to exclude seven tiles. To evenly
238     distribute the remaining twenty-nine tiles among five processors, you
239     would have to run one ``dummy'' tile to make an even six tiles per
240     processor. Such dummy tiles are \emph{not} listed in
241 edhill 1.25 \file{blanklist.txt}.
242 afe 1.12
243 jmc 1.27 The following is an example of \file{SIZE.h} for the six-tile
244     configuration illustrated in figure \ref{fig:6tile}
245     running on one processor:
246 afe 1.12
247     \begin{verbatim}
248     PARAMETER (
249 jmc 1.27 & sNx = 32,
250 afe 1.12 & sNy = 32,
251     & OLx = 2,
252     & OLy = 2,
253 jmc 1.27 & nSx = 6,
254 afe 1.12 & nSy = 1,
255     & nPx = 1,
256     & nPy = 1,
257     & Nx = sNx*nSx*nPx,
258     & Ny = sNy*nSy*nPy,
259     & Nr = 5)
260     \end{verbatim}
261    
262 jmc 1.27 The following is an example for the forty-eight-tile topology in
263     figure \ref{fig:48tile} running on six processors:
264 afe 1.12
265     \begin{verbatim}
266     PARAMETER (
267     & sNx = 16,
268 jmc 1.27 & sNy = 8,
269 afe 1.12 & OLx = 2,
270     & OLy = 2,
271 jmc 1.27 & nSx = 8,
272 afe 1.12 & nSy = 1,
273     & nPx = 6,
274     & nPy = 1,
275     & Nx = sNx*nSx*nPx,
276     & Ny = sNy*nSy*nPy,
277     & Nr = 5)
278     \end{verbatim}
279    
280    
281 molod 1.24 \subsubsection{Key Variables}
282 afe 1.4
283     The descriptions of the variables are divided up into scalars,
284 afe 1.17 one-dimensional arrays indexed to the tile number, and two and
285     three-dimensional arrays indexed to tile number and neighboring tile.
286     This division reflects the functionality of these variables: The
287 edhill 1.8 scalars are common to every part of the topology, the tile-indexed
288 afe 1.12 arrays to individual tiles, and the arrays indexed by tile and
289     neighbor to relationships between tiles and their neighbors. \\
290 afe 1.4
291 molod 1.24 Scalars:
292 afe 1.4
293     The number of tiles in a particular topology is set with the parameter
294 afe 1.12 \code{NTILES}, and the maximum number of neighbors of any tiles by
295     \code{MAX\_NEIGHBOURS}. These parameters are used for defining the
296 edhill 1.8 size of the various one and two dimensional arrays that store tile
297 afe 1.12 parameters indexed to the tile number and are assigned in the files
298     generated by \file{driver.m}.\\
299 edhill 1.8
300     The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
301     and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
302 afe 1.12 of tiles in the $x$ and $y$ global indices. For example, the default
303 afe 1.15 setup of six tiles (Fig. \ref{fig:6tile}) has
304     \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}. A
305 jmc 1.27 topology of forty-eight tiles, eight per subdomain (as in figure
306     \ref{fig:48tile}), will have \code{exch2\_domain\_nxt=12} and
307     \code{exch2\_domain\_nyt=4}. Note that these parameters express the
308 afe 1.19 tile layout in order to allow global data files that are tile-layout-neutral.
309     They have no bearing on the internal storage of the arrays. The tiles
310     are stored internally in a range from \code{\varlink{bi}{bi}=(1:NTILES)} in the
311 afe 1.18 $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is assumed to
312     equal \code{1} throughout the package. \\
313 afe 1.4
314 molod 1.24 Arrays indexed to tile number:
315 afe 1.4
316 afe 1.17 The following arrays are of length \code{NTILES} and are indexed to
317     the tile number, which is indicated in the diagrams with the notation
318 afe 1.23 \textsf{t}$n$. The indices are omitted in the descriptions. \\
319 afe 1.4
320 edhill 1.8 The arrays \varlink{exch2\_tnx}{exch2_tnx} and
321 afe 1.12 \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
322     each tile. At present for each tile \texttt{exch2\_tnx=sNx} and
323     \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
324 afe 1.19 Section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
325     Multiprocessing}. Future releases of MITgcm may allow varying tile
326 afe 1.12 sizes. \\
327 edhill 1.8
328 afe 1.19 The arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
329     \varlink{exch2\_tbasey}{exch2_tbasey} determine the tiles'
330     Cartesian origin within a subdomain
331     and locate the edges of different tiles relative to each other. As
332 afe 1.13 an example, in the default six-tile topology (Fig. \ref{fig:6tile})
333     each index in these arrays is set to \code{0} since a tile occupies
334 afe 1.17 its entire subdomain. The twenty-four-tile case discussed above will
335 afe 1.19 have values of \code{0} or \code{16}, depending on the quadrant of the
336     tile within the subdomain. The elements of the arrays
337 afe 1.13 \varlink{exch2\_txglobalo}{exch2_txglobalo} and
338     \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
339 edhill 1.8 \varlink{exch2\_tbasex}{exch2_tbasex} and
340 afe 1.19 \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tile edges within the
341 afe 1.17 global address space, similar to that used by global output and input
342     files. \\
343 edhill 1.8
344 afe 1.13 The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
345     the subdomain of each tile, in a range \code{(1:6)} in the case of the
346 afe 1.23 standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
347 jmc 1.27 figures \ref{fig:6tile} and
348     \ref{fig:48tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
349 afe 1.23 contains a count of the neighboring tiles each tile has, and sets
350     the bounds for looping over neighboring tiles.
351 afe 1.13 \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
352     tile, and is used in interprocess communication. \\
353    
354    
355 edhill 1.8 The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
356     \varlink{exch2\_isEedge}{exch2_isEedge},
357     \varlink{exch2\_isSedge}{exch2_isSedge}, and
358 afe 1.12 \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
359 afe 1.19 indexed tile lies on the edge of its subdomain, \code{0} if
360 afe 1.15 not. The values are used within the topology generator to determine
361     the orientation of neighboring tiles, and to indicate whether a tile
362     lies on the corner of a subdomain. The latter case requires special
363 afe 1.12 exchange and numerical handling for the singularities at the eight
364 afe 1.13 corners of the cube. \\
365    
366 afe 1.4
367 molod 1.24 Arrays Indexed to Tile Number and Neighbor:
368 afe 1.4
369 afe 1.17 The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
370     \code{NTILES} and describe the orientations between the the tiles. \\
371 afe 1.12
372     The array \code{exch2\_neighbourId(a,T)} holds the tile number
373     \code{Tn} for each of the tile number \code{T}'s neighboring tiles
374 afe 1.15 \code{a}. The neighbor tiles are indexed
375 afe 1.17 \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
376     north then south edges, and then top to bottom on the east then west
377     edges. \\
378 afe 1.15
379 afe 1.17 The \code{exch2\_opposingSend\_record(a,T)} array holds the
380 afe 1.15 index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
381     that holds the tile number \code{T}, given
382     \code{Tn=exch2\_neighborId(a,T)}. In other words,
383 edhill 1.8 \begin{verbatim}
384     exch2_neighbourId( exch2_opposingSend_record(a,T),
385     exch2_neighbourId(a,T) ) = T
386 afe 1.5 \end{verbatim}
387 afe 1.12 This provides a back-reference from the neighbor tiles. \\
388 afe 1.5
389 afe 1.13 The arrays \varlink{exch2\_pi}{exch2_pi} and
390 afe 1.15 \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
391 afe 1.13 in exchanges between the neighboring tiles. These transformations are
392 afe 1.19 necessary in exchanges between subdomains because a horizontal dimension
393     in one subdomain
394     may map to other horizonal dimension in an adjacent subdomain, and
395     may also have its indexing reversed. This swapping arises from the
396 afe 1.17 ``folding'' of two-dimensional arrays into a three-dimensional
397     cube. \\
398 afe 1.13
399     The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
400     are the neighbor ID \code{N} and the tile number \code{T} as explained
401 afe 1.15 above, plus a vector of length \code{2} containing transformation
402     factors \code{t}. The first element of the transformation vector
403 afe 1.19 holds the factor to multiply the index in the same dimension, and the
404     second element holds the the same for the orthogonal dimension. To
405 afe 1.15 clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
406     index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
407     \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
408     $x$ index to the neighbor \code{N}'s $y$ index. \\
409 afe 1.12
410 afe 1.15 One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
411     given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
412     the fact that the two axes are orthogonal. The other element will be
413     \code{1} or \code{-1}, depending on whether the axes are indexed in
414     the same or opposite directions. For example, the transform vector of
415     the arrays for all tile neighbors on the same subdomain will be
416 afe 1.13 \code{(1,0)}, since all tiles on the same subdomain are oriented
417 afe 1.15 identically. An axis that corresponds to the orthogonal dimension
418     with the same index direction in a particular tile-neighbor
419 afe 1.19 orientation will have \code{(0,1)}. Those with the opposite index
420 afe 1.15 direction will have \code{(0,-1)} in order to reverse the ordering. \\
421 afe 1.13
422 afe 1.14 The arrays \varlink{exch2\_oi}{exch2_oi},
423     \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
424     \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
425     neighbor and specify the relative offset within the subdomain of the
426 afe 1.17 array index of a variable going from a neighboring tile \code{N} to a
427     local tile \code{T}. Consider \code{T=1} in the six-tile topology
428 afe 1.16 (Fig. \ref{fig:6tile}), where
429    
430     \begin{verbatim}
431     exch2_oi(1,1)=33
432     exch2_oi(2,1)=0
433     exch2_oi(3,1)=32
434     exch2_oi(4,1)=-32
435     \end{verbatim}
436    
437     The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
438     which is \code{Tn=6}. The axes of \code{T} and \code{Tn} have the
439     same orientation and their $x$ axes have the same origin, and so an
440     exchange between the two requires no changes to the $x$ index. For
441     the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
442     \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
443     \code{Tn}. The eastern edge of \code{T} shows the reverse case
444 afe 1.17 (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
445     with \code{x=0} on \code{Tn=2}. \\
446    
447     The most interesting case, where \code{exch2\_oi(1,1)=33} and
448     \code{Tn=3}, involves a reversal of indices. As in every case, the
449     offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
450     multiplied by the transformation factor \code{exch2\_pi(t,N,T)}. Here
451     \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
452     to the $x$ axis of \code{Tn}. \code{exch2\_pi(2,1,1)=-1} since the
453     $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
454     index is reversed. The result is that the index of the northern edge
455     of \code{T}, which runs \code{(1:32)}, is transformed to
456 afe 1.16 \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
457 afe 1.17 get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
458     relative to \code{T}. This transformation may seem overly convoluted
459     for the six-tile case, but it is necessary to provide a general
460     solution for various topologies. \\
461 afe 1.16
462    
463 afe 1.14
464     Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
465     \varlink{exch2\_ithi\_c}{exch2_ithi_c},
466     \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
467     \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
468     bounds of the edge segment of the neighbor tile \code{N}'s subdomain
469     that gets exchanged with the local tile \code{T}. To take the example
470 jmc 1.27 of tile \code{T=2} in the forty-eight-tile topology
471     (Fig. \ref{fig:48tile}): \\
472 afe 1.14
473     \begin{verbatim}
474     exch2_itlo_c(4,2)=17
475     exch2_ithi_c(4,2)=17
476     exch2_jtlo_c(4,2)=0
477     exch2_jthi_c(4,2)=33
478     \end{verbatim}
479    
480 afe 1.17 Here \code{N=4}, indicating the western neighbor, which is
481     \code{Tn=1}. \code{Tn} resides on the same subdomain as \code{T}, so
482     the tiles have the same orientation and the same $x$ and $y$ axes.
483     The $x$ axis is orthogonal to the western edge and the tile is 16
484     points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
485     indicate the column beyond \code{Tn}'s eastern edge, in that tile's
486     halo region. Since the border of the tiles extends through the entire
487 afe 1.14 height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
488 afe 1.17 \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
489     either direction to cover part of the halo. \\
490 afe 1.14
491     For the north edge of the same tile \code{T=2} where \code{N=1} and
492     the neighbor tile is \code{Tn=5}:
493    
494     \begin{verbatim}
495     exch2_itlo_c(1,2)=0
496     exch2_ithi_c(1,2)=0
497     exch2_jtlo_c(1,2)=0
498     exch2_jthi_c(1,2)=17
499     \end{verbatim}
500    
501     \code{T}'s northern edge is parallel to the $x$ axis, but since
502 afe 1.17 \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
503     northern edge exchanges with \code{Tn}'s western edge. The western
504     edge of the tiles corresponds to the lower bound of the $x$ axis, so
505 afe 1.19 \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} are \code{0}, in the
506     western halo region of \code{Tn}. The range of
507 afe 1.17 \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
508 afe 1.19 width of \code{T}'s northern edge, expanded by one into the halo. \\
509 afe 1.14
510    
511 molod 1.24 \subsubsection{Key Routines}
512 afe 1.1
513 afe 1.16 Most of the subroutines particular to exch2 handle the exchanges
514     themselves and are of the same format as those described in
515 jmc 1.29 \ref{sec:cube_sphere_communication} \sectiontitle{Cube sphere
516 afe 1.16 communication}. Like the original routines, they are written as
517 afe 1.19 templates which the local Makefile converts from \code{RX} into
518     \code{RL} and \code{RS} forms. \\
519 afe 1.16
520     The interfaces with the core model subroutines are
521 afe 1.17 \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
522     \code{EXCH\_XY\_RX}. They override the standard exchange routines
523     when \code{genmake2} is run with \code{exch2} option. They in turn
524     call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
525     \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
526     quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
527     and three-dimensional scalar quantities. These subroutines set the
528     dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
529     for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
530     the singularities at the cube corners. \\
531 afe 1.16
532     The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
533 afe 1.19 \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subroutine
534     needs to pass both the $u$ and $v$ components of the physical vectors.
535     This swapping arises from the topological folding discussed above, where the
536     $x$ and $y$ axes get swapped in some cases, and is not an
537     issue with the scalar case. These subroutines call
538 afe 1.17 \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
539     the work using the variables discussed above. \\
540 afe 1.1
541 molod 1.26 \subsubsection{Experiments and tutorials that use exch2}
542     \label{sec:pkg:exch2:experiments}
543    
544     \begin{itemize}
545     \item{Held Suarez tutorial, in tutorial\_held\_suarez\_cs verification directory,
546 jmc 1.29 described in section \ref{sec:eg-hs} }
547 molod 1.26 \end{itemize}

  ViewVC Help
Powered by ViewVC 1.1.22