/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.9 by afe, Fri Mar 12 20:58:19 2004 UTC revision 1.20 by edhill, Tue Oct 12 15:47:40 2004 UTC
# Line 10  Line 10 
10  %%    o automatically inserted at \section{Reference}  %%    o automatically inserted at \section{Reference}
11    
12    
13  \section{Extended Cubed Sphere Exchange}  \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14  \label{sec:exch2}  \label{sec:exch2}
15    
16    
17  \subsection{Introduction}  \subsection{Introduction}
18    
19  The \texttt{exch2} package is an extension to the original cubed  The \texttt{exch2} package extends the original cubed sphere topology
20  sphere topological configuration that allows more flexible domain  configuration to allow more flexible domain decomposition and
21  decomposition and parallelization.  Cube faces (also called  parallelization.  Cube faces (also called subdomains) may be divided
22  subdomains) may be divided into any number of tiles that divide evenly  into any number of tiles that divide evenly into the grid point
23  into the grid point dimensions of the subdomain.  Furthermore, the  dimensions of the subdomain.  Furthermore, the tiles can run on
24  individual tiles may be run on separate processors in different  separate processors individually or in groups, which provides for
25  combinations, and whether exchanges between particular tiles occur  manual compile-time load balancing across a relatively arbitrary
26  between different processors is determined at runtime.  This  number of processors. \\
 flexibility provides for manual load balancing across a relatively  
 arbitrary number of processors.  
27    
28  The exchange parameters are declared in  The exchange parameters are declared in
29  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
30  and assigned in  and assigned in
31  \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The  \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
32  validity of the cube topology depends on the \texttt{SIZE.h} file as  validity of the cube topology depends on the \file{SIZE.h} file as
33  detailed below.  Both files are generated by Matlab scripts in ??  detailed below.  The default files provided in the release configure a
34  check these in already! and should not be edited.  The default files  cubed sphere topology of six tiles, one per subdomain, each with
35  provided in the release configure a cubed sphere arrangement of six  32$\times$32 grid points, with all tiles running on a single processor.  Both
36  tiles, one per subdomain, each with 32$\times$32 grid points, all  files are generated by Matlab scripts in
37  running on a single processor.  Pregenerated examples of these files  \file{utils/exch2/matlab-topology-generator}; see Section
38  with alternate topologies are provided in ??.  \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
39    for details on creating alternate topologies.  Pregenerated examples
40    of these files with alternate topologies are provided under
41    \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
42    file for single-processor execution.
43    
44  \subsection{Invoking exch2}  \subsection{Invoking exch2}
45    
46  To use exch2 with the cubed sphere, the following conditions must be met:  To use exch2 with the cubed sphere, the following conditions must be
47    met:
48    
49    \begin{itemize}
50    \item The exch2 package is included when \file{genmake2} is run.  The
51      easiest way to do this is to add the line \code{exch2} to the
52      \file{profile.conf} file -- see Section \ref{sect:buildingCode}
53      \sectiontitle{Building the code} for general details.
54      
55    \item An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
56      \file{w2\_e2setup.F} must reside in a directory containing files
57      symbolically linked by the \file{genmake2} script.  The safest place
58      to put these is the directory indicated in the \code{-mods=DIR}
59      command line modifier (typically \file{../code}), or the build
60      directory.  The default versions of these files reside in
61      \file{pkg/exch2} and are linked automatically if no other versions
62      exist elsewhere in the build path, but they should be left untouched
63      to avoid breaking configurations other than the one you intend to
64      modify.
65      
66    \item Files containing grid parameters, named \file{tile00$n$.mitgrid}
67      where $n$=\code{(1:6)} (one per subdomain), must be in the working
68      directory when the MITgcm executable is run.  These files are
69      provided in the example experiments for cubed sphere configurations
70      with 32$\times$32 cube sides -- please contact
71      \begin{rawhtml}
72        <A href=''mailto:mitgcm-support@dev.mitgcm.org">
73      \end{rawhtml}
74    \begin{verbatim}
75    MITgcm-support@mitgcm.org
76    \end{verbatim}
77      \begin{rawhtml} </A> \end{rawhtml}
78      if you want to generate files for other configurations.
79      
80    \item As always when compiling MITgcm, the file \file{SIZE.h} must be
81      placed where \file{genmake2} will find it.  In particular for exch2,
82      the domain decomposition specified in \file{SIZE.h} must correspond
83      with the particular configuration's topology specified in
84      \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
85      decomposition issues particular to exch2 are addressed in Section
86      \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
87      and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
88        Multiprocessing}; a more general background on the subject
89      relevant to MITgcm is presented in Section
90      \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying a
91        decomposition}.
92    \end{itemize}
93    
 - the exch2 package is included when \texttt{genmake2} is run.  The  
   easiest way to do this is to add the line \texttt{exch2} to the  
   \texttt{profile.conf} file -- see Section \ref{sect:buildingCode}  
   for general details. \\  
   
 - an example of \texttt{W2\_EXCH2\_TOPOLOGY.h} and  
   \texttt{w2\_e2setup.F} must reside in a directory containing code  
   linked when \texttt{genmake2} runs.  The safest place to put these  
   is the directory indicated in the \texttt{-mods=DIR} command line  
   modifier (typically \texttt{../code}), or the build directory.  The  
   default versions of these files reside in \texttt{pkg/exch2}, but  
   they should be left untouched to avoid breaking configurations other  
   than the one you intend to modify.\\  
   
 - files containing grid parameters, named  
   \texttt{tile}xxx\texttt{.mitgrid} where xxx is \texttt{001} through  
   \texttt{006}, must be in the working directory when the MITgcm  
   executable is run.  These files are provided in the example  
   experiments for cubed sphere configurations with 32$\times$32 cube  
   sides and are non-trivial to generate -- please contact MITgcm  
   support if you want to generate files for other configurations.  
   This is lame. ?? \\  
94    
95  As of the time of writing the following examples use exch2 and may be  
96  used for guidance:  At the time of this writing the following examples use exch2 and may
97    be used for guidance:
98    
99  \begin{verbatim}  \begin{verbatim}
100  verification/adjust_nlfs.cs-32x32x1  verification/adjust_nlfs.cs-32x32x1
# Line 80  verification/hs94.cs-32x32x5 Line 107  verification/hs94.cs-32x32x5
107    
108    
109    
110  \subsection{Generating Topology Files}  \subsection{Generating Topology Files for exch2}
111    \label{sec:topogen}
112    
113    Alternate cubed sphere topologies may be created using the Matlab
114    scripts in \file{utils/exch2/matlab-topology-generator}. Running the
115    m-file
116    \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
117    from the Matlab prompt (there are no parameters to pass) generates
118    exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
119    \file{w2\_e2setup.F} in the working directory and displays a figure of
120    the topology via Matlab -- figures \ref{fig:6tile}, \ref{fig:12tile},
121    and \ref{fig:24tile} are examples of the generated diagrams.  The other
122    m-files in the directory are
123    subroutines called from \file{driver.m} and should not be run ``bare'' except
124    for development purposes. \\
125    
126    The parameters that determine the dimensions and topology of the
127    generated configuration are \code{nr}, \code{nb}, \code{ng},
128    \code{tnx} and \code{tny}, and all are assigned early in the script. \\
129    
130    The first three determine the height and width of the subdomains and
131    hence the size of the overall domain.  Each one determines the number
132    of grid points, and therefore the resolution, along the subdomain
133    sides in a ``great circle'' around each the three spatial axes of the cube.  At the time
134    of this writing MITgcm requires these three parameters to be equal,
135    but they provide for future releases  to accomodate different
136    resolutions around the axes to allow subdomains with differing resolutions.\\
137    
138    The parameters \code{tnx} and \code{tny} determine the width and height of
139    the tiles into which the subdomains are decomposed, and must evenly
140    divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
141    The result is a rectangular tiling of the subdomain.  Figure
142    \ref{fig:24tile} shows one possible topology for a twenty-four-tile
143    cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
144    
145    \begin{figure}
146    \begin{center}
147     \resizebox{4in}{!}{
148      \includegraphics{part6/s24t_16x16.ps}
149     }
150    \end{center}
151    
152    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
153    divided into six 32$\times$32 subdomains, each of which is divided
154    into four tiles of width \code{tnx=16} and height \code{tny=16} for a
155    total of twenty-four tiles.  The colored borders of the subdomains
156    represent the parameters \code{nr} (red), \code{nb} (blue), and
157    \code{ng} (green).  } \label{fig:24tile}
158    \end{figure}
159    
160    \begin{figure}
161    \begin{center}
162     \resizebox{4in}{!}{
163      \includegraphics{part6/s12t_16x32.ps}
164     }
165    \end{center}
166    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
167    divided into six 32$\times$32 subdomains of two tiles each
168     (\code{tnx=16, tny=32}).
169    } \label{fig:12tile}
170    \end{figure}
171    
172    \begin{figure}
173    \begin{center}
174     \resizebox{4in}{!}{
175      \includegraphics{part6/s6t_32x32.ps}
176     }
177    \end{center}
178    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
179    divided into six 32$\times$32 subdomains with one tile each
180    (\code{tnx=32, tny=32}).  This is the default configuration.
181      }
182    \label{fig:6tile}
183    \end{figure}
184    
185    
186    Tiles can be selected from the topology to be omitted from being
187    allocated memory and processors.  This tuning is useful in ocean
188    modeling for omitting tiles that fall entirely on land.  The tiles
189    omitted are specified in the file
190    \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
191    by their tile number in the topology, separated by a newline. \\
192    
193    
194    
195    
196    \subsection{exch2, SIZE.h, and Multiprocessing}
197    \label{sec:exch2mpi}
198    
199    Once the topology configuration files are created, the Fortran
200    \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
201    Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
202    a decomposition} provides a general description of domain
203    decomposition within MITgcm and its relation to \file{SIZE.h}. The
204    current section specifies constraints that the exch2 package
205    imposes and describes how to enable parallel execution with
206    MPI. \\
207    
208    As in the general case, the parameters \varlink{sNx}{sNx} and
209    \varlink{sNy}{sNy} define the size of the individual tiles, and so
210    must be assigned the same respective values as \code{tnx} and
211    \code{tny} in \file{driver.m}.\\
212    
213    The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
214    have no special bearing on exch2 and may be assigned as in the general
215    case. The same holds for \varlink{Nr}{Nr}, the number of vertical
216    levels in the model.\\
217    
218    The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
219    \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
220    tiles and how they are distributed on processors.  When using exch2,
221    the tiles are stored in the $x$ dimension, and so
222    \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
223    configured by exch2 cannot be split up accross processors without
224    regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
225    
226    The number of tiles MITgcm allocates and how they are distributed
227    between processors depends on \varlink{nPx}{nPx} and
228    \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per
229    processor and \varlink{nPx}{nPx} is the number of processors.  The total
230    number of tiles in the topology minus those listed in
231    \file{blanklist.txt} must equal \code{nSx*nPx}.  Note that in order to
232    obtain maximum usage from a given number of processors in some cases,
233    this restriction might entail sharing a processor with a tile that would
234    otherwise be excluded. \\
235    
236    The following is an example of \file{SIZE.h} for the twelve-tile
237    configuration illustrated in figure \ref{fig:12tile} running on
238    one processor: \\
239    
240    \begin{verbatim}
241          PARAMETER (
242         &           sNx =  16,
243         &           sNy =  32,
244         &           OLx =   2,
245         &           OLy =   2,
246         &           nSx =  12,
247         &           nSy =   1,
248         &           nPx =   1,
249         &           nPy =   1,
250         &           Nx  = sNx*nSx*nPx,
251         &           Ny  = sNy*nSy*nPy,
252         &           Nr  =   5)
253    \end{verbatim}
254    
255    The following is an example for the twenty-four-tile topology in
256    figure \ref{fig:24tile} running on six processors:
257    
258    \begin{verbatim}
259          PARAMETER (
260         &           sNx =  16,
261         &           sNy =  16,
262         &           OLx =   2,
263         &           OLy =   2,
264         &           nSx =   4,
265         &           nSy =   1,
266         &           nPx =   6,
267         &           nPy =   1,
268         &           Nx  = sNx*nSx*nPx,
269         &           Ny  = sNy*nSy*nPy,
270         &           Nr  =   5)
271    \end{verbatim}
272    
273    
274    
275    
276    
277  \subsection{Key Variables}  \subsection{Key Variables}
278    
279  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
280  one-dimensional arrays indexed to the tile number, and two and three  one-dimensional arrays indexed to the tile number, and two and
281  dimensional arrays indexed to tile number and neighboring tile.  This  three-dimensional arrays indexed to tile number and neighboring tile.
282  division actually reflects the functionality of these variables: the  This division reflects the functionality of these variables: The
283  scalars are common to every part of the topology, the tile-indexed  scalars are common to every part of the topology, the tile-indexed
284  arrays to individual tiles, and the arrays indexed to tile and  arrays to individual tiles, and the arrays indexed by tile and
285  neighbor to relationships between tiles and their neighbors.  neighbor to relationships between tiles and their neighbors. \\
286    
287  \subsubsection{Scalars}  \subsubsection{Scalars}
288    
289  The number of tiles in a particular topology is set with the parameter  The number of tiles in a particular topology is set with the parameter
290  \texttt{NTILES}, and the maximum number of neighbors of any tiles by  \code{NTILES}, and the maximum number of neighbors of any tiles by
291  \texttt{MAX\_NEIGHBOURS}.  These parameters are used for defining the  \code{MAX\_NEIGHBOURS}.  These parameters are used for defining the
292  size of the various one and two dimensional arrays that store tile  size of the various one and two dimensional arrays that store tile
293  parameters indexed to the tile number.\\  parameters indexed to the tile number and are assigned in the files
294    generated by \file{driver.m}.\\
295    
296  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
297  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
298  of tiles in the x and y global indices.  For example, the default  of tiles in the $x$ and $y$ global indices.  For example, the default
299  setup of six tiles has \texttt{exch2\_domain\_nxt=6} and  setup of six tiles (Fig. \ref{fig:6tile}) has
300  \texttt{exch2\_domain\_nyt=1}.  A topology of twenty-four square (in  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
301  gridpoints) tiles, four (2x2) per subdomain, will have  topology of twenty-four square tiles, four per subdomain (as in figure
302  \texttt{exch2\_domain\_nxt=12} and \texttt{exch2\_domain\_nyt=2}.  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
303  Note that these parameters express the tile layout to allow global  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the
304  data files that are tile-layout-neutral and have no bearing on the  tile layout in order to allow global data files that are tile-layout-neutral.
305  internal storage of the arrays.  The tiles are internally stored in a  They have no bearing on the internal storage of the arrays.  The tiles
306  range from \texttt{1,bi} (in the x axis) and y-axis variable  are stored internally in a range from \code{\varlink{bi}{bi}=(1:NTILES)} in the
307  \texttt{bj} is generally ignored within the package.  $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is assumed to
308    equal \code{1} throughout the package. \\
309  \subsubsection{Arrays Indexed to Tile Number}  
310    \subsubsection{Arrays indexed to tile number}
311  The following arrays are of size \texttt{NTILES}, are indexed to the  
312  tile number, and the indices are omitted in their descriptions.  The following arrays are of length \code{NTILES} and are indexed to
313    the tile number, which is indicated in the diagrams with the notation
314    \code{tn}.  The indices are omitted in the descriptions. \\
315    
316  The arrays \varlink{exch2\_tnx}{exch2_tnx} and  The arrays \varlink{exch2\_tnx}{exch2_tnx} and
317  \varlink{exch2\_tny}{exch2_tny} express the x and y dimensions of each  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
318  tile.  At present for each tile \texttt{exch2\_tnx=sNx} and  each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
319  \texttt{exch2\_tny=sNy}, as assigned in \texttt{SIZE.h}.  Future  \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
320  releases of MITgcm are to allow varying tile sizes.  Section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
321    Multiprocessing}.  Future releases of MITgcm may allow varying tile
322  The location of the tiles' Cartesian origin within a subdomain are  sizes. \\
323  determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and  
324  \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to  The arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
325  relate the location of the edges of the tiles to each other.  As an  \varlink{exch2\_tbasey}{exch2_tbasey} determine the tiles'
326  example, in the default six-tile topology (the degenerate case) each  Cartesian origin within a subdomain  
327  index in these arrays are set to 0.  The twenty-four, 32x32 cube face  and locate the edges of different tiles relative to each other.  As
328  case discussed above will have values of 0 or 16, depending on the  an example, in the default six-tile topology (Fig. \ref{fig:6tile})
329  quadrant the tile falls within the subdomain.  The array  each index in these arrays is set to \code{0} since a tile occupies
330  \varlink{exch2\_myFace}{exch2_myFace} contains the number of the  its entire subdomain.  The twenty-four-tile case discussed above will
331  cubeface/subdomain of each tile, numbered 1-6 in the case of the  have values of \code{0} or \code{16}, depending on the quadrant of the
332  standard cube topology.  tile within the subdomain.  The elements of the arrays
333    \varlink{exch2\_txglobalo}{exch2_txglobalo} and
 The arrays \varlink{exch2\_txglobalo}{exch2_txglobalo} and  
334  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
335  \varlink{exch2\_tbasex}{exch2_tbasex} and  \varlink{exch2\_tbasex}{exch2_tbasex} and
336  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tile edges within the
337  global address space, similar to that used by global files.  global address space, similar to that used by global output and input
338    files. \\
339    
340    The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
341    the subdomain of each tile, in a range \code{(1:6)} in the case of the
342    standard cube topology and indicated by \textbf{\textsf{fn}} in
343    figures \ref{fig:12tile} and \ref{fig:24tile}. The
344    \varlink{exch2\_nNeighbours}{exch2_nNeighbours} variable contains a
345    count of the neighboring tiles each tile has, and sets the bounds for
346    looping over neighboring tiles.  And
347    \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
348    tile, and is used in interprocess communication.  \\
349    
350    
351  The arrays \varlink{exch2\_isWedge}{exch2_isWedge},  The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
352  \varlink{exch2\_isEedge}{exch2_isEedge},  \varlink{exch2\_isEedge}{exch2_isEedge},
353  \varlink{exch2\_isSedge}{exch2_isSedge}, and  \varlink{exch2\_isSedge}{exch2_isSedge}, and
354  \varlink{exch2\_isNedge}{exch2_isNedge} are set to 1 if the indexed  \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
355  tile lies on the edge of a subdomain, 0 if not.  The values are used  indexed tile lies on the edge of its subdomain, \code{0} if
356  within the topology generator to determine the orientation of  not.  The values are used within the topology generator to determine
357  neighboring tiles and to indicate whether a tile lies on the corner of  the orientation of neighboring tiles, and to indicate whether a tile
358  a subdomain.  The latter case indicates special exchange and numerical  lies on the corner of a subdomain.  The latter case requires special
359  handling for the singularities at the eight corners of the cube.  exchange and numerical handling for the singularities at the eight
360  \varlink{exch2\_nNeighbours}{exch2_nNeighbours} contains a count of  corners of the cube. \\
361  how many neighboring tiles each tile has, and is used for setting  
 bounds for looping over neighboring tiles.  
 \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each  
 tile, and is used in interprocess communication.  
362    
363  \subsubsection{Arrays Indexed to Tile Number and Neighbor}  \subsubsection{Arrays Indexed to Tile Number and Neighbor}
364    
365  The following arrays are all of size \texttt{MAX\_NEIGHBOURS} $\times$  The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
366  \texttt{NTILES} and describe the orientations between the the tiles.  \code{NTILES} and describe the orientations between the the tiles. \\
367    
368  The array \texttt{exch2\_neighbourId(a,T)} holds the tile number for  The array \code{exch2\_neighbourId(a,T)} holds the tile number
369  each of the $n$ neighboring tiles.  The neighbor tiles are indexed  \code{Tn} for each of the tile number \code{T}'s neighboring tiles
370  \texttt{(1,MAX\_NEIGHBOURS} in the order right to left on the north  \code{a}.  The neighbor tiles are indexed
371  then south edges, and then top to bottom on the east and west edges.  \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
372  Maybe throw in a fig here, eh?  north then south edges, and then top to bottom on the east then west
373    edges.  \\
374  The \texttt{exch2\_opposingSend\_record(a,T)} array holds the index c  
375  in \texttt{exch2\_neighbourId(b,$T_{n}$)} that holds the tile number T.   The \code{exch2\_opposingSend\_record(a,T)} array holds the
376  In other words,  index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
377    that holds the tile number \code{T}, given
378    \code{Tn=exch2\_neighborId(a,T)}.  In other words,
379  \begin{verbatim}  \begin{verbatim}
380     exch2_neighbourId( exch2_opposingSend_record(a,T),     exch2_neighbourId( exch2_opposingSend_record(a,T),
381                        exch2_neighbourId(a,T) ) = T                        exch2_neighbourId(a,T) ) = T
382  \end{verbatim}  \end{verbatim}
383  and this provides a back-reference from the neighbor tiles.  This provides a back-reference from the neighbor tiles. \\
384    
385    The arrays \varlink{exch2\_pi}{exch2_pi} and
386    \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
387    in exchanges between the neighboring tiles.  These transformations are
388    necessary in exchanges between subdomains because a horizontal dimension
389    in one subdomain
390    may map to other horizonal dimension in an adjacent subdomain, and
391    may also have its indexing reversed. This swapping arises from the
392    ``folding'' of two-dimensional arrays into a three-dimensional
393    cube. \\
394    
395    The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
396    are the neighbor ID \code{N} and the tile number \code{T} as explained
397    above, plus a vector of length \code{2} containing transformation
398    factors \code{t}.  The first element of the transformation vector
399    holds the factor to multiply the index in the same dimension, and the
400    second element holds the the same for the orthogonal dimension.  To
401    clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
402    index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
403    \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
404    $x$ index to the neighbor \code{N}'s $y$ index. \\
405    
406    One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
407    given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
408    the fact that the two axes are orthogonal.  The other element will be
409    \code{1} or \code{-1}, depending on whether the axes are indexed in
410    the same or opposite directions.  For example, the transform vector of
411    the arrays for all tile neighbors on the same subdomain will be
412    \code{(1,0)}, since all tiles on the same subdomain are oriented
413    identically.  An axis that corresponds to the orthogonal dimension
414    with the same index direction in a particular tile-neighbor
415    orientation will have \code{(0,1)}.  Those with the opposite index
416    direction will have \code{(0,-1)} in order to reverse the ordering. \\
417    
418  The arrays \varlink{exch2\_pi}{exch2_pi},  The arrays \varlink{exch2\_oi}{exch2_oi},
 \varlink{exch2\_pj}{exch2_pj}, \varlink{exch2\_oi}{exch2_oi},  
419  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
420  \varlink{exch2\_oj\_f}{exch2_oj_f} specify the transformations in  \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
421  exchanges between the neighboring tiles.  The dimensions of  neighbor and specify the relative offset within the subdomain of the
422  \texttt{exch2\_pi(t,N,T)} and \texttt{exch2\_pj(t,N,T)} are the  array index of a variable going from a neighboring tile \code{N} to a
423  neighbor ID \textit{N} and the tile number \textit{T} as explained  local tile \code{T}.  Consider \code{T=1} in the six-tile topology
424  above, plus the transformation vector {\em t }, of length two.  The  (Fig. \ref{fig:6tile}), where
425  first element of the transformation vector indicates the factor by  
426  which variables representing the same vector component of a tile will  \begin{verbatim}
427  be multiplied, and the second element indicates the transform to the         exch2_oi(1,1)=33
428  variable in the other direction.  As an example,         exch2_oi(2,1)=0
429  \texttt{exch2\_pi(1,N,T)} holds the transform of the i-component of a         exch2_oi(3,1)=32
430  vector variable in tile \texttt{T} to the i-component of tile         exch2_oi(4,1)=-32
 \texttt{T}'s neighbor \texttt{N}, and \texttt{exch2\_pi(2,N,T)} hold  
 the component of neighbor \texttt{N}'s j-component.  
   
 Under the current cube topology, one of the two elements of  
 \texttt{exch2\_pi} or \texttt{exch2\_pj} for a given tile \texttt{T}  
 and neighbor \texttt{N} will be 0, reflecting the fact that the vector  
 components are orthogonal.  The other element will be 1 or -1,  
 depending on whether the components are indexed in the same or  
 opposite directions.  For example, the transform dimension of the  
 arrays for all tile neighbors on the same subdomain will be [1,0],  
 since all tiles on the same subdomain are oriented identically.  
 Vectors that correspond to the orthogonal dimension with the same  
 index direction will have [0,1], whereas those in the opposite index  
 direction will have [0,-1].  
   
   
 {\footnotesize  
 \begin{verbatim}  
 C      exch2_pi          :: X index row of target to source permutation  
 C                        :: matrix for each neighbour entry.              
 C      exch2_pj          :: Y index row of target to source permutation  
 C                        :: matrix for each neighbour entry.              
 C      exch2_oi          :: X index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oj          :: Y index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oi_f        :: X index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
 C      exch2_oj_f        :: Y index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
431  \end{verbatim}  \end{verbatim}
 }  
432    
433    The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
434    which is \code{Tn=6}.  The axes of \code{T} and \code{Tn} have the
435    same orientation and their $x$ axes have the same origin, and so an
436    exchange between the two requires no changes to the $x$ index.  For
437    the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
438    \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
439    \code{Tn}.  The eastern edge of \code{T} shows the reverse case
440    (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
441    with \code{x=0} on \code{Tn=2}. \\
442    
443     The most interesting case, where \code{exch2\_oi(1,1)=33} and
444    \code{Tn=3}, involves a reversal of indices.  As in every case, the
445    offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
446    multiplied by the transformation factor \code{exch2\_pi(t,N,T)}.  Here
447    \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
448    to the $x$ axis of \code{Tn}.  \code{exch2\_pi(2,1,1)=-1} since the
449    $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
450    index is reversed.  The result is that the index of the northern edge
451    of \code{T}, which runs \code{(1:32)}, is transformed to
452    \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
453    get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
454    relative to \code{T}.  This transformation may seem overly convoluted
455    for the six-tile case, but it is necessary to provide a general
456    solution for various topologies. \\
457    
458    
 \subsection{Key Routines}  
459    
460    Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
461    \varlink{exch2\_ithi\_c}{exch2_ithi_c},
462    \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
463    \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
464    bounds of the edge segment of the neighbor tile \code{N}'s subdomain
465    that gets exchanged with the local tile \code{T}.  To take the example
466    of tile \code{T=2} in the twelve-tile topology
467    (Fig. \ref{fig:12tile}): \\
468    
469    \begin{verbatim}
470           exch2_itlo_c(4,2)=17
471           exch2_ithi_c(4,2)=17
472           exch2_jtlo_c(4,2)=0
473           exch2_jthi_c(4,2)=33
474    \end{verbatim}
475    
476    Here \code{N=4}, indicating the western neighbor, which is
477    \code{Tn=1}.  \code{Tn} resides on the same subdomain as \code{T}, so
478    the tiles have the same orientation and the same $x$ and $y$ axes.
479    The $x$ axis is orthogonal to the western edge and the tile is 16
480    points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
481    indicate the column beyond \code{Tn}'s eastern edge, in that tile's
482    halo region. Since the border of the tiles extends through the entire
483    height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
484    \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
485    either direction to cover part of the halo. \\
486    
487    For the north edge of the same tile \code{T=2} where \code{N=1} and
488    the neighbor tile is \code{Tn=5}:
489    
490    \begin{verbatim}
491           exch2_itlo_c(1,2)=0
492           exch2_ithi_c(1,2)=0
493           exch2_jtlo_c(1,2)=0
494           exch2_jthi_c(1,2)=17
495    \end{verbatim}
496    
497    \code{T}'s northern edge is parallel to the $x$ axis, but since
498    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
499    northern edge exchanges with \code{Tn}'s western edge.  The western
500    edge of the tiles corresponds to the lower bound of the $x$ axis, so
501    \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} are \code{0}, in the
502    western halo region of \code{Tn}. The range of
503    \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
504    width of \code{T}'s northern edge, expanded by one into the halo. \\
505    
506    
507    \subsection{Key Routines}
508    
509    Most of the subroutines particular to exch2 handle the exchanges
510    themselves and are of the same format as those described in
511    \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
512    communication}.  Like the original routines, they are written as
513    templates which the local Makefile converts from \code{RX} into
514    \code{RL} and \code{RS} forms. \\
515    
516    The interfaces with the core model subroutines are
517    \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
518    \code{EXCH\_XY\_RX}.  They override the standard exchange routines
519    when \code{genmake2} is run with \code{exch2} option.  They in turn
520    call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
521    \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
522    quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
523    and three-dimensional scalar quantities.  These subroutines set the
524    dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
525    for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
526    the singularities at the cube corners. \\
527    
528    The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
529    \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subroutine
530    needs to pass both the $u$ and $v$ components of the physical vectors.
531    This swapping arises from the topological folding discussed above, where the
532    $x$ and $y$ axes get swapped in some cases, and is not an
533    issue with the scalar case. These subroutines call
534    \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
535    the work using the variables discussed above. \\
536    
 \subsection{References}  

Legend:
Removed from v.1.9  
changed lines
  Added in v.1.20

  ViewVC Help
Powered by ViewVC 1.1.22