/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.8 by edhill, Tue Feb 17 21:58:56 2004 UTC revision 1.18 by afe, Thu May 6 15:21:01 2004 UTC
# Line 10  Line 10 
10  %%    o automatically inserted at \section{Reference}  %%    o automatically inserted at \section{Reference}
11    
12    
13  \section{Extended Cubed Sphere Exchange}  \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14  \label{sec:exch2}  \label{sec:exch2}
15    
16    
17  \subsection{Introduction}  \subsection{Introduction}
18    
19  The \texttt{exch2} package is an extension to the original cubed  The \texttt{exch2} package extends the original cubed sphere topology
20  sphere exchanges to allow more flexible domain decomposition and  configuration to allow more flexible domain decomposition and
21  parallelization.  Cube faces (subdomains) may be divided into whatever  parallelization.  Cube faces (also called subdomains) may be divided
22  number of tiles that divide evenly into the grid point dimensions of  into any number of tiles that divide evenly into the grid point
23  the subdomain.  Furthermore, the individual tiles may be run on  dimensions of the subdomain.  Furthermore, the tiles can run on
24  separate processors in different combinations, and whether exchanges  separate processors individually or in groups, which provides for
25  between particular tiles occur between different processors is  manual compile-time load balancing across a relatively arbitrary
26  determined at runtime.  number of processors. \\
27    
28  The exchange parameters are declared in  The exchange parameters are declared in
29  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
30  and assigned in  and assigned in
31  \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}, both in  \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
32  the \texttt{pkg/exch2} directory.  The validity of the cube topology  validity of the cube topology depends on the \file{SIZE.h} file as
33  depends on the \texttt{SIZE.h} file as detailed below.  Both files are  detailed below.  The default files provided in the release configure a
34  generated by Matlab scripts and should not be edited.  The default  cubed sphere topology of six tiles, one per subdomain, each with
35  files provided in the release set up a cube sphere arrangement of six  32$\times$32 grid points, with all tiles running on a single processor.  Both
36  tiles, one per subdomain, each with 32x32 grid points, running on a  files are generated by Matlab scripts in
37  single processor.  \file{utils/exch2/matlab-topology-generator}; see Section
38    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
39    for details on creating alternate topologies.  Pregenerated examples
40    of these files with alternate topologies are provided under
41    \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
42    file for single-processor execution.
43    
44    \subsection{Invoking exch2}
45    
46    To use exch2 with the cubed sphere, the following conditions must be
47    met: \\
48    
49    $\bullet$ The exch2 package is included when \file{genmake2} is run.
50      The easiest way to do this is to add the line \code{exch2} to the
51      \file{profile.conf} file -- see Section
52      \ref{sect:buildingCode} \sectiontitle{Building the code} for general
53      details. \\
54    
55    $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
56      \file{w2\_e2setup.F} must reside in a directory containing files
57      symbolically linked when \file{genmake2} runs.  The safest place to
58      put these is the directory indicated in the \code{-mods=DIR} command
59      line modifier (typically \file{../code}), or the build directory.
60      The default versions of these files reside in \file{pkg/exch2} and
61      are linked automatically if no other versions exist elsewhere in the
62      build path, but they should be left untouched to avoid breaking
63      configurations other than the one you intend to modify.\\
64    
65    $\bullet$ Files containing grid parameters, named
66      \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),
67      must be in the working directory when the MITgcm executable is run.
68      These files are provided in the example experiments for cubed sphere
69      configurations with 32$\times$32 cube sides
70      -- please contact MITgcm support if you want to generate
71      files for other configurations. \\
72    
73    $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must
74      be placed where \file{genmake2} will find it.  In particular for
75      exch2, the domain decomposition specified in \file{SIZE.h} must
76      correspond with the particular configuration's topology specified in
77      \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
78      decomposition issues particular to exch2 are addressed in Section
79      \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
80      and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and MPI}; a more
81      general background on the subject relevant to MITgcm is presented in
82      Section \ref{sect:specifying_a_decomposition}
83      \sectiontitle{Specifying a decomposition}.\\
84    
85    At the time of this writing the following examples use exch2 and may
86    be used for guidance:
87    
88    \begin{verbatim}
89    verification/adjust_nlfs.cs-32x32x1
90    verification/adjustment.cs-32x32x1
91    verification/aim.5l_cs
92    verification/global_ocean.cs32x15
93    verification/hs94.cs-32x32x5
94    \end{verbatim}
95    
96    
97    
98    
99    \subsection{Generating Topology Files for exch2}
100    \label{sec:topogen}
101    
102    Alternate cubed sphere topologies may be created using the Matlab
103    scripts in \file{utils/exch2/matlab-topology-generator}. Running the
104    m-file
105    \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
106    from the Matlab prompt (there are no parameters to pass) generates
107    exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
108    \file{w2\_e2setup.F} in the working directory and displays a figure of
109    the topology via Matlab -- figures \ref{fig:6tile}, \ref{fig:12tile},
110    and \ref{fig:24tile} are examples.  The other m-files in the directory are
111    subroutines of \file{driver.m} and should not be run ``bare'' except
112    for development purposes. \\
113    
114    The parameters that determine the dimensions and topology of the
115    generated configuration are \code{nr}, \code{nb}, \code{ng},
116    \code{tnx} and \code{tny}, and all are assigned early in the script. \\
117    
118    The first three determine the size of the subdomains and
119    hence the size of the overall domain.  Each one determines the number
120    of grid points, and therefore the resolution, along the subdomain
121    sides in a ``great circle'' around each the three spatial axes of the cube.  At the time
122    of this writing MITgcm requires these three parameters to be equal,
123    but they provide for future releases  to accomodate different
124    resolutions around the axes to allow (for example) greater resolution
125    around the equator.\\
126    
127    The parameters \code{tnx} and \code{tny} determine the width and height of
128    the tiles into which the subdomains are decomposed, and must evenly
129    divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
130    The result is a rectangular tiling of the subdomain.  Figure
131    \ref{fig:24tile} shows one possible topology for a twenty-four-tile
132    cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
133    
134    \begin{figure}
135    \begin{center}
136     \resizebox{4in}{!}{
137      \includegraphics{part6/s24t_16x16.ps}
138     }
139    \end{center}
140    
141    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
142    divided into six 32$\times$32 subdomains, each of which is divided
143    into four tiles of width \code{tnx=16} and height \code{tny=16} for a
144    total of twenty-four tiles.  The colored borders of the subdomains
145    represent the parameters \code{nr} (red), \code{nb} (blue), and
146    \code{ng} (green).  } \label{fig:24tile}
147    \end{figure}
148    
149    \begin{figure}
150    \begin{center}
151     \resizebox{4in}{!}{
152      \includegraphics{part6/s12t_16x32.ps}
153     }
154    \end{center}
155    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
156    divided into six 32$\times$32 subdomains of two tiles each
157     (\code{tnx=16, tny=32}).
158    } \label{fig:12tile}
159    \end{figure}
160    
161    \begin{figure}
162    \begin{center}
163     \resizebox{4in}{!}{
164      \includegraphics{part6/s6t_32x32.ps}
165     }
166    \end{center}
167    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
168    divided into six 32$\times$32 subdomains with one tile each
169    (\code{tnx=32, tny=32}).  This is the default configuration.
170      }
171    \label{fig:6tile}
172    \end{figure}
173    
174    
175    Tiles can be selected from the topology to be omitted from being
176    allocated memory and processors.  This tuning is useful in ocean
177    modeling for omitting tiles that fall entirely on land.  The tiles
178    omitted are specified in the file
179    \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
180    by their tile number in the topology, separated by a newline. \\
181    
182    
183    
184    
185    \subsection{exch2, SIZE.h, and multiprocessing}
186    \label{sec:exch2mpi}
187    
188    Once the topology configuration files are created, the Fortran
189    \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
190    Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
191    a decomposition} provides a general description of domain
192    decomposition within MITgcm and its relation to \file{SIZE.h}. The
193    current section specifies certain constraints the exch2 package
194    imposes as well as describes how to enable parallel execution with
195    MPI. \\
196    
197    As in the general case, the parameters \varlink{sNx}{sNx} and
198    \varlink{sNy}{sNy} define the size of the individual tiles, and so
199    must be assigned the same respective values as \code{tnx} and
200    \code{tny} in \file{driver.m}.\\
201    
202    The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
203    have no special bearing on exch2 and may be assigned as in the general
204    case. The same holds for \varlink{Nr}{Nr}, the number of vertical
205    levels in the model.\\
206    
207    The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
208    \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
209    tiles and how they are distributed on processors.  When using exch2,
210    the tiles are stored in a single dimension, and so
211    \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
212    configured by exch2 cannot be split up accross processors without
213    regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
214    
215    The number of tiles MITgcm allocates and how they are distributed
216    between processors depends on \varlink{nPx}{nPx} and
217    \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per
218    processor and \varlink{nPx}{nPx} the number of processors.  The total
219    number of tiles in the topology minus those listed in
220    \file{blanklist.txt} must equal \code{nSx*nPx}. \\
221    
222    The following is an example of \file{SIZE.h} for the twelve-tile
223    configuration illustrated in figure \ref{fig:12tile} running on
224    one processor: \\
225    
226    \begin{verbatim}
227          PARAMETER (
228         &           sNx =  16,
229         &           sNy =  32,
230         &           OLx =   2,
231         &           OLy =   2,
232         &           nSx =  12,
233         &           nSy =   1,
234         &           nPx =   1,
235         &           nPy =   1,
236         &           Nx  = sNx*nSx*nPx,
237         &           Ny  = sNy*nSy*nPy,
238         &           Nr  =   5)
239    \end{verbatim}
240    
241    The following is an example for the twenty-four-tile topology in
242    figure \ref{fig:24tile} running on six processors:
243    
244    \begin{verbatim}
245          PARAMETER (
246         &           sNx =  16,
247         &           sNy =  16,
248         &           OLx =   2,
249         &           OLy =   2,
250         &           nSx =   4,
251         &           nSy =   1,
252         &           nPx =   6,
253         &           nPy =   1,
254         &           Nx  = sNx*nSx*nPx,
255         &           Ny  = sNy*nSy*nPy,
256         &           Nr  =   5)
257    \end{verbatim}
258    
259    
260    
261    
262    
263  \subsection{Key Variables}  \subsection{Key Variables}
264    
265  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
266  one-dimensional arrays indexed to the tile number, and two and three  one-dimensional arrays indexed to the tile number, and two and
267  dimensional arrays indexed to tile number and neighboring tile.  This  three-dimensional arrays indexed to tile number and neighboring tile.
268  division actually reflects the functionality of these variables: the  This division reflects the functionality of these variables: The
269  scalars are common to every part of the topology, the tile-indexed  scalars are common to every part of the topology, the tile-indexed
270  arrays to individual tiles, and the arrays indexed to tile and  arrays to individual tiles, and the arrays indexed by tile and
271  neighbor to relationships between tiles and their neighbors.  neighbor to relationships between tiles and their neighbors. \\
272    
273  \subsubsection{Scalars}  \subsubsection{Scalars}
274    
275  The number of tiles in a particular topology is set with the parameter  The number of tiles in a particular topology is set with the parameter
276  \texttt{NTILES}, and the maximum number of neighbors of any tiles by  \code{NTILES}, and the maximum number of neighbors of any tiles by
277  \texttt{MAX\_NEIGHBOURS}.  These parameters are used for defining the  \code{MAX\_NEIGHBOURS}.  These parameters are used for defining the
278  size of the various one and two dimensional arrays that store tile  size of the various one and two dimensional arrays that store tile
279  parameters indexed to the tile number.  parameters indexed to the tile number and are assigned in the files
280    generated by \file{driver.m}.\\
281    
282  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
283  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
284  of tiles in the x and y global indices.  For example, the default  of tiles in the $x$ and $y$ global indices.  For example, the default
285  setup of six tiles has \texttt{exch2\_domain\_nxt=6} and  setup of six tiles (Fig. \ref{fig:6tile}) has
286  \texttt{exch2\_domain\_nyt=1}.  A topology of twenty-four square (in  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
287  gridpoints) tiles, four (2x2) per subdomain, will have  topology of twenty-four square tiles, four per subdomain (as in figure
288  \texttt{exch2\_domain\_nxt=12} and \texttt{exch2\_domain\_nyt=2}.  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
289  Note that these parameters express the tile layout to allow global  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the
290  data files that are tile-layout-neutral and have no bearing on the  tile layout to allow global data files that are tile-layout-neutral
291  internal storage of the arrays.  The tiles are internally stored in a  and have no bearing on the internal storage of the arrays.  The tiles
292  range from \texttt{1,bi} (in the x axis) and y-axis variable  are stored internally in a range from \code{(1:\varlink{bi}{bi})} the
293  \texttt{bj} is generally ignored within the package.  $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is assumed to
294    equal \code{1} throughout the package. \\
295    
296  \subsubsection{Arrays Indexed to Tile Number}  \subsubsection{Arrays Indexed to Tile Number}
297    
298  The following arrays are of size \texttt{NTILES}, are indexed to the  The following arrays are of length \code{NTILES} and are indexed to
299  tile number, and the indices are omitted in their descriptions.  the tile number, which is indicated in the diagrams with the notation
300    \textsf{t}$n$.  The indices are omitted in the descriptions. \\
301    
302  The arrays \varlink{exch2\_tnx}{exch2_tnx} and  The arrays \varlink{exch2\_tnx}{exch2_tnx} and
303  \varlink{exch2\_tny}{exch2_tny} express the x and y dimensions of each  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
304  tile.  At present for each tile \texttt{exch2\_tnx=sNx} and  each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
305  \texttt{exch2\_tny=sNy}, as assigned in \texttt{SIZE.h}.  Future  \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
306  releases of MITgcm are to allow varying tile sizes.  section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
307    multiprocessing}.  Future releases of MITgcm may allow varying tile
308    sizes. \\
309    
310  The location of the tiles' Cartesian origin within a subdomain are  The location of the tiles' Cartesian origin within a subdomain are
311  determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and  determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
312  \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to  \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to
313  relate the location of the edges of the tiles to each other.  As an  relate the location of the edges of different tiles to each other.  As
314  example, in the default six-tile topology (the degenerate case) each  an example, in the default six-tile topology (Fig. \ref{fig:6tile})
315  index in these arrays are set to 0.  The twenty-four, 32x32 cube face  each index in these arrays is set to \code{0} since a tile occupies
316  case discussed above will have values of 0 or 16, depending on the  its entire subdomain.  The twenty-four-tile case discussed above will
317  quadrant the tile falls within the subdomain.  The array  have values of \code{0} or \code{16}, depending on the quadrant the
318  \varlink{exch2\_myFace}{exch2_myFace} contains the number of the  tile falls within the subdomain.  The elements of the arrays
319  cubeface/subdomain of each tile, numbered 1-6 in the case of the  \varlink{exch2\_txglobalo}{exch2_txglobalo} and
 standard cube topology.  
   
 The arrays \varlink{exch2\_txglobalo}{exch2_txglobalo} and  
320  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
321  \varlink{exch2\_tbasex}{exch2_tbasex} and  \varlink{exch2\_tbasex}{exch2_tbasex} and
322  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the
323  global address space, similar to that used by global files.  global address space, similar to that used by global output and input
324    files. \\
325    
326    The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
327    the subdomain of each tile, in a range \code{(1:6)} in the case of the
328    standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
329    figures \ref{fig:12tile} and
330    \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
331    contains a count of the neighboring tiles each tile has, and is used
332    for setting bounds for looping over neighboring tiles.
333    \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
334    tile, and is used in interprocess communication.  \\
335    
336    
337  The arrays \varlink{exch2\_isWedge}{exch2_isWedge},  The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
338  \varlink{exch2\_isEedge}{exch2_isEedge},  \varlink{exch2\_isEedge}{exch2_isEedge},
339  \varlink{exch2\_isSedge}{exch2_isSedge}, and  \varlink{exch2\_isSedge}{exch2_isSedge}, and
340  \varlink{exch2\_isNedge}{exch2_isNedge} are set to 1 if the indexed  \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
341  tile lies on the edge of a subdomain, 0 if not.  The values are used  indexed tile lies on the respective edge of a subdomain, \code{0} if
342  within the topology generator to determine the orientation of  not.  The values are used within the topology generator to determine
343  neighboring tiles and to indicate whether a tile lies on the corner of  the orientation of neighboring tiles, and to indicate whether a tile
344  a subdomain.  The latter case indicates special exchange and numerical  lies on the corner of a subdomain.  The latter case requires special
345  handling for the singularities at the eight corners of the cube.  exchange and numerical handling for the singularities at the eight
346  \varlink{exch2\_nNeighbours}{exch2_nNeighbours} contains a count of  corners of the cube. \\
347  how many neighboring tiles each tile has, and is used for setting  
 bounds for looping over neighboring tiles.  
 \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each  
 tile, and is used in interprocess communication.  
348    
349  \subsubsection{Arrays Indexed to Tile Number and Neighbor}  \subsubsection{Arrays Indexed to Tile Number and Neighbor}
350    
351  The following arrays are all of size \texttt{MAX\_NEIGHBOURS} $\times$  The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
352  \texttt{NTILES} and describe the orientations between the the tiles.  \code{NTILES} and describe the orientations between the the tiles. \\
353    
354  The array \texttt{exch2\_neighbourId(a,T)} holds the tile number for  The array \code{exch2\_neighbourId(a,T)} holds the tile number
355  each of the $n$ neighboring tiles.  The neighbor tiles are indexed  \code{Tn} for each of the tile number \code{T}'s neighboring tiles
356  \texttt{(1,MAX\_NEIGHBOURS} in the order right to left on the north  \code{a}.  The neighbor tiles are indexed
357  then south edges, and then top to bottom on the east and west edges.  \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
358  Maybe throw in a fig here, eh?  north then south edges, and then top to bottom on the east then west
359    edges.  \\
360  The \texttt{exch2\_opposingSend\_record(a,T)} array holds the index c  
361  in \texttt{exch2\_neighbourId(b,$T_{n}$)} that holds the tile number T.   The \code{exch2\_opposingSend\_record(a,T)} array holds the
362  In other words,  index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
363    that holds the tile number \code{T}, given
364    \code{Tn=exch2\_neighborId(a,T)}.  In other words,
365  \begin{verbatim}  \begin{verbatim}
366     exch2_neighbourId( exch2_opposingSend_record(a,T),     exch2_neighbourId( exch2_opposingSend_record(a,T),
367                        exch2_neighbourId(a,T) ) = T                        exch2_neighbourId(a,T) ) = T
368  \end{verbatim}  \end{verbatim}
369  and this provides a back-reference from the neighbor tiles.  This provides a back-reference from the neighbor tiles. \\
370    
371    The arrays \varlink{exch2\_pi}{exch2_pi} and
372    \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
373    in exchanges between the neighboring tiles.  These transformations are
374    necessary in exchanges between subdomains because the array index in
375    one dimension may map to the other index in an adjacent subdomain, and
376    may be have its indexing reversed. This swapping arises from the
377    ``folding'' of two-dimensional arrays into a three-dimensional
378    cube. \\
379    
380    The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
381    are the neighbor ID \code{N} and the tile number \code{T} as explained
382    above, plus a vector of length \code{2} containing transformation
383    factors \code{t}.  The first element of the transformation vector
384    holds the factor to multiply the index in the same axis, and the
385    second element holds the the same for the orthogonal index.  To
386    clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
387    index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
388    \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
389    $x$ index to the neighbor \code{N}'s $y$ index. \\
390    
391    One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
392    given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
393    the fact that the two axes are orthogonal.  The other element will be
394    \code{1} or \code{-1}, depending on whether the axes are indexed in
395    the same or opposite directions.  For example, the transform vector of
396    the arrays for all tile neighbors on the same subdomain will be
397    \code{(1,0)}, since all tiles on the same subdomain are oriented
398    identically.  An axis that corresponds to the orthogonal dimension
399    with the same index direction in a particular tile-neighbor
400    orientation will have \code{(0,1)}.  Those in the opposite index
401    direction will have \code{(0,-1)} in order to reverse the ordering. \\
402    
403  The arrays \varlink{exch2\_pi}{exch2_pi},  The arrays \varlink{exch2\_oi}{exch2_oi},
 \varlink{exch2\_pj}{exch2_pj}, \varlink{exch2\_oi}{exch2_oi},  
404  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
405  \varlink{exch2\_oj\_f}{exch2_oj_f} specify the transformations in  \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
406  exchanges between the neighboring tiles.  The dimensions of  neighbor and specify the relative offset within the subdomain of the
407  \texttt{exch2\_pi(t,N,T)} and \texttt{exch2\_pj(t,N,T)} are the  array index of a variable going from a neighboring tile \code{N} to a
408  neighbor ID \textit{N} and the tile number \textit{T} as explained  local tile \code{T}.  Consider \code{T=1} in the six-tile topology
409  above, plus the transformation vector {\em t }, of length two.  The  (Fig. \ref{fig:6tile}), where
410  first element of the transformation vector indicates the factor by  
411  which variables representing the same vector component of a tile will  \begin{verbatim}
412  be multiplied, and the second element indicates the transform to the         exch2_oi(1,1)=33
413  variable in the other direction.  As an example,         exch2_oi(2,1)=0
414  \texttt{exch2\_pi(1,N,T)} holds the transform of the i-component of a         exch2_oi(3,1)=32
415  vector variable in tile \texttt{T} to the i-component of tile         exch2_oi(4,1)=-32
 \texttt{T}'s neighbor \texttt{N}, and \texttt{exch2\_pi(2,N,T)} hold  
 the component of neighbor \texttt{N}'s j-component.  
   
 Under the current cube topology, one of the two elements of  
 \texttt{exch2\_pi} or \texttt{exch2\_pj} for a given tile \texttt{T}  
 and neighbor \texttt{N} will be 0, reflecting the fact that the vector  
 components are orthogonal.  The other element will be 1 or -1,  
 depending on whether the components are indexed in the same or  
 opposite directions.  For example, the transform dimension of the  
 arrays for all tile neighbors on the same subdomain will be [1,0],  
 since all tiles on the same subdomain are oriented identically.  
 Vectors that correspond to the orthogonal dimension with the same  
 index direction will have [0,1], whereas those in the opposite index  
 direction will have [0,-1].  
   
   
 {\footnotesize  
 \begin{verbatim}  
 C      exch2_pi          :: X index row of target to source permutation  
 C                        :: matrix for each neighbour entry.              
 C      exch2_pj          :: Y index row of target to source permutation  
 C                        :: matrix for each neighbour entry.              
 C      exch2_oi          :: X index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oj          :: Y index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oi_f        :: X index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
 C      exch2_oj_f        :: Y index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
416  \end{verbatim}  \end{verbatim}
 }  
417    
418    The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
419    which is \code{Tn=6}.  The axes of \code{T} and \code{Tn} have the
420    same orientation and their $x$ axes have the same origin, and so an
421    exchange between the two requires no changes to the $x$ index.  For
422    the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
423    \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
424    \code{Tn}.  The eastern edge of \code{T} shows the reverse case
425    (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
426    with \code{x=0} on \code{Tn=2}. \\
427    
428     The most interesting case, where \code{exch2\_oi(1,1)=33} and
429    \code{Tn=3}, involves a reversal of indices.  As in every case, the
430    offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
431    multiplied by the transformation factor \code{exch2\_pi(t,N,T)}.  Here
432    \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
433    to the $x$ axis of \code{Tn}.  \code{exch2\_pi(2,1,1)=-1} since the
434    $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
435    index is reversed.  The result is that the index of the northern edge
436    of \code{T}, which runs \code{(1:32)}, is transformed to
437    \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
438    get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
439    relative to \code{T}.  This transformation may seem overly convoluted
440    for the six-tile case, but it is necessary to provide a general
441    solution for various topologies. \\
442    
443    
 \subsection{Key Routines}  
444    
445    Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
446    \varlink{exch2\_ithi\_c}{exch2_ithi_c},
447    \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
448    \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
449    bounds of the edge segment of the neighbor tile \code{N}'s subdomain
450    that gets exchanged with the local tile \code{T}.  To take the example
451    of tile \code{T=2} in the twelve-tile topology
452    (Fig. \ref{fig:12tile}): \\
453    
454    \begin{verbatim}
455           exch2_itlo_c(4,2)=17
456           exch2_ithi_c(4,2)=17
457           exch2_jtlo_c(4,2)=0
458           exch2_jthi_c(4,2)=33
459    \end{verbatim}
460    
461    Here \code{N=4}, indicating the western neighbor, which is
462    \code{Tn=1}.  \code{Tn} resides on the same subdomain as \code{T}, so
463    the tiles have the same orientation and the same $x$ and $y$ axes.
464    The $x$ axis is orthogonal to the western edge and the tile is 16
465    points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
466    indicate the column beyond \code{Tn}'s eastern edge, in that tile's
467    halo region. Since the border of the tiles extends through the entire
468    height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
469    \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
470    either direction to cover part of the halo. \\
471    
472    For the north edge of the same tile \code{T=2} where \code{N=1} and
473    the neighbor tile is \code{Tn=5}:
474    
475    \begin{verbatim}
476           exch2_itlo_c(1,2)=0
477           exch2_ithi_c(1,2)=0
478           exch2_jtlo_c(1,2)=0
479           exch2_jthi_c(1,2)=17
480    \end{verbatim}
481    
482    \code{T}'s northern edge is parallel to the $x$ axis, but since
483    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
484    northern edge exchanges with \code{Tn}'s western edge.  The western
485    edge of the tiles corresponds to the lower bound of the $x$ axis, so
486    \code{exch2\_itlo\_c} \code{exch2\_ithi\_c} are \code{0}. The range of
487    \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
488    width of \code{T}'s northern edge, plus the halo. \\
489    
490    
491    \subsection{Key Routines}
492    
493    Most of the subroutines particular to exch2 handle the exchanges
494    themselves and are of the same format as those described in
495    \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
496    communication}.  Like the original routines, they are written as
497    templates which the local Makefile converts from RX into RL and RS
498    forms. \\
499    
500    The interfaces with the core model subroutines are
501    \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
502    \code{EXCH\_XY\_RX}.  They override the standard exchange routines
503    when \code{genmake2} is run with \code{exch2} option.  They in turn
504    call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
505    \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
506    quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
507    and three-dimensional scalar quantities.  These subroutines set the
508    dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
509    for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
510    the singularities at the cube corners. \\
511    
512    The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
513    \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subrouine
514    needs to pass both the $u$ and $v$ components of the phsical vectors.
515    This arises from the topological folding discussed above, where the
516    $x$ and $y$ axes get swapped in some cases.  This swapping is not an
517    issue with the scalar version. These subroutines call
518    \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
519    the work using the variables discussed above. \\
520    
 \subsection{References}  

Legend:
Removed from v.1.8  
changed lines
  Added in v.1.18

  ViewVC Help
Powered by ViewVC 1.1.22