/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by afe, Wed Feb 11 20:48:14 2004 UTC revision 1.23 by afe, Fri Jun 10 19:34:09 2005 UTC
# Line 10  Line 10 
10  %%    o automatically inserted at \section{Reference}  %%    o automatically inserted at \section{Reference}
11    
12    
13  \section{exch2: Extended Cubed Sphere Exchange}  \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14  \label{sec:exch2}  \label{sec:exch2}
15    
16    
17  \subsection{Introduction}  \subsection{Introduction}
18    
19  The exch2 package is an extension to the original cubed sphere exchanges  The \texttt{exch2} package extends the original cubed sphere topology
20  to allow more flexible domain decomposition and parallelization.  Cube faces  configuration to allow more flexible domain decomposition and
21  (subdomains) may be divided into whatever number of tiles that divide evenly  parallelization.  Cube faces (also called subdomains) may be divided
22  into the grid point dimensions of the subdomain.  Furthermore, the individual  into any number of tiles that divide evenly into the grid point
23  tiles may be run on separate processors in different combinations,  dimensions of the subdomain.  Furthermore, the tiles can run on
24  and whether exchanges between particular tiles occur between different  separate processors individually or in groups, which provides for
25  processors is determined at runtime.  manual compile-time load balancing across a relatively arbitrary
26    number of processors. \\
27  The exchange parameters are declared in {\em W2\_EXCH2\_TOPOLOGY.h} and  
28  assigned in {\em w2\_e2setup.F}, both in the  The exchange parameters are declared in
29  {\em pkg/exch2} directory.  The validity of the cube topology depends  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
30  on the {\em SIZE.h} file as detailed below.  Both files are generated by  and assigned in
31  Matlab scripts and  \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
32  should not be edited.  The default files provided in the release set up  validity of the cube topology depends on the \file{SIZE.h} file as
33  a cube sphere arrangement of six tiles, one per subdomain, each with 32x32 grid  detailed below.  The default files provided in the release configure a
34  points, running on a single processor.    cubed sphere topology of six tiles, one per subdomain, each with
35    32$\times$32 grid points, with all tiles running on a single processor.  Both
36    files are generated by Matlab scripts in
37    \file{utils/exch2/matlab-topology-generator}; see Section
38    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
39    for details on creating alternate topologies.  Pregenerated examples
40    of these files with alternate topologies are provided under
41    \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
42    file for single-processor execution.
43    
44    \subsection{Invoking exch2}
45    
46    To use exch2 with the cubed sphere, the following conditions must be
47    met: \\
48    
49    $\bullet$ The exch2 package is included when \file{genmake2} is run.
50      The easiest way to do this is to add the line \code{exch2} to the
51      \file{profile.conf} file -- see Section
52      \ref{sect:buildingCode} \sectiontitle{Building the code} for general
53      details. \\
54    
55    $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
56      \file{w2\_e2setup.F} must reside in a directory containing files
57      symbolically linked by the \file{genmake2} script.  The safest place to
58      put these is the directory indicated in the \code{-mods=DIR} command
59      line modifier (typically \file{../code}), or the build directory.
60      The default versions of these files reside in \file{pkg/exch2} and
61      are linked automatically if no other versions exist elsewhere in the
62      build path, but they should be left untouched to avoid breaking
63      configurations other than the one you intend to modify.\\
64    
65    $\bullet$ Files containing grid parameters, named
66      \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),
67      must be in the working directory when the MITgcm executable is run.
68      These files are provided in the example experiments for cubed sphere
69      configurations with 32$\times$32 cube sides
70      -- please contact MITgcm support if you want to generate
71      files for other configurations. \\
72    
73    $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must
74      be placed where \file{genmake2} will find it.  In particular for
75      exch2, the domain decomposition specified in \file{SIZE.h} must
76      correspond with the particular configuration's topology specified in
77      \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
78      decomposition issues particular to exch2 are addressed in Section
79      \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
80      and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and Multiprocessing}; a more
81      general background on the subject relevant to MITgcm is presented in
82      Section \ref{sect:specifying_a_decomposition}
83      \sectiontitle{Specifying a decomposition}.\\
84    
85    At the time of this writing the following examples use exch2 and may
86    be used for guidance:
87    
88    \begin{verbatim}
89    verification/adjust_nlfs.cs-32x32x1
90    verification/adjustment.cs-32x32x1
91    verification/aim.5l_cs
92    verification/global_ocean.cs32x15
93    verification/hs94.cs-32x32x5
94    \end{verbatim}
95    
96    
97    
98    
99    \subsection{Generating Topology Files for exch2}
100    \label{sec:topogen}
101    
102    Alternate cubed sphere topologies may be created using the Matlab
103    scripts in \file{utils/exch2/matlab-topology-generator}. Running the
104    m-file
105    \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
106    from the Matlab prompt (there are no parameters to pass) generates
107    exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
108    \file{w2\_e2setup.F} in the working directory and displays a figure of
109    the topology via Matlab -- figures \ref{fig:6tile}, \ref{fig:12tile},
110    and \ref{fig:24tile} are examples of the generated diagrams.  The other
111    m-files in the directory are
112    subroutines called from \file{driver.m} and should not be run ``bare'' except
113    for development purposes. \\
114    
115    The parameters that determine the dimensions and topology of the
116    generated configuration are \code{nr}, \code{nb}, \code{ng},
117    \code{tnx} and \code{tny}, and all are assigned early in the script. \\
118    
119    The first three determine the height and width of the subdomains and
120    hence the size of the overall domain.  Each one determines the number
121    of grid points, and therefore the resolution, along the subdomain
122    sides in a ``great circle'' around each the three spatial axes of the cube.  At the time
123    of this writing MITgcm requires these three parameters to be equal,
124    but they provide for future releases  to accomodate different
125    resolutions around the axes to allow subdomains with differing resolutions.\\
126    
127    The parameters \code{tnx} and \code{tny} determine the width and height of
128    the tiles into which the subdomains are decomposed, and must evenly
129    divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
130    The result is a rectangular tiling of the subdomain.  Figure
131    \ref{fig:24tile} shows one possible topology for a twenty-four-tile
132    cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
133    
134    \begin{figure}
135    \begin{center}
136     \resizebox{4in}{!}{
137      \includegraphics{part6/s24t_16x16.ps}
138     }
139    \end{center}
140    
141    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
142    divided into six 32$\times$32 subdomains, each of which is divided
143    into four tiles of width \code{tnx=16} and height \code{tny=16} for a
144    total of twenty-four tiles.  The colored borders of the subdomains
145    represent the parameters \code{nr} (red), \code{nb} (blue), and
146    \code{ng} (green).  } \label{fig:24tile}
147    \end{figure}
148    
149    \begin{figure}
150    \begin{center}
151     \resizebox{4in}{!}{
152      \includegraphics{part6/s12t_16x32.ps}
153     }
154    \end{center}
155    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
156    divided into six 32$\times$32 subdomains of two tiles each
157     (\code{tnx=16, tny=32}).
158    } \label{fig:12tile}
159    \end{figure}
160    
161    \begin{figure}
162    \begin{center}
163     \resizebox{4in}{!}{
164      \includegraphics{part6/s6t_32x32.ps}
165     }
166    \end{center}
167    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
168    divided into six 32$\times$32 subdomains with one tile each
169    (\code{tnx=32, tny=32}).  This is the default configuration.
170      }
171    \label{fig:6tile}
172    \end{figure}
173    
174    
175    Tiles can be selected from the topology to be omitted from being
176    allocated memory and processors.  This tuning is useful in ocean
177    modeling for omitting tiles that fall entirely on land.  The tiles
178    omitted are specified in the file
179    \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
180    by their tile number in the topology, separated by a newline. \\
181    
182    
183    
184    
185    \subsection{exch2, SIZE.h, and Multiprocessing}
186    \label{sec:exch2mpi}
187    
188    Once the topology configuration files are created, the Fortran
189    \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
190    Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
191    a decomposition} provides a general description of domain
192    decomposition within MITgcm and its relation to \file{SIZE.h}. The
193    current section specifies constraints that the exch2 package
194    imposes and describes how to enable parallel execution with
195    MPI. \\
196    
197    As in the general case, the parameters \varlink{sNx}{sNx} and
198    \varlink{sNy}{sNy} define the size of the individual tiles, and so
199    must be assigned the same respective values as \code{tnx} and
200    \code{tny} in \file{driver.m}.\\
201    
202    The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
203    have no special bearing on exch2 and may be assigned as in the general
204    case. The same holds for \varlink{Nr}{Nr}, the number of vertical
205    levels in the model.\\
206    
207    The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
208    \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
209    tiles and how they are distributed on processors.  When using exch2,
210    the tiles are stored in the $x$ dimension, and so
211    \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
212    configured by exch2 cannot be split up accross processors without
213    regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
214    
215    The number of tiles MITgcm allocates and how they are distributed
216    between processors depends on \varlink{nPx}{nPx} and
217    \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per
218    processor and \varlink{nPx}{nPx} is the number of processors.  The
219    total number of tiles in the topology minus those listed in
220    \file{blanklist.txt} must equal \code{nSx*nPx}.  Note that in order to
221    obtain maximum usage from a given number of processors in some cases,
222    this restriction might entail sharing a processor with a tile that
223    would otherwise be excluded because it is topographically outside of
224    the domain and therefore in \file{blanklist.txt}.  For example,
225    suppose you have five processors and a domain decomposition of
226    thirty-six tiles that allows you to exclude seven tiles.  To evenly
227    distribute the remaining twenty-nine tiles among five processors, you
228    would have to run one ``dummy'' tile to make an even six tiles per
229    processor.  Such dummy tiles are \emph{not} listed in
230    \file{blanklist.txt}.\\
231    
232    
233    The following is an example of \file{SIZE.h} for the twelve-tile
234    configuration illustrated in figure \ref{fig:12tile} running on
235    one processor: \\
236    
237    \begin{verbatim}
238          PARAMETER (
239         &           sNx =  16,
240         &           sNy =  32,
241         &           OLx =   2,
242         &           OLy =   2,
243         &           nSx =  12,
244         &           nSy =   1,
245         &           nPx =   1,
246         &           nPy =   1,
247         &           Nx  = sNx*nSx*nPx,
248         &           Ny  = sNy*nSy*nPy,
249         &           Nr  =   5)
250    \end{verbatim}
251    
252    The following is an example for the twenty-four-tile topology in
253    figure \ref{fig:24tile} running on six processors:
254    
255    \begin{verbatim}
256          PARAMETER (
257         &           sNx =  16,
258         &           sNy =  16,
259         &           OLx =   2,
260         &           OLy =   2,
261         &           nSx =   4,
262         &           nSy =   1,
263         &           nPx =   6,
264         &           nPy =   1,
265         &           Nx  = sNx*nSx*nPx,
266         &           Ny  = sNy*nSy*nPy,
267         &           Nr  =   5)
268    \end{verbatim}
269    
270    
271    
272    
273    
274  \subsection{Key Variables}  \subsection{Key Variables}
275    
276  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
277  one-dimensional arrays indexed to the tile number, and two and three  one-dimensional arrays indexed to the tile number, and two and
278  dimensional  three-dimensional arrays indexed to tile number and neighboring tile.
279  arrays indexed to tile number and neighboring tile.  This division  This division reflects the functionality of these variables: The
280  actually reflects  the functionality of these variables: the scalars  scalars are common to every part of the topology, the tile-indexed
281  are common to every part of the topology, the tile-indexed arrays to  arrays to individual tiles, and the arrays indexed by tile and
282  individual tiles, and the arrays indexed to tile and neighbor to  neighbor to relationships between tiles and their neighbors. \\
 relationships between tiles and their neighbors.  
283    
284  \subsubsection{Scalars}  \subsubsection{Scalars}
285    
286  The number of tiles in a particular topology is set with the parameter  The number of tiles in a particular topology is set with the parameter
287  {\em NTILES}, and the maximum number of neighbors of any tiles by  \code{NTILES}, and the maximum number of neighbors of any tiles by
288  {\em MAX\_NEIGHBOURS}.  These parameters are used for defining the size of  \code{MAX\_NEIGHBOURS}.  These parameters are used for defining the
289  the various one and two dimensional arrays that store tile parameters  size of the various one and two dimensional arrays that store tile
290  indexed to the tile number.  parameters indexed to the tile number and are assigned in the files
291    generated by \file{driver.m}.\\
292  The scalar parameters {\em exch2\_domain\_nxt} and  
293  {\em exch2\_domain\_nyt} express the number of tiles in the x and y global  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
294  indices.  For example, the default setup of six tiles has  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
295  {\em exch2\_domain\_nxt=6} and {\em exch2\_domain\_nyt=1}.  A topology of  of tiles in the $x$ and $y$ global indices.  For example, the default
296  twenty-four square (in gridpoints) tiles, four (2x2) per subdomain, will  setup of six tiles (Fig. \ref{fig:6tile}) has
297  have {\em exch2\_domain\_nxt=12} and {\em exch2\_domain\_nyt=2}.  Note  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
298  that these parameters express the tile layout to allow global data files that  topology of twenty-four square tiles, four per subdomain (as in figure
299  are tile-layout-neutral and have no bearing on the internal storage of the  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
300  arrays.  The tiles are internally stored in a range from {\em 1,bi} (in the  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the
301  x axis) and y-axis variable {\em bj} is generally ignored within the package.  tile layout in order to allow global data files that are tile-layout-neutral.
302    They have no bearing on the internal storage of the arrays.  The tiles
303  \subsubsection{Arrays Indexed to Tile Number}  are stored internally in a range from \code{\varlink{bi}{bi}=(1:NTILES)} in the
304    $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is assumed to
305  The following arrays are of size {\em NTILES}, are indexed to the tile number,  equal \code{1} throughout the package. \\
306  and the indices are omitted in their descriptions.  
307    \subsubsection{Arrays indexed to tile number}
308  The arrays {\em exch2\_tnx} and {\em exch2\_tny}  
309  express the x and y dimensions of each tile.  At present for each tile  The following arrays are of length \code{NTILES} and are indexed to
310  {\em exch2\_tnx = sNx}  the tile number, which is indicated in the diagrams with the notation
311  and {\em exch2\_tny = sNy}, as assigned in {\em SIZE.h}.  Future releases of  \textsf{t}$n$.  The indices are omitted in the descriptions. \\
312  MITgcm are to allow varying tile sizes.  
313    The arrays \varlink{exch2\_tnx}{exch2_tnx} and
314  The location of the tiles' Cartesian origin within a subdomain are determined  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
315  by the arrays {\em exch2\_tbasex} and {\em exch2\_tbasey}.  These variables  each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
316  are used to relate the location of the edges of the tiles to each other.  As  \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
317  an example, in the default six-tile topology (the degenerate case)  Section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
318  each index in these arrays are  Multiprocessing}.  Future releases of MITgcm may allow varying tile
319  set to 0.  The twenty-four, 32x32 cube face case discussed above will have  sizes. \\
320  values of 0 or 16, depending on the quadrant the tile falls within the  
321  subdomain.  {\em exch2\_myFace} contains the number of the  The arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
322  cubeface/subdomain of each tile, numbered 1-6 in the case of the standard  \varlink{exch2\_tbasey}{exch2_tbasey} determine the tiles'
323  cube topology.    Cartesian origin within a subdomain  
324    and locate the edges of different tiles relative to each other.  As
325  The arrays {\em exch2\_txglobalo} and {\em exch2\_txglobalo} are similar to  an example, in the default six-tile topology (Fig. \ref{fig:6tile})
326  {\em exch2\_tbasex} and {\em exch2\_tbasey}, but locate the tiles within  each index in these arrays is set to \code{0} since a tile occupies
327  the global address space, similar to that used by global files.    its entire subdomain.  The twenty-four-tile case discussed above will
328    have values of \code{0} or \code{16}, depending on the quadrant of the
329  The arrays {\em exch2\_isWedge}, {\em exch2\_isEedge}, {\em exch2\_isSedge},  tile within the subdomain.  The elements of the arrays
330  and {\em exch2\_isNedge} are set to 1 if the indexed tile lies on the edge  \varlink{exch2\_txglobalo}{exch2_txglobalo} and
331  of a subdomain, 0 if not.  The values are used within the topology generator  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
332  to determine the orientation of neighboring tiles and to indicate whether  \varlink{exch2\_tbasex}{exch2_tbasex} and
333  a tile lies on the corner of a subdomain.  The latter case indicates  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tile edges within the
334  special exchange and numerical handling for the singularities at the eight  global address space, similar to that used by global output and input
335  corners of the cube.  {\em exch2\_isNedge} contains a count of how many  files. \\
336  neighboring tiles each tile has, and is used for setting bounds for looping  
337  over neighboring tiles.  {\em exch2\_tProc} holds the process rank of each tile,  The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
338  and is used in interprocess communication.  the subdomain of each tile, in a range \code{(1:6)} in the case of the
339    standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
340    figures \ref{fig:12tile} and
341    \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
342    contains a count of the neighboring tiles each tile has, and sets
343    the bounds for looping over neighboring tiles.
344    \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
345    tile, and is used in interprocess communication.  \\
346    
347    
348    The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
349    \varlink{exch2\_isEedge}{exch2_isEedge},
350    \varlink{exch2\_isSedge}{exch2_isSedge}, and
351    \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
352    indexed tile lies on the edge of its subdomain, \code{0} if
353    not.  The values are used within the topology generator to determine
354    the orientation of neighboring tiles, and to indicate whether a tile
355    lies on the corner of a subdomain.  The latter case requires special
356    exchange and numerical handling for the singularities at the eight
357    corners of the cube. \\
358    
359    
360  \subsubsection{Arrays Indexed to Tile Number and Neighbor}  \subsubsection{Arrays Indexed to Tile Number and Neighbor}
361    
362  The following arrays are all of size {\em MAX\_NEIGHBOURS}x{\em NTILES} and  The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
363  describe the orientations between the the tiles.  \code{NTILES} and describe the orientations between the the tiles. \\
364    
365    The array \code{exch2\_neighbourId(a,T)} holds the tile number
366    \code{Tn} for each of the tile number \code{T}'s neighboring tiles
367    \code{a}.  The neighbor tiles are indexed
368    \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
369    north then south edges, and then top to bottom on the east then west
370    edges.  \\
371    
372     The \code{exch2\_opposingSend\_record(a,T)} array holds the
373    index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
374    that holds the tile number \code{T}, given
375    \code{Tn=exch2\_neighborId(a,T)}.  In other words,
376    \begin{verbatim}
377       exch2_neighbourId( exch2_opposingSend_record(a,T),
378                          exch2_neighbourId(a,T) ) = T
379    \end{verbatim}
380    This provides a back-reference from the neighbor tiles. \\
381    
382  The array {\em exch2\_neighbourId(a,T)} holds the tile number $T_{n}$ for each tile  The arrays \varlink{exch2\_pi}{exch2_pi} and
383  {\em T}'s neighbor tile {\em a}.  The neighbor tiles are indexed {\em 1,MAX\_NEIGHBOURS }  \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
384  in the order right to left on the north then south edges, and then top to bottom on the east  in exchanges between the neighboring tiles.  These transformations are
385  and west edges. maybe throw in a fig here, eh?    necessary in exchanges between subdomains because a horizontal dimension
386    in one subdomain
387  {\em exch2\_opposingSend\_record(a,T)} holds  may map to other horizonal dimension in an adjacent subdomain, and
388  the index c in {\em exch2\_neighbourId(b,$T_{n}$)} that holds the tile number T.  may also have its indexing reversed. This swapping arises from the
389  In other words,  ``folding'' of two-dimensional arrays into a three-dimensional
390    cube. \\
391  \begin{verbatim}    
392  exch2_neighbourId( exch2_opposingSend_record(a,T),  The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
393                             exch2_neighbourId(a,T) ) = T  are the neighbor ID \code{N} and the tile number \code{T} as explained
394  \end{verbatim}  above, plus a vector of length \code{2} containing transformation
395    factors \code{t}.  The first element of the transformation vector
396  % {\em exch2\_neighbourId(exch2\_opposingSend\_record(a,T),exch2\_neighbourId(a,T))=T}.  holds the factor to multiply the index in the same dimension, and the
397  % alternate version  second element holds the the same for the orthogonal dimension.  To
398    clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
399  This is to provide a backreference from the neighbor tiles.  index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
400    \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
401  The arrays {\em exch2\_pi }, {\em exch2\_pj }, {\em exch2\_oi },  $x$ index to the neighbor \code{N}'s $y$ index. \\
402  {\em exch2\_oj }, {\em exch2\_oi\_f }, and {\em exch2\_oj\_f }  specify  
403  the transformations in exchanges between the neighboring tiles.  The dimensions    One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
404  of {\em exch2\_pi(t,N,T) } and {\em exch2\_pj(t,N,T) } are the neighbor ID  given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
405  { \em N } and the tile number {\em T } as explained above, plus the transformation  the fact that the two axes are orthogonal.  The other element will be
406  vector {\em t }, of length two.  The first element of the transformation vector indicates  \code{1} or \code{-1}, depending on whether the axes are indexed in
407  the factor by which variables representing the same vector component  of a tile  the same or opposite directions.  For example, the transform vector of
408  will be multiplied, and the second element indicates the transform to the  the arrays for all tile neighbors on the same subdomain will be
409  variable in the other direction.  As an example, {\em exch2\_pi(1,N,T) } holds the  \code{(1,0)}, since all tiles on the same subdomain are oriented
410  transform of the i-component of a vector variable in tile {\em T } to the i-component of  identically.  An axis that corresponds to the orthogonal dimension
411  tile  {\em T }'s neighbor  {\em N }, and {\em exch2\_pi(2,N,T) } hold the component  with the same index direction in a particular tile-neighbor
412  of neighbor  {\em N }'s j-component.  orientation will have \code{(0,1)}.  Those with the opposite index
413    direction will have \code{(0,-1)} in order to reverse the ordering. \\
414  Under the current cube topology, one of the two elements of {\em exch2\_pi } or {\em exch2\_pj }  
415  for a given tile   {\em T } and  neighbor  {\em N } will be 0, reflecting the fact that  The arrays \varlink{exch2\_oi}{exch2_oi},
416  the vector components are orthogonal.  The other element will be 1 or -1, depending on whether  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
417  the components are indexed in the same or opposite directions.  For example, the transform dimension  \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
418  of the arrays for all tile neighbors on the same subdomain will be {\em [1 , 0] }, since all tiles on  neighbor and specify the relative offset within the subdomain of the
419  the same subdomain are oriented identically.  Vectors that correspond to the orthogonal dimension with the  array index of a variable going from a neighboring tile \code{N} to a
420  same index direction will have {\em [0 , 1] }, whereas those in the opposite index direction will have  local tile \code{T}.  Consider \code{T=1} in the six-tile topology
421  {\em [0 , -1] }.  (Fig. \ref{fig:6tile}), where
   
   
   
   
 //  
422    
423  \begin{verbatim}  \begin{verbatim}
424           exch2_oi(1,1)=33
425           exch2_oi(2,1)=0
426           exch2_oi(3,1)=32
427           exch2_oi(4,1)=-32
428    \end{verbatim}
429    
430    The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
431    which is \code{Tn=6}.  The axes of \code{T} and \code{Tn} have the
432    same orientation and their $x$ axes have the same origin, and so an
433    exchange between the two requires no changes to the $x$ index.  For
434    the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
435    \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
436    \code{Tn}.  The eastern edge of \code{T} shows the reverse case
437    (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
438    with \code{x=0} on \code{Tn=2}. \\
439    
440     The most interesting case, where \code{exch2\_oi(1,1)=33} and
441    \code{Tn=3}, involves a reversal of indices.  As in every case, the
442    offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
443    multiplied by the transformation factor \code{exch2\_pi(t,N,T)}.  Here
444    \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
445    to the $x$ axis of \code{Tn}.  \code{exch2\_pi(2,1,1)=-1} since the
446    $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
447    index is reversed.  The result is that the index of the northern edge
448    of \code{T}, which runs \code{(1:32)}, is transformed to
449    \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
450    get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
451    relative to \code{T}.  This transformation may seem overly convoluted
452    for the six-tile case, but it is necessary to provide a general
453    solution for various topologies. \\
454    
455    
456    
457  C      exch2_pi          :: X index row of target to source permutation  Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
458  C                        :: matrix for each neighbour entry.              \varlink{exch2\_ithi\_c}{exch2_ithi_c},
459  C      exch2_pj          :: Y index row of target to source permutation  \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
460  C                        :: matrix for each neighbour entry.              \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
461  C      exch2_oi          :: X index element of target to source  bounds of the edge segment of the neighbor tile \code{N}'s subdomain
462  C                        :: offset vector for cell-centered quantities    that gets exchanged with the local tile \code{T}.  To take the example
463  C                        :: of each neighbor entry.                      of tile \code{T=2} in the twelve-tile topology
464  C      exch2_oj          :: Y index element of target to source  (Fig. \ref{fig:12tile}): \\
465  C                        :: offset vector for cell-centered quantities    
466  C                        :: of each neighbor entry.                      \begin{verbatim}
467  C      exch2_oi_f        :: X index element of target to source         exch2_itlo_c(4,2)=17
468  C                        :: offset vector for face quantities                   exch2_ithi_c(4,2)=17
469  C                        :: of each neighbor entry.                             exch2_jtlo_c(4,2)=0
470  C      exch2_oj_f        :: Y index element of target to source         exch2_jthi_c(4,2)=33
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
471  \end{verbatim}  \end{verbatim}
472    
473    Here \code{N=4}, indicating the western neighbor, which is
474    \code{Tn=1}.  \code{Tn} resides on the same subdomain as \code{T}, so
475    the tiles have the same orientation and the same $x$ and $y$ axes.
476    The $x$ axis is orthogonal to the western edge and the tile is 16
477    points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
478    indicate the column beyond \code{Tn}'s eastern edge, in that tile's
479    halo region. Since the border of the tiles extends through the entire
480    height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
481    \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
482    either direction to cover part of the halo. \\
483    
484    For the north edge of the same tile \code{T=2} where \code{N=1} and
485    the neighbor tile is \code{Tn=5}:
486    
487    \begin{verbatim}
488           exch2_itlo_c(1,2)=0
489           exch2_ithi_c(1,2)=0
490           exch2_jtlo_c(1,2)=0
491           exch2_jthi_c(1,2)=17
492    \end{verbatim}
493    
494    \code{T}'s northern edge is parallel to the $x$ axis, but since
495    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
496    northern edge exchanges with \code{Tn}'s western edge.  The western
497    edge of the tiles corresponds to the lower bound of the $x$ axis, so
498    \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} are \code{0}, in the
499    western halo region of \code{Tn}. The range of
500    \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
501    width of \code{T}'s northern edge, expanded by one into the halo. \\
502    
503    
504  \subsection{Key Routines}  \subsection{Key Routines}
505    
506    Most of the subroutines particular to exch2 handle the exchanges
507    themselves and are of the same format as those described in
508    \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
509    communication}.  Like the original routines, they are written as
510    templates which the local Makefile converts from \code{RX} into
511    \code{RL} and \code{RS} forms. \\
512    
513    The interfaces with the core model subroutines are
514    \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
515    \code{EXCH\_XY\_RX}.  They override the standard exchange routines
516    when \code{genmake2} is run with \code{exch2} option.  They in turn
517    call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
518    \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
519    quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
520    and three-dimensional scalar quantities.  These subroutines set the
521    dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
522    for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
523    the singularities at the cube corners. \\
524    
525    The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
526    \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subroutine
527    needs to pass both the $u$ and $v$ components of the physical vectors.
528    This swapping arises from the topological folding discussed above, where the
529    $x$ and $y$ axes get swapped in some cases, and is not an
530    issue with the scalar case. These subroutines call
531    \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
532    the work using the variables discussed above. \\
533    
   
 \subsection{References}  

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.23

  ViewVC Help
Powered by ViewVC 1.1.22