/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by afe, Wed Feb 11 20:48:14 2004 UTC revision 1.22 by edhill, Tue Oct 12 18:16:03 2004 UTC
# Line 10  Line 10 
10  %%    o automatically inserted at \section{Reference}  %%    o automatically inserted at \section{Reference}
11    
12    
13  \section{exch2: Extended Cubed Sphere Exchange}  \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14  \label{sec:exch2}  \label{sec:exch2}
15    \label{sec:pkg:exch2}
16    \begin{rawhtml}
17    <!-- CMIREDIR:package_exch2: -->
18    \end{rawhtml}
19    
20    
21  \subsection{Introduction}  \subsection{Introduction}
22    
23  The exch2 package is an extension to the original cubed sphere exchanges  The \texttt{exch2} package extends the original cubed sphere topology
24  to allow more flexible domain decomposition and parallelization.  Cube faces  configuration to allow more flexible domain decomposition and
25  (subdomains) may be divided into whatever number of tiles that divide evenly  parallelization.  Cube faces (also called subdomains) may be divided
26  into the grid point dimensions of the subdomain.  Furthermore, the individual  into any number of tiles that divide evenly into the grid point
27  tiles may be run on separate processors in different combinations,  dimensions of the subdomain.  Furthermore, the tiles can run on
28  and whether exchanges between particular tiles occur between different  separate processors individually or in groups, which provides for
29  processors is determined at runtime.  manual compile-time load balancing across a relatively arbitrary
30    number of processors. \\
31  The exchange parameters are declared in {\em W2\_EXCH2\_TOPOLOGY.h} and  
32  assigned in {\em w2\_e2setup.F}, both in the  The exchange parameters are declared in
33  {\em pkg/exch2} directory.  The validity of the cube topology depends  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
34  on the {\em SIZE.h} file as detailed below.  Both files are generated by  and assigned in
35  Matlab scripts and  \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
36  should not be edited.  The default files provided in the release set up  validity of the cube topology depends on the \file{SIZE.h} file as
37  a cube sphere arrangement of six tiles, one per subdomain, each with 32x32 grid  detailed below.  The default files provided in the release configure a
38  points, running on a single processor.    cubed sphere topology of six tiles, one per subdomain, each with
39    32$\times$32 grid points, with all tiles running on a single processor.  Both
40    files are generated by Matlab scripts in
41    \file{utils/exch2/matlab-topology-generator}; see Section
42    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
43    for details on creating alternate topologies.  Pregenerated examples
44    of these files with alternate topologies are provided under
45    \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
46    file for single-processor execution.
47    
48    \subsection{Invoking exch2}
49    
50    To use exch2 with the cubed sphere, the following conditions must be
51    met:
52    
53    \begin{itemize}
54    \item The exch2 package is included when \file{genmake2} is run.  The
55      easiest way to do this is to add the line \code{exch2} to the
56      \file{profile.conf} file -- see Section \ref{sect:buildingCode}
57      \sectiontitle{Building the code} for general details.
58      
59    \item An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
60      \file{w2\_e2setup.F} must reside in a directory containing files
61      symbolically linked by the \file{genmake2} script.  The safest place
62      to put these is the directory indicated in the \code{-mods=DIR}
63      command line modifier (typically \file{../code}), or the build
64      directory.  The default versions of these files reside in
65      \file{pkg/exch2} and are linked automatically if no other versions
66      exist elsewhere in the build path, but they should be left untouched
67      to avoid breaking configurations other than the one you intend to
68      modify.
69      
70    \item Files containing grid parameters, named \file{tile00$n$.mitgrid}
71      where $n$=\code{(1:6)} (one per subdomain), must be in the working
72      directory when the MITgcm executable is run.  These files are
73      provided in the example experiments for cubed sphere configurations
74      with 32$\times$32 cube sides -- please contact
75      \begin{rawhtml}
76        <A href="mailto:mitgcm-support@dev.mitgcm.org">
77      \end{rawhtml}
78    \begin{verbatim}
79    MITgcm-support@mitgcm.org
80    \end{verbatim}
81      \begin{rawhtml} </A> \end{rawhtml}
82      if you want to generate files for other configurations.
83      
84    \item As always when compiling MITgcm, the file \file{SIZE.h} must be
85      placed where \file{genmake2} will find it.  In particular for exch2,
86      the domain decomposition specified in \file{SIZE.h} must correspond
87      with the particular configuration's topology specified in
88      \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
89      decomposition issues particular to exch2 are addressed in Section
90      \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
91      and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
92        Multiprocessing}; a more general background on the subject
93      relevant to MITgcm is presented in Section
94      \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying a
95        decomposition}.
96    \end{itemize}
97    
98    
99    
100    At the time of this writing the following examples use exch2 and may
101    be used for guidance:
102    
103    \begin{verbatim}
104    verification/adjust_nlfs.cs-32x32x1
105    verification/adjustment.cs-32x32x1
106    verification/aim.5l_cs
107    verification/global_ocean.cs32x15
108    verification/hs94.cs-32x32x5
109    \end{verbatim}
110    
111    
112    
113    
114    \subsection{Generating Topology Files for exch2}
115    \label{sec:topogen}
116    
117    Alternate cubed sphere topologies may be created using the Matlab
118    scripts in \file{utils/exch2/matlab-topology-generator}. Running the
119    m-file
120    \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
121    from the Matlab prompt (there are no parameters to pass) generates
122    exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
123    \file{w2\_e2setup.F} in the working directory and displays a figure of
124    the topology via Matlab -- figures \ref{fig:6tile}, \ref{fig:12tile},
125    and \ref{fig:24tile} are examples of the generated diagrams.  The other
126    m-files in the directory are
127    subroutines called from \file{driver.m} and should not be run ``bare'' except
128    for development purposes. \\
129    
130    The parameters that determine the dimensions and topology of the
131    generated configuration are \code{nr}, \code{nb}, \code{ng},
132    \code{tnx} and \code{tny}, and all are assigned early in the script. \\
133    
134    The first three determine the height and width of the subdomains and
135    hence the size of the overall domain.  Each one determines the number
136    of grid points, and therefore the resolution, along the subdomain
137    sides in a ``great circle'' around each the three spatial axes of the cube.  At the time
138    of this writing MITgcm requires these three parameters to be equal,
139    but they provide for future releases  to accomodate different
140    resolutions around the axes to allow subdomains with differing resolutions.\\
141    
142    The parameters \code{tnx} and \code{tny} determine the width and height of
143    the tiles into which the subdomains are decomposed, and must evenly
144    divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
145    The result is a rectangular tiling of the subdomain.  Figure
146    \ref{fig:24tile} shows one possible topology for a twenty-four-tile
147    cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
148    
149    \begin{figure}
150    \begin{center}
151     \resizebox{4in}{!}{
152      \includegraphics{part6/s24t_16x16.ps}
153     }
154    \end{center}
155    
156    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
157    divided into six 32$\times$32 subdomains, each of which is divided
158    into four tiles of width \code{tnx=16} and height \code{tny=16} for a
159    total of twenty-four tiles.  The colored borders of the subdomains
160    represent the parameters \code{nr} (red), \code{nb} (blue), and
161    \code{ng} (green).  } \label{fig:24tile}
162    \end{figure}
163    
164    \begin{figure}
165    \begin{center}
166     \resizebox{4in}{!}{
167      \includegraphics{part6/s12t_16x32.ps}
168     }
169    \end{center}
170    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
171    divided into six 32$\times$32 subdomains of two tiles each
172     (\code{tnx=16, tny=32}).
173    } \label{fig:12tile}
174    \end{figure}
175    
176    \begin{figure}
177    \begin{center}
178     \resizebox{4in}{!}{
179      \includegraphics{part6/s6t_32x32.ps}
180     }
181    \end{center}
182    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
183    divided into six 32$\times$32 subdomains with one tile each
184    (\code{tnx=32, tny=32}).  This is the default configuration.
185      }
186    \label{fig:6tile}
187    \end{figure}
188    
189    
190    Tiles can be selected from the topology to be omitted from being
191    allocated memory and processors.  This tuning is useful in ocean
192    modeling for omitting tiles that fall entirely on land.  The tiles
193    omitted are specified in the file
194    \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
195    by their tile number in the topology, separated by a newline. \\
196    
197    
198    
199    
200    \subsection{exch2, SIZE.h, and Multiprocessing}
201    \label{sec:exch2mpi}
202    
203    Once the topology configuration files are created, the Fortran
204    \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
205    Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
206    a decomposition} provides a general description of domain
207    decomposition within MITgcm and its relation to \file{SIZE.h}. The
208    current section specifies constraints that the exch2 package
209    imposes and describes how to enable parallel execution with
210    MPI. \\
211    
212    As in the general case, the parameters \varlink{sNx}{sNx} and
213    \varlink{sNy}{sNy} define the size of the individual tiles, and so
214    must be assigned the same respective values as \code{tnx} and
215    \code{tny} in \file{driver.m}.\\
216    
217    The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
218    have no special bearing on exch2 and may be assigned as in the general
219    case. The same holds for \varlink{Nr}{Nr}, the number of vertical
220    levels in the model.\\
221    
222    The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
223    \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
224    tiles and how they are distributed on processors.  When using exch2,
225    the tiles are stored in the $x$ dimension, and so
226    \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
227    configured by exch2 cannot be split up accross processors without
228    regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
229    
230    The number of tiles MITgcm allocates and how they are distributed
231    between processors depends on \varlink{nPx}{nPx} and
232    \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per
233    processor and \varlink{nPx}{nPx} is the number of processors.  The total
234    number of tiles in the topology minus those listed in
235    \file{blanklist.txt} must equal \code{nSx*nPx}.  Note that in order to
236    obtain maximum usage from a given number of processors in some cases,
237    this restriction might entail sharing a processor with a tile that would
238    otherwise be excluded. \\
239    
240    The following is an example of \file{SIZE.h} for the twelve-tile
241    configuration illustrated in figure \ref{fig:12tile} running on
242    one processor: \\
243    
244    \begin{verbatim}
245          PARAMETER (
246         &           sNx =  16,
247         &           sNy =  32,
248         &           OLx =   2,
249         &           OLy =   2,
250         &           nSx =  12,
251         &           nSy =   1,
252         &           nPx =   1,
253         &           nPy =   1,
254         &           Nx  = sNx*nSx*nPx,
255         &           Ny  = sNy*nSy*nPy,
256         &           Nr  =   5)
257    \end{verbatim}
258    
259    The following is an example for the twenty-four-tile topology in
260    figure \ref{fig:24tile} running on six processors:
261    
262    \begin{verbatim}
263          PARAMETER (
264         &           sNx =  16,
265         &           sNy =  16,
266         &           OLx =   2,
267         &           OLy =   2,
268         &           nSx =   4,
269         &           nSy =   1,
270         &           nPx =   6,
271         &           nPy =   1,
272         &           Nx  = sNx*nSx*nPx,
273         &           Ny  = sNy*nSy*nPy,
274         &           Nr  =   5)
275    \end{verbatim}
276    
277    
278    
279    
280    
281  \subsection{Key Variables}  \subsection{Key Variables}
282    
283  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
284  one-dimensional arrays indexed to the tile number, and two and three  one-dimensional arrays indexed to the tile number, and two and
285  dimensional  three-dimensional arrays indexed to tile number and neighboring tile.
286  arrays indexed to tile number and neighboring tile.  This division  This division reflects the functionality of these variables: The
287  actually reflects  the functionality of these variables: the scalars  scalars are common to every part of the topology, the tile-indexed
288  are common to every part of the topology, the tile-indexed arrays to  arrays to individual tiles, and the arrays indexed by tile and
289  individual tiles, and the arrays indexed to tile and neighbor to  neighbor to relationships between tiles and their neighbors. \\
 relationships between tiles and their neighbors.  
290    
291  \subsubsection{Scalars}  \subsubsection{Scalars}
292    
293  The number of tiles in a particular topology is set with the parameter  The number of tiles in a particular topology is set with the parameter
294  {\em NTILES}, and the maximum number of neighbors of any tiles by  \code{NTILES}, and the maximum number of neighbors of any tiles by
295  {\em MAX\_NEIGHBOURS}.  These parameters are used for defining the size of  \code{MAX\_NEIGHBOURS}.  These parameters are used for defining the
296  the various one and two dimensional arrays that store tile parameters  size of the various one and two dimensional arrays that store tile
297  indexed to the tile number.  parameters indexed to the tile number and are assigned in the files
298    generated by \file{driver.m}.\\
299  The scalar parameters {\em exch2\_domain\_nxt} and  
300  {\em exch2\_domain\_nyt} express the number of tiles in the x and y global  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
301  indices.  For example, the default setup of six tiles has  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
302  {\em exch2\_domain\_nxt=6} and {\em exch2\_domain\_nyt=1}.  A topology of  of tiles in the $x$ and $y$ global indices.  For example, the default
303  twenty-four square (in gridpoints) tiles, four (2x2) per subdomain, will  setup of six tiles (Fig. \ref{fig:6tile}) has
304  have {\em exch2\_domain\_nxt=12} and {\em exch2\_domain\_nyt=2}.  Note  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
305  that these parameters express the tile layout to allow global data files that  topology of twenty-four square tiles, four per subdomain (as in figure
306  are tile-layout-neutral and have no bearing on the internal storage of the  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
307  arrays.  The tiles are internally stored in a range from {\em 1,bi} (in the  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the
308  x axis) and y-axis variable {\em bj} is generally ignored within the package.  tile layout in order to allow global data files that are tile-layout-neutral.
309    They have no bearing on the internal storage of the arrays.  The tiles
310  \subsubsection{Arrays Indexed to Tile Number}  are stored internally in a range from \code{\varlink{bi}{bi}=(1:NTILES)} in the
311    $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is assumed to
312  The following arrays are of size {\em NTILES}, are indexed to the tile number,  equal \code{1} throughout the package. \\
313  and the indices are omitted in their descriptions.  
314    \subsubsection{Arrays indexed to tile number}
315  The arrays {\em exch2\_tnx} and {\em exch2\_tny}  
316  express the x and y dimensions of each tile.  At present for each tile  The following arrays are of length \code{NTILES} and are indexed to
317  {\em exch2\_tnx = sNx}  the tile number, which is indicated in the diagrams with the notation
318  and {\em exch2\_tny = sNy}, as assigned in {\em SIZE.h}.  Future releases of  \code{tn}.  The indices are omitted in the descriptions. \\
319  MITgcm are to allow varying tile sizes.  
320    The arrays \varlink{exch2\_tnx}{exch2_tnx} and
321  The location of the tiles' Cartesian origin within a subdomain are determined  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
322  by the arrays {\em exch2\_tbasex} and {\em exch2\_tbasey}.  These variables  each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
323  are used to relate the location of the edges of the tiles to each other.  As  \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
324  an example, in the default six-tile topology (the degenerate case)  Section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
325  each index in these arrays are  Multiprocessing}.  Future releases of MITgcm may allow varying tile
326  set to 0.  The twenty-four, 32x32 cube face case discussed above will have  sizes. \\
327  values of 0 or 16, depending on the quadrant the tile falls within the  
328  subdomain.  {\em exch2\_myFace} contains the number of the  The arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
329  cubeface/subdomain of each tile, numbered 1-6 in the case of the standard  \varlink{exch2\_tbasey}{exch2_tbasey} determine the tiles'
330  cube topology.    Cartesian origin within a subdomain  
331    and locate the edges of different tiles relative to each other.  As
332  The arrays {\em exch2\_txglobalo} and {\em exch2\_txglobalo} are similar to  an example, in the default six-tile topology (Fig. \ref{fig:6tile})
333  {\em exch2\_tbasex} and {\em exch2\_tbasey}, but locate the tiles within  each index in these arrays is set to \code{0} since a tile occupies
334  the global address space, similar to that used by global files.    its entire subdomain.  The twenty-four-tile case discussed above will
335    have values of \code{0} or \code{16}, depending on the quadrant of the
336  The arrays {\em exch2\_isWedge}, {\em exch2\_isEedge}, {\em exch2\_isSedge},  tile within the subdomain.  The elements of the arrays
337  and {\em exch2\_isNedge} are set to 1 if the indexed tile lies on the edge  \varlink{exch2\_txglobalo}{exch2_txglobalo} and
338  of a subdomain, 0 if not.  The values are used within the topology generator  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
339  to determine the orientation of neighboring tiles and to indicate whether  \varlink{exch2\_tbasex}{exch2_tbasex} and
340  a tile lies on the corner of a subdomain.  The latter case indicates  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tile edges within the
341  special exchange and numerical handling for the singularities at the eight  global address space, similar to that used by global output and input
342  corners of the cube.  {\em exch2\_isNedge} contains a count of how many  files. \\
343  neighboring tiles each tile has, and is used for setting bounds for looping  
344  over neighboring tiles.  {\em exch2\_tProc} holds the process rank of each tile,  The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
345  and is used in interprocess communication.  the subdomain of each tile, in a range \code{(1:6)} in the case of the
346    standard cube topology and indicated by \textbf{\textsf{fn}} in
347    figures \ref{fig:12tile} and \ref{fig:24tile}. The
348    \varlink{exch2\_nNeighbours}{exch2_nNeighbours} variable contains a
349    count of the neighboring tiles each tile has, and sets the bounds for
350    looping over neighboring tiles.  And
351    \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
352    tile, and is used in interprocess communication.  \\
353    
354    
355    The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
356    \varlink{exch2\_isEedge}{exch2_isEedge},
357    \varlink{exch2\_isSedge}{exch2_isSedge}, and
358    \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
359    indexed tile lies on the edge of its subdomain, \code{0} if
360    not.  The values are used within the topology generator to determine
361    the orientation of neighboring tiles, and to indicate whether a tile
362    lies on the corner of a subdomain.  The latter case requires special
363    exchange and numerical handling for the singularities at the eight
364    corners of the cube. \\
365    
366    
367  \subsubsection{Arrays Indexed to Tile Number and Neighbor}  \subsubsection{Arrays Indexed to Tile Number and Neighbor}
368    
369  The following arrays are all of size {\em MAX\_NEIGHBOURS}x{\em NTILES} and  The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
370  describe the orientations between the the tiles.  \code{NTILES} and describe the orientations between the the tiles. \\
371    
372  The array {\em exch2\_neighbourId(a,T)} holds the tile number $T_{n}$ for each tile  The array \code{exch2\_neighbourId(a,T)} holds the tile number
373  {\em T}'s neighbor tile {\em a}.  The neighbor tiles are indexed {\em 1,MAX\_NEIGHBOURS }  \code{Tn} for each of the tile number \code{T}'s neighboring tiles
374  in the order right to left on the north then south edges, and then top to bottom on the east  \code{a}.  The neighbor tiles are indexed
375  and west edges. maybe throw in a fig here, eh?    \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
376    north then south edges, and then top to bottom on the east then west
377  {\em exch2\_opposingSend\_record(a,T)} holds  edges.  \\
378  the index c in {\em exch2\_neighbourId(b,$T_{n}$)} that holds the tile number T.  
379  In other words,   The \code{exch2\_opposingSend\_record(a,T)} array holds the
380    index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
381  \begin{verbatim}    that holds the tile number \code{T}, given
382  exch2_neighbourId( exch2_opposingSend_record(a,T),  \code{Tn=exch2\_neighborId(a,T)}.  In other words,
383                             exch2_neighbourId(a,T) ) = T  \begin{verbatim}
384  \end{verbatim}     exch2_neighbourId( exch2_opposingSend_record(a,T),
385                          exch2_neighbourId(a,T) ) = T
386  % {\em exch2\_neighbourId(exch2\_opposingSend\_record(a,T),exch2\_neighbourId(a,T))=T}.  \end{verbatim}
387  % alternate version  This provides a back-reference from the neighbor tiles. \\
388    
389  This is to provide a backreference from the neighbor tiles.  The arrays \varlink{exch2\_pi}{exch2_pi} and
390    \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
391  The arrays {\em exch2\_pi }, {\em exch2\_pj }, {\em exch2\_oi },  in exchanges between the neighboring tiles.  These transformations are
392  {\em exch2\_oj }, {\em exch2\_oi\_f }, and {\em exch2\_oj\_f }  specify  necessary in exchanges between subdomains because a horizontal dimension
393  the transformations in exchanges between the neighboring tiles.  The dimensions    in one subdomain
394  of {\em exch2\_pi(t,N,T) } and {\em exch2\_pj(t,N,T) } are the neighbor ID  may map to other horizonal dimension in an adjacent subdomain, and
395  { \em N } and the tile number {\em T } as explained above, plus the transformation  may also have its indexing reversed. This swapping arises from the
396  vector {\em t }, of length two.  The first element of the transformation vector indicates  ``folding'' of two-dimensional arrays into a three-dimensional
397  the factor by which variables representing the same vector component  of a tile  cube. \\
398  will be multiplied, and the second element indicates the transform to the  
399  variable in the other direction.  As an example, {\em exch2\_pi(1,N,T) } holds the  The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
400  transform of the i-component of a vector variable in tile {\em T } to the i-component of  are the neighbor ID \code{N} and the tile number \code{T} as explained
401  tile  {\em T }'s neighbor  {\em N }, and {\em exch2\_pi(2,N,T) } hold the component  above, plus a vector of length \code{2} containing transformation
402  of neighbor  {\em N }'s j-component.  factors \code{t}.  The first element of the transformation vector
403    holds the factor to multiply the index in the same dimension, and the
404  Under the current cube topology, one of the two elements of {\em exch2\_pi } or {\em exch2\_pj }  second element holds the the same for the orthogonal dimension.  To
405  for a given tile   {\em T } and  neighbor  {\em N } will be 0, reflecting the fact that  clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
406  the vector components are orthogonal.  The other element will be 1 or -1, depending on whether  index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
407  the components are indexed in the same or opposite directions.  For example, the transform dimension  \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
408  of the arrays for all tile neighbors on the same subdomain will be {\em [1 , 0] }, since all tiles on  $x$ index to the neighbor \code{N}'s $y$ index. \\
409  the same subdomain are oriented identically.  Vectors that correspond to the orthogonal dimension with the  
410  same index direction will have {\em [0 , 1] }, whereas those in the opposite index direction will have  One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
411  {\em [0 , -1] }.  given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
412    the fact that the two axes are orthogonal.  The other element will be
413    \code{1} or \code{-1}, depending on whether the axes are indexed in
414    the same or opposite directions.  For example, the transform vector of
415    the arrays for all tile neighbors on the same subdomain will be
416  //  \code{(1,0)}, since all tiles on the same subdomain are oriented
417    identically.  An axis that corresponds to the orthogonal dimension
418    with the same index direction in a particular tile-neighbor
419    orientation will have \code{(0,1)}.  Those with the opposite index
420    direction will have \code{(0,-1)} in order to reverse the ordering. \\
421    
422    The arrays \varlink{exch2\_oi}{exch2_oi},
423    \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
424    \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
425    neighbor and specify the relative offset within the subdomain of the
426    array index of a variable going from a neighboring tile \code{N} to a
427    local tile \code{T}.  Consider \code{T=1} in the six-tile topology
428    (Fig. \ref{fig:6tile}), where
429    
430  \begin{verbatim}  \begin{verbatim}
431           exch2_oi(1,1)=33
432           exch2_oi(2,1)=0
433           exch2_oi(3,1)=32
434           exch2_oi(4,1)=-32
435    \end{verbatim}
436    
437    The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
438    which is \code{Tn=6}.  The axes of \code{T} and \code{Tn} have the
439    same orientation and their $x$ axes have the same origin, and so an
440    exchange between the two requires no changes to the $x$ index.  For
441    the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
442    \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
443    \code{Tn}.  The eastern edge of \code{T} shows the reverse case
444    (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
445    with \code{x=0} on \code{Tn=2}. \\
446    
447     The most interesting case, where \code{exch2\_oi(1,1)=33} and
448    \code{Tn=3}, involves a reversal of indices.  As in every case, the
449    offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
450    multiplied by the transformation factor \code{exch2\_pi(t,N,T)}.  Here
451    \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
452    to the $x$ axis of \code{Tn}.  \code{exch2\_pi(2,1,1)=-1} since the
453    $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
454    index is reversed.  The result is that the index of the northern edge
455    of \code{T}, which runs \code{(1:32)}, is transformed to
456    \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
457    get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
458    relative to \code{T}.  This transformation may seem overly convoluted
459    for the six-tile case, but it is necessary to provide a general
460    solution for various topologies. \\
461    
462    
463    
464    Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
465    \varlink{exch2\_ithi\_c}{exch2_ithi_c},
466    \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
467    \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
468    bounds of the edge segment of the neighbor tile \code{N}'s subdomain
469    that gets exchanged with the local tile \code{T}.  To take the example
470    of tile \code{T=2} in the twelve-tile topology
471    (Fig. \ref{fig:12tile}): \\
472    
473  C      exch2_pi          :: X index row of target to source permutation  \begin{verbatim}
474  C                        :: matrix for each neighbour entry.                     exch2_itlo_c(4,2)=17
475  C      exch2_pj          :: Y index row of target to source permutation         exch2_ithi_c(4,2)=17
476  C                        :: matrix for each neighbour entry.                     exch2_jtlo_c(4,2)=0
477  C      exch2_oi          :: X index element of target to source         exch2_jthi_c(4,2)=33
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oj          :: Y index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oi_f        :: X index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
 C      exch2_oj_f        :: Y index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
478  \end{verbatim}  \end{verbatim}
479    
480    Here \code{N=4}, indicating the western neighbor, which is
481    \code{Tn=1}.  \code{Tn} resides on the same subdomain as \code{T}, so
482    the tiles have the same orientation and the same $x$ and $y$ axes.
483    The $x$ axis is orthogonal to the western edge and the tile is 16
484    points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
485    indicate the column beyond \code{Tn}'s eastern edge, in that tile's
486    halo region. Since the border of the tiles extends through the entire
487    height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
488    \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
489    either direction to cover part of the halo. \\
490    
491    For the north edge of the same tile \code{T=2} where \code{N=1} and
492    the neighbor tile is \code{Tn=5}:
493    
494    \begin{verbatim}
495           exch2_itlo_c(1,2)=0
496           exch2_ithi_c(1,2)=0
497           exch2_jtlo_c(1,2)=0
498           exch2_jthi_c(1,2)=17
499    \end{verbatim}
500    
501    \code{T}'s northern edge is parallel to the $x$ axis, but since
502    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
503    northern edge exchanges with \code{Tn}'s western edge.  The western
504    edge of the tiles corresponds to the lower bound of the $x$ axis, so
505    \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} are \code{0}, in the
506    western halo region of \code{Tn}. The range of
507    \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
508    width of \code{T}'s northern edge, expanded by one into the halo. \\
509    
510    
511  \subsection{Key Routines}  \subsection{Key Routines}
512    
513    Most of the subroutines particular to exch2 handle the exchanges
514    themselves and are of the same format as those described in
515    \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
516    communication}.  Like the original routines, they are written as
517    templates which the local Makefile converts from \code{RX} into
518    \code{RL} and \code{RS} forms. \\
519    
520    The interfaces with the core model subroutines are
521    \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
522    \code{EXCH\_XY\_RX}.  They override the standard exchange routines
523    when \code{genmake2} is run with \code{exch2} option.  They in turn
524    call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
525    \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
526    quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
527    and three-dimensional scalar quantities.  These subroutines set the
528    dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
529    for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
530    the singularities at the cube corners. \\
531    
532    The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
533    \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subroutine
534    needs to pass both the $u$ and $v$ components of the physical vectors.
535    This swapping arises from the topological folding discussed above, where the
536    $x$ and $y$ axes get swapped in some cases, and is not an
537    issue with the scalar case. These subroutines call
538    \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
539    the work using the variables discussed above. \\
540    
   
 \subsection{References}  

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.22

  ViewVC Help
Powered by ViewVC 1.1.22