/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by afe, Wed Feb 11 20:48:14 2004 UTC revision 1.17 by afe, Fri Mar 19 21:25:45 2004 UTC
# Line 10  Line 10 
10  %%    o automatically inserted at \section{Reference}  %%    o automatically inserted at \section{Reference}
11    
12    
13  \section{exch2: Extended Cubed Sphere Exchange}  \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14  \label{sec:exch2}  \label{sec:exch2}
15    
16    
17  \subsection{Introduction}  \subsection{Introduction}
18    
19  The exch2 package is an extension to the original cubed sphere exchanges  The \texttt{exch2} package extends the original cubed sphere topology
20  to allow more flexible domain decomposition and parallelization.  Cube faces  configuration to allow more flexible domain decomposition and
21  (subdomains) may be divided into whatever number of tiles that divide evenly  parallelization.  Cube faces (also called subdomains) may be divided
22  into the grid point dimensions of the subdomain.  Furthermore, the individual  into any number of tiles that divide evenly into the grid point
23  tiles may be run on separate processors in different combinations,  dimensions of the subdomain.  Furthermore, the tiles can run on
24  and whether exchanges between particular tiles occur between different  separate processors individually or in groups, which provides for
25  processors is determined at runtime.  manual compile-time load balancing across a relatively arbitrary
26    number of processors. \\
27  The exchange parameters are declared in {\em W2\_EXCH2\_TOPOLOGY.h} and  
28  assigned in {\em w2\_e2setup.F}, both in the  The exchange parameters are declared in
29  {\em pkg/exch2} directory.  The validity of the cube topology depends  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
30  on the {\em SIZE.h} file as detailed below.  Both files are generated by  and assigned in
31  Matlab scripts and  \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
32  should not be edited.  The default files provided in the release set up  validity of the cube topology depends on the \file{SIZE.h} file as
33  a cube sphere arrangement of six tiles, one per subdomain, each with 32x32 grid  detailed below.  The default files provided in the release configure a
34  points, running on a single processor.    cubed sphere topology of six tiles, one per subdomain, each with
35    32$\times$32 grid points, all running on a single processor.  Both
36    files are generated by Matlab scripts in
37    \file{utils/exch2/matlab-topology-generator}; see Section
38    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
39    for details on creating alternate topologies.  Pregenerated examples
40    of these files with alternate topologies are provided under
41    \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
42    file for single-processor execution.
43    
44    \subsection{Invoking exch2}
45    
46    To use exch2 with the cubed sphere, the following conditions must be
47    met: \\
48    
49    $\bullet$ The exch2 package is included when \file{genmake2} is run.
50      The easiest way to do this is to add the line \code{exch2} to the
51      \file{profile.conf} file -- see Section
52      \ref{sect:buildingCode} \sectiontitle{Building the code} for general
53      details. \\
54    
55    $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
56      \file{w2\_e2setup.F} must reside in a directory containing files
57      symbolically linked when \file{genmake2} runs.  The safest place to
58      put these is the directory indicated in the \code{-mods=DIR} command
59      line modifier (typically \file{../code}), or the build directory.
60      The default versions of these files reside in \file{pkg/exch2} and
61      are linked automatically if no other versions exist elsewhere in the
62      build path, but they should be left untouched to avoid breaking
63      configurations other than the one you intend to modify.\\
64    
65    $\bullet$ Files containing grid parameters, named
66      \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),
67      must be in the working directory when the MITgcm executable is run.
68      These files are provided in the example experiments for cubed sphere
69      configurations with 32$\times$32 cube sides and are non-trivial to
70      generate -- please contact MITgcm support if you want to generate
71      files for other configurations. \\
72    
73    $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must
74      be placed where \file{genmake2} will find it.  In particular for
75      exch2, the domain decomposition specified in \file{SIZE.h} must
76      correspond with the particular configuration's topology specified in
77      \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
78      decomposition issues particular to exch2 are addressed in Section
79      \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
80      and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and MPI}; a more
81      general background on the subject relevant to MITgcm is presented in
82      Section \ref{sect:specifying_a_decomposition}
83      \sectiontitle{Specifying a decomposition}.\\
84    
85    At the time of this writing the following examples use exch2 and may
86    be used for guidance:
87    
88    \begin{verbatim}
89    verification/adjust_nlfs.cs-32x32x1
90    verification/adjustment.cs-32x32x1
91    verification/aim.5l_cs
92    verification/global_ocean.cs32x15
93    verification/hs94.cs-32x32x5
94    \end{verbatim}
95    
96    
97    
98    
99    \subsection{Generating Topology Files for exch2}
100    \label{sec:topogen}
101    
102    Alternate cubed sphere topologies may be created using the Matlab
103    scripts in \file{utils/exch2/matlab-topology-generator}. Running the
104    m-file
105    \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
106    from the Matlab prompt (there are no parameters to pass) generates
107    exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
108    \file{w2\_e2setup.F} in the working directory and displays a figure of
109    the topology via Matlab.  The other m-files in the directory are
110    subroutines of \file{driver.m} and should not be run ``bare'' except
111    for development purposes. \\
112    
113    The parameters that determine the dimensions and topology of the
114    generated configuration are \code{nr}, \code{nb}, \code{ng},
115    \code{tnx} and \code{tny}, and all are assigned early in the script. \\
116    
117    The first three determine the size of the subdomains and
118    hence the size of the overall domain.  Each one determines the number
119    of grid points, and therefore the resolution, along the subdomain
120    sides in a ``great circle'' around an axis of the cube.  At the time
121    of this writing MITgcm requires these three parameters to be equal,
122    but they provide for future releases  to accomodate different
123    resolutions around the axes to allow (for example) greater resolution
124    around the equator.\\
125    
126    The parameters \code{tnx} and \code{tny} determine the dimensions of
127    the tiles into which the subdomains are decomposed, and must evenly
128    divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
129    The result is a rectangular tiling of the subdomain.  Figure
130    \ref{fig:24tile} shows one possible topology for a twenty-four-tile
131    cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
132    
133    \begin{figure}
134    \begin{center}
135     \resizebox{4in}{!}{
136      \includegraphics{part6/s24t_16x16.ps}
137     }
138    \end{center}
139    
140    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
141    divided into six 32$\times$32 subdomains, each of which is divided
142    into four tiles (\code{tnx=16, tny=16}) for a total of twenty-four
143    tiles.  } \label{fig:24tile}
144    \end{figure}
145    
146    \begin{figure}
147    \begin{center}
148     \resizebox{4in}{!}{
149      \includegraphics{part6/s12t_16x32.ps}
150     }
151    \end{center}
152    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
153    divided into six 32$\times$32 subdomains of two tiles each
154     (\code{tnx=16, tny=32}).
155    } \label{fig:12tile}
156    \end{figure}
157    
158    \begin{figure}
159    \begin{center}
160     \resizebox{4in}{!}{
161      \includegraphics{part6/s6t_32x32.ps}
162     }
163    \end{center}
164    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
165    divided into six 32$\times$32 subdomains with one tile each
166    (\code{tnx=32, tny=32}).  This is the default configuration.
167      }
168    \label{fig:6tile}
169    \end{figure}
170    
171    
172    Tiles can be selected from the topology to be omitted from being
173    allocated memory and processors.  This tuning is useful in ocean
174    modeling for omitting tiles that fall entirely on land.  The tiles
175    omitted are specified in the file
176    \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
177    by their tile number in the topology, separated by a newline. \\
178    
179    
180    
181    
182    \subsection{exch2, SIZE.h, and multiprocessing}
183    \label{sec:exch2mpi}
184    
185    Once the topology configuration files are created, the Fortran
186    \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
187    Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
188    a decomposition} provides a general description of domain
189    decomposition within MITgcm and its relation to \file{SIZE.h}. The
190    current section specifies certain constraints the exch2 package
191    imposes as well as describes how to enable parallel execution with
192    MPI. \\
193    
194    As in the general case, the parameters \varlink{sNx}{sNx} and
195    \varlink{sNy}{sNy} define the size of the individual tiles, and so
196    must be assigned the same respective values as \code{tnx} and
197    \code{tny} in \file{driver.m}.\\
198    
199    The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
200    have no special bearing on exch2 and may be assigned as in the general
201    case. The same holds for \varlink{Nr}{Nr}, the number of vertical
202    levels in the model.\\
203    
204    The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
205    \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
206    tiles and how they are distributed on processors.  When using exch2,
207    the tiles are stored in a single dimension, and so
208    \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
209    configured by exch2 cannot be split up accross processors without
210    regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
211    
212    The number of tiles MITgcm allocates and how they are distributed
213    between processors depends on \varlink{nPx}{nPx} and
214    \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per
215    processor and \varlink{nPx}{nPx} the number of processors.  The total
216    number of tiles in the topology minus those listed in
217    \file{blanklist.txt} must equal \code{nSx*nPx}. \\
218    
219    The following is an example of \file{SIZE.h} for the twelve-tile
220    configuration illustrated in figure \ref{fig:12tile} running on
221    one processor: \\
222    
223    \begin{verbatim}
224          PARAMETER (
225         &           sNx =  16,
226         &           sNy =  32,
227         &           OLx =   2,
228         &           OLy =   2,
229         &           nSx =  12,
230         &           nSy =   1,
231         &           nPx =   1,
232         &           nPy =   1,
233         &           Nx  = sNx*nSx*nPx,
234         &           Ny  = sNy*nSy*nPy,
235         &           Nr  =   5)
236    \end{verbatim}
237    
238    The following is an example for the twenty-four-tile topology in
239    figure \ref{fig:24tile} running on six processors:
240    
241    \begin{verbatim}
242          PARAMETER (
243         &           sNx =  16,
244         &           sNy =  16,
245         &           OLx =   2,
246         &           OLy =   2,
247         &           nSx =   4,
248         &           nSy =   1,
249         &           nPx =   6,
250         &           nPy =   1,
251         &           Nx  = sNx*nSx*nPx,
252         &           Ny  = sNy*nSy*nPy,
253         &           Nr  =   5)
254    \end{verbatim}
255    
256    
257    
258    
259    
260  \subsection{Key Variables}  \subsection{Key Variables}
261    
262  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
263  one-dimensional arrays indexed to the tile number, and two and three  one-dimensional arrays indexed to the tile number, and two and
264  dimensional  three-dimensional arrays indexed to tile number and neighboring tile.
265  arrays indexed to tile number and neighboring tile.  This division  This division reflects the functionality of these variables: The
266  actually reflects  the functionality of these variables: the scalars  scalars are common to every part of the topology, the tile-indexed
267  are common to every part of the topology, the tile-indexed arrays to  arrays to individual tiles, and the arrays indexed by tile and
268  individual tiles, and the arrays indexed to tile and neighbor to  neighbor to relationships between tiles and their neighbors. \\
 relationships between tiles and their neighbors.  
269    
270  \subsubsection{Scalars}  \subsubsection{Scalars}
271    
272  The number of tiles in a particular topology is set with the parameter  The number of tiles in a particular topology is set with the parameter
273  {\em NTILES}, and the maximum number of neighbors of any tiles by  \code{NTILES}, and the maximum number of neighbors of any tiles by
274  {\em MAX\_NEIGHBOURS}.  These parameters are used for defining the size of  \code{MAX\_NEIGHBOURS}.  These parameters are used for defining the
275  the various one and two dimensional arrays that store tile parameters  size of the various one and two dimensional arrays that store tile
276  indexed to the tile number.  parameters indexed to the tile number and are assigned in the files
277    generated by \file{driver.m}.\\
278  The scalar parameters {\em exch2\_domain\_nxt} and  
279  {\em exch2\_domain\_nyt} express the number of tiles in the x and y global  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
280  indices.  For example, the default setup of six tiles has  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
281  {\em exch2\_domain\_nxt=6} and {\em exch2\_domain\_nyt=1}.  A topology of  of tiles in the $x$ and $y$ global indices.  For example, the default
282  twenty-four square (in gridpoints) tiles, four (2x2) per subdomain, will  setup of six tiles (Fig. \ref{fig:6tile}) has
283  have {\em exch2\_domain\_nxt=12} and {\em exch2\_domain\_nyt=2}.  Note  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
284  that these parameters express the tile layout to allow global data files that  topology of twenty-four square tiles, four per subdomain (as in figure
285  are tile-layout-neutral and have no bearing on the internal storage of the  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
286  arrays.  The tiles are internally stored in a range from {\em 1,bi} (in the  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the
287  x axis) and y-axis variable {\em bj} is generally ignored within the package.  tile layout to allow global data files that are tile-layout-neutral
288    and have no bearing on the internal storage of the arrays.  The tiles
289    are stored internally in a range from \code{(1:\varlink{bi}{bi})} the
290    $x$ axis, and the $y$ axis variable \varlink{bj}{bj} generally is
291    ignored within the package. \\
292    
293  \subsubsection{Arrays Indexed to Tile Number}  \subsubsection{Arrays Indexed to Tile Number}
294    
295  The following arrays are of size {\em NTILES}, are indexed to the tile number,  The following arrays are of length \code{NTILES} and are indexed to
296  and the indices are omitted in their descriptions.  the tile number, which is indicated in the diagrams with the notation
297    \textsf{t}$n$.  The indices are omitted in the descriptions. \\
298    
299    The arrays \varlink{exch2\_tnx}{exch2_tnx} and
300    \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
301    each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
302    \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
303    section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
304    multiprocessing}.  Future releases of MITgcm are to allow varying tile
305    sizes. \\
306    
307    The location of the tiles' Cartesian origin within a subdomain are
308    determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
309    \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to
310    relate the location of the edges of different tiles to each other.  As
311    an example, in the default six-tile topology (Fig. \ref{fig:6tile})
312    each index in these arrays is set to \code{0} since a tile occupies
313    its entire subdomain.  The twenty-four-tile case discussed above will
314    have values of \code{0} or \code{16}, depending on the quadrant the
315    tile falls within the subdomain.  The elements of the arrays
316    \varlink{exch2\_txglobalo}{exch2_txglobalo} and
317    \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
318    \varlink{exch2\_tbasex}{exch2_tbasex} and
319    \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the
320    global address space, similar to that used by global output and input
321    files. \\
322    
323    The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
324    the subdomain of each tile, in a range \code{(1:6)} in the case of the
325    standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
326    figures \ref{fig:12tile} and
327    \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
328    contains a count of the neighboring tiles each tile has, and is used
329    for setting bounds for looping over neighboring tiles.
330    \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
331    tile, and is used in interprocess communication.  \\
332    
333    
334    The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
335    \varlink{exch2\_isEedge}{exch2_isEedge},
336    \varlink{exch2\_isSedge}{exch2_isSedge}, and
337    \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
338    indexed tile lies on the respective edge of a subdomain, \code{0} if
339    not.  The values are used within the topology generator to determine
340    the orientation of neighboring tiles, and to indicate whether a tile
341    lies on the corner of a subdomain.  The latter case requires special
342    exchange and numerical handling for the singularities at the eight
343    corners of the cube. \\
344    
 The arrays {\em exch2\_tnx} and {\em exch2\_tny}  
 express the x and y dimensions of each tile.  At present for each tile  
 {\em exch2\_tnx = sNx}  
 and {\em exch2\_tny = sNy}, as assigned in {\em SIZE.h}.  Future releases of  
 MITgcm are to allow varying tile sizes.  
   
 The location of the tiles' Cartesian origin within a subdomain are determined  
 by the arrays {\em exch2\_tbasex} and {\em exch2\_tbasey}.  These variables  
 are used to relate the location of the edges of the tiles to each other.  As  
 an example, in the default six-tile topology (the degenerate case)  
 each index in these arrays are  
 set to 0.  The twenty-four, 32x32 cube face case discussed above will have  
 values of 0 or 16, depending on the quadrant the tile falls within the  
 subdomain.  {\em exch2\_myFace} contains the number of the  
 cubeface/subdomain of each tile, numbered 1-6 in the case of the standard  
 cube topology.    
   
 The arrays {\em exch2\_txglobalo} and {\em exch2\_txglobalo} are similar to  
 {\em exch2\_tbasex} and {\em exch2\_tbasey}, but locate the tiles within  
 the global address space, similar to that used by global files.    
   
 The arrays {\em exch2\_isWedge}, {\em exch2\_isEedge}, {\em exch2\_isSedge},  
 and {\em exch2\_isNedge} are set to 1 if the indexed tile lies on the edge  
 of a subdomain, 0 if not.  The values are used within the topology generator  
 to determine the orientation of neighboring tiles and to indicate whether  
 a tile lies on the corner of a subdomain.  The latter case indicates  
 special exchange and numerical handling for the singularities at the eight  
 corners of the cube.  {\em exch2\_isNedge} contains a count of how many  
 neighboring tiles each tile has, and is used for setting bounds for looping  
 over neighboring tiles.  {\em exch2\_tProc} holds the process rank of each tile,  
 and is used in interprocess communication.  
345    
346  \subsubsection{Arrays Indexed to Tile Number and Neighbor}  \subsubsection{Arrays Indexed to Tile Number and Neighbor}
347    
348  The following arrays are all of size {\em MAX\_NEIGHBOURS}x{\em NTILES} and  The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
349  describe the orientations between the the tiles.  \code{NTILES} and describe the orientations between the the tiles. \\
350    
351    The array \code{exch2\_neighbourId(a,T)} holds the tile number
352    \code{Tn} for each of the tile number \code{T}'s neighboring tiles
353    \code{a}.  The neighbor tiles are indexed
354    \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
355    north then south edges, and then top to bottom on the east then west
356    edges.  \\
357    
358     The \code{exch2\_opposingSend\_record(a,T)} array holds the
359    index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
360    that holds the tile number \code{T}, given
361    \code{Tn=exch2\_neighborId(a,T)}.  In other words,
362    \begin{verbatim}
363       exch2_neighbourId( exch2_opposingSend_record(a,T),
364                          exch2_neighbourId(a,T) ) = T
365    \end{verbatim}
366    This provides a back-reference from the neighbor tiles. \\
367    
368  The array {\em exch2\_neighbourId(a,T)} holds the tile number $T_{n}$ for each tile  The arrays \varlink{exch2\_pi}{exch2_pi} and
369  {\em T}'s neighbor tile {\em a}.  The neighbor tiles are indexed {\em 1,MAX\_NEIGHBOURS }  \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
370  in the order right to left on the north then south edges, and then top to bottom on the east  in exchanges between the neighboring tiles.  These transformations are
371  and west edges. maybe throw in a fig here, eh?    necessary in exchanges between subdomains because the array index in
372    one dimension may map to the other index in an adjacent subdomain, and
373  {\em exch2\_opposingSend\_record(a,T)} holds  may be have its indexing reversed. This swapping arises from the
374  the index c in {\em exch2\_neighbourId(b,$T_{n}$)} that holds the tile number T.  ``folding'' of two-dimensional arrays into a three-dimensional
375  In other words,  cube. \\
376    
377  \begin{verbatim}    The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
378  exch2_neighbourId( exch2_opposingSend_record(a,T),  are the neighbor ID \code{N} and the tile number \code{T} as explained
379                             exch2_neighbourId(a,T) ) = T  above, plus a vector of length \code{2} containing transformation
380  \end{verbatim}  factors \code{t}.  The first element of the transformation vector
381    holds the factor to multiply the index in the same axis, and the
382  % {\em exch2\_neighbourId(exch2\_opposingSend\_record(a,T),exch2\_neighbourId(a,T))=T}.  second element holds the the same for the orthogonal index.  To
383  % alternate version  clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
384    index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
385  This is to provide a backreference from the neighbor tiles.  \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
386    $x$ index to the neighbor \code{N}'s $y$ index. \\
387  The arrays {\em exch2\_pi }, {\em exch2\_pj }, {\em exch2\_oi },  
388  {\em exch2\_oj }, {\em exch2\_oi\_f }, and {\em exch2\_oj\_f }  specify  One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
389  the transformations in exchanges between the neighboring tiles.  The dimensions    given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
390  of {\em exch2\_pi(t,N,T) } and {\em exch2\_pj(t,N,T) } are the neighbor ID  the fact that the two axes are orthogonal.  The other element will be
391  { \em N } and the tile number {\em T } as explained above, plus the transformation  \code{1} or \code{-1}, depending on whether the axes are indexed in
392  vector {\em t }, of length two.  The first element of the transformation vector indicates  the same or opposite directions.  For example, the transform vector of
393  the factor by which variables representing the same vector component  of a tile  the arrays for all tile neighbors on the same subdomain will be
394  will be multiplied, and the second element indicates the transform to the  \code{(1,0)}, since all tiles on the same subdomain are oriented
395  variable in the other direction.  As an example, {\em exch2\_pi(1,N,T) } holds the  identically.  An axis that corresponds to the orthogonal dimension
396  transform of the i-component of a vector variable in tile {\em T } to the i-component of  with the same index direction in a particular tile-neighbor
397  tile  {\em T }'s neighbor  {\em N }, and {\em exch2\_pi(2,N,T) } hold the component  orientation will have \code{(0,1)}.  Those in the opposite index
398  of neighbor  {\em N }'s j-component.  direction will have \code{(0,-1)} in order to reverse the ordering. \\
399    
400  Under the current cube topology, one of the two elements of {\em exch2\_pi } or {\em exch2\_pj }  The arrays \varlink{exch2\_oi}{exch2_oi},
401  for a given tile   {\em T } and  neighbor  {\em N } will be 0, reflecting the fact that  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
402  the vector components are orthogonal.  The other element will be 1 or -1, depending on whether  \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
403  the components are indexed in the same or opposite directions.  For example, the transform dimension  neighbor and specify the relative offset within the subdomain of the
404  of the arrays for all tile neighbors on the same subdomain will be {\em [1 , 0] }, since all tiles on  array index of a variable going from a neighboring tile \code{N} to a
405  the same subdomain are oriented identically.  Vectors that correspond to the orthogonal dimension with the  local tile \code{T}.  Consider \code{T=1} in the six-tile topology
406  same index direction will have {\em [0 , 1] }, whereas those in the opposite index direction will have  (Fig. \ref{fig:6tile}), where
 {\em [0 , -1] }.  
   
   
   
   
 //  
407    
408  \begin{verbatim}  \begin{verbatim}
409           exch2_oi(1,1)=33
410           exch2_oi(2,1)=0
411           exch2_oi(3,1)=32
412           exch2_oi(4,1)=-32
413    \end{verbatim}
414    
415    The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
416    which is \code{Tn=6}.  The axes of \code{T} and \code{Tn} have the
417    same orientation and their $x$ axes have the same origin, and so an
418    exchange between the two requires no changes to the $x$ index.  For
419    the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
420    \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
421    \code{Tn}.  The eastern edge of \code{T} shows the reverse case
422    (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
423    with \code{x=0} on \code{Tn=2}. \\
424    
425     The most interesting case, where \code{exch2\_oi(1,1)=33} and
426    \code{Tn=3}, involves a reversal of indices.  As in every case, the
427    offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
428    multiplied by the transformation factor \code{exch2\_pi(t,N,T)}.  Here
429    \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
430    to the $x$ axis of \code{Tn}.  \code{exch2\_pi(2,1,1)=-1} since the
431    $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
432    index is reversed.  The result is that the index of the northern edge
433    of \code{T}, which runs \code{(1:32)}, is transformed to
434    \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
435    get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
436    relative to \code{T}.  This transformation may seem overly convoluted
437    for the six-tile case, but it is necessary to provide a general
438    solution for various topologies. \\
439    
440    
441    
442  C      exch2_pi          :: X index row of target to source permutation  Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
443  C                        :: matrix for each neighbour entry.              \varlink{exch2\_ithi\_c}{exch2_ithi_c},
444  C      exch2_pj          :: Y index row of target to source permutation  \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
445  C                        :: matrix for each neighbour entry.              \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
446  C      exch2_oi          :: X index element of target to source  bounds of the edge segment of the neighbor tile \code{N}'s subdomain
447  C                        :: offset vector for cell-centered quantities    that gets exchanged with the local tile \code{T}.  To take the example
448  C                        :: of each neighbor entry.                      of tile \code{T=2} in the twelve-tile topology
449  C      exch2_oj          :: Y index element of target to source  (Fig. \ref{fig:12tile}): \\
450  C                        :: offset vector for cell-centered quantities    
451  C                        :: of each neighbor entry.                      \begin{verbatim}
452  C      exch2_oi_f        :: X index element of target to source         exch2_itlo_c(4,2)=17
453  C                        :: offset vector for face quantities                   exch2_ithi_c(4,2)=17
454  C                        :: of each neighbor entry.                             exch2_jtlo_c(4,2)=0
455  C      exch2_oj_f        :: Y index element of target to source         exch2_jthi_c(4,2)=33
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
456  \end{verbatim}  \end{verbatim}
457    
458    Here \code{N=4}, indicating the western neighbor, which is
459    \code{Tn=1}.  \code{Tn} resides on the same subdomain as \code{T}, so
460    the tiles have the same orientation and the same $x$ and $y$ axes.
461    The $x$ axis is orthogonal to the western edge and the tile is 16
462    points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
463    indicate the column beyond \code{Tn}'s eastern edge, in that tile's
464    halo region. Since the border of the tiles extends through the entire
465    height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
466    \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
467    either direction to cover part of the halo. \\
468    
469    For the north edge of the same tile \code{T=2} where \code{N=1} and
470    the neighbor tile is \code{Tn=5}:
471    
472    \begin{verbatim}
473           exch2_itlo_c(1,2)=0
474           exch2_ithi_c(1,2)=0
475           exch2_jtlo_c(1,2)=0
476           exch2_jthi_c(1,2)=17
477    \end{verbatim}
478    
479    \code{T}'s northern edge is parallel to the $x$ axis, but since
480    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
481    northern edge exchanges with \code{Tn}'s western edge.  The western
482    edge of the tiles corresponds to the lower bound of the $x$ axis, so
483    \code{exch2\_itlo\_c} \code{exch2\_ithi\_c} are \code{0}. The range of
484    \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
485    width of \code{T}'s northern edge, plus the halo. \\
486    
487    
488  \subsection{Key Routines}  \subsection{Key Routines}
489    
490    Most of the subroutines particular to exch2 handle the exchanges
491    themselves and are of the same format as those described in
492    \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
493    communication}.  Like the original routines, they are written as
494    templates which the local Makefile converts from RX into RL and RS
495    forms. \\
496    
497    The interfaces with the core model subroutines are
498    \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
499    \code{EXCH\_XY\_RX}.  They override the standard exchange routines
500    when \code{genmake2} is run with \code{exch2} option.  They in turn
501    call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
502    \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
503    quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
504    and three-dimensional scalar quantities.  These subroutines set the
505    dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
506    for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
507    the singularities at the cube corners. \\
508    
509    The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
510    \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subrouine
511    needs to pass both the $u$ and $v$ components of the phsical vectors.
512    This arises from the topological folding discussed above, where the
513    $x$ and $y$ axes get swapped in some cases.  This swapping is not an
514    issue with the scalar version. These subroutines call
515    \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
516    the work using the variables discussed above. \\
517    
   
 \subsection{References}  

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.17

  ViewVC Help
Powered by ViewVC 1.1.22