/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by afe, Wed Feb 11 20:48:14 2004 UTC revision 1.15 by afe, Thu Mar 18 14:56:25 2004 UTC
# Line 10  Line 10 
10  %%    o automatically inserted at \section{Reference}  %%    o automatically inserted at \section{Reference}
11    
12    
13  \section{exch2: Extended Cubed Sphere Exchange}  \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14  \label{sec:exch2}  \label{sec:exch2}
15    
16    
17  \subsection{Introduction}  \subsection{Introduction}
18    
19  The exch2 package is an extension to the original cubed sphere exchanges  The \texttt{exch2} package extends the original cubed
20  to allow more flexible domain decomposition and parallelization.  Cube faces  sphere topology configuration to allow more flexible domain
21  (subdomains) may be divided into whatever number of tiles that divide evenly  decomposition and parallelization.  Cube faces (also called
22  into the grid point dimensions of the subdomain.  Furthermore, the individual  subdomains) may be divided into any number of tiles that divide evenly
23  tiles may be run on separate processors in different combinations,  into the grid point dimensions of the subdomain.  Furthermore, the
24  and whether exchanges between particular tiles occur between different  individual tiles can run on separate processors in different
25  processors is determined at runtime.  combinations, and whether exchanges between particular tiles occur
26    between different processors is determined at runtime.  This
27  The exchange parameters are declared in {\em W2\_EXCH2\_TOPOLOGY.h} and  flexibility provides for manual compile-time load balancing across a
28  assigned in {\em w2\_e2setup.F}, both in the  relatively arbitrary number of processors. \\
29  {\em pkg/exch2} directory.  The validity of the cube topology depends  
30  on the {\em SIZE.h} file as detailed below.  Both files are generated by  The exchange parameters are declared in
31  Matlab scripts and  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
32  should not be edited.  The default files provided in the release set up  and assigned in
33  a cube sphere arrangement of six tiles, one per subdomain, each with 32x32 grid  \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
34  points, running on a single processor.    validity of the cube topology depends on the \file{SIZE.h} file as
35    detailed below.  The default files provided in the release configure a
36    cubed sphere topology of six tiles, one per subdomain, each with
37    32$\times$32 grid points, all running on a single processor.  Both
38    files are generated by Matlab scripts in
39    \file{utils/exch2/matlab-topology-generator}; see Section
40    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
41    for details on creating alternate topologies.  Pregenerated examples
42    of these files with alternate topologies are provided under
43    \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
44    file for single-processor execution.
45    
46    \subsection{Invoking exch2}
47    
48    To use exch2 with the cubed sphere, the following conditions must be
49    met: \\
50    
51    $\bullet$ The exch2 package is included when \file{genmake2} is run.
52      The easiest way to do this is to add the line \code{exch2} to the
53      \file{profile.conf} file -- see Section
54      \ref{sect:buildingCode} \sectiontitle{Building the code} for general
55      details. \\
56    
57    $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
58      \file{w2\_e2setup.F} must reside in a directory containing code
59      linked when \file{genmake2} runs.  The safest place to put these
60      is the directory indicated in the \code{-mods=DIR} command line
61      modifier (typically \file{../code}), or the build directory.  The
62      default versions of these files reside in \file{pkg/exch2} and are
63      linked automatically if no other versions exist elsewhere in the
64      link path, but they should be left untouched to avoid breaking
65      configurations other than the one you intend to modify.\\
66    
67    $\bullet$ Files containing grid parameters, named
68      \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),
69      must be in the working directory when the MITgcm executable is run.
70      These files are provided in the example experiments for cubed sphere
71      configurations with 32$\times$32 cube sides and are non-trivial to
72      generate -- please contact MITgcm support if you want to generate
73      files for other configurations. \\
74    
75    $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must
76      be placed where \file{genmake2} will find it.  In particular for
77      exch2, the domain decomposition specified in \file{SIZE.h} must
78      correspond with the particular configuration's topology specified in
79      \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
80      decomposition issues particular to exch2 are addressed in Section
81      \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
82      and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and MPI}; a more
83      general background on the subject relevant to MITgcm is presented in
84      Section \ref{sect:specifying_a_decomposition}
85      \sectiontitle{Specifying a decomposition}.\\
86    
87    As of the time of writing the following examples use exch2 and may be
88    used for guidance:
89    
90    \begin{verbatim}
91    verification/adjust_nlfs.cs-32x32x1
92    verification/adjustment.cs-32x32x1
93    verification/aim.5l_cs
94    verification/global_ocean.cs32x15
95    verification/hs94.cs-32x32x5
96    \end{verbatim}
97    
98    
99    
100    
101    \subsection{Generating Topology Files for exch2}
102    \label{sec:topogen}
103    
104    Alternate cubed sphere topologies may be created using the Matlab
105    scripts in \file{utils/exch2/matlab-topology-generator}. Running the
106    m-file
107    \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
108    from the Matlab prompt (there are no parameters to pass) generates
109    exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
110    \file{w2\_e2setup.F} in the working directory and displays a figure of
111    the topology via Matlab.  The other m-files in the directory are
112    subroutines of \file{driver.m} and should not be run ``bare'' except
113    for development purposes. \\
114    
115    The parameters that determine the dimensions and topology of the
116    generated configuration are \code{nr}, \code{nb}, \code{ng},
117    \code{tnx} and \code{tny}, and all are assigned early in the script. \\
118    
119    The first three determine the size of the subdomains and
120    hence the size of the overall domain.  Each one determines the number
121    of grid points, and therefore the resolution, along the subdomain
122    sides in a ``great circle'' around an axis of the cube.  At the time
123    of this writing MITgcm requires these three parameters to be equal,
124    but they provide for future releases  to accomodate different
125    resolutions around the axes to allow (for example) greater resolution
126    around the equator.\\
127    
128    The parameters \code{tnx} and \code{tny} determine the dimensions of
129    the tiles into which the subdomains are decomposed, and must evenly
130    divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
131    The result is a rectangular tiling of the subdomain.  Figure
132    \ref{fig:24tile} shows one possible topology for a twentyfour-tile
133    cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
134    
135    \begin{figure}
136    \begin{center}
137     \resizebox{4in}{!}{
138      \includegraphics{part6/s24t_16x16.ps}
139     }
140    \end{center}
141    
142    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
143    divided into six 32$\times$32 subdomains, each of which is divided into four tiles
144    (\code{tnx=16, tny=16}) for a total of twentyfour tiles.
145    } \label{fig:24tile}
146    \end{figure}
147    
148    \begin{figure}
149    \begin{center}
150     \resizebox{4in}{!}{
151      \includegraphics{part6/s12t_16x32.ps}
152     }
153    \end{center}
154    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
155    divided into six 32$\times$32 subdomains of two tiles each
156     (\code{tnx=16, tny=32}).
157    } \label{fig:12tile}
158    \end{figure}
159    
160    \begin{figure}
161    \begin{center}
162     \resizebox{4in}{!}{
163      \includegraphics{part6/s6t_32x32.ps}
164     }
165    \end{center}
166    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
167    divided into six 32$\times$32 subdomains with one tile each
168    (\code{tnx=32, tny=32}).  This is the default configuration.
169      }
170    \label{fig:6tile}
171    \end{figure}
172    
173    
174    Tiles can be selected from the topology to be omitted from being
175    allocated memory and processors.  This tuning is useful in ocean
176    modeling for omitting tiles that fall entirely on land.  The tiles
177    omitted are specified in the file
178    \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
179    by their tile number in the topology, separated by a newline. \\
180    
181    
182    
183    
184    \subsection{exch2, SIZE.h, and multiprocessing}
185    \label{sec:exch2mpi}
186    
187    Once the topology configuration files are created, the Fortran
188    \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
189    Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
190    a decomposition} provides a general description of domain
191    decomposition within MITgcm and its relation to \file{SIZE.h}. The
192    current section specifies certain constraints the exch2 package
193    imposes as well as describes how to enable parallel execution with
194    MPI. \\
195    
196    As in the general case, the parameters \varlink{sNx}{sNx} and
197    \varlink{sNy}{sNy} define the size of the individual tiles, and so
198    must be assigned the same respective values as \code{tnx} and
199    \code{tny} in \file{driver.m}.\\
200    
201    The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
202    have no special bearing on exch2 and may be assigned as in the general
203    case. The same holds for \varlink{Nr}{Nr}, the number of vertical
204    levels in the model.\\
205    
206    The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
207    \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
208    tiles and how they are distributed on processors.  When using exch2,
209    the tiles are stored in single dimension, and so
210    \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
211    configured by exch2 cannot be split up accross processors without
212    regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
213    
214    The number of tiles MITgcm allocates and how they are distributed
215    between processors depends on \varlink{nPx}{nPx} and
216    \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per
217    processor and \varlink{nPx}{nPx} the number of processors.  The total
218    number of tiles in the topology minus those listed in
219    \file{blanklist.txt} must equal \code{nSx*nPx}. \\
220    
221    The following is an example of \file{SIZE.h} for the twelve-tile
222    configuration illustrated in figure \ref{fig:12tile} running on
223    one processor: \\
224    
225    \begin{verbatim}
226          PARAMETER (
227         &           sNx =  16,
228         &           sNy =  32,
229         &           OLx =   2,
230         &           OLy =   2,
231         &           nSx =  12,
232         &           nSy =   1,
233         &           nPx =   1,
234         &           nPy =   1,
235         &           Nx  = sNx*nSx*nPx,
236         &           Ny  = sNy*nSy*nPy,
237         &           Nr  =   5)
238    \end{verbatim}
239    
240    The following is an example for the twentyfour-tile topology in figure
241    \ref{fig:24tile} running on six processors:
242    
243    \begin{verbatim}
244          PARAMETER (
245         &           sNx =  16,
246         &           sNy =  16,
247         &           OLx =   2,
248         &           OLy =   2,
249         &           nSx =   4,
250         &           nSy =   1,
251         &           nPx =   6,
252         &           nPy =   1,
253         &           Nx  = sNx*nSx*nPx,
254         &           Ny  = sNy*nSy*nPy,
255         &           Nr  =   5)
256    \end{verbatim}
257    
258    
259    
260    
261    
262  \subsection{Key Variables}  \subsection{Key Variables}
263    
264  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
265  one-dimensional arrays indexed to the tile number, and two and three  one-dimensional arrays indexed to the tile number, and two and three
266  dimensional  dimensional arrays indexed to tile number and neighboring tile.  This
267  arrays indexed to tile number and neighboring tile.  This division  division reflects the functionality of these variables: The
268  actually reflects  the functionality of these variables: the scalars  scalars are common to every part of the topology, the tile-indexed
269  are common to every part of the topology, the tile-indexed arrays to  arrays to individual tiles, and the arrays indexed by tile and
270  individual tiles, and the arrays indexed to tile and neighbor to  neighbor to relationships between tiles and their neighbors. \\
 relationships between tiles and their neighbors.  
271    
272  \subsubsection{Scalars}  \subsubsection{Scalars}
273    
274  The number of tiles in a particular topology is set with the parameter  The number of tiles in a particular topology is set with the parameter
275  {\em NTILES}, and the maximum number of neighbors of any tiles by  \code{NTILES}, and the maximum number of neighbors of any tiles by
276  {\em MAX\_NEIGHBOURS}.  These parameters are used for defining the size of  \code{MAX\_NEIGHBOURS}.  These parameters are used for defining the
277  the various one and two dimensional arrays that store tile parameters  size of the various one and two dimensional arrays that store tile
278  indexed to the tile number.  parameters indexed to the tile number and are assigned in the files
279    generated by \file{driver.m}.\\
280  The scalar parameters {\em exch2\_domain\_nxt} and  
281  {\em exch2\_domain\_nyt} express the number of tiles in the x and y global  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
282  indices.  For example, the default setup of six tiles has  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
283  {\em exch2\_domain\_nxt=6} and {\em exch2\_domain\_nyt=1}.  A topology of  of tiles in the $x$ and $y$ global indices.  For example, the default
284  twenty-four square (in gridpoints) tiles, four (2x2) per subdomain, will  setup of six tiles (Fig. \ref{fig:6tile}) has
285  have {\em exch2\_domain\_nxt=12} and {\em exch2\_domain\_nyt=2}.  Note  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
286  that these parameters express the tile layout to allow global data files that  topology of twenty-four square tiles, four per subdomain (as in figure
287  are tile-layout-neutral and have no bearing on the internal storage of the  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
288  arrays.  The tiles are internally stored in a range from {\em 1,bi} (in the  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the
289  x axis) and y-axis variable {\em bj} is generally ignored within the package.  tile layout to allow global data files that are tile-layout-neutral
290    and have no bearing on the internal storage of the arrays.  The tiles
291    are internally stored in a range from \code{(1:\varlink{bi}{bi})} the
292    $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is generally
293    ignored within the package. \\
294    
295  \subsubsection{Arrays Indexed to Tile Number}  \subsubsection{Arrays Indexed to Tile Number}
296    
297  The following arrays are of size {\em NTILES}, are indexed to the tile number,  The following arrays are of length \code{NTILES}and are indexed to the
298  and the indices are omitted in their descriptions.  tile number, which is indicated in the diagrams with the notation
299    \textsf{t}$n$.  The indices are omitted in the descriptions. \\
300    
301    The arrays \varlink{exch2\_tnx}{exch2_tnx} and
302    \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
303    each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
304    \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
305    section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
306    multiprocessing}.  Future releases of MITgcm are to allow varying tile
307    sizes. \\
308    
309    The location of the tiles' Cartesian origin within a subdomain are
310    determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
311    \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to
312    relate the location of the edges of different tiles to each other.  As
313    an example, in the default six-tile topology (Fig. \ref{fig:6tile})
314    each index in these arrays is set to \code{0} since a tile occupies
315    its entire subdomain.  The twentyfour-tile case discussed above will
316    have values of \code{0} or \code{16}, depending on the quadrant the
317    tile falls within the subdomain.  The elements of the arrays
318    \varlink{exch2\_txglobalo}{exch2_txglobalo} and
319    \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
320    \varlink{exch2\_tbasex}{exch2_tbasex} and
321    \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the
322    global address space, similar to that used by global files. \\
323    
324    The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
325    the subdomain of each tile, in a range \code{(1:6)} in the case of the
326    standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
327    figures \ref{fig:12tile} and
328    \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
329    contains a count the  neighboring tiles each tile has, and is
330    used for setting bounds for looping over neighboring tiles.
331    \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
332    tile, and is used in interprocess communication.  \\
333    
334    
335    The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
336    \varlink{exch2\_isEedge}{exch2_isEedge},
337    \varlink{exch2\_isSedge}{exch2_isSedge}, and
338    \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
339    indexed tile lies on the respective edge of a subdomain, \code{0} if
340    not.  The values are used within the topology generator to determine
341    the orientation of neighboring tiles, and to indicate whether a tile
342    lies on the corner of a subdomain.  The latter case requires special
343    exchange and numerical handling for the singularities at the eight
344    corners of the cube. \\
345    
 The arrays {\em exch2\_tnx} and {\em exch2\_tny}  
 express the x and y dimensions of each tile.  At present for each tile  
 {\em exch2\_tnx = sNx}  
 and {\em exch2\_tny = sNy}, as assigned in {\em SIZE.h}.  Future releases of  
 MITgcm are to allow varying tile sizes.  
   
 The location of the tiles' Cartesian origin within a subdomain are determined  
 by the arrays {\em exch2\_tbasex} and {\em exch2\_tbasey}.  These variables  
 are used to relate the location of the edges of the tiles to each other.  As  
 an example, in the default six-tile topology (the degenerate case)  
 each index in these arrays are  
 set to 0.  The twenty-four, 32x32 cube face case discussed above will have  
 values of 0 or 16, depending on the quadrant the tile falls within the  
 subdomain.  {\em exch2\_myFace} contains the number of the  
 cubeface/subdomain of each tile, numbered 1-6 in the case of the standard  
 cube topology.    
   
 The arrays {\em exch2\_txglobalo} and {\em exch2\_txglobalo} are similar to  
 {\em exch2\_tbasex} and {\em exch2\_tbasey}, but locate the tiles within  
 the global address space, similar to that used by global files.    
   
 The arrays {\em exch2\_isWedge}, {\em exch2\_isEedge}, {\em exch2\_isSedge},  
 and {\em exch2\_isNedge} are set to 1 if the indexed tile lies on the edge  
 of a subdomain, 0 if not.  The values are used within the topology generator  
 to determine the orientation of neighboring tiles and to indicate whether  
 a tile lies on the corner of a subdomain.  The latter case indicates  
 special exchange and numerical handling for the singularities at the eight  
 corners of the cube.  {\em exch2\_isNedge} contains a count of how many  
 neighboring tiles each tile has, and is used for setting bounds for looping  
 over neighboring tiles.  {\em exch2\_tProc} holds the process rank of each tile,  
 and is used in interprocess communication.  
346    
347  \subsubsection{Arrays Indexed to Tile Number and Neighbor}  \subsubsection{Arrays Indexed to Tile Number and Neighbor}
348    
349  The following arrays are all of size {\em MAX\_NEIGHBOURS}x{\em NTILES} and  The following arrays are all of size
350  describe the orientations between the the tiles.  \code{MAX\_NEIGHBOURS}$\times$\code{NTILES} and describe the
351    orientations between the the tiles. \\
352    
353    The array \code{exch2\_neighbourId(a,T)} holds the tile number
354    \code{Tn} for each of the tile number \code{T}'s neighboring tiles
355    \code{a}.  The neighbor tiles are indexed
356    \code{(1:exch2\_NNeighbours(T))} in the order right to left on the
357    north then south edges, and then top to bottom on the east and west
358    edges.  Maybe throw in a fig here, eh?  \\
359    
360    \sloppy The \code{exch2\_opposingSend\_record(a,T)} array holds the
361    index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
362    that holds the tile number \code{T}, given
363    \code{Tn=exch2\_neighborId(a,T)}.  In other words,
364    \begin{verbatim}
365       exch2_neighbourId( exch2_opposingSend_record(a,T),
366                          exch2_neighbourId(a,T) ) = T
367    \end{verbatim}
368    This provides a back-reference from the neighbor tiles. \\
369    
370  The array {\em exch2\_neighbourId(a,T)} holds the tile number $T_{n}$ for each tile  The arrays \varlink{exch2\_pi}{exch2_pi} and
371  {\em T}'s neighbor tile {\em a}.  The neighbor tiles are indexed {\em 1,MAX\_NEIGHBOURS }  \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
372  in the order right to left on the north then south edges, and then top to bottom on the east  in exchanges between the neighboring tiles.  These transformations are
373  and west edges. maybe throw in a fig here, eh?    necessary in exchanges between subdomains because the array index in
374    one dimension may map to the other index in an adjacent subdomain, and
375  {\em exch2\_opposingSend\_record(a,T)} holds  may be have its indexing reversed. This swapping arises from the
376  the index c in {\em exch2\_neighbourId(b,$T_{n}$)} that holds the tile number T.  ``folding'' of two-dimensional arrays into a three-dimensional cube.
377  In other words,  
378    The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
379  \begin{verbatim}    are the neighbor ID \code{N} and the tile number \code{T} as explained
380  exch2_neighbourId( exch2_opposingSend_record(a,T),  above, plus a vector of length \code{2} containing transformation
381                             exch2_neighbourId(a,T) ) = T  factors \code{t}.  The first element of the transformation vector
382  \end{verbatim}  holds the factor to multiply the index in the same axis, and the
383    second element holds the the same for the orthogonal index.  To
384  % {\em exch2\_neighbourId(exch2\_opposingSend\_record(a,T),exch2\_neighbourId(a,T))=T}.  clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
385  % alternate version  index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
386    \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
387  This is to provide a backreference from the neighbor tiles.  $x$ index to the neighbor \code{N}'s $y$ index. \\
388    
389  The arrays {\em exch2\_pi }, {\em exch2\_pj }, {\em exch2\_oi },  One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
390  {\em exch2\_oj }, {\em exch2\_oi\_f }, and {\em exch2\_oj\_f }  specify  given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
391  the transformations in exchanges between the neighboring tiles.  The dimensions    the fact that the two axes are orthogonal.  The other element will be
392  of {\em exch2\_pi(t,N,T) } and {\em exch2\_pj(t,N,T) } are the neighbor ID  \code{1} or \code{-1}, depending on whether the axes are indexed in
393  { \em N } and the tile number {\em T } as explained above, plus the transformation  the same or opposite directions.  For example, the transform vector of
394  vector {\em t }, of length two.  The first element of the transformation vector indicates  the arrays for all tile neighbors on the same subdomain will be
395  the factor by which variables representing the same vector component  of a tile  \code{(1,0)}, since all tiles on the same subdomain are oriented
396  will be multiplied, and the second element indicates the transform to the  identically.  An axis that corresponds to the orthogonal dimension
397  variable in the other direction.  As an example, {\em exch2\_pi(1,N,T) } holds the  with the same index direction in a particular tile-neighbor
398  transform of the i-component of a vector variable in tile {\em T } to the i-component of  orientation will have \code{(0,1)}.  Those in the opposite index
399  tile  {\em T }'s neighbor  {\em N }, and {\em exch2\_pi(2,N,T) } hold the component  direction will have \code{(0,-1)} in order to reverse the ordering. \\
400  of neighbor  {\em N }'s j-component.  
401    The arrays \varlink{exch2\_oi}{exch2_oi},
402  Under the current cube topology, one of the two elements of {\em exch2\_pi } or {\em exch2\_pj }  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
403  for a given tile   {\em T } and  neighbor  {\em N } will be 0, reflecting the fact that  \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
404  the vector components are orthogonal.  The other element will be 1 or -1, depending on whether  neighbor and specify the relative offset within the subdomain of the
405  the components are indexed in the same or opposite directions.  For example, the transform dimension  array index of a variable going from a neighboring tile $N$ to a local
406  of the arrays for all tile neighbors on the same subdomain will be {\em [1 , 0] }, since all tiles on  tile $T$.  Consider the six-tile case (Fig. \ref{fig:6tile}), where
407  the same subdomain are oriented identically.  Vectors that correspond to the orthogonal dimension with the  \code{exch2\_oi(1,1)=33}, \code{exch2\_oi(2,1)=0},
408  same index direction will have {\em [0 , 1] }, whereas those in the opposite index direction will have  \code{exch2\_oi(3,1)=32}, and \code{exch2\_oi(4,1)=-32}.  Each of these
409  {\em [0 , -1] }.  indicates the offset in the $x$ direction \\
410    
411    Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
412    \varlink{exch2\_ithi\_c}{exch2_ithi_c},
413    \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
414  //  \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
415    bounds of the edge segment of the neighbor tile \code{N}'s subdomain
416    that gets exchanged with the local tile \code{T}.  To take the example
417    of tile \code{T=2} in the twelve-tile topology
418    (Fig. \ref{fig:12tile}): \\
419    
420  \begin{verbatim}  \begin{verbatim}
421           exch2_itlo_c(4,2)=17
422           exch2_ithi_c(4,2)=17
423           exch2_jtlo_c(4,2)=0
424           exch2_jthi_c(4,2)=33
425    \end{verbatim}
426    
427    Here \code{N=4}, indicating the western neighbor, which is \code{Tn=1}.
428    \code{Tn=1} resides on the same subdomain as \code{T=2}, so the tiles
429    have the same orientation and the same $x$ and $y$ axes.  The $i$
430    component is orthogonal to the western edge and the tile is 16 points
431    wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} indicate the
432    column beyond \code{Tn=1}'s eastern edge, in that tile's halo
433    region. Since the border of the tiles extends through the entire
434    height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
435    \code{exch2\_jthi\_c} cover the height, plus 1 in either direction to
436    cover part of the halo. \\
437    
438    For the north edge of the same tile \code{T=2} where \code{N=1} and
439    the neighbor tile is \code{Tn=5}:
440    
441    \begin{verbatim}
442  C      exch2_pi          :: X index row of target to source permutation         exch2_itlo_c(1,2)=0
443  C                        :: matrix for each neighbour entry.                     exch2_ithi_c(1,2)=0
444  C      exch2_pj          :: Y index row of target to source permutation         exch2_jtlo_c(1,2)=0
445  C                        :: matrix for each neighbour entry.                     exch2_jthi_c(1,2)=17
 C      exch2_oi          :: X index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oj          :: Y index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oi_f        :: X index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
 C      exch2_oj_f        :: Y index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
446  \end{verbatim}  \end{verbatim}
447    
448    \code{T}'s northern edge is parallel to the $x$ axis, but since
449    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis,
450    \code{T}'s northern edge exchanges with \code{Tn}'s western edge.
451    The western edge of the tiles corresponds to the lower bound of the
452    $x$ axis, so \code{exch2\_itlo\_c} \code{exch2\_ithi\_c} are \code{0}. The
453    range of \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
454    width of \code{T}'s northern edge, plus the halo. \\
455    
456    
457    
458    
459    
460    
461    
462    
463    
464    
465    
466    This needs some diagrams. \\
467    
468    
469    

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.15

  ViewVC Help
Powered by ViewVC 1.1.22