/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.4 by afe, Thu Jan 29 17:55:35 2004 UTC revision 1.20 by edhill, Tue Oct 12 15:47:40 2004 UTC
# Line 10  Line 10 
10  %%    o automatically inserted at \section{Reference}  %%    o automatically inserted at \section{Reference}
11    
12    
13  \section{exch2: Extended Cubed Sphere Exchange}  \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14  \label{sec:exch2}  \label{sec:exch2}
15    
16    
17  \subsection{Introduction}  \subsection{Introduction}
18    
19  The exch2 package is an extension to the original cubed sphere exchanges  The \texttt{exch2} package extends the original cubed sphere topology
20  to allow more flexible domain decomposition and parallelization.  Cube faces  configuration to allow more flexible domain decomposition and
21  (subdomains) may be divided into whatever number of tiles that divide evenly  parallelization.  Cube faces (also called subdomains) may be divided
22  into the grid point dimensions of the subdomain.  Furthermore, the individual  into any number of tiles that divide evenly into the grid point
23  tiles may be run on separate processors in different combinations,  dimensions of the subdomain.  Furthermore, the tiles can run on
24  and whether exchanges between particular tiles occur between different  separate processors individually or in groups, which provides for
25  processors is determined at runtime.  manual compile-time load balancing across a relatively arbitrary
26    number of processors. \\
27  The exchange parameters are declared in {\em W2\_EXCH2\_TOPOLOGY.h} and  
28  assigned in {\em w2\_e2setup.F}, both in the  The exchange parameters are declared in
29  {\em pkg/exch2} directory.  The validity of the cube topology depends  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
30  on the {\em SIZE.h} file as detailed below.  Both files are generated by  and assigned in
31  Matlab scripts and  \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
32  should not be edited.  The default files provided in the release set up  validity of the cube topology depends on the \file{SIZE.h} file as
33  a cube sphere arrangement of six tiles, one per subdomain, each with 32x32 grid  detailed below.  The default files provided in the release configure a
34  points, running on a single processor.    cubed sphere topology of six tiles, one per subdomain, each with
35    32$\times$32 grid points, with all tiles running on a single processor.  Both
36    files are generated by Matlab scripts in
37    \file{utils/exch2/matlab-topology-generator}; see Section
38    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
39    for details on creating alternate topologies.  Pregenerated examples
40    of these files with alternate topologies are provided under
41    \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
42    file for single-processor execution.
43    
44    \subsection{Invoking exch2}
45    
46    To use exch2 with the cubed sphere, the following conditions must be
47    met:
48    
49    \begin{itemize}
50    \item The exch2 package is included when \file{genmake2} is run.  The
51      easiest way to do this is to add the line \code{exch2} to the
52      \file{profile.conf} file -- see Section \ref{sect:buildingCode}
53      \sectiontitle{Building the code} for general details.
54      
55    \item An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
56      \file{w2\_e2setup.F} must reside in a directory containing files
57      symbolically linked by the \file{genmake2} script.  The safest place
58      to put these is the directory indicated in the \code{-mods=DIR}
59      command line modifier (typically \file{../code}), or the build
60      directory.  The default versions of these files reside in
61      \file{pkg/exch2} and are linked automatically if no other versions
62      exist elsewhere in the build path, but they should be left untouched
63      to avoid breaking configurations other than the one you intend to
64      modify.
65      
66    \item Files containing grid parameters, named \file{tile00$n$.mitgrid}
67      where $n$=\code{(1:6)} (one per subdomain), must be in the working
68      directory when the MITgcm executable is run.  These files are
69      provided in the example experiments for cubed sphere configurations
70      with 32$\times$32 cube sides -- please contact
71      \begin{rawhtml}
72        <A href=''mailto:mitgcm-support@dev.mitgcm.org">
73      \end{rawhtml}
74    \begin{verbatim}
75    MITgcm-support@mitgcm.org
76    \end{verbatim}
77      \begin{rawhtml} </A> \end{rawhtml}
78      if you want to generate files for other configurations.
79      
80    \item As always when compiling MITgcm, the file \file{SIZE.h} must be
81      placed where \file{genmake2} will find it.  In particular for exch2,
82      the domain decomposition specified in \file{SIZE.h} must correspond
83      with the particular configuration's topology specified in
84      \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
85      decomposition issues particular to exch2 are addressed in Section
86      \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
87      and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
88        Multiprocessing}; a more general background on the subject
89      relevant to MITgcm is presented in Section
90      \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying a
91        decomposition}.
92    \end{itemize}
93    
94    
95    
96    At the time of this writing the following examples use exch2 and may
97    be used for guidance:
98    
99    \begin{verbatim}
100    verification/adjust_nlfs.cs-32x32x1
101    verification/adjustment.cs-32x32x1
102    verification/aim.5l_cs
103    verification/global_ocean.cs32x15
104    verification/hs94.cs-32x32x5
105    \end{verbatim}
106    
107    
108    
109    
110    \subsection{Generating Topology Files for exch2}
111    \label{sec:topogen}
112    
113    Alternate cubed sphere topologies may be created using the Matlab
114    scripts in \file{utils/exch2/matlab-topology-generator}. Running the
115    m-file
116    \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
117    from the Matlab prompt (there are no parameters to pass) generates
118    exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
119    \file{w2\_e2setup.F} in the working directory and displays a figure of
120    the topology via Matlab -- figures \ref{fig:6tile}, \ref{fig:12tile},
121    and \ref{fig:24tile} are examples of the generated diagrams.  The other
122    m-files in the directory are
123    subroutines called from \file{driver.m} and should not be run ``bare'' except
124    for development purposes. \\
125    
126    The parameters that determine the dimensions and topology of the
127    generated configuration are \code{nr}, \code{nb}, \code{ng},
128    \code{tnx} and \code{tny}, and all are assigned early in the script. \\
129    
130    The first three determine the height and width of the subdomains and
131    hence the size of the overall domain.  Each one determines the number
132    of grid points, and therefore the resolution, along the subdomain
133    sides in a ``great circle'' around each the three spatial axes of the cube.  At the time
134    of this writing MITgcm requires these three parameters to be equal,
135    but they provide for future releases  to accomodate different
136    resolutions around the axes to allow subdomains with differing resolutions.\\
137    
138    The parameters \code{tnx} and \code{tny} determine the width and height of
139    the tiles into which the subdomains are decomposed, and must evenly
140    divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
141    The result is a rectangular tiling of the subdomain.  Figure
142    \ref{fig:24tile} shows one possible topology for a twenty-four-tile
143    cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
144    
145    \begin{figure}
146    \begin{center}
147     \resizebox{4in}{!}{
148      \includegraphics{part6/s24t_16x16.ps}
149     }
150    \end{center}
151    
152    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
153    divided into six 32$\times$32 subdomains, each of which is divided
154    into four tiles of width \code{tnx=16} and height \code{tny=16} for a
155    total of twenty-four tiles.  The colored borders of the subdomains
156    represent the parameters \code{nr} (red), \code{nb} (blue), and
157    \code{ng} (green).  } \label{fig:24tile}
158    \end{figure}
159    
160    \begin{figure}
161    \begin{center}
162     \resizebox{4in}{!}{
163      \includegraphics{part6/s12t_16x32.ps}
164     }
165    \end{center}
166    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
167    divided into six 32$\times$32 subdomains of two tiles each
168     (\code{tnx=16, tny=32}).
169    } \label{fig:12tile}
170    \end{figure}
171    
172    \begin{figure}
173    \begin{center}
174     \resizebox{4in}{!}{
175      \includegraphics{part6/s6t_32x32.ps}
176     }
177    \end{center}
178    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
179    divided into six 32$\times$32 subdomains with one tile each
180    (\code{tnx=32, tny=32}).  This is the default configuration.
181      }
182    \label{fig:6tile}
183    \end{figure}
184    
185    
186    Tiles can be selected from the topology to be omitted from being
187    allocated memory and processors.  This tuning is useful in ocean
188    modeling for omitting tiles that fall entirely on land.  The tiles
189    omitted are specified in the file
190    \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
191    by their tile number in the topology, separated by a newline. \\
192    
193    
194    
195    
196    \subsection{exch2, SIZE.h, and Multiprocessing}
197    \label{sec:exch2mpi}
198    
199    Once the topology configuration files are created, the Fortran
200    \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
201    Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
202    a decomposition} provides a general description of domain
203    decomposition within MITgcm and its relation to \file{SIZE.h}. The
204    current section specifies constraints that the exch2 package
205    imposes and describes how to enable parallel execution with
206    MPI. \\
207    
208    As in the general case, the parameters \varlink{sNx}{sNx} and
209    \varlink{sNy}{sNy} define the size of the individual tiles, and so
210    must be assigned the same respective values as \code{tnx} and
211    \code{tny} in \file{driver.m}.\\
212    
213    The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
214    have no special bearing on exch2 and may be assigned as in the general
215    case. The same holds for \varlink{Nr}{Nr}, the number of vertical
216    levels in the model.\\
217    
218    The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
219    \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
220    tiles and how they are distributed on processors.  When using exch2,
221    the tiles are stored in the $x$ dimension, and so
222    \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
223    configured by exch2 cannot be split up accross processors without
224    regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
225    
226    The number of tiles MITgcm allocates and how they are distributed
227    between processors depends on \varlink{nPx}{nPx} and
228    \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per
229    processor and \varlink{nPx}{nPx} is the number of processors.  The total
230    number of tiles in the topology minus those listed in
231    \file{blanklist.txt} must equal \code{nSx*nPx}.  Note that in order to
232    obtain maximum usage from a given number of processors in some cases,
233    this restriction might entail sharing a processor with a tile that would
234    otherwise be excluded. \\
235    
236    The following is an example of \file{SIZE.h} for the twelve-tile
237    configuration illustrated in figure \ref{fig:12tile} running on
238    one processor: \\
239    
240    \begin{verbatim}
241          PARAMETER (
242         &           sNx =  16,
243         &           sNy =  32,
244         &           OLx =   2,
245         &           OLy =   2,
246         &           nSx =  12,
247         &           nSy =   1,
248         &           nPx =   1,
249         &           nPy =   1,
250         &           Nx  = sNx*nSx*nPx,
251         &           Ny  = sNy*nSy*nPy,
252         &           Nr  =   5)
253    \end{verbatim}
254    
255    The following is an example for the twenty-four-tile topology in
256    figure \ref{fig:24tile} running on six processors:
257    
258    \begin{verbatim}
259          PARAMETER (
260         &           sNx =  16,
261         &           sNy =  16,
262         &           OLx =   2,
263         &           OLy =   2,
264         &           nSx =   4,
265         &           nSy =   1,
266         &           nPx =   6,
267         &           nPy =   1,
268         &           Nx  = sNx*nSx*nPx,
269         &           Ny  = sNy*nSy*nPy,
270         &           Nr  =   5)
271    \end{verbatim}
272    
273    
274    
275    
276    
277  \subsection{Key Variables}  \subsection{Key Variables}
278    
279  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
280  one-dimensional arrays indexed to the tile number, and two-dimensional  one-dimensional arrays indexed to the tile number, and two and
281  arrays indexed to tile number and neighboring tile.  This division  three-dimensional arrays indexed to tile number and neighboring tile.
282  actually reflects  the functionality of these variables, not just the  This division reflects the functionality of these variables: The
283  whim of some FORTRAN enthusiast.  scalars are common to every part of the topology, the tile-indexed
284    arrays to individual tiles, and the arrays indexed by tile and
285    neighbor to relationships between tiles and their neighbors. \\
286    
287  \subsubsection{Scalars}  \subsubsection{Scalars}
288    
289  The number of tiles in a particular topology is set with the parameter  The number of tiles in a particular topology is set with the parameter
290  {\em NTILES}, and the maximum number of neighbors of any tiles by  \code{NTILES}, and the maximum number of neighbors of any tiles by
291  {\em MAX\_NEIGHBOURS}.  These parameters are used for defining the size of  \code{MAX\_NEIGHBOURS}.  These parameters are used for defining the
292  the various one and two dimensional arrays that store tile parameters  size of the various one and two dimensional arrays that store tile
293  indexed to the tile number.  parameters indexed to the tile number and are assigned in the files
294    generated by \file{driver.m}.\\
295  The scalar parameters {\em exch2\_domain\_nxt} and  
296  {\em exch2\_domain\_nyt} express the number of tiles in the x and y global  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
297  indices.  For example, the default setup of six tiles has  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
298  {\em exch2\_domain\_nxt=6} and {\em exch2\_domain\_nyt=1}.  A topology of  of tiles in the $x$ and $y$ global indices.  For example, the default
299  twenty-four square (in gridpoints) tiles, four (2x2) per subdomain, will  setup of six tiles (Fig. \ref{fig:6tile}) has
300  have {\em exch2\_domain\_nxt=12} and {\em exch2\_domain\_nyt=2}.  Note  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
301  that these parameters express the tile layout to allow global data files that  topology of twenty-four square tiles, four per subdomain (as in figure
302  are tile-layout-neutral and have no bearing on the internal storage of the  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
303  arrays.  The tiles are internally stored in a range from {\em 1,bi} (in the  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the
304  x axis) and y-axis variable {\em bj} is generally ignored within the package.  tile layout in order to allow global data files that are tile-layout-neutral.
305    They have no bearing on the internal storage of the arrays.  The tiles
306  \subsubsection{One-Dimensional Arrays}  are stored internally in a range from \code{\varlink{bi}{bi}=(1:NTILES)} in the
307    $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is assumed to
308  The following arrays are indexed to the tile number, and the indices are  equal \code{1} throughout the package. \\
309  omitted in their descriptions.  
310    \subsubsection{Arrays indexed to tile number}
311  The arrays {\em exch2\_tnx} and {\em exch2\_tny}  
312  express the x and y dimensions of each tile.  At present for each tile  The following arrays are of length \code{NTILES} and are indexed to
313  {\em exch2\_tnx = sNx}  the tile number, which is indicated in the diagrams with the notation
314  and {\em exch2\_tny = sNy}, as assigned in {\em SIZE.h}.  Future releases of  \code{tn}.  The indices are omitted in the descriptions. \\
315  MITgcm are to allow varying tile sizes.  
316    The arrays \varlink{exch2\_tnx}{exch2_tnx} and
317  The location of the tiles' Cartesian origin within a subdomain are determined  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
318  by the arrays {\em exch2\_tbasex} and {\em exch2\_tbasey}.  These  each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
319    \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
320  \subsubsection{Two-Dimensional Arrays}  Section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
321    Multiprocessing}.  Future releases of MITgcm may allow varying tile
322    sizes. \\
323  //  
324    The arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
325  \begin{verbatim}  \varlink{exch2\_tbasey}{exch2_tbasey} determine the tiles'
326  C      NTILES            :: Number of tiles in this topology  Cartesian origin within a subdomain  
327  C      MAX_NEIGHBOURS    :: Maximum number of neighbours any tile has.  and locate the edges of different tiles relative to each other.  As
328  C      exch2_domain_nxt  :: Total domain length in tiles.  an example, in the default six-tile topology (Fig. \ref{fig:6tile})
329  C      exch2_domain_nyt  :: Maximum domain height in tiles.  each index in these arrays is set to \code{0} since a tile occupies
330  C      exch2_tnx         :: Size in X for each tile.                    its entire subdomain.  The twenty-four-tile case discussed above will
331  C      exch2_tny         :: Size in Y for each tile.                    have values of \code{0} or \code{16}, depending on the quadrant of the
332  C      exch2_tbasex      :: Tile offset in X within its sub-domain (cube face)  tile within the subdomain.  The elements of the arrays
333  C      exch2_tbasey      :: Tile offset in Y within its sub-domain (cube face)  \varlink{exch2\_txglobalo}{exch2_txglobalo} and
334  C      exch2_tglobalxlo  :: Tile base X index within global index space.  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
335  C      exch2_tglobalylo  :: Tile base Y index within global index space.  \varlink{exch2\_tbasex}{exch2_tbasex} and
336  C      exch2_isWedge     :: 0 if West not at domain edge, 1 if it is.    \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tile edges within the
337  C      exch2_isNedge     :: 0 if North not at domain edge, 1 if it is.    global address space, similar to that used by global output and input
338  C      exch2_isEedge     :: 0 if East not at domain edge, 1 if it is.    files. \\
339  C      exch2_isSedge     :: 0 if South not at domain edge, 1 if it is.    
340  C      exch2_myFace      :: Cube face number used for I/O.                The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
341  C      exch2_nNeighbours :: Tile neighbour entries count.                the subdomain of each tile, in a range \code{(1:6)} in the case of the
342  C      exch2_tProc       :: Rank of process owning tile                  standard cube topology and indicated by \textbf{\textsf{fn}} in
343  C                        :: (filled at run time).                        figures \ref{fig:12tile} and \ref{fig:24tile}. The
344  C      exch2_neighbourId :: Tile number for each neighbour entry.          \varlink{exch2\_nNeighbours}{exch2_nNeighbours} variable contains a
345  C      exch2_opposingSend_record :: Record for entry in target tile send  count of the neighboring tiles each tile has, and sets the bounds for
346  C                                :: list that has this tile and face      looping over neighboring tiles.  And
347  C                                :: as its target.                        \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
348  C      exch2_pi          :: X index row of target to source permutation  tile, and is used in interprocess communication.  \\
349  C                        :: matrix for each neighbour entry.              
350  C      exch2_pj          :: Y index row of target to source permutation  
351  C                        :: matrix for each neighbour entry.              The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
352  C      exch2_oi          :: X index element of target to source  \varlink{exch2\_isEedge}{exch2_isEedge},
353  C                        :: offset vector for cell-centered quantities    \varlink{exch2\_isSedge}{exch2_isSedge}, and
354  C                        :: of each neighbor entry.                      \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
355  C      exch2_oj          :: Y index element of target to source  indexed tile lies on the edge of its subdomain, \code{0} if
356  C                        :: offset vector for cell-centered quantities    not.  The values are used within the topology generator to determine
357  C                        :: of each neighbor entry.                      the orientation of neighboring tiles, and to indicate whether a tile
358  C      exch2_oi_f        :: X index element of target to source  lies on the corner of a subdomain.  The latter case requires special
359  C                        :: offset vector for face quantities            exchange and numerical handling for the singularities at the eight
360  C                        :: of each neighbor entry.                      corners of the cube. \\
361  C      exch2_oj_f        :: Y index element of target to source  
362  C                        :: offset vector for face quantities            
363  C                        :: of each neighbor entry.                      \subsubsection{Arrays Indexed to Tile Number and Neighbor}
364    
365    The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
366    \code{NTILES} and describe the orientations between the the tiles. \\
367    
368    The array \code{exch2\_neighbourId(a,T)} holds the tile number
369    \code{Tn} for each of the tile number \code{T}'s neighboring tiles
370    \code{a}.  The neighbor tiles are indexed
371    \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
372    north then south edges, and then top to bottom on the east then west
373    edges.  \\
374    
375     The \code{exch2\_opposingSend\_record(a,T)} array holds the
376    index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
377    that holds the tile number \code{T}, given
378    \code{Tn=exch2\_neighborId(a,T)}.  In other words,
379    \begin{verbatim}
380       exch2_neighbourId( exch2_opposingSend_record(a,T),
381                          exch2_neighbourId(a,T) ) = T
382  \end{verbatim}  \end{verbatim}
383    This provides a back-reference from the neighbor tiles. \\
384    
385    The arrays \varlink{exch2\_pi}{exch2_pi} and
386    \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
387    in exchanges between the neighboring tiles.  These transformations are
388    necessary in exchanges between subdomains because a horizontal dimension
389    in one subdomain
390    may map to other horizonal dimension in an adjacent subdomain, and
391    may also have its indexing reversed. This swapping arises from the
392    ``folding'' of two-dimensional arrays into a three-dimensional
393    cube. \\
394    
395    The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
396    are the neighbor ID \code{N} and the tile number \code{T} as explained
397    above, plus a vector of length \code{2} containing transformation
398    factors \code{t}.  The first element of the transformation vector
399    holds the factor to multiply the index in the same dimension, and the
400    second element holds the the same for the orthogonal dimension.  To
401    clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
402    index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
403    \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
404    $x$ index to the neighbor \code{N}'s $y$ index. \\
405    
406    One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
407    given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
408    the fact that the two axes are orthogonal.  The other element will be
409    \code{1} or \code{-1}, depending on whether the axes are indexed in
410    the same or opposite directions.  For example, the transform vector of
411    the arrays for all tile neighbors on the same subdomain will be
412    \code{(1,0)}, since all tiles on the same subdomain are oriented
413    identically.  An axis that corresponds to the orthogonal dimension
414    with the same index direction in a particular tile-neighbor
415    orientation will have \code{(0,1)}.  Those with the opposite index
416    direction will have \code{(0,-1)} in order to reverse the ordering. \\
417    
418    The arrays \varlink{exch2\_oi}{exch2_oi},
419    \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
420    \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
421    neighbor and specify the relative offset within the subdomain of the
422    array index of a variable going from a neighboring tile \code{N} to a
423    local tile \code{T}.  Consider \code{T=1} in the six-tile topology
424    (Fig. \ref{fig:6tile}), where
425    
426    \begin{verbatim}
427           exch2_oi(1,1)=33
428           exch2_oi(2,1)=0
429           exch2_oi(3,1)=32
430           exch2_oi(4,1)=-32
431    \end{verbatim}
432    
433    The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
434    which is \code{Tn=6}.  The axes of \code{T} and \code{Tn} have the
435    same orientation and their $x$ axes have the same origin, and so an
436    exchange between the two requires no changes to the $x$ index.  For
437    the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
438    \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
439    \code{Tn}.  The eastern edge of \code{T} shows the reverse case
440    (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
441    with \code{x=0} on \code{Tn=2}. \\
442    
443     The most interesting case, where \code{exch2\_oi(1,1)=33} and
444    \code{Tn=3}, involves a reversal of indices.  As in every case, the
445    offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
446    multiplied by the transformation factor \code{exch2\_pi(t,N,T)}.  Here
447    \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
448    to the $x$ axis of \code{Tn}.  \code{exch2\_pi(2,1,1)=-1} since the
449    $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
450    index is reversed.  The result is that the index of the northern edge
451    of \code{T}, which runs \code{(1:32)}, is transformed to
452    \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
453    get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
454    relative to \code{T}.  This transformation may seem overly convoluted
455    for the six-tile case, but it is necessary to provide a general
456    solution for various topologies. \\
457    
 \subsection{Key Routines}  
458    
459    
460    Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
461    \varlink{exch2\_ithi\_c}{exch2_ithi_c},
462    \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
463    \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
464    bounds of the edge segment of the neighbor tile \code{N}'s subdomain
465    that gets exchanged with the local tile \code{T}.  To take the example
466    of tile \code{T=2} in the twelve-tile topology
467    (Fig. \ref{fig:12tile}): \\
468    
469    \begin{verbatim}
470           exch2_itlo_c(4,2)=17
471           exch2_ithi_c(4,2)=17
472           exch2_jtlo_c(4,2)=0
473           exch2_jthi_c(4,2)=33
474    \end{verbatim}
475    
476    Here \code{N=4}, indicating the western neighbor, which is
477    \code{Tn=1}.  \code{Tn} resides on the same subdomain as \code{T}, so
478    the tiles have the same orientation and the same $x$ and $y$ axes.
479    The $x$ axis is orthogonal to the western edge and the tile is 16
480    points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
481    indicate the column beyond \code{Tn}'s eastern edge, in that tile's
482    halo region. Since the border of the tiles extends through the entire
483    height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
484    \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
485    either direction to cover part of the halo. \\
486    
487    For the north edge of the same tile \code{T=2} where \code{N=1} and
488    the neighbor tile is \code{Tn=5}:
489    
490    \begin{verbatim}
491           exch2_itlo_c(1,2)=0
492           exch2_ithi_c(1,2)=0
493           exch2_jtlo_c(1,2)=0
494           exch2_jthi_c(1,2)=17
495    \end{verbatim}
496    
497    \code{T}'s northern edge is parallel to the $x$ axis, but since
498    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
499    northern edge exchanges with \code{Tn}'s western edge.  The western
500    edge of the tiles corresponds to the lower bound of the $x$ axis, so
501    \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} are \code{0}, in the
502    western halo region of \code{Tn}. The range of
503    \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
504    width of \code{T}'s northern edge, expanded by one into the halo. \\
505    
506    
507    \subsection{Key Routines}
508    
509    Most of the subroutines particular to exch2 handle the exchanges
510    themselves and are of the same format as those described in
511    \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
512    communication}.  Like the original routines, they are written as
513    templates which the local Makefile converts from \code{RX} into
514    \code{RL} and \code{RS} forms. \\
515    
516    The interfaces with the core model subroutines are
517    \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
518    \code{EXCH\_XY\_RX}.  They override the standard exchange routines
519    when \code{genmake2} is run with \code{exch2} option.  They in turn
520    call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
521    \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
522    quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
523    and three-dimensional scalar quantities.  These subroutines set the
524    dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
525    for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
526    the singularities at the cube corners. \\
527    
528    The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
529    \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subroutine
530    needs to pass both the $u$ and $v$ components of the physical vectors.
531    This swapping arises from the topological folding discussed above, where the
532    $x$ and $y$ axes get swapped in some cases, and is not an
533    issue with the scalar case. These subroutines call
534    \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
535    the work using the variables discussed above. \\
536    
 \subsection{References}  

Legend:
Removed from v.1.4  
changed lines
  Added in v.1.20

  ViewVC Help
Powered by ViewVC 1.1.22