/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by afe, Wed Feb 11 20:48:14 2004 UTC revision 1.19 by afe, Mon May 10 21:39:11 2004 UTC
# Line 10  Line 10 
10  %%    o automatically inserted at \section{Reference}  %%    o automatically inserted at \section{Reference}
11    
12    
13  \section{exch2: Extended Cubed Sphere Exchange}  \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14  \label{sec:exch2}  \label{sec:exch2}
15    
16    
17  \subsection{Introduction}  \subsection{Introduction}
18    
19  The exch2 package is an extension to the original cubed sphere exchanges  The \texttt{exch2} package extends the original cubed sphere topology
20  to allow more flexible domain decomposition and parallelization.  Cube faces  configuration to allow more flexible domain decomposition and
21  (subdomains) may be divided into whatever number of tiles that divide evenly  parallelization.  Cube faces (also called subdomains) may be divided
22  into the grid point dimensions of the subdomain.  Furthermore, the individual  into any number of tiles that divide evenly into the grid point
23  tiles may be run on separate processors in different combinations,  dimensions of the subdomain.  Furthermore, the tiles can run on
24  and whether exchanges between particular tiles occur between different  separate processors individually or in groups, which provides for
25  processors is determined at runtime.  manual compile-time load balancing across a relatively arbitrary
26    number of processors. \\
27  The exchange parameters are declared in {\em W2\_EXCH2\_TOPOLOGY.h} and  
28  assigned in {\em w2\_e2setup.F}, both in the  The exchange parameters are declared in
29  {\em pkg/exch2} directory.  The validity of the cube topology depends  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
30  on the {\em SIZE.h} file as detailed below.  Both files are generated by  and assigned in
31  Matlab scripts and  \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
32  should not be edited.  The default files provided in the release set up  validity of the cube topology depends on the \file{SIZE.h} file as
33  a cube sphere arrangement of six tiles, one per subdomain, each with 32x32 grid  detailed below.  The default files provided in the release configure a
34  points, running on a single processor.    cubed sphere topology of six tiles, one per subdomain, each with
35    32$\times$32 grid points, with all tiles running on a single processor.  Both
36    files are generated by Matlab scripts in
37    \file{utils/exch2/matlab-topology-generator}; see Section
38    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
39    for details on creating alternate topologies.  Pregenerated examples
40    of these files with alternate topologies are provided under
41    \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
42    file for single-processor execution.
43    
44    \subsection{Invoking exch2}
45    
46    To use exch2 with the cubed sphere, the following conditions must be
47    met: \\
48    
49    $\bullet$ The exch2 package is included when \file{genmake2} is run.
50      The easiest way to do this is to add the line \code{exch2} to the
51      \file{profile.conf} file -- see Section
52      \ref{sect:buildingCode} \sectiontitle{Building the code} for general
53      details. \\
54    
55    $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
56      \file{w2\_e2setup.F} must reside in a directory containing files
57      symbolically linked by the \file{genmake2} script.  The safest place to
58      put these is the directory indicated in the \code{-mods=DIR} command
59      line modifier (typically \file{../code}), or the build directory.
60      The default versions of these files reside in \file{pkg/exch2} and
61      are linked automatically if no other versions exist elsewhere in the
62      build path, but they should be left untouched to avoid breaking
63      configurations other than the one you intend to modify.\\
64    
65    $\bullet$ Files containing grid parameters, named
66      \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),
67      must be in the working directory when the MITgcm executable is run.
68      These files are provided in the example experiments for cubed sphere
69      configurations with 32$\times$32 cube sides
70      -- please contact MITgcm support if you want to generate
71      files for other configurations. \\
72    
73    $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must
74      be placed where \file{genmake2} will find it.  In particular for
75      exch2, the domain decomposition specified in \file{SIZE.h} must
76      correspond with the particular configuration's topology specified in
77      \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
78      decomposition issues particular to exch2 are addressed in Section
79      \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
80      and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and Multiprocessing}; a more
81      general background on the subject relevant to MITgcm is presented in
82      Section \ref{sect:specifying_a_decomposition}
83      \sectiontitle{Specifying a decomposition}.\\
84    
85    At the time of this writing the following examples use exch2 and may
86    be used for guidance:
87    
88    \begin{verbatim}
89    verification/adjust_nlfs.cs-32x32x1
90    verification/adjustment.cs-32x32x1
91    verification/aim.5l_cs
92    verification/global_ocean.cs32x15
93    verification/hs94.cs-32x32x5
94    \end{verbatim}
95    
96    
97    
98    
99    \subsection{Generating Topology Files for exch2}
100    \label{sec:topogen}
101    
102    Alternate cubed sphere topologies may be created using the Matlab
103    scripts in \file{utils/exch2/matlab-topology-generator}. Running the
104    m-file
105    \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
106    from the Matlab prompt (there are no parameters to pass) generates
107    exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
108    \file{w2\_e2setup.F} in the working directory and displays a figure of
109    the topology via Matlab -- figures \ref{fig:6tile}, \ref{fig:12tile},
110    and \ref{fig:24tile} are examples of the generated diagrams.  The other
111    m-files in the directory are
112    subroutines called from \file{driver.m} and should not be run ``bare'' except
113    for development purposes. \\
114    
115    The parameters that determine the dimensions and topology of the
116    generated configuration are \code{nr}, \code{nb}, \code{ng},
117    \code{tnx} and \code{tny}, and all are assigned early in the script. \\
118    
119    The first three determine the height and width of the subdomains and
120    hence the size of the overall domain.  Each one determines the number
121    of grid points, and therefore the resolution, along the subdomain
122    sides in a ``great circle'' around each the three spatial axes of the cube.  At the time
123    of this writing MITgcm requires these three parameters to be equal,
124    but they provide for future releases  to accomodate different
125    resolutions around the axes to allow subdomains with differing resolutions.\\
126    
127    The parameters \code{tnx} and \code{tny} determine the width and height of
128    the tiles into which the subdomains are decomposed, and must evenly
129    divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
130    The result is a rectangular tiling of the subdomain.  Figure
131    \ref{fig:24tile} shows one possible topology for a twenty-four-tile
132    cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
133    
134    \begin{figure}
135    \begin{center}
136     \resizebox{4in}{!}{
137      \includegraphics{part6/s24t_16x16.ps}
138     }
139    \end{center}
140    
141    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
142    divided into six 32$\times$32 subdomains, each of which is divided
143    into four tiles of width \code{tnx=16} and height \code{tny=16} for a
144    total of twenty-four tiles.  The colored borders of the subdomains
145    represent the parameters \code{nr} (red), \code{nb} (blue), and
146    \code{ng} (green).  } \label{fig:24tile}
147    \end{figure}
148    
149    \begin{figure}
150    \begin{center}
151     \resizebox{4in}{!}{
152      \includegraphics{part6/s12t_16x32.ps}
153     }
154    \end{center}
155    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
156    divided into six 32$\times$32 subdomains of two tiles each
157     (\code{tnx=16, tny=32}).
158    } \label{fig:12tile}
159    \end{figure}
160    
161    \begin{figure}
162    \begin{center}
163     \resizebox{4in}{!}{
164      \includegraphics{part6/s6t_32x32.ps}
165     }
166    \end{center}
167    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
168    divided into six 32$\times$32 subdomains with one tile each
169    (\code{tnx=32, tny=32}).  This is the default configuration.
170      }
171    \label{fig:6tile}
172    \end{figure}
173    
174    
175    Tiles can be selected from the topology to be omitted from being
176    allocated memory and processors.  This tuning is useful in ocean
177    modeling for omitting tiles that fall entirely on land.  The tiles
178    omitted are specified in the file
179    \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
180    by their tile number in the topology, separated by a newline. \\
181    
182    
183    
184    
185    \subsection{exch2, SIZE.h, and Multiprocessing}
186    \label{sec:exch2mpi}
187    
188    Once the topology configuration files are created, the Fortran
189    \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
190    Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
191    a decomposition} provides a general description of domain
192    decomposition within MITgcm and its relation to \file{SIZE.h}. The
193    current section specifies constraints that the exch2 package
194    imposes and describes how to enable parallel execution with
195    MPI. \\
196    
197    As in the general case, the parameters \varlink{sNx}{sNx} and
198    \varlink{sNy}{sNy} define the size of the individual tiles, and so
199    must be assigned the same respective values as \code{tnx} and
200    \code{tny} in \file{driver.m}.\\
201    
202    The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
203    have no special bearing on exch2 and may be assigned as in the general
204    case. The same holds for \varlink{Nr}{Nr}, the number of vertical
205    levels in the model.\\
206    
207    The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
208    \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
209    tiles and how they are distributed on processors.  When using exch2,
210    the tiles are stored in the $x$ dimension, and so
211    \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
212    configured by exch2 cannot be split up accross processors without
213    regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
214    
215    The number of tiles MITgcm allocates and how they are distributed
216    between processors depends on \varlink{nPx}{nPx} and
217    \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per
218    processor and \varlink{nPx}{nPx} is the number of processors.  The total
219    number of tiles in the topology minus those listed in
220    \file{blanklist.txt} must equal \code{nSx*nPx}.  Note that in order to
221    obtain maximum usage from a given number of processors in some cases,
222    this restriction might entail sharing a processor with a tile that would
223    otherwise be excluded. \\
224    
225    The following is an example of \file{SIZE.h} for the twelve-tile
226    configuration illustrated in figure \ref{fig:12tile} running on
227    one processor: \\
228    
229    \begin{verbatim}
230          PARAMETER (
231         &           sNx =  16,
232         &           sNy =  32,
233         &           OLx =   2,
234         &           OLy =   2,
235         &           nSx =  12,
236         &           nSy =   1,
237         &           nPx =   1,
238         &           nPy =   1,
239         &           Nx  = sNx*nSx*nPx,
240         &           Ny  = sNy*nSy*nPy,
241         &           Nr  =   5)
242    \end{verbatim}
243    
244    The following is an example for the twenty-four-tile topology in
245    figure \ref{fig:24tile} running on six processors:
246    
247    \begin{verbatim}
248          PARAMETER (
249         &           sNx =  16,
250         &           sNy =  16,
251         &           OLx =   2,
252         &           OLy =   2,
253         &           nSx =   4,
254         &           nSy =   1,
255         &           nPx =   6,
256         &           nPy =   1,
257         &           Nx  = sNx*nSx*nPx,
258         &           Ny  = sNy*nSy*nPy,
259         &           Nr  =   5)
260    \end{verbatim}
261    
262    
263    
264    
265    
266  \subsection{Key Variables}  \subsection{Key Variables}
267    
268  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
269  one-dimensional arrays indexed to the tile number, and two and three  one-dimensional arrays indexed to the tile number, and two and
270  dimensional  three-dimensional arrays indexed to tile number and neighboring tile.
271  arrays indexed to tile number and neighboring tile.  This division  This division reflects the functionality of these variables: The
272  actually reflects  the functionality of these variables: the scalars  scalars are common to every part of the topology, the tile-indexed
273  are common to every part of the topology, the tile-indexed arrays to  arrays to individual tiles, and the arrays indexed by tile and
274  individual tiles, and the arrays indexed to tile and neighbor to  neighbor to relationships between tiles and their neighbors. \\
 relationships between tiles and their neighbors.  
275    
276  \subsubsection{Scalars}  \subsubsection{Scalars}
277    
278  The number of tiles in a particular topology is set with the parameter  The number of tiles in a particular topology is set with the parameter
279  {\em NTILES}, and the maximum number of neighbors of any tiles by  \code{NTILES}, and the maximum number of neighbors of any tiles by
280  {\em MAX\_NEIGHBOURS}.  These parameters are used for defining the size of  \code{MAX\_NEIGHBOURS}.  These parameters are used for defining the
281  the various one and two dimensional arrays that store tile parameters  size of the various one and two dimensional arrays that store tile
282  indexed to the tile number.  parameters indexed to the tile number and are assigned in the files
283    generated by \file{driver.m}.\\
284  The scalar parameters {\em exch2\_domain\_nxt} and  
285  {\em exch2\_domain\_nyt} express the number of tiles in the x and y global  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
286  indices.  For example, the default setup of six tiles has  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
287  {\em exch2\_domain\_nxt=6} and {\em exch2\_domain\_nyt=1}.  A topology of  of tiles in the $x$ and $y$ global indices.  For example, the default
288  twenty-four square (in gridpoints) tiles, four (2x2) per subdomain, will  setup of six tiles (Fig. \ref{fig:6tile}) has
289  have {\em exch2\_domain\_nxt=12} and {\em exch2\_domain\_nyt=2}.  Note  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
290  that these parameters express the tile layout to allow global data files that  topology of twenty-four square tiles, four per subdomain (as in figure
291  are tile-layout-neutral and have no bearing on the internal storage of the  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
292  arrays.  The tiles are internally stored in a range from {\em 1,bi} (in the  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the
293  x axis) and y-axis variable {\em bj} is generally ignored within the package.  tile layout in order to allow global data files that are tile-layout-neutral.
294    They have no bearing on the internal storage of the arrays.  The tiles
295  \subsubsection{Arrays Indexed to Tile Number}  are stored internally in a range from \code{\varlink{bi}{bi}=(1:NTILES)} in the
296    $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is assumed to
297  The following arrays are of size {\em NTILES}, are indexed to the tile number,  equal \code{1} throughout the package. \\
298  and the indices are omitted in their descriptions.  
299    \subsubsection{Arrays indexed to tile number}
300  The arrays {\em exch2\_tnx} and {\em exch2\_tny}  
301  express the x and y dimensions of each tile.  At present for each tile  The following arrays are of length \code{NTILES} and are indexed to
302  {\em exch2\_tnx = sNx}  the tile number, which is indicated in the diagrams with the notation
303  and {\em exch2\_tny = sNy}, as assigned in {\em SIZE.h}.  Future releases of  \textsf{t}$n$.  The indices are omitted in the descriptions. \\
304  MITgcm are to allow varying tile sizes.  
305    The arrays \varlink{exch2\_tnx}{exch2_tnx} and
306  The location of the tiles' Cartesian origin within a subdomain are determined  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
307  by the arrays {\em exch2\_tbasex} and {\em exch2\_tbasey}.  These variables  each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
308  are used to relate the location of the edges of the tiles to each other.  As  \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
309  an example, in the default six-tile topology (the degenerate case)  Section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
310  each index in these arrays are  Multiprocessing}.  Future releases of MITgcm may allow varying tile
311  set to 0.  The twenty-four, 32x32 cube face case discussed above will have  sizes. \\
312  values of 0 or 16, depending on the quadrant the tile falls within the  
313  subdomain.  {\em exch2\_myFace} contains the number of the  The arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
314  cubeface/subdomain of each tile, numbered 1-6 in the case of the standard  \varlink{exch2\_tbasey}{exch2_tbasey} determine the tiles'
315  cube topology.    Cartesian origin within a subdomain  
316    and locate the edges of different tiles relative to each other.  As
317  The arrays {\em exch2\_txglobalo} and {\em exch2\_txglobalo} are similar to  an example, in the default six-tile topology (Fig. \ref{fig:6tile})
318  {\em exch2\_tbasex} and {\em exch2\_tbasey}, but locate the tiles within  each index in these arrays is set to \code{0} since a tile occupies
319  the global address space, similar to that used by global files.    its entire subdomain.  The twenty-four-tile case discussed above will
320    have values of \code{0} or \code{16}, depending on the quadrant of the
321  The arrays {\em exch2\_isWedge}, {\em exch2\_isEedge}, {\em exch2\_isSedge},  tile within the subdomain.  The elements of the arrays
322  and {\em exch2\_isNedge} are set to 1 if the indexed tile lies on the edge  \varlink{exch2\_txglobalo}{exch2_txglobalo} and
323  of a subdomain, 0 if not.  The values are used within the topology generator  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
324  to determine the orientation of neighboring tiles and to indicate whether  \varlink{exch2\_tbasex}{exch2_tbasex} and
325  a tile lies on the corner of a subdomain.  The latter case indicates  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tile edges within the
326  special exchange and numerical handling for the singularities at the eight  global address space, similar to that used by global output and input
327  corners of the cube.  {\em exch2\_isNedge} contains a count of how many  files. \\
328  neighboring tiles each tile has, and is used for setting bounds for looping  
329  over neighboring tiles.  {\em exch2\_tProc} holds the process rank of each tile,  The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
330  and is used in interprocess communication.  the subdomain of each tile, in a range \code{(1:6)} in the case of the
331    standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
332    figures \ref{fig:12tile} and
333    \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
334    contains a count of the neighboring tiles each tile has, and sets
335    the bounds for looping over neighboring tiles.
336    \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
337    tile, and is used in interprocess communication.  \\
338    
339    
340    The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
341    \varlink{exch2\_isEedge}{exch2_isEedge},
342    \varlink{exch2\_isSedge}{exch2_isSedge}, and
343    \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
344    indexed tile lies on the edge of its subdomain, \code{0} if
345    not.  The values are used within the topology generator to determine
346    the orientation of neighboring tiles, and to indicate whether a tile
347    lies on the corner of a subdomain.  The latter case requires special
348    exchange and numerical handling for the singularities at the eight
349    corners of the cube. \\
350    
351    
352  \subsubsection{Arrays Indexed to Tile Number and Neighbor}  \subsubsection{Arrays Indexed to Tile Number and Neighbor}
353    
354  The following arrays are all of size {\em MAX\_NEIGHBOURS}x{\em NTILES} and  The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
355  describe the orientations between the the tiles.  \code{NTILES} and describe the orientations between the the tiles. \\
356    
357    The array \code{exch2\_neighbourId(a,T)} holds the tile number
358    \code{Tn} for each of the tile number \code{T}'s neighboring tiles
359    \code{a}.  The neighbor tiles are indexed
360    \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
361    north then south edges, and then top to bottom on the east then west
362    edges.  \\
363    
364     The \code{exch2\_opposingSend\_record(a,T)} array holds the
365    index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
366    that holds the tile number \code{T}, given
367    \code{Tn=exch2\_neighborId(a,T)}.  In other words,
368    \begin{verbatim}
369       exch2_neighbourId( exch2_opposingSend_record(a,T),
370                          exch2_neighbourId(a,T) ) = T
371    \end{verbatim}
372    This provides a back-reference from the neighbor tiles. \\
373    
374  The array {\em exch2\_neighbourId(a,T)} holds the tile number $T_{n}$ for each tile  The arrays \varlink{exch2\_pi}{exch2_pi} and
375  {\em T}'s neighbor tile {\em a}.  The neighbor tiles are indexed {\em 1,MAX\_NEIGHBOURS }  \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
376  in the order right to left on the north then south edges, and then top to bottom on the east  in exchanges between the neighboring tiles.  These transformations are
377  and west edges. maybe throw in a fig here, eh?    necessary in exchanges between subdomains because a horizontal dimension
378    in one subdomain
379  {\em exch2\_opposingSend\_record(a,T)} holds  may map to other horizonal dimension in an adjacent subdomain, and
380  the index c in {\em exch2\_neighbourId(b,$T_{n}$)} that holds the tile number T.  may also have its indexing reversed. This swapping arises from the
381  In other words,  ``folding'' of two-dimensional arrays into a three-dimensional
382    cube. \\
383  \begin{verbatim}    
384  exch2_neighbourId( exch2_opposingSend_record(a,T),  The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
385                             exch2_neighbourId(a,T) ) = T  are the neighbor ID \code{N} and the tile number \code{T} as explained
386  \end{verbatim}  above, plus a vector of length \code{2} containing transformation
387    factors \code{t}.  The first element of the transformation vector
388  % {\em exch2\_neighbourId(exch2\_opposingSend\_record(a,T),exch2\_neighbourId(a,T))=T}.  holds the factor to multiply the index in the same dimension, and the
389  % alternate version  second element holds the the same for the orthogonal dimension.  To
390    clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
391  This is to provide a backreference from the neighbor tiles.  index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
392    \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
393  The arrays {\em exch2\_pi }, {\em exch2\_pj }, {\em exch2\_oi },  $x$ index to the neighbor \code{N}'s $y$ index. \\
394  {\em exch2\_oj }, {\em exch2\_oi\_f }, and {\em exch2\_oj\_f }  specify  
395  the transformations in exchanges between the neighboring tiles.  The dimensions    One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
396  of {\em exch2\_pi(t,N,T) } and {\em exch2\_pj(t,N,T) } are the neighbor ID  given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
397  { \em N } and the tile number {\em T } as explained above, plus the transformation  the fact that the two axes are orthogonal.  The other element will be
398  vector {\em t }, of length two.  The first element of the transformation vector indicates  \code{1} or \code{-1}, depending on whether the axes are indexed in
399  the factor by which variables representing the same vector component  of a tile  the same or opposite directions.  For example, the transform vector of
400  will be multiplied, and the second element indicates the transform to the  the arrays for all tile neighbors on the same subdomain will be
401  variable in the other direction.  As an example, {\em exch2\_pi(1,N,T) } holds the  \code{(1,0)}, since all tiles on the same subdomain are oriented
402  transform of the i-component of a vector variable in tile {\em T } to the i-component of  identically.  An axis that corresponds to the orthogonal dimension
403  tile  {\em T }'s neighbor  {\em N }, and {\em exch2\_pi(2,N,T) } hold the component  with the same index direction in a particular tile-neighbor
404  of neighbor  {\em N }'s j-component.  orientation will have \code{(0,1)}.  Those with the opposite index
405    direction will have \code{(0,-1)} in order to reverse the ordering. \\
406  Under the current cube topology, one of the two elements of {\em exch2\_pi } or {\em exch2\_pj }  
407  for a given tile   {\em T } and  neighbor  {\em N } will be 0, reflecting the fact that  The arrays \varlink{exch2\_oi}{exch2_oi},
408  the vector components are orthogonal.  The other element will be 1 or -1, depending on whether  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
409  the components are indexed in the same or opposite directions.  For example, the transform dimension  \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
410  of the arrays for all tile neighbors on the same subdomain will be {\em [1 , 0] }, since all tiles on  neighbor and specify the relative offset within the subdomain of the
411  the same subdomain are oriented identically.  Vectors that correspond to the orthogonal dimension with the  array index of a variable going from a neighboring tile \code{N} to a
412  same index direction will have {\em [0 , 1] }, whereas those in the opposite index direction will have  local tile \code{T}.  Consider \code{T=1} in the six-tile topology
413  {\em [0 , -1] }.  (Fig. \ref{fig:6tile}), where
   
   
   
   
 //  
414    
415  \begin{verbatim}  \begin{verbatim}
416           exch2_oi(1,1)=33
417           exch2_oi(2,1)=0
418           exch2_oi(3,1)=32
419           exch2_oi(4,1)=-32
420    \end{verbatim}
421    
422    The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
423    which is \code{Tn=6}.  The axes of \code{T} and \code{Tn} have the
424    same orientation and their $x$ axes have the same origin, and so an
425    exchange between the two requires no changes to the $x$ index.  For
426    the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
427    \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
428    \code{Tn}.  The eastern edge of \code{T} shows the reverse case
429    (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
430    with \code{x=0} on \code{Tn=2}. \\
431    
432     The most interesting case, where \code{exch2\_oi(1,1)=33} and
433    \code{Tn=3}, involves a reversal of indices.  As in every case, the
434    offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
435    multiplied by the transformation factor \code{exch2\_pi(t,N,T)}.  Here
436    \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
437    to the $x$ axis of \code{Tn}.  \code{exch2\_pi(2,1,1)=-1} since the
438    $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
439    index is reversed.  The result is that the index of the northern edge
440    of \code{T}, which runs \code{(1:32)}, is transformed to
441    \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
442    get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
443    relative to \code{T}.  This transformation may seem overly convoluted
444    for the six-tile case, but it is necessary to provide a general
445    solution for various topologies. \\
446    
447    
448    
449  C      exch2_pi          :: X index row of target to source permutation  Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
450  C                        :: matrix for each neighbour entry.              \varlink{exch2\_ithi\_c}{exch2_ithi_c},
451  C      exch2_pj          :: Y index row of target to source permutation  \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
452  C                        :: matrix for each neighbour entry.              \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
453  C      exch2_oi          :: X index element of target to source  bounds of the edge segment of the neighbor tile \code{N}'s subdomain
454  C                        :: offset vector for cell-centered quantities    that gets exchanged with the local tile \code{T}.  To take the example
455  C                        :: of each neighbor entry.                      of tile \code{T=2} in the twelve-tile topology
456  C      exch2_oj          :: Y index element of target to source  (Fig. \ref{fig:12tile}): \\
457  C                        :: offset vector for cell-centered quantities    
458  C                        :: of each neighbor entry.                      \begin{verbatim}
459  C      exch2_oi_f        :: X index element of target to source         exch2_itlo_c(4,2)=17
460  C                        :: offset vector for face quantities                   exch2_ithi_c(4,2)=17
461  C                        :: of each neighbor entry.                             exch2_jtlo_c(4,2)=0
462  C      exch2_oj_f        :: Y index element of target to source         exch2_jthi_c(4,2)=33
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
463  \end{verbatim}  \end{verbatim}
464    
465    Here \code{N=4}, indicating the western neighbor, which is
466    \code{Tn=1}.  \code{Tn} resides on the same subdomain as \code{T}, so
467    the tiles have the same orientation and the same $x$ and $y$ axes.
468    The $x$ axis is orthogonal to the western edge and the tile is 16
469    points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
470    indicate the column beyond \code{Tn}'s eastern edge, in that tile's
471    halo region. Since the border of the tiles extends through the entire
472    height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
473    \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
474    either direction to cover part of the halo. \\
475    
476    For the north edge of the same tile \code{T=2} where \code{N=1} and
477    the neighbor tile is \code{Tn=5}:
478    
479    \begin{verbatim}
480           exch2_itlo_c(1,2)=0
481           exch2_ithi_c(1,2)=0
482           exch2_jtlo_c(1,2)=0
483           exch2_jthi_c(1,2)=17
484    \end{verbatim}
485    
486    \code{T}'s northern edge is parallel to the $x$ axis, but since
487    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
488    northern edge exchanges with \code{Tn}'s western edge.  The western
489    edge of the tiles corresponds to the lower bound of the $x$ axis, so
490    \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} are \code{0}, in the
491    western halo region of \code{Tn}. The range of
492    \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
493    width of \code{T}'s northern edge, expanded by one into the halo. \\
494    
495    
496  \subsection{Key Routines}  \subsection{Key Routines}
497    
498    Most of the subroutines particular to exch2 handle the exchanges
499    themselves and are of the same format as those described in
500    \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
501    communication}.  Like the original routines, they are written as
502    templates which the local Makefile converts from \code{RX} into
503    \code{RL} and \code{RS} forms. \\
504    
505    The interfaces with the core model subroutines are
506    \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
507    \code{EXCH\_XY\_RX}.  They override the standard exchange routines
508    when \code{genmake2} is run with \code{exch2} option.  They in turn
509    call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
510    \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
511    quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
512    and three-dimensional scalar quantities.  These subroutines set the
513    dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
514    for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
515    the singularities at the cube corners. \\
516    
517    The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
518    \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subroutine
519    needs to pass both the $u$ and $v$ components of the physical vectors.
520    This swapping arises from the topological folding discussed above, where the
521    $x$ and $y$ axes get swapped in some cases, and is not an
522    issue with the scalar case. These subroutines call
523    \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
524    the work using the variables discussed above. \\
525    
   
 \subsection{References}  

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.19

  ViewVC Help
Powered by ViewVC 1.1.22