/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by afe, Tue Feb 3 19:43:38 2004 UTC revision 1.18 by afe, Thu May 6 15:21:01 2004 UTC
# Line 10  Line 10 
10  %%    o automatically inserted at \section{Reference}  %%    o automatically inserted at \section{Reference}
11    
12    
13  \section{exch2: Extended Cubed Sphere Exchange}  \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14  \label{sec:exch2}  \label{sec:exch2}
15    
16    
17  \subsection{Introduction}  \subsection{Introduction}
18    
19  The exch2 package is an extension to the original cubed sphere exchanges  The \texttt{exch2} package extends the original cubed sphere topology
20  to allow more flexible domain decomposition and parallelization.  Cube faces  configuration to allow more flexible domain decomposition and
21  (subdomains) may be divided into whatever number of tiles that divide evenly  parallelization.  Cube faces (also called subdomains) may be divided
22  into the grid point dimensions of the subdomain.  Furthermore, the individual  into any number of tiles that divide evenly into the grid point
23  tiles may be run on separate processors in different combinations,  dimensions of the subdomain.  Furthermore, the tiles can run on
24  and whether exchanges between particular tiles occur between different  separate processors individually or in groups, which provides for
25  processors is determined at runtime.  manual compile-time load balancing across a relatively arbitrary
26    number of processors. \\
27  The exchange parameters are declared in {\em W2\_EXCH2\_TOPOLOGY.h} and  
28  assigned in {\em w2\_e2setup.F}, both in the  The exchange parameters are declared in
29  {\em pkg/exch2} directory.  The validity of the cube topology depends  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
30  on the {\em SIZE.h} file as detailed below.  Both files are generated by  and assigned in
31  Matlab scripts and  \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
32  should not be edited.  The default files provided in the release set up  validity of the cube topology depends on the \file{SIZE.h} file as
33  a cube sphere arrangement of six tiles, one per subdomain, each with 32x32 grid  detailed below.  The default files provided in the release configure a
34  points, running on a single processor.    cubed sphere topology of six tiles, one per subdomain, each with
35    32$\times$32 grid points, with all tiles running on a single processor.  Both
36    files are generated by Matlab scripts in
37    \file{utils/exch2/matlab-topology-generator}; see Section
38    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
39    for details on creating alternate topologies.  Pregenerated examples
40    of these files with alternate topologies are provided under
41    \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
42    file for single-processor execution.
43    
44    \subsection{Invoking exch2}
45    
46    To use exch2 with the cubed sphere, the following conditions must be
47    met: \\
48    
49    $\bullet$ The exch2 package is included when \file{genmake2} is run.
50      The easiest way to do this is to add the line \code{exch2} to the
51      \file{profile.conf} file -- see Section
52      \ref{sect:buildingCode} \sectiontitle{Building the code} for general
53      details. \\
54    
55    $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
56      \file{w2\_e2setup.F} must reside in a directory containing files
57      symbolically linked when \file{genmake2} runs.  The safest place to
58      put these is the directory indicated in the \code{-mods=DIR} command
59      line modifier (typically \file{../code}), or the build directory.
60      The default versions of these files reside in \file{pkg/exch2} and
61      are linked automatically if no other versions exist elsewhere in the
62      build path, but they should be left untouched to avoid breaking
63      configurations other than the one you intend to modify.\\
64    
65    $\bullet$ Files containing grid parameters, named
66      \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),
67      must be in the working directory when the MITgcm executable is run.
68      These files are provided in the example experiments for cubed sphere
69      configurations with 32$\times$32 cube sides
70      -- please contact MITgcm support if you want to generate
71      files for other configurations. \\
72    
73    $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must
74      be placed where \file{genmake2} will find it.  In particular for
75      exch2, the domain decomposition specified in \file{SIZE.h} must
76      correspond with the particular configuration's topology specified in
77      \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
78      decomposition issues particular to exch2 are addressed in Section
79      \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
80      and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and MPI}; a more
81      general background on the subject relevant to MITgcm is presented in
82      Section \ref{sect:specifying_a_decomposition}
83      \sectiontitle{Specifying a decomposition}.\\
84    
85    At the time of this writing the following examples use exch2 and may
86    be used for guidance:
87    
88    \begin{verbatim}
89    verification/adjust_nlfs.cs-32x32x1
90    verification/adjustment.cs-32x32x1
91    verification/aim.5l_cs
92    verification/global_ocean.cs32x15
93    verification/hs94.cs-32x32x5
94    \end{verbatim}
95    
96    
97    
98    
99    \subsection{Generating Topology Files for exch2}
100    \label{sec:topogen}
101    
102    Alternate cubed sphere topologies may be created using the Matlab
103    scripts in \file{utils/exch2/matlab-topology-generator}. Running the
104    m-file
105    \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
106    from the Matlab prompt (there are no parameters to pass) generates
107    exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
108    \file{w2\_e2setup.F} in the working directory and displays a figure of
109    the topology via Matlab -- figures \ref{fig:6tile}, \ref{fig:12tile},
110    and \ref{fig:24tile} are examples.  The other m-files in the directory are
111    subroutines of \file{driver.m} and should not be run ``bare'' except
112    for development purposes. \\
113    
114    The parameters that determine the dimensions and topology of the
115    generated configuration are \code{nr}, \code{nb}, \code{ng},
116    \code{tnx} and \code{tny}, and all are assigned early in the script. \\
117    
118    The first three determine the size of the subdomains and
119    hence the size of the overall domain.  Each one determines the number
120    of grid points, and therefore the resolution, along the subdomain
121    sides in a ``great circle'' around each the three spatial axes of the cube.  At the time
122    of this writing MITgcm requires these three parameters to be equal,
123    but they provide for future releases  to accomodate different
124    resolutions around the axes to allow (for example) greater resolution
125    around the equator.\\
126    
127    The parameters \code{tnx} and \code{tny} determine the width and height of
128    the tiles into which the subdomains are decomposed, and must evenly
129    divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
130    The result is a rectangular tiling of the subdomain.  Figure
131    \ref{fig:24tile} shows one possible topology for a twenty-four-tile
132    cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
133    
134    \begin{figure}
135    \begin{center}
136     \resizebox{4in}{!}{
137      \includegraphics{part6/s24t_16x16.ps}
138     }
139    \end{center}
140    
141    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
142    divided into six 32$\times$32 subdomains, each of which is divided
143    into four tiles of width \code{tnx=16} and height \code{tny=16} for a
144    total of twenty-four tiles.  The colored borders of the subdomains
145    represent the parameters \code{nr} (red), \code{nb} (blue), and
146    \code{ng} (green).  } \label{fig:24tile}
147    \end{figure}
148    
149    \begin{figure}
150    \begin{center}
151     \resizebox{4in}{!}{
152      \includegraphics{part6/s12t_16x32.ps}
153     }
154    \end{center}
155    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
156    divided into six 32$\times$32 subdomains of two tiles each
157     (\code{tnx=16, tny=32}).
158    } \label{fig:12tile}
159    \end{figure}
160    
161    \begin{figure}
162    \begin{center}
163     \resizebox{4in}{!}{
164      \includegraphics{part6/s6t_32x32.ps}
165     }
166    \end{center}
167    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
168    divided into six 32$\times$32 subdomains with one tile each
169    (\code{tnx=32, tny=32}).  This is the default configuration.
170      }
171    \label{fig:6tile}
172    \end{figure}
173    
174    
175    Tiles can be selected from the topology to be omitted from being
176    allocated memory and processors.  This tuning is useful in ocean
177    modeling for omitting tiles that fall entirely on land.  The tiles
178    omitted are specified in the file
179    \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
180    by their tile number in the topology, separated by a newline. \\
181    
182    
183    
184    
185    \subsection{exch2, SIZE.h, and multiprocessing}
186    \label{sec:exch2mpi}
187    
188    Once the topology configuration files are created, the Fortran
189    \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
190    Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
191    a decomposition} provides a general description of domain
192    decomposition within MITgcm and its relation to \file{SIZE.h}. The
193    current section specifies certain constraints the exch2 package
194    imposes as well as describes how to enable parallel execution with
195    MPI. \\
196    
197    As in the general case, the parameters \varlink{sNx}{sNx} and
198    \varlink{sNy}{sNy} define the size of the individual tiles, and so
199    must be assigned the same respective values as \code{tnx} and
200    \code{tny} in \file{driver.m}.\\
201    
202    The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
203    have no special bearing on exch2 and may be assigned as in the general
204    case. The same holds for \varlink{Nr}{Nr}, the number of vertical
205    levels in the model.\\
206    
207    The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
208    \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
209    tiles and how they are distributed on processors.  When using exch2,
210    the tiles are stored in a single dimension, and so
211    \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
212    configured by exch2 cannot be split up accross processors without
213    regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
214    
215    The number of tiles MITgcm allocates and how they are distributed
216    between processors depends on \varlink{nPx}{nPx} and
217    \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per
218    processor and \varlink{nPx}{nPx} the number of processors.  The total
219    number of tiles in the topology minus those listed in
220    \file{blanklist.txt} must equal \code{nSx*nPx}. \\
221    
222    The following is an example of \file{SIZE.h} for the twelve-tile
223    configuration illustrated in figure \ref{fig:12tile} running on
224    one processor: \\
225    
226    \begin{verbatim}
227          PARAMETER (
228         &           sNx =  16,
229         &           sNy =  32,
230         &           OLx =   2,
231         &           OLy =   2,
232         &           nSx =  12,
233         &           nSy =   1,
234         &           nPx =   1,
235         &           nPy =   1,
236         &           Nx  = sNx*nSx*nPx,
237         &           Ny  = sNy*nSy*nPy,
238         &           Nr  =   5)
239    \end{verbatim}
240    
241    The following is an example for the twenty-four-tile topology in
242    figure \ref{fig:24tile} running on six processors:
243    
244    \begin{verbatim}
245          PARAMETER (
246         &           sNx =  16,
247         &           sNy =  16,
248         &           OLx =   2,
249         &           OLy =   2,
250         &           nSx =   4,
251         &           nSy =   1,
252         &           nPx =   6,
253         &           nPy =   1,
254         &           Nx  = sNx*nSx*nPx,
255         &           Ny  = sNy*nSy*nPy,
256         &           Nr  =   5)
257    \end{verbatim}
258    
259    
260    
261    
262    
263  \subsection{Key Variables}  \subsection{Key Variables}
264    
265  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
266  one-dimensional arrays indexed to the tile number, and two and three  one-dimensional arrays indexed to the tile number, and two and
267  dimensional  three-dimensional arrays indexed to tile number and neighboring tile.
268  arrays indexed to tile number and neighboring tile.  This division  This division reflects the functionality of these variables: The
269  actually reflects  the functionality of these variables: the scalars  scalars are common to every part of the topology, the tile-indexed
270  are common to every part of the topology, the tile-indexed arrays to  arrays to individual tiles, and the arrays indexed by tile and
271  individual tiles, and the arrays indexed to tile and neighbor to  neighbor to relationships between tiles and their neighbors. \\
 relationships between tiles and their neighbors.  
272    
273  \subsubsection{Scalars}  \subsubsection{Scalars}
274    
275  The number of tiles in a particular topology is set with the parameter  The number of tiles in a particular topology is set with the parameter
276  {\em NTILES}, and the maximum number of neighbors of any tiles by  \code{NTILES}, and the maximum number of neighbors of any tiles by
277  {\em MAX\_NEIGHBOURS}.  These parameters are used for defining the size of  \code{MAX\_NEIGHBOURS}.  These parameters are used for defining the
278  the various one and two dimensional arrays that store tile parameters  size of the various one and two dimensional arrays that store tile
279  indexed to the tile number.  parameters indexed to the tile number and are assigned in the files
280    generated by \file{driver.m}.\\
281  The scalar parameters {\em exch2\_domain\_nxt} and  
282  {\em exch2\_domain\_nyt} express the number of tiles in the x and y global  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
283  indices.  For example, the default setup of six tiles has  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
284  {\em exch2\_domain\_nxt=6} and {\em exch2\_domain\_nyt=1}.  A topology of  of tiles in the $x$ and $y$ global indices.  For example, the default
285  twenty-four square (in gridpoints) tiles, four (2x2) per subdomain, will  setup of six tiles (Fig. \ref{fig:6tile}) has
286  have {\em exch2\_domain\_nxt=12} and {\em exch2\_domain\_nyt=2}.  Note  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
287  that these parameters express the tile layout to allow global data files that  topology of twenty-four square tiles, four per subdomain (as in figure
288  are tile-layout-neutral and have no bearing on the internal storage of the  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
289  arrays.  The tiles are internally stored in a range from {\em 1,bi} (in the  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the
290  x axis) and y-axis variable {\em bj} is generally ignored within the package.  tile layout to allow global data files that are tile-layout-neutral
291    and have no bearing on the internal storage of the arrays.  The tiles
292    are stored internally in a range from \code{(1:\varlink{bi}{bi})} the
293    $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is assumed to
294    equal \code{1} throughout the package. \\
295    
296  \subsubsection{Arrays Indexed to Tile Number}  \subsubsection{Arrays Indexed to Tile Number}
297    
298  The following arrays are of size {\em NTILES}, are indexed to the tile number,  The following arrays are of length \code{NTILES} and are indexed to
299  and the indices are omitted in their descriptions.  the tile number, which is indicated in the diagrams with the notation
300    \textsf{t}$n$.  The indices are omitted in the descriptions. \\
301    
302    The arrays \varlink{exch2\_tnx}{exch2_tnx} and
303    \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
304    each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
305    \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
306    section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
307    multiprocessing}.  Future releases of MITgcm may allow varying tile
308    sizes. \\
309    
310    The location of the tiles' Cartesian origin within a subdomain are
311    determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
312    \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to
313    relate the location of the edges of different tiles to each other.  As
314    an example, in the default six-tile topology (Fig. \ref{fig:6tile})
315    each index in these arrays is set to \code{0} since a tile occupies
316    its entire subdomain.  The twenty-four-tile case discussed above will
317    have values of \code{0} or \code{16}, depending on the quadrant the
318    tile falls within the subdomain.  The elements of the arrays
319    \varlink{exch2\_txglobalo}{exch2_txglobalo} and
320    \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
321    \varlink{exch2\_tbasex}{exch2_tbasex} and
322    \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the
323    global address space, similar to that used by global output and input
324    files. \\
325    
326    The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
327    the subdomain of each tile, in a range \code{(1:6)} in the case of the
328    standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
329    figures \ref{fig:12tile} and
330    \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
331    contains a count of the neighboring tiles each tile has, and is used
332    for setting bounds for looping over neighboring tiles.
333    \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
334    tile, and is used in interprocess communication.  \\
335    
336    
337    The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
338    \varlink{exch2\_isEedge}{exch2_isEedge},
339    \varlink{exch2\_isSedge}{exch2_isSedge}, and
340    \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
341    indexed tile lies on the respective edge of a subdomain, \code{0} if
342    not.  The values are used within the topology generator to determine
343    the orientation of neighboring tiles, and to indicate whether a tile
344    lies on the corner of a subdomain.  The latter case requires special
345    exchange and numerical handling for the singularities at the eight
346    corners of the cube. \\
347    
 The arrays {\em exch2\_tnx} and {\em exch2\_tny}  
 express the x and y dimensions of each tile.  At present for each tile  
 {\em exch2\_tnx = sNx}  
 and {\em exch2\_tny = sNy}, as assigned in {\em SIZE.h}.  Future releases of  
 MITgcm are to allow varying tile sizes.  
   
 The location of the tiles' Cartesian origin within a subdomain are determined  
 by the arrays {\em exch2\_tbasex} and {\em exch2\_tbasey}.  These variables  
 are used to relate the location of the edges of the tiles to each other.  As  
 an example, in the default six-tile topology (the degenerate case)  
 each index in these arrays are  
 set to 0.  The twenty-four, 32x32 cube face case discussed above will have  
 values of 0 or 16, depending on the quadrant the tile falls within the  
 subdomain.  {\em exch2\_myFace} contains the number of the  
 cubeface/subdomain of each tile, numbered 1-6 in the case of the standard  
 cube topology.    
   
 The arrays {\em exch2\_txglobalo} and {\em exch2\_txglobalo} are similar to  
 {\em exch2\_tbasex} and {\em exch2\_tbasey}, but locate the tiles within  
 the global address space, similar to that used by global files.    
   
 The arrays {\em exch2\_isWedge}, {\em exch2\_isEedge}, {\em exch2\_isSedge},  
 and {\em exch2\_isNedge} are set to 1 if the indexed tile lies on the edge  
 of a subdomain, 0 if not.  The values are used within the topology generator  
 to determine the orientation of neighboring tiles and to indicate whether  
 a tile lies on the corner of a subdomain.  The latter case indicates  
 special exchange and numerical handling for the singularities at the eight  
 corners of the cube.  {\em exch2\_isNedge} contains a count of how many  
 neighboring tiles each tile has, and is used for setting bounds for looping  
 over neighboring tiles.  {\em exch2\_tProc} holds the process rank of each tile,  
 and is used in interprocess communication.  
348    
349  \subsubsection{Arrays Indexed to Tile Number and Neighbor}  \subsubsection{Arrays Indexed to Tile Number and Neighbor}
350    
351  The following arrays are all of size {\em MAX\_NEIGHBOURS}x{\em NTILES} and  The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
352  describe the orientations between the the tiles.  \code{NTILES} and describe the orientations between the the tiles. \\
   
 The array {\em exch2\_neighbourId(a,T)} holds the tile number $T_{n}$ for each tile  
 {\em T}'s neighbor tile {\em a}, and {\em exch2\_opposingSend\_record(a,T)} holds  
 the index c in {\em exch2\_neighbourId(b,$T_{n}$)} that holds the tile number T.  
 In other words,  
353    
354  \begin{verbatim}    The array \code{exch2\_neighbourId(a,T)} holds the tile number
355  exch2_neighbourId( exch2_opposingSend_record(a,T), exch2_neighbourId(a,T) ) = T  \code{Tn} for each of the tile number \code{T}'s neighboring tiles
356    \code{a}.  The neighbor tiles are indexed
357    \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
358    north then south edges, and then top to bottom on the east then west
359    edges.  \\
360    
361     The \code{exch2\_opposingSend\_record(a,T)} array holds the
362    index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
363    that holds the tile number \code{T}, given
364    \code{Tn=exch2\_neighborId(a,T)}.  In other words,
365    \begin{verbatim}
366       exch2_neighbourId( exch2_opposingSend_record(a,T),
367                          exch2_neighbourId(a,T) ) = T
368  \end{verbatim}  \end{verbatim}
369    This provides a back-reference from the neighbor tiles. \\
370    
371  % {\em exch2\_neighbourId(exch2\_opposingSend\_record(a,T),exch2\_neighbourId(a,T))=T}.  The arrays \varlink{exch2\_pi}{exch2_pi} and
372  % alternate version  \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
373    in exchanges between the neighboring tiles.  These transformations are
374  This is to provide a backreference from the neighbor tiles.  necessary in exchanges between subdomains because the array index in
375    one dimension may map to the other index in an adjacent subdomain, and
376    may be have its indexing reversed. This swapping arises from the
377    ``folding'' of two-dimensional arrays into a three-dimensional
378    cube. \\
379    
380    The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
381    are the neighbor ID \code{N} and the tile number \code{T} as explained
382    above, plus a vector of length \code{2} containing transformation
383    factors \code{t}.  The first element of the transformation vector
384    holds the factor to multiply the index in the same axis, and the
385    second element holds the the same for the orthogonal index.  To
386    clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
387    index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
388    \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
389    $x$ index to the neighbor \code{N}'s $y$ index. \\
390    
391    One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
392    given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
393    the fact that the two axes are orthogonal.  The other element will be
394    \code{1} or \code{-1}, depending on whether the axes are indexed in
395    the same or opposite directions.  For example, the transform vector of
396    the arrays for all tile neighbors on the same subdomain will be
397    \code{(1,0)}, since all tiles on the same subdomain are oriented
398    identically.  An axis that corresponds to the orthogonal dimension
399    with the same index direction in a particular tile-neighbor
400    orientation will have \code{(0,1)}.  Those in the opposite index
401    direction will have \code{(0,-1)} in order to reverse the ordering. \\
402    
403    The arrays \varlink{exch2\_oi}{exch2_oi},
404    \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
405    \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
406    neighbor and specify the relative offset within the subdomain of the
407    array index of a variable going from a neighboring tile \code{N} to a
408    local tile \code{T}.  Consider \code{T=1} in the six-tile topology
409    (Fig. \ref{fig:6tile}), where
410    
411    \begin{verbatim}
412           exch2_oi(1,1)=33
413           exch2_oi(2,1)=0
414           exch2_oi(3,1)=32
415           exch2_oi(4,1)=-32
416    \end{verbatim}
417    
418  //  The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
419    which is \code{Tn=6}.  The axes of \code{T} and \code{Tn} have the
420    same orientation and their $x$ axes have the same origin, and so an
421    exchange between the two requires no changes to the $x$ index.  For
422    the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
423    \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
424    \code{Tn}.  The eastern edge of \code{T} shows the reverse case
425    (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
426    with \code{x=0} on \code{Tn=2}. \\
427    
428     The most interesting case, where \code{exch2\_oi(1,1)=33} and
429    \code{Tn=3}, involves a reversal of indices.  As in every case, the
430    offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
431    multiplied by the transformation factor \code{exch2\_pi(t,N,T)}.  Here
432    \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
433    to the $x$ axis of \code{Tn}.  \code{exch2\_pi(2,1,1)=-1} since the
434    $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
435    index is reversed.  The result is that the index of the northern edge
436    of \code{T}, which runs \code{(1:32)}, is transformed to
437    \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
438    get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
439    relative to \code{T}.  This transformation may seem overly convoluted
440    for the six-tile case, but it is necessary to provide a general
441    solution for various topologies. \\
442    
 \begin{verbatim}  
443    
444    
445    Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
446    \varlink{exch2\_ithi\_c}{exch2_ithi_c},
447    \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
448    \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
449    bounds of the edge segment of the neighbor tile \code{N}'s subdomain
450    that gets exchanged with the local tile \code{T}.  To take the example
451    of tile \code{T=2} in the twelve-tile topology
452    (Fig. \ref{fig:12tile}): \\
453    
454  C      exch2_pi          :: X index row of target to source permutation  \begin{verbatim}
455  C                        :: matrix for each neighbour entry.                     exch2_itlo_c(4,2)=17
456  C      exch2_pj          :: Y index row of target to source permutation         exch2_ithi_c(4,2)=17
457  C                        :: matrix for each neighbour entry.                     exch2_jtlo_c(4,2)=0
458  C      exch2_oi          :: X index element of target to source         exch2_jthi_c(4,2)=33
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oj          :: Y index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oi_f        :: X index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
 C      exch2_oj_f        :: Y index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
459  \end{verbatim}  \end{verbatim}
460    
461    Here \code{N=4}, indicating the western neighbor, which is
462    \code{Tn=1}.  \code{Tn} resides on the same subdomain as \code{T}, so
463    the tiles have the same orientation and the same $x$ and $y$ axes.
464    The $x$ axis is orthogonal to the western edge and the tile is 16
465    points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
466    indicate the column beyond \code{Tn}'s eastern edge, in that tile's
467    halo region. Since the border of the tiles extends through the entire
468    height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
469    \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
470    either direction to cover part of the halo. \\
471    
472    For the north edge of the same tile \code{T=2} where \code{N=1} and
473    the neighbor tile is \code{Tn=5}:
474    
475    \begin{verbatim}
476           exch2_itlo_c(1,2)=0
477           exch2_ithi_c(1,2)=0
478           exch2_jtlo_c(1,2)=0
479           exch2_jthi_c(1,2)=17
480    \end{verbatim}
481    
482    \code{T}'s northern edge is parallel to the $x$ axis, but since
483    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
484    northern edge exchanges with \code{Tn}'s western edge.  The western
485    edge of the tiles corresponds to the lower bound of the $x$ axis, so
486    \code{exch2\_itlo\_c} \code{exch2\_ithi\_c} are \code{0}. The range of
487    \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
488    width of \code{T}'s northern edge, plus the halo. \\
489    
490    
491  \subsection{Key Routines}  \subsection{Key Routines}
492    
493    Most of the subroutines particular to exch2 handle the exchanges
494    themselves and are of the same format as those described in
495    \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
496    communication}.  Like the original routines, they are written as
497    templates which the local Makefile converts from RX into RL and RS
498    forms. \\
499    
500    The interfaces with the core model subroutines are
501    \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
502    \code{EXCH\_XY\_RX}.  They override the standard exchange routines
503    when \code{genmake2} is run with \code{exch2} option.  They in turn
504    call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
505    \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
506    quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
507    and three-dimensional scalar quantities.  These subroutines set the
508    dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
509    for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
510    the singularities at the cube corners. \\
511    
512    The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
513    \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subrouine
514    needs to pass both the $u$ and $v$ components of the phsical vectors.
515    This arises from the topological folding discussed above, where the
516    $x$ and $y$ axes get swapped in some cases.  This swapping is not an
517    issue with the scalar version. These subroutines call
518    \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
519    the work using the variables discussed above. \\
520    
   
 \subsection{References}  

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.18

  ViewVC Help
Powered by ViewVC 1.1.22