/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.17 by afe, Fri Mar 19 21:25:45 2004 UTC revision 1.27 by jmc, Sat May 2 02:13:18 2009 UTC
# Line 10  Line 10 
10  %%    o automatically inserted at \section{Reference}  %%    o automatically inserted at \section{Reference}
11    
12    
13  \section{exch2: Extended Cubed Sphere \mbox{Topology}}  \subsection{exch2: Extended Cubed Sphere \mbox{Topology}}
14  \label{sec:exch2}  \label{sec:exch2}
15    
16    
17  \subsection{Introduction}  \subsubsection{Introduction}
18    
19  The \texttt{exch2} package extends the original cubed sphere topology  The \texttt{exch2} package extends the original cubed sphere topology
20  configuration to allow more flexible domain decomposition and  configuration to allow more flexible domain decomposition and
# Line 23  into any number of tiles that divide eve Line 23  into any number of tiles that divide eve
23  dimensions of the subdomain.  Furthermore, the tiles can run on  dimensions of the subdomain.  Furthermore, the tiles can run on
24  separate processors individually or in groups, which provides for  separate processors individually or in groups, which provides for
25  manual compile-time load balancing across a relatively arbitrary  manual compile-time load balancing across a relatively arbitrary
26  number of processors. \\  number of processors.
27    
28  The exchange parameters are declared in  The exchange parameters are declared in
29  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
# Line 32  and assigned in Line 32  and assigned in
32  validity of the cube topology depends on the \file{SIZE.h} file as  validity of the cube topology depends on the \file{SIZE.h} file as
33  detailed below.  The default files provided in the release configure a  detailed below.  The default files provided in the release configure a
34  cubed sphere topology of six tiles, one per subdomain, each with  cubed sphere topology of six tiles, one per subdomain, each with
35  32$\times$32 grid points, all running on a single processor.  Both  32$\times$32 grid points, with all tiles running on a single processor.  Both
36  files are generated by Matlab scripts in  files are generated by Matlab scripts in
37  \file{utils/exch2/matlab-topology-generator}; see Section  \file{utils/exch2/matlab-topology-generator}; see Section
38  \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}  \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
# Line 41  of these files with alternate topologies Line 41  of these files with alternate topologies
41  \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}  \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
42  file for single-processor execution.  file for single-processor execution.
43    
44  \subsection{Invoking exch2}  \subsubsection{Invoking exch2}
45    
46  To use exch2 with the cubed sphere, the following conditions must be  To use exch2 with the cubed sphere, the following conditions must be
47  met: \\  met:
48    
49  $\bullet$ The exch2 package is included when \file{genmake2} is run.  \begin{itemize}
50    The easiest way to do this is to add the line \code{exch2} to the  \item The exch2 package is included when \file{genmake2} is run.  The
51    \file{profile.conf} file -- see Section    easiest way to do this is to add the line \code{exch2} to the
52    \ref{sect:buildingCode} \sectiontitle{Building the code} for general    \file{packages.conf} file -- see Section \ref{sect:buildingCode}
53    details. \\    \sectiontitle{Building the code} for general
54      details.
55    
56  $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and  \item An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
57    \file{w2\_e2setup.F} must reside in a directory containing files    \file{w2\_e2setup.F} must reside in a directory containing files
58    symbolically linked when \file{genmake2} runs.  The safest place to    symbolically linked by the \file{genmake2} script.  The safest place
59    put these is the directory indicated in the \code{-mods=DIR} command    to put these is the directory indicated in the \code{-mods=DIR}
60    line modifier (typically \file{../code}), or the build directory.    command line modifier (typically \file{../code}), or the build
61    The default versions of these files reside in \file{pkg/exch2} and    directory.  The default versions of these files reside in
62    are linked automatically if no other versions exist elsewhere in the    \file{pkg/exch2} and are linked automatically if no other versions
63    build path, but they should be left untouched to avoid breaking    exist elsewhere in the build path, but they should be left untouched
64    configurations other than the one you intend to modify.\\    to avoid breaking configurations other than the one you intend to
65      modify.
66  $\bullet$ Files containing grid parameters, named  
67    \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),  \item Files containing grid parameters, named \file{tile00$n$.mitgrid}
68    must be in the working directory when the MITgcm executable is run.    where $n$=\code{(1:6)} (one per subdomain), must be in the working
69    These files are provided in the example experiments for cubed sphere    directory when the MITgcm executable is run.  These files are
70    configurations with 32$\times$32 cube sides and are non-trivial to    provided in the example experiments for cubed sphere configurations
71    generate -- please contact MITgcm support if you want to generate    with 32$\times$32 cube sides -- please contact MITgcm support if you
72    files for other configurations. \\    want to generate files for other configurations.
73    
74  $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must  \item As always when compiling MITgcm, the file \file{SIZE.h} must be
75    be placed where \file{genmake2} will find it.  In particular for    placed where \file{genmake2} will find it.  In particular for exch2,
76    exch2, the domain decomposition specified in \file{SIZE.h} must    the domain decomposition specified in \file{SIZE.h} must correspond
77    correspond with the particular configuration's topology specified in    with the particular configuration's topology specified in
78    \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain    \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
79    decomposition issues particular to exch2 are addressed in Section    decomposition issues particular to exch2 are addressed in Section
80    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
81    and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and MPI}; a more    and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
82    general background on the subject relevant to MITgcm is presented in      Multiprocessing}; a more general background on the subject
83    Section \ref{sect:specifying_a_decomposition}    relevant to MITgcm is presented in Section
84    \sectiontitle{Specifying a decomposition}.\\    \ref{sect:specifying_a_decomposition}
85      \sectiontitle{Specifying a decomposition}.
86    \end{itemize}
87    
88  At the time of this writing the following examples use exch2 and may  At the time of this writing the following examples use exch2 and may
89  be used for guidance:  be used for guidance:
# Line 96  verification/hs94.cs-32x32x5 Line 99  verification/hs94.cs-32x32x5
99    
100    
101    
102  \subsection{Generating Topology Files for exch2}  \subsubsection{Generating Topology Files for exch2}
103  \label{sec:topogen}  \label{sec:topogen}
104    
105  Alternate cubed sphere topologies may be created using the Matlab  Alternate cubed sphere topologies may be created using the Matlab
# Line 106  m-file Line 109  m-file
109  from the Matlab prompt (there are no parameters to pass) generates  from the Matlab prompt (there are no parameters to pass) generates
110  exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and  exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
111  \file{w2\_e2setup.F} in the working directory and displays a figure of  \file{w2\_e2setup.F} in the working directory and displays a figure of
112  the topology via Matlab.  The other m-files in the directory are  the topology via Matlab -- figures \ref{fig:6tile}, \ref{fig:18tile},
113  subroutines of \file{driver.m} and should not be run ``bare'' except  and \ref{fig:48tile} are examples of the generated diagrams.  The other
114    m-files in the directory are
115    subroutines called from \file{driver.m} and should not be run ``bare'' except
116  for development purposes. \\  for development purposes. \\
117    
118  The parameters that determine the dimensions and topology of the  The parameters that determine the dimensions and topology of the
119  generated configuration are \code{nr}, \code{nb}, \code{ng},  generated configuration are \code{nr}, \code{nb}, \code{ng},
120  \code{tnx} and \code{tny}, and all are assigned early in the script. \\  \code{tnx} and \code{tny}, and all are assigned early in the script. \\
121    
122  The first three determine the size of the subdomains and  The first three determine the height and width of the subdomains and
123  hence the size of the overall domain.  Each one determines the number  hence the size of the overall domain.  Each one determines the number
124  of grid points, and therefore the resolution, along the subdomain  of grid points, and therefore the resolution, along the subdomain
125  sides in a ``great circle'' around an axis of the cube.  At the time  sides in a ``great circle'' around each the three spatial axes of the cube.  At the time
126  of this writing MITgcm requires these three parameters to be equal,  of this writing MITgcm requires these three parameters to be equal,
127  but they provide for future releases  to accomodate different  but they provide for future releases  to accomodate different
128  resolutions around the axes to allow (for example) greater resolution  resolutions around the axes to allow subdomains with differing resolutions.\\
 around the equator.\\  
129    
130  The parameters \code{tnx} and \code{tny} determine the dimensions of  The parameters \code{tnx} and \code{tny} determine the width and height of
131  the tiles into which the subdomains are decomposed, and must evenly  the tiles into which the subdomains are decomposed, and must evenly
132  divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.  divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
133  The result is a rectangular tiling of the subdomain.  Figure  The result is a rectangular tiling of the subdomain.  Figure
134  \ref{fig:24tile} shows one possible topology for a twenty-four-tile  \ref{fig:48tile} shows one possible topology for a twenty-four-tile
135  cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\  cube, and figure \ref{fig:6tile} shows one for six tiles. \\
136    
137  \begin{figure}  \begin{figure}
138  \begin{center}  \begin{center}
139   \resizebox{4in}{!}{   \resizebox{6in}{!}{
140    \includegraphics{part6/s24t_16x16.ps}  % \includegraphics{part6/s24t_16x16.ps}
141      \includegraphics{part6/adjust_cs.ps}
142   }   }
143  \end{center}  \end{center}
144    
145  \caption{Plot of a cubed sphere topology with a 32$\times$192 domain  \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
146  divided into six 32$\times$32 subdomains, each of which is divided  divided into six 32$\times$32 subdomains, each of which is divided
147  into four tiles (\code{tnx=16, tny=16}) for a total of twenty-four  into eight tiles of width \code{tnx=16} and height \code{tny=8} for a
148  tiles.  } \label{fig:24tile}  total of forty-eight tiles. The colored borders of the subdomains
149    represent the parameters \code{nr} (red), \code{ng} (green), and
150    \code{nb} (blue).
151    This tiling is used in the example
152    verification/adjustment.cs-32x32x1/
153    with the option (blanklist.txt) to remove the land-only 4 tiles
154    (11,12,13,14) which are filled in red on the plot.
155    } \label{fig:48tile}
156  \end{figure}  \end{figure}
157    
158  \begin{figure}  \begin{figure}
159  \begin{center}  \begin{center}
160   \resizebox{4in}{!}{   \resizebox{6in}{!}{
161    \includegraphics{part6/s12t_16x32.ps}  % \includegraphics{part6/s12t_16x32.ps}
162      \includegraphics{part6/polarcap.ps}
163   }   }
164  \end{center}  \end{center}
165  \caption{Plot of a cubed sphere topology with a 32$\times$192 domain  \caption{Plot of a non-square cubed sphere topology with
166  divided into six 32$\times$32 subdomains of two tiles each  6 subdomains of different size (nr=90,ng=360,nb=90),
167   (\code{tnx=16, tny=32}).  divided into one to four tiles each
168  } \label{fig:12tile}   (\code{tnx=90, tny=90}), resulting in a total of 18 tiles.
169    } \label{fig:18tile}
170  \end{figure}  \end{figure}
171    
172  \begin{figure}  \begin{figure}
173  \begin{center}  \begin{center}
174   \resizebox{4in}{!}{   \resizebox{4in}{!}{
175    % \includegraphics{part6/s6t_32x32.ps}
176    \includegraphics{part6/s6t_32x32.ps}    \includegraphics{part6/s6t_32x32.ps}
177   }   }
178  \end{center}  \end{center}
# Line 179  by their tile number in the topology, se Line 194  by their tile number in the topology, se
194    
195    
196    
197  \subsection{exch2, SIZE.h, and multiprocessing}  \subsubsection{exch2, SIZE.h, and Multiprocessing}
198  \label{sec:exch2mpi}  \label{sec:exch2mpi}
199    
200  Once the topology configuration files are created, the Fortran  Once the topology configuration files are created, the Fortran
201  \code{PARAMETER}s in \file{SIZE.h} must be configured to match.  \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
202  Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying  Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
203  a decomposition} provides a general description of domain    a decomposition} provides a general description of domain
204  decomposition within MITgcm and its relation to \file{SIZE.h}. The  decomposition within MITgcm and its relation to \file{SIZE.h}. The
205  current section specifies certain constraints the exch2 package  current section specifies constraints that the exch2 package imposes
206  imposes as well as describes how to enable parallel execution with  and describes how to enable parallel execution with MPI.
 MPI. \\  
207    
208  As in the general case, the parameters \varlink{sNx}{sNx} and  As in the general case, the parameters \varlink{sNx}{sNx} and
209  \varlink{sNy}{sNy} define the size of the individual tiles, and so  \varlink{sNy}{sNy} define the size of the individual tiles, and so
210  must be assigned the same respective values as \code{tnx} and  must be assigned the same respective values as \code{tnx} and
211  \code{tny} in \file{driver.m}.\\  \code{tny} in \file{driver.m}.
212    
213  The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}  The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
214  have no special bearing on exch2 and may be assigned as in the general  have no special bearing on exch2 and may be assigned as in the general
215  case. The same holds for \varlink{Nr}{Nr}, the number of vertical  case. The same holds for \varlink{Nr}{Nr}, the number of vertical
216  levels in the model.\\  levels in the model.
217    
218  The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},  The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
219  \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of  \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
220  tiles and how they are distributed on processors.  When using exch2,  tiles and how they are distributed on processors.  When using exch2,
221  the tiles are stored in a single dimension, and so  the tiles are stored in the $x$ dimension, and so
222  \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as  \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
223  configured by exch2 cannot be split up accross processors without  configured by exch2 cannot be split up accross processors without
224  regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\  regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well.
225    
226  The number of tiles MITgcm allocates and how they are distributed  The number of tiles MITgcm allocates and how they are distributed
227  between processors depends on \varlink{nPx}{nPx} and  between processors depends on \varlink{nPx}{nPx} and
228  \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per  \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per
229  processor and \varlink{nPx}{nPx} the number of processors.  The total  processor and \varlink{nPx}{nPx} is the number of processors.  The
230  number of tiles in the topology minus those listed in  total number of tiles in the topology minus those listed in
231  \file{blanklist.txt} must equal \code{nSx*nPx}. \\  \file{blanklist.txt} must equal \code{nSx*nPx}.  Note that in order to
232    obtain maximum usage from a given number of processors in some cases,
233  The following is an example of \file{SIZE.h} for the twelve-tile  this restriction might entail sharing a processor with a tile that
234  configuration illustrated in figure \ref{fig:12tile} running on  would otherwise be excluded because it is topographically outside of
235  one processor: \\  the domain and therefore in \file{blanklist.txt}.  For example,
236    suppose you have five processors and a domain decomposition of
237    thirty-six tiles that allows you to exclude seven tiles.  To evenly
238    distribute the remaining twenty-nine tiles among five processors, you
239    would have to run one ``dummy'' tile to make an even six tiles per
240    processor.  Such dummy tiles are \emph{not} listed in
241    \file{blanklist.txt}.
242    
243    The following is an example of \file{SIZE.h} for the six-tile
244    configuration illustrated in figure \ref{fig:6tile}
245    running on one processor:
246    
247  \begin{verbatim}  \begin{verbatim}
248        PARAMETER (        PARAMETER (
249       &           sNx =  16,       &           sNx =  32,
250       &           sNy =  32,       &           sNy =  32,
251       &           OLx =   2,       &           OLx =   2,
252       &           OLy =   2,       &           OLy =   2,
253       &           nSx =  12,       &           nSx =   6,
254       &           nSy =   1,       &           nSy =   1,
255       &           nPx =   1,       &           nPx =   1,
256       &           nPy =   1,       &           nPy =   1,
# Line 235  one processor: \\ Line 259  one processor: \\
259       &           Nr  =   5)       &           Nr  =   5)
260  \end{verbatim}  \end{verbatim}
261    
262  The following is an example for the twenty-four-tile topology in  The following is an example for the forty-eight-tile topology in
263  figure \ref{fig:24tile} running on six processors:  figure \ref{fig:48tile} running on six processors:
264    
265  \begin{verbatim}  \begin{verbatim}
266        PARAMETER (        PARAMETER (
267       &           sNx =  16,       &           sNx =  16,
268       &           sNy =  16,       &           sNy =   8,
269       &           OLx =   2,       &           OLx =   2,
270       &           OLy =   2,       &           OLy =   2,
271       &           nSx =   4,       &           nSx =   8,
272       &           nSy =   1,       &           nSy =   1,
273       &           nPx =   6,       &           nPx =   6,
274       &           nPy =   1,       &           nPy =   1,
# Line 254  figure \ref{fig:24tile} running on six p Line 278  figure \ref{fig:24tile} running on six p
278  \end{verbatim}  \end{verbatim}
279    
280    
281    \subsubsection{Key Variables}
   
   
 \subsection{Key Variables}  
282    
283  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
284  one-dimensional arrays indexed to the tile number, and two and  one-dimensional arrays indexed to the tile number, and two and
# Line 267  scalars are common to every part of the Line 288  scalars are common to every part of the
288  arrays to individual tiles, and the arrays indexed by tile and  arrays to individual tiles, and the arrays indexed by tile and
289  neighbor to relationships between tiles and their neighbors. \\  neighbor to relationships between tiles and their neighbors. \\
290    
291  \subsubsection{Scalars}  Scalars:
292    
293  The number of tiles in a particular topology is set with the parameter  The number of tiles in a particular topology is set with the parameter
294  \code{NTILES}, and the maximum number of neighbors of any tiles by  \code{NTILES}, and the maximum number of neighbors of any tiles by
# Line 281  and \varlink{exch2\_domain\_nyt}{exch2_d Line 302  and \varlink{exch2\_domain\_nyt}{exch2_d
302  of tiles in the $x$ and $y$ global indices.  For example, the default  of tiles in the $x$ and $y$ global indices.  For example, the default
303  setup of six tiles (Fig. \ref{fig:6tile}) has  setup of six tiles (Fig. \ref{fig:6tile}) has
304  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
305  topology of twenty-four square tiles, four per subdomain (as in figure  topology of forty-eight tiles, eight per subdomain (as in figure
306  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and  \ref{fig:48tile}), will have \code{exch2\_domain\_nxt=12} and
307  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the  \code{exch2\_domain\_nyt=4}.  Note that these parameters express the
308  tile layout to allow global data files that are tile-layout-neutral  tile layout in order to allow global data files that are tile-layout-neutral.
309  and have no bearing on the internal storage of the arrays.  The tiles  They have no bearing on the internal storage of the arrays.  The tiles
310  are stored internally in a range from \code{(1:\varlink{bi}{bi})} the  are stored internally in a range from \code{\varlink{bi}{bi}=(1:NTILES)} in the
311  $x$ axis, and the $y$ axis variable \varlink{bj}{bj} generally is  $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is assumed to
312  ignored within the package. \\  equal \code{1} throughout the package. \\
313    
314  \subsubsection{Arrays Indexed to Tile Number}  Arrays indexed to tile number:
315    
316  The following arrays are of length \code{NTILES} and are indexed to  The following arrays are of length \code{NTILES} and are indexed to
317  the tile number, which is indicated in the diagrams with the notation  the tile number, which is indicated in the diagrams with the notation
# Line 300  The arrays \varlink{exch2\_tnx}{exch2_tn Line 321  The arrays \varlink{exch2\_tnx}{exch2_tn
321  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
322  each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and  each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
323  \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in  \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
324  section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and  Section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
325  multiprocessing}.  Future releases of MITgcm are to allow varying tile  Multiprocessing}.  Future releases of MITgcm may allow varying tile
326  sizes. \\  sizes. \\
327    
328  The location of the tiles' Cartesian origin within a subdomain are  The arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
329  determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and  \varlink{exch2\_tbasey}{exch2_tbasey} determine the tiles'
330  \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to  Cartesian origin within a subdomain  
331  relate the location of the edges of different tiles to each other.  As  and locate the edges of different tiles relative to each other.  As
332  an example, in the default six-tile topology (Fig. \ref{fig:6tile})  an example, in the default six-tile topology (Fig. \ref{fig:6tile})
333  each index in these arrays is set to \code{0} since a tile occupies  each index in these arrays is set to \code{0} since a tile occupies
334  its entire subdomain.  The twenty-four-tile case discussed above will  its entire subdomain.  The twenty-four-tile case discussed above will
335  have values of \code{0} or \code{16}, depending on the quadrant the  have values of \code{0} or \code{16}, depending on the quadrant of the
336  tile falls within the subdomain.  The elements of the arrays  tile within the subdomain.  The elements of the arrays
337  \varlink{exch2\_txglobalo}{exch2_txglobalo} and  \varlink{exch2\_txglobalo}{exch2_txglobalo} and
338  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
339  \varlink{exch2\_tbasex}{exch2_tbasex} and  \varlink{exch2\_tbasex}{exch2_tbasex} and
340  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tile edges within the
341  global address space, similar to that used by global output and input  global address space, similar to that used by global output and input
342  files. \\  files. \\
343    
344  The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of  The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
345  the subdomain of each tile, in a range \code{(1:6)} in the case of the  the subdomain of each tile, in a range \code{(1:6)} in the case of the
346  standard cube topology and indicated by \textbf{\textsf{f}}$n$ in  standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
347  figures \ref{fig:12tile} and  figures \ref{fig:6tile} and
348  \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}  \ref{fig:48tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
349  contains a count of the neighboring tiles each tile has, and is used  contains a count of the neighboring tiles each tile has, and sets
350  for setting bounds for looping over neighboring tiles.  the bounds for looping over neighboring tiles.
351  \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each  \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
352  tile, and is used in interprocess communication.  \\  tile, and is used in interprocess communication.  \\
353    
# Line 335  The arrays \varlink{exch2\_isWedge}{exch Line 356  The arrays \varlink{exch2\_isWedge}{exch
356  \varlink{exch2\_isEedge}{exch2_isEedge},  \varlink{exch2\_isEedge}{exch2_isEedge},
357  \varlink{exch2\_isSedge}{exch2_isSedge}, and  \varlink{exch2\_isSedge}{exch2_isSedge}, and
358  \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the  \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
359  indexed tile lies on the respective edge of a subdomain, \code{0} if  indexed tile lies on the edge of its subdomain, \code{0} if
360  not.  The values are used within the topology generator to determine  not.  The values are used within the topology generator to determine
361  the orientation of neighboring tiles, and to indicate whether a tile  the orientation of neighboring tiles, and to indicate whether a tile
362  lies on the corner of a subdomain.  The latter case requires special  lies on the corner of a subdomain.  The latter case requires special
# Line 343  exchange and numerical handling for the Line 364  exchange and numerical handling for the
364  corners of the cube. \\  corners of the cube. \\
365    
366    
367  \subsubsection{Arrays Indexed to Tile Number and Neighbor}  Arrays Indexed to Tile Number and Neighbor:
368    
369  The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and  The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
370  \code{NTILES} and describe the orientations between the the tiles. \\  \code{NTILES} and describe the orientations between the the tiles. \\
# Line 368  This provides a back-reference from the Line 389  This provides a back-reference from the
389  The arrays \varlink{exch2\_pi}{exch2_pi} and  The arrays \varlink{exch2\_pi}{exch2_pi} and
390  \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices  \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
391  in exchanges between the neighboring tiles.  These transformations are  in exchanges between the neighboring tiles.  These transformations are
392  necessary in exchanges between subdomains because the array index in  necessary in exchanges between subdomains because a horizontal dimension
393  one dimension may map to the other index in an adjacent subdomain, and  in one subdomain
394  may be have its indexing reversed. This swapping arises from the  may map to other horizonal dimension in an adjacent subdomain, and
395    may also have its indexing reversed. This swapping arises from the
396  ``folding'' of two-dimensional arrays into a three-dimensional  ``folding'' of two-dimensional arrays into a three-dimensional
397  cube. \\  cube. \\
398    
# Line 378  The dimensions of \code{exch2\_pi(t,N,T) Line 400  The dimensions of \code{exch2\_pi(t,N,T)
400  are the neighbor ID \code{N} and the tile number \code{T} as explained  are the neighbor ID \code{N} and the tile number \code{T} as explained
401  above, plus a vector of length \code{2} containing transformation  above, plus a vector of length \code{2} containing transformation
402  factors \code{t}.  The first element of the transformation vector  factors \code{t}.  The first element of the transformation vector
403  holds the factor to multiply the index in the same axis, and the  holds the factor to multiply the index in the same dimension, and the
404  second element holds the the same for the orthogonal index.  To  second element holds the the same for the orthogonal dimension.  To
405  clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis  clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
406  index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor  index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
407  \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s  \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
# Line 394  the arrays for all tile neighbors on the Line 416  the arrays for all tile neighbors on the
416  \code{(1,0)}, since all tiles on the same subdomain are oriented  \code{(1,0)}, since all tiles on the same subdomain are oriented
417  identically.  An axis that corresponds to the orthogonal dimension  identically.  An axis that corresponds to the orthogonal dimension
418  with the same index direction in a particular tile-neighbor  with the same index direction in a particular tile-neighbor
419  orientation will have \code{(0,1)}.  Those in the opposite index  orientation will have \code{(0,1)}.  Those with the opposite index
420  direction will have \code{(0,-1)} in order to reverse the ordering. \\  direction will have \code{(0,-1)} in order to reverse the ordering. \\
421    
422  The arrays \varlink{exch2\_oi}{exch2_oi},  The arrays \varlink{exch2\_oi}{exch2_oi},
# Line 445  Finally, \varlink{exch2\_itlo\_c}{exch2_ Line 467  Finally, \varlink{exch2\_itlo\_c}{exch2_
467  \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index  \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
468  bounds of the edge segment of the neighbor tile \code{N}'s subdomain  bounds of the edge segment of the neighbor tile \code{N}'s subdomain
469  that gets exchanged with the local tile \code{T}.  To take the example  that gets exchanged with the local tile \code{T}.  To take the example
470  of tile \code{T=2} in the twelve-tile topology  of tile \code{T=2} in the forty-eight-tile topology
471  (Fig. \ref{fig:12tile}): \\  (Fig. \ref{fig:48tile}): \\
472    
473  \begin{verbatim}  \begin{verbatim}
474         exch2_itlo_c(4,2)=17         exch2_itlo_c(4,2)=17
# Line 480  the neighbor tile is \code{Tn=5}: Line 502  the neighbor tile is \code{Tn=5}:
502  \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s  \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
503  northern edge exchanges with \code{Tn}'s western edge.  The western  northern edge exchanges with \code{Tn}'s western edge.  The western
504  edge of the tiles corresponds to the lower bound of the $x$ axis, so  edge of the tiles corresponds to the lower bound of the $x$ axis, so
505  \code{exch2\_itlo\_c} \code{exch2\_ithi\_c} are \code{0}. The range of  \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} are \code{0}, in the
506    western halo region of \code{Tn}. The range of
507  \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the  \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
508  width of \code{T}'s northern edge, plus the halo. \\  width of \code{T}'s northern edge, expanded by one into the halo. \\
509    
510    
511  \subsection{Key Routines}  \subsubsection{Key Routines}
512    
513  Most of the subroutines particular to exch2 handle the exchanges  Most of the subroutines particular to exch2 handle the exchanges
514  themselves and are of the same format as those described in  themselves and are of the same format as those described in
515  \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere  \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
516  communication}.  Like the original routines, they are written as  communication}.  Like the original routines, they are written as
517  templates which the local Makefile converts from RX into RL and RS  templates which the local Makefile converts from \code{RX} into
518  forms. \\  \code{RL} and \code{RS} forms. \\
519    
520  The interfaces with the core model subroutines are  The interfaces with the core model subroutines are
521  \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and  \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
# Line 507  for scalars and \code{EXCH2\_RX2\_CUBE} Line 530  for scalars and \code{EXCH2\_RX2\_CUBE}
530  the singularities at the cube corners. \\  the singularities at the cube corners. \\
531    
532  The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and  The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
533  \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subrouine  \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subroutine
534  needs to pass both the $u$ and $v$ components of the phsical vectors.  needs to pass both the $u$ and $v$ components of the physical vectors.
535  This arises from the topological folding discussed above, where the  This swapping arises from the topological folding discussed above, where the
536  $x$ and $y$ axes get swapped in some cases.  This swapping is not an  $x$ and $y$ axes get swapped in some cases, and is not an
537  issue with the scalar version. These subroutines call  issue with the scalar case. These subroutines call
538  \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of  \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
539  the work using the variables discussed above. \\  the work using the variables discussed above. \\
540    
541    \subsubsection{Experiments and tutorials that use exch2}
542    \label{sec:pkg:exch2:experiments}
543    
544    \begin{itemize}
545    \item{Held Suarez tutorial, in tutorial\_held\_suarez\_cs verification directory,
546    described in section \ref{sect:eg-hs} }
547    \end{itemize}

Legend:
Removed from v.1.17  
changed lines
  Added in v.1.27

  ViewVC Help
Powered by ViewVC 1.1.22