/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.12 by afe, Tue Mar 16 21:52:15 2004 UTC revision 1.22 by edhill, Tue Oct 12 18:16:03 2004 UTC
# Line 12  Line 12 
12    
13  \section{exch2: Extended Cubed Sphere \mbox{Topology}}  \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14  \label{sec:exch2}  \label{sec:exch2}
15    \label{sec:pkg:exch2}
16    \begin{rawhtml}
17    <!-- CMIREDIR:package_exch2: -->
18    \end{rawhtml}
19    
20    
21  \subsection{Introduction}  \subsection{Introduction}
22    
23  The \texttt{exch2} package extends the original cubed  The \texttt{exch2} package extends the original cubed sphere topology
24  sphere topology configuration to allow more flexible domain  configuration to allow more flexible domain decomposition and
25  decomposition and parallelization.  Cube faces (also called  parallelization.  Cube faces (also called subdomains) may be divided
26  subdomains) may be divided into any number of tiles that divide evenly  into any number of tiles that divide evenly into the grid point
27  into the grid point dimensions of the subdomain.  Furthermore, the  dimensions of the subdomain.  Furthermore, the tiles can run on
28  individual tiles may be run on separate processors in different  separate processors individually or in groups, which provides for
29  combinations, and whether exchanges between particular tiles occur  manual compile-time load balancing across a relatively arbitrary
30  between different processors is determined at runtime.  This  number of processors. \\
 flexibility provides for manual compile-time load balancing across a  
 relatively arbitrary number of processors. \\  
31    
32  The exchange parameters are declared in  The exchange parameters are declared in
33  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
# Line 34  and assigned in Line 36  and assigned in
36  validity of the cube topology depends on the \file{SIZE.h} file as  validity of the cube topology depends on the \file{SIZE.h} file as
37  detailed below.  The default files provided in the release configure a  detailed below.  The default files provided in the release configure a
38  cubed sphere topology of six tiles, one per subdomain, each with  cubed sphere topology of six tiles, one per subdomain, each with
39  32$\times$32 grid points, all running on a single processor.  Both  32$\times$32 grid points, with all tiles running on a single processor.  Both
40  files are generated by Matlab scripts in  files are generated by Matlab scripts in
41  \file{utils/exch2/matlab-topology-generator}; see Section  \file{utils/exch2/matlab-topology-generator}; see Section
42  \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}  \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
# Line 46  file for single-processor execution. Line 48  file for single-processor execution.
48  \subsection{Invoking exch2}  \subsection{Invoking exch2}
49    
50  To use exch2 with the cubed sphere, the following conditions must be  To use exch2 with the cubed sphere, the following conditions must be
51  met: \\  met:
52    
53  $\bullet$ The exch2 package is included when \file{genmake2} is run.  \begin{itemize}
54    The easiest way to do this is to add the line \code{exch2} to the  \item The exch2 package is included when \file{genmake2} is run.  The
55    \file{profile.conf} file -- see Section    easiest way to do this is to add the line \code{exch2} to the
56    \ref{sect:buildingCode} \sectiontitle{Building the code} for general    \file{profile.conf} file -- see Section \ref{sect:buildingCode}
57    details. \\    \sectiontitle{Building the code} for general details.
58      
59  $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and  \item An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
60    \file{w2\_e2setup.F} must reside in a directory containing code    \file{w2\_e2setup.F} must reside in a directory containing files
61    linked when \file{genmake2} runs.  The safest place to put these    symbolically linked by the \file{genmake2} script.  The safest place
62    is the directory indicated in the \code{-mods=DIR} command line    to put these is the directory indicated in the \code{-mods=DIR}
63    modifier (typically \file{../code}), or the build directory.  The    command line modifier (typically \file{../code}), or the build
64    default versions of these files reside in \file{pkg/exch2} and are    directory.  The default versions of these files reside in
65    linked automatically if no other versions exist elsewhere in the    \file{pkg/exch2} and are linked automatically if no other versions
66    link path, but they should be left untouched to avoid breaking    exist elsewhere in the build path, but they should be left untouched
67    configurations other than the one you intend to modify.\\    to avoid breaking configurations other than the one you intend to
68      modify.
69  $\bullet$ Files containing grid parameters, named    
70    \file{tile00$n$.mitgrid} where $n$=[1,6] (one per subdomain), must  \item Files containing grid parameters, named \file{tile00$n$.mitgrid}
71    be in the working directory when the MITgcm executable is run.    where $n$=\code{(1:6)} (one per subdomain), must be in the working
72    These files are provided in the example experiments for cubed sphere    directory when the MITgcm executable is run.  These files are
73    configurations with 32$\times$32 cube sides and are non-trivial to    provided in the example experiments for cubed sphere configurations
74    generate -- please contact MITgcm support if you want to generate    with 32$\times$32 cube sides -- please contact
75    files for other configurations. \\    \begin{rawhtml}
76        <A href="mailto:mitgcm-support@dev.mitgcm.org">
77  $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must    \end{rawhtml}
78    be placed where \file{genmake2} will find it.  In particular for the  \begin{verbatim}
79    exch2, the domain decomposition specified in \file{SIZE.h} must  MITgcm-support@mitgcm.org
80    correspond with the particular configuration's topology specified in  \end{verbatim}
81      \begin{rawhtml} </A> \end{rawhtml}
82      if you want to generate files for other configurations.
83      
84    \item As always when compiling MITgcm, the file \file{SIZE.h} must be
85      placed where \file{genmake2} will find it.  In particular for exch2,
86      the domain decomposition specified in \file{SIZE.h} must correspond
87      with the particular configuration's topology specified in
88    \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain    \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
89    decomposition issues particular to exch2 are addressed in Section    decomposition issues particular to exch2 are addressed in Section
90    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
91    and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and MPI}; a more    and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
92    general background on the subject relevant to MITgcm is presented in      Multiprocessing}; a more general background on the subject
93    Section \ref{sect:specifying_a_decomposition}    relevant to MITgcm is presented in Section
94    \sectiontitle{Specifying a decomposition}.\\    \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying a
95        decomposition}.
96    \end{itemize}
97    
98    
99  As of the time of writing the following examples use exch2 and may be  
100  used for guidance:  At the time of this writing the following examples use exch2 and may
101    be used for guidance:
102    
103  \begin{verbatim}  \begin{verbatim}
104  verification/adjust_nlfs.cs-32x32x1  verification/adjust_nlfs.cs-32x32x1
# Line 108  m-file Line 121  m-file
121  from the Matlab prompt (there are no parameters to pass) generates  from the Matlab prompt (there are no parameters to pass) generates
122  exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and  exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
123  \file{w2\_e2setup.F} in the working directory and displays a figure of  \file{w2\_e2setup.F} in the working directory and displays a figure of
124  the topology via Matlab.  The other m-files in the directory are  the topology via Matlab -- figures \ref{fig:6tile}, \ref{fig:12tile},
125  subroutines of \file{driver.m} and should not be run ``bare'' except  and \ref{fig:24tile} are examples of the generated diagrams.  The other
126    m-files in the directory are
127    subroutines called from \file{driver.m} and should not be run ``bare'' except
128  for development purposes. \\  for development purposes. \\
129    
130  The parameters that determine the dimensions and topology of the  The parameters that determine the dimensions and topology of the
131  generated configuration are \code{nr}, \code{nb}, \code{ng},  generated configuration are \code{nr}, \code{nb}, \code{ng},
132  \code{tnx} and \code{tny}, and all are assigned early in the script. \\  \code{tnx} and \code{tny}, and all are assigned early in the script. \\
133    
134  The first three determine the size of the subdomains and  The first three determine the height and width of the subdomains and
135  hence the size of the overall domain.  Each one determines the number  hence the size of the overall domain.  Each one determines the number
136  of grid points, and therefore the resolution, along the subdomain  of grid points, and therefore the resolution, along the subdomain
137  sides in a ``great circle'' around each axis of the cube.  At the time  sides in a ``great circle'' around each the three spatial axes of the cube.  At the time
138  of this writing MITgcm requires these three parameters to be equal,  of this writing MITgcm requires these three parameters to be equal,
139  but they provide for future releases  to accomodate different  but they provide for future releases  to accomodate different
140  resolutions around the axes to allow (for example) greater resolution  resolutions around the axes to allow subdomains with differing resolutions.\\
 around the equator.\\  
141    
142  The parameters \code{tnx} and \code{tny} determine the dimensions of  The parameters \code{tnx} and \code{tny} determine the width and height of
143  the tiles into which the subdomains are decomposed, and must evenly  the tiles into which the subdomains are decomposed, and must evenly
144  divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.  divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
145  The result is a rectangular tiling of the subdomain.  Figure  The result is a rectangular tiling of the subdomain.  Figure
146  \ref{fig:24tile} shows one possible topology for a twenty-four tile  \ref{fig:24tile} shows one possible topology for a twenty-four-tile
147  cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\  cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
148    
149  \begin{figure}  \begin{figure}
# Line 139  cube, and figure \ref{fig:12tile} shows Line 153  cube, and figure \ref{fig:12tile} shows
153   }   }
154  \end{center}  \end{center}
155    
156  \caption{Plot of cubed sphere topology with a 32$\times$192 domain  \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
157  divided into six 32$\times$32 subdomains, each of which is divided into four tiles  divided into six 32$\times$32 subdomains, each of which is divided
158  (\code{tnx=16, tny=16}) for a total of twenty-four tiles.  into four tiles of width \code{tnx=16} and height \code{tny=16} for a
159  } \label{fig:24tile}  total of twenty-four tiles.  The colored borders of the subdomains
160    represent the parameters \code{nr} (red), \code{nb} (blue), and
161    \code{ng} (green).  } \label{fig:24tile}
162  \end{figure}  \end{figure}
163    
164  \begin{figure}  \begin{figure}
# Line 151  divided into six 32$\times$32 subdomains Line 167  divided into six 32$\times$32 subdomains
167    \includegraphics{part6/s12t_16x32.ps}    \includegraphics{part6/s12t_16x32.ps}
168   }   }
169  \end{center}  \end{center}
170  \caption{Plot of cubed sphere topology with a 32$\times$192 domain  \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
171  divided into six 32$\times$32 subdomains of two tiles each  divided into six 32$\times$32 subdomains of two tiles each
172   (\code{tnx=16, tny=32}).   (\code{tnx=16, tny=32}).
173  } \label{fig:12tile}  } \label{fig:12tile}
174  \end{figure}  \end{figure}
175    
176    \begin{figure}
177    \begin{center}
178     \resizebox{4in}{!}{
179      \includegraphics{part6/s6t_32x32.ps}
180     }
181    \end{center}
182    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
183    divided into six 32$\times$32 subdomains with one tile each
184    (\code{tnx=32, tny=32}).  This is the default configuration.
185      }
186    \label{fig:6tile}
187    \end{figure}
188    
189    
190  Tiles can be selected from the topology to be omitted from being  Tiles can be selected from the topology to be omitted from being
191  allocated memory and processors.  This tuning is useful in ocean  allocated memory and processors.  This tuning is useful in ocean
192  modeling for omitting tiles that fall entirely on land.  The tiles  modeling for omitting tiles that fall entirely on land.  The tiles
# Line 167  by their tile number in the topology, se Line 197  by their tile number in the topology, se
197    
198    
199    
200  \subsection{exch2, SIZE.h, and multiprocessing}  \subsection{exch2, SIZE.h, and Multiprocessing}
201  \label{sec:exch2mpi}  \label{sec:exch2mpi}
202    
203  Once the topology configuration files are created, the Fortran  Once the topology configuration files are created, the Fortran
204  parameters in \file{SIZE.h} must be configured to match.  Section  \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
205  \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying a  Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
206  decomposition} provides a general description of domain decomposition  a decomposition} provides a general description of domain
207  within MITgcm and its relation to \file{SIZE.h}. The current section  decomposition within MITgcm and its relation to \file{SIZE.h}. The
208  specifies certain constraints the exch2 package imposes as well as  current section specifies constraints that the exch2 package
209  describes how to enable parallel execution with MPI. \\  imposes and describes how to enable parallel execution with
210    MPI. \\
211    
212  As in the general case, the parameters \varlink{sNx}{sNx} and  As in the general case, the parameters \varlink{sNx}{sNx} and
213  \varlink{sNy}{sNy} define the size of the individual tiles, and so  \varlink{sNy}{sNy} define the size of the individual tiles, and so
# Line 191  levels in the model.\\ Line 222  levels in the model.\\
222  The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},  The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
223  \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of  \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
224  tiles and how they are distributed on processors.  When using exch2,  tiles and how they are distributed on processors.  When using exch2,
225  the tiles are stored in single dimension, and so  the tiles are stored in the $x$ dimension, and so
226  \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as  \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
227  configured by exch2 cannot be split up accross processors without  configured by exch2 cannot be split up accross processors without
228  regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\  regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
# Line 199  regenerating the topology, \code{\varlin Line 230  regenerating the topology, \code{\varlin
230  The number of tiles MITgcm allocates and how they are distributed  The number of tiles MITgcm allocates and how they are distributed
231  between processors depends on \varlink{nPx}{nPx} and  between processors depends on \varlink{nPx}{nPx} and
232  \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per  \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per
233  processor and \varlink{nPx}{nPx} the number of processors.  The total  processor and \varlink{nPx}{nPx} is the number of processors.  The total
234  number of tiles in the topology minus those listed in  number of tiles in the topology minus those listed in
235  \file{blanklist.txt} must equal \code{nSx*nPx}. \\  \file{blanklist.txt} must equal \code{nSx*nPx}.  Note that in order to
236    obtain maximum usage from a given number of processors in some cases,
237    this restriction might entail sharing a processor with a tile that would
238    otherwise be excluded. \\
239    
240  The following is an example of \file{SIZE.h} for the twelve-tile  The following is an example of \file{SIZE.h} for the twelve-tile
241  configuration illustrated in figure \ref{fig:12tile} running on  configuration illustrated in figure \ref{fig:12tile} running on
# Line 222  one processor: \\ Line 256  one processor: \\
256       &           Nr  =   5)       &           Nr  =   5)
257  \end{verbatim}  \end{verbatim}
258    
259  The following is an example for the twentyfour-tile topology in figure  The following is an example for the twenty-four-tile topology in
260  \ref{fig:24tile} running on six processors:  figure \ref{fig:24tile} running on six processors:
261    
262  \begin{verbatim}  \begin{verbatim}
263        PARAMETER (        PARAMETER (
# Line 247  The following is an example for the twen Line 281  The following is an example for the twen
281  \subsection{Key Variables}  \subsection{Key Variables}
282    
283  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
284  one-dimensional arrays indexed to the tile number, and two and three  one-dimensional arrays indexed to the tile number, and two and
285  dimensional arrays indexed to tile number and neighboring tile.  This  three-dimensional arrays indexed to tile number and neighboring tile.
286  division reflects the functionality of these variables: The  This division reflects the functionality of these variables: The
287  scalars are common to every part of the topology, the tile-indexed  scalars are common to every part of the topology, the tile-indexed
288  arrays to individual tiles, and the arrays indexed by tile and  arrays to individual tiles, and the arrays indexed by tile and
289  neighbor to relationships between tiles and their neighbors. \\  neighbor to relationships between tiles and their neighbors. \\
# Line 266  generated by \file{driver.m}.\\ Line 300  generated by \file{driver.m}.\\
300  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
301  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
302  of tiles in the $x$ and $y$ global indices.  For example, the default  of tiles in the $x$ and $y$ global indices.  For example, the default
303  setup of six tiles has \code{exch2\_domain\_nxt=6} and  setup of six tiles (Fig. \ref{fig:6tile}) has
304  \code{exch2\_domain\_nyt=1}.  A topology of twenty-four square tiles,  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
305  four per subdomain (as in figure \ref{fig:24tile}), will have  topology of twenty-four square tiles, four per subdomain (as in figure
306  \code{exch2\_domain\_nxt=12} and \code{exch2\_domain\_nyt=2}.  Note  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
307  that these parameters express the tile layout to allow global data  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the
308  files that are tile-layout-neutral and have no bearing on the internal  tile layout in order to allow global data files that are tile-layout-neutral.
309  storage of the arrays.  The tiles are internally stored in a range  They have no bearing on the internal storage of the arrays.  The tiles
310  from [1,\varlink{bi}{bi}] the $x$ axis and $y$ axis variable  are stored internally in a range from \code{\varlink{bi}{bi}=(1:NTILES)} in the
311  \varlink{bj}{bj} is generally ignored within the package. \\  $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is assumed to
312    equal \code{1} throughout the package. \\
313  \subsubsection{Arrays Indexed to Tile Number}  
314    \subsubsection{Arrays indexed to tile number}
315  The following arrays are of size \code{NTILES}, are indexed to the  
316  tile number, and the indices are omitted in their descriptions. \\  The following arrays are of length \code{NTILES} and are indexed to
317    the tile number, which is indicated in the diagrams with the notation
318    \code{tn}.  The indices are omitted in the descriptions. \\
319    
320  The arrays \varlink{exch2\_tnx}{exch2_tnx} and  The arrays \varlink{exch2\_tnx}{exch2_tnx} and
321  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
322  each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and  each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
323  \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in  \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
324  section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and  Section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
325  multiprocessing}.  Future releases of MITgcm are to allow varying tile  Multiprocessing}.  Future releases of MITgcm may allow varying tile
326  sizes. \\  sizes. \\
327    
328  The location of the tiles' Cartesian origin within a subdomain are  The arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
329  determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and  \varlink{exch2\_tbasey}{exch2_tbasey} determine the tiles'
330  \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to  Cartesian origin within a subdomain  
331  relate the location of the edges of different tiles to each other.  As  and locate the edges of different tiles relative to each other.  As
332  an example, in the default six-tile topology ??  each index in these  an example, in the default six-tile topology (Fig. \ref{fig:6tile})
333  arrays are set to \code{0}.  The twentyfour-tile case discussed above  each index in these arrays is set to \code{0} since a tile occupies
334  will have values of \code{0} or \code{16}, depending on the quadrant  its entire subdomain.  The twenty-four-tile case discussed above will
335  the tile falls within the subdomain.  The array  have values of \code{0} or \code{16}, depending on the quadrant of the
336  \varlink{exch2\_myFace}{exch2_myFace} contains the number of the  tile within the subdomain.  The elements of the arrays
337  subdomain of each tile, numbered \code{(1:6)} in the case of the  \varlink{exch2\_txglobalo}{exch2_txglobalo} and
338  standard cube topology and indicated by \textbf{\textsf{f}}$n$ in  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
 figures \ref{fig:12tile}) and \ref{fig:24tile}). \\  
   
 The elements of the arrays \varlink{exch2\_txglobalo}{exch2_txglobalo}  
 and \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to  
339  \varlink{exch2\_tbasex}{exch2_tbasex} and  \varlink{exch2\_tbasex}{exch2_tbasex} and
340  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tile edges within the
341  global address space, similar to that used by global files. \\  global address space, similar to that used by global output and input
342    files. \\
343    
344    The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
345    the subdomain of each tile, in a range \code{(1:6)} in the case of the
346    standard cube topology and indicated by \textbf{\textsf{fn}} in
347    figures \ref{fig:12tile} and \ref{fig:24tile}. The
348    \varlink{exch2\_nNeighbours}{exch2_nNeighbours} variable contains a
349    count of the neighboring tiles each tile has, and sets the bounds for
350    looping over neighboring tiles.  And
351    \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
352    tile, and is used in interprocess communication.  \\
353    
354    
355  The arrays \varlink{exch2\_isWedge}{exch2_isWedge},  The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
356  \varlink{exch2\_isEedge}{exch2_isEedge},  \varlink{exch2\_isEedge}{exch2_isEedge},
357  \varlink{exch2\_isSedge}{exch2_isSedge}, and  \varlink{exch2\_isSedge}{exch2_isSedge}, and
358  \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the  \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
359  indexed tile lies on the edge of a subdomain, \code{0} if not.  The  indexed tile lies on the edge of its subdomain, \code{0} if
360  values are used within the topology generator to determine the  not.  The values are used within the topology generator to determine
361  orientation of neighboring tiles, and to indicate whether a tile lies  the orientation of neighboring tiles, and to indicate whether a tile
362  on the corner of a subdomain.  The latter case requires special  lies on the corner of a subdomain.  The latter case requires special
363  exchange and numerical handling for the singularities at the eight  exchange and numerical handling for the singularities at the eight
364  corners of the cube.  \varlink{exch2\_nNeighbours}{exch2_nNeighbours}  corners of the cube. \\
365  contains a count of how many neighboring tiles each tile has, and is  
 used for setting bounds for looping over neighboring tiles.  
 \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each  
 tile, and is used in interprocess communication.  \\  
366    
367  \subsubsection{Arrays Indexed to Tile Number and Neighbor}  \subsubsection{Arrays Indexed to Tile Number and Neighbor}
368    
369  The following arrays are all of size  The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
370  \code{MAX\_NEIGHBOURS}$\times$\code{NTILES} and describe the  \code{NTILES} and describe the orientations between the the tiles. \\
 orientations between the the tiles. \\  
371    
372  The array \code{exch2\_neighbourId(a,T)} holds the tile number  The array \code{exch2\_neighbourId(a,T)} holds the tile number
373  \code{Tn} for each of the tile number \code{T}'s neighboring tiles  \code{Tn} for each of the tile number \code{T}'s neighboring tiles
374  \code{a}.  The neighbor tiles are indexed \code{(1:MAX\_NEIGHBOURS)}  \code{a}.  The neighbor tiles are indexed
375  in the order right to left on the north then south edges, and then top  \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
376  to bottom on the east and west edges.  Maybe throw in a fig here, eh?  north then south edges, and then top to bottom on the east then west
377  \\  edges.  \\
378    
379  The \code{exch2\_opposingSend\_record(a,T)} array holds the index   The \code{exch2\_opposingSend\_record(a,T)} array holds the
380  \code{b} in \texttt{exch2\_neighbourId(b,Tn)} that holds the tile  index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
381  number \code{T}.  In other words,  that holds the tile number \code{T}, given
382    \code{Tn=exch2\_neighborId(a,T)}.  In other words,
383  \begin{verbatim}  \begin{verbatim}
384     exch2_neighbourId( exch2_opposingSend_record(a,T),     exch2_neighbourId( exch2_opposingSend_record(a,T),
385                        exch2_neighbourId(a,T) ) = T                        exch2_neighbourId(a,T) ) = T
386  \end{verbatim}  \end{verbatim}
387  This provides a back-reference from the neighbor tiles. \\  This provides a back-reference from the neighbor tiles. \\
388    
389  The arrays \varlink{exch2\_pi}{exch2_pi},  The arrays \varlink{exch2\_pi}{exch2_pi} and
390  \varlink{exch2\_pj}{exch2_pj}, \varlink{exch2\_oi}{exch2_oi},  \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
391  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and  in exchanges between the neighboring tiles.  These transformations are
392  \varlink{exch2\_oj\_f}{exch2_oj_f} specify the transformations in  necessary in exchanges between subdomains because a horizontal dimension
393  exchanges between the neighboring tiles.  The dimensions of  in one subdomain
394  \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)} are the neighbor  may map to other horizonal dimension in an adjacent subdomain, and
395  ID \code{N} and the tile number \code{T} as explained above, plus a  may also have its indexing reversed. This swapping arises from the
396  vector of length 2 containing transformation factors \code{t}.  The  ``folding'' of two-dimensional arrays into a three-dimensional
397  first element of the transformation vector indicates the factor  cube. \\
398  \code{t} by which variables representing the same vector component of  
399  a tile \code{T} will be multiplied in exchanges with neighbor  The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
400  \code{N}, and the second element indicates the transform to the  are the neighbor ID \code{N} and the tile number \code{T} as explained
401  variable in the other direction.  As an example,  above, plus a vector of length \code{2} containing transformation
402  \code{exch2\_pi(1,N,T)} holds the transform of the $i$ component of a  factors \code{t}.  The first element of the transformation vector
403  vector variable in tile \code{T} to the $i$ component of tile  holds the factor to multiply the index in the same dimension, and the
404  \code{T}'s neighbor \code{N}, and \code{exch2\_pi(2,N,T)} hold the  second element holds the the same for the orthogonal dimension.  To
405  component of neighbor \code{N}'s $j$ component. \\  clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
406    index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
407    \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
408    $x$ index to the neighbor \code{N}'s $y$ index. \\
409    
410  Under the current cube topology, one of the two elements of  One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
411  \code{exch2\_pi} or \code{exch2\_pj} for a given tile \code{T} and  given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
412  neighbor \code{N} will be \code{0}, reflecting the fact that the two  the fact that the two axes are orthogonal.  The other element will be
413  vector components are orthogonal.  The other element will be 1 or -1,  \code{1} or \code{-1}, depending on whether the axes are indexed in
414  depending on whether the components are indexed in the same or  the same or opposite directions.  For example, the transform vector of
415  opposite directions.  For example, the transform vector of the arrays  the arrays for all tile neighbors on the same subdomain will be
416  for all tile neighbors on the same subdomain will be \code{(1,0)},  \code{(1,0)}, since all tiles on the same subdomain are oriented
417  since all tiles on the same subdomain are oriented identically.  A  identically.  An axis that corresponds to the orthogonal dimension
418  vector direction that corresponds to the orthogonal dimension with the  with the same index direction in a particular tile-neighbor
419  same index direction in a particular tile-neighbor orientation will  orientation will have \code{(0,1)}.  Those with the opposite index
420  have \code{(0,1)}, whereas those in the opposite index direction will  direction will have \code{(0,-1)} in order to reverse the ordering. \\
 have \code{(0,-1)}.  This needs some diagrams.  
421    
422    The arrays \varlink{exch2\_oi}{exch2_oi},
423    \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
424    \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
425    neighbor and specify the relative offset within the subdomain of the
426    array index of a variable going from a neighboring tile \code{N} to a
427    local tile \code{T}.  Consider \code{T=1} in the six-tile topology
428    (Fig. \ref{fig:6tile}), where
429    
 {\footnotesize  
430  \begin{verbatim}  \begin{verbatim}
431  C      exch2_pi          :: X index row of target to source permutation         exch2_oi(1,1)=33
432  C                        :: matrix for each neighbour entry.                     exch2_oi(2,1)=0
433  C      exch2_pj          :: Y index row of target to source permutation         exch2_oi(3,1)=32
434  C                        :: matrix for each neighbour entry.                     exch2_oi(4,1)=-32
 C      exch2_oi          :: X index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oj          :: Y index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oi_f        :: X index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
 C      exch2_oj_f        :: Y index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
435  \end{verbatim}  \end{verbatim}
 }  
436    
437    The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
438    which is \code{Tn=6}.  The axes of \code{T} and \code{Tn} have the
439    same orientation and their $x$ axes have the same origin, and so an
440    exchange between the two requires no changes to the $x$ index.  For
441    the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
442    \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
443    \code{Tn}.  The eastern edge of \code{T} shows the reverse case
444    (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
445    with \code{x=0} on \code{Tn=2}. \\
446    
447     The most interesting case, where \code{exch2\_oi(1,1)=33} and
448    \code{Tn=3}, involves a reversal of indices.  As in every case, the
449    offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
450    multiplied by the transformation factor \code{exch2\_pi(t,N,T)}.  Here
451    \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
452    to the $x$ axis of \code{Tn}.  \code{exch2\_pi(2,1,1)=-1} since the
453    $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
454    index is reversed.  The result is that the index of the northern edge
455    of \code{T}, which runs \code{(1:32)}, is transformed to
456    \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
457    get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
458    relative to \code{T}.  This transformation may seem overly convoluted
459    for the six-tile case, but it is necessary to provide a general
460    solution for various topologies. \\
461    
462    
 \subsection{Key Routines}  
463    
464    Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
465    \varlink{exch2\_ithi\_c}{exch2_ithi_c},
466    \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
467    \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
468    bounds of the edge segment of the neighbor tile \code{N}'s subdomain
469    that gets exchanged with the local tile \code{T}.  To take the example
470    of tile \code{T=2} in the twelve-tile topology
471    (Fig. \ref{fig:12tile}): \\
472    
473    \begin{verbatim}
474           exch2_itlo_c(4,2)=17
475           exch2_ithi_c(4,2)=17
476           exch2_jtlo_c(4,2)=0
477           exch2_jthi_c(4,2)=33
478    \end{verbatim}
479    
480    Here \code{N=4}, indicating the western neighbor, which is
481    \code{Tn=1}.  \code{Tn} resides on the same subdomain as \code{T}, so
482    the tiles have the same orientation and the same $x$ and $y$ axes.
483    The $x$ axis is orthogonal to the western edge and the tile is 16
484    points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
485    indicate the column beyond \code{Tn}'s eastern edge, in that tile's
486    halo region. Since the border of the tiles extends through the entire
487    height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
488    \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
489    either direction to cover part of the halo. \\
490    
491    For the north edge of the same tile \code{T=2} where \code{N=1} and
492    the neighbor tile is \code{Tn=5}:
493    
494    \begin{verbatim}
495           exch2_itlo_c(1,2)=0
496           exch2_ithi_c(1,2)=0
497           exch2_jtlo_c(1,2)=0
498           exch2_jthi_c(1,2)=17
499    \end{verbatim}
500    
501    \code{T}'s northern edge is parallel to the $x$ axis, but since
502    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
503    northern edge exchanges with \code{Tn}'s western edge.  The western
504    edge of the tiles corresponds to the lower bound of the $x$ axis, so
505    \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} are \code{0}, in the
506    western halo region of \code{Tn}. The range of
507    \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
508    width of \code{T}'s northern edge, expanded by one into the halo. \\
509    
510    
511    \subsection{Key Routines}
512    
513    Most of the subroutines particular to exch2 handle the exchanges
514    themselves and are of the same format as those described in
515    \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
516    communication}.  Like the original routines, they are written as
517    templates which the local Makefile converts from \code{RX} into
518    \code{RL} and \code{RS} forms. \\
519    
520    The interfaces with the core model subroutines are
521    \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
522    \code{EXCH\_XY\_RX}.  They override the standard exchange routines
523    when \code{genmake2} is run with \code{exch2} option.  They in turn
524    call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
525    \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
526    quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
527    and three-dimensional scalar quantities.  These subroutines set the
528    dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
529    for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
530    the singularities at the cube corners. \\
531    
532    The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
533    \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subroutine
534    needs to pass both the $u$ and $v$ components of the physical vectors.
535    This swapping arises from the topological folding discussed above, where the
536    $x$ and $y$ axes get swapped in some cases, and is not an
537    issue with the scalar case. These subroutines call
538    \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
539    the work using the variables discussed above. \\
540    
 \subsection{References}  

Legend:
Removed from v.1.12  
changed lines
  Added in v.1.22

  ViewVC Help
Powered by ViewVC 1.1.22