/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.12 by afe, Tue Mar 16 21:52:15 2004 UTC revision 1.16 by afe, Thu Mar 18 22:20:38 2004 UTC
# Line 21  sphere topology configuration to allow m Line 21  sphere topology configuration to allow m
21  decomposition and parallelization.  Cube faces (also called  decomposition and parallelization.  Cube faces (also called
22  subdomains) may be divided into any number of tiles that divide evenly  subdomains) may be divided into any number of tiles that divide evenly
23  into the grid point dimensions of the subdomain.  Furthermore, the  into the grid point dimensions of the subdomain.  Furthermore, the
24  individual tiles may be run on separate processors in different  individual tiles can run on separate processors in different
25  combinations, and whether exchanges between particular tiles occur  combinations, and whether exchanges between particular tiles occur
26  between different processors is determined at runtime.  This  between different processors is determined at runtime.  This
27  flexibility provides for manual compile-time load balancing across a  flexibility provides for manual compile-time load balancing across a
# Line 65  $\bullet$ An example of \file{W2\_EXCH2\ Line 65  $\bullet$ An example of \file{W2\_EXCH2\
65    configurations other than the one you intend to modify.\\    configurations other than the one you intend to modify.\\
66    
67  $\bullet$ Files containing grid parameters, named  $\bullet$ Files containing grid parameters, named
68    \file{tile00$n$.mitgrid} where $n$=[1,6] (one per subdomain), must    \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),
69    be in the working directory when the MITgcm executable is run.    must be in the working directory when the MITgcm executable is run.
70    These files are provided in the example experiments for cubed sphere    These files are provided in the example experiments for cubed sphere
71    configurations with 32$\times$32 cube sides and are non-trivial to    configurations with 32$\times$32 cube sides and are non-trivial to
72    generate -- please contact MITgcm support if you want to generate    generate -- please contact MITgcm support if you want to generate
73    files for other configurations. \\    files for other configurations. \\
74    
75  $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must  $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must
76    be placed where \file{genmake2} will find it.  In particular for the    be placed where \file{genmake2} will find it.  In particular for
77    exch2, the domain decomposition specified in \file{SIZE.h} must    exch2, the domain decomposition specified in \file{SIZE.h} must
78    correspond with the particular configuration's topology specified in    correspond with the particular configuration's topology specified in
79    \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain    \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
# Line 119  generated configuration are \code{nr}, \ Line 119  generated configuration are \code{nr}, \
119  The first three determine the size of the subdomains and  The first three determine the size of the subdomains and
120  hence the size of the overall domain.  Each one determines the number  hence the size of the overall domain.  Each one determines the number
121  of grid points, and therefore the resolution, along the subdomain  of grid points, and therefore the resolution, along the subdomain
122  sides in a ``great circle'' around each axis of the cube.  At the time  sides in a ``great circle'' around an axis of the cube.  At the time
123  of this writing MITgcm requires these three parameters to be equal,  of this writing MITgcm requires these three parameters to be equal,
124  but they provide for future releases  to accomodate different  but they provide for future releases  to accomodate different
125  resolutions around the axes to allow (for example) greater resolution  resolutions around the axes to allow (for example) greater resolution
# Line 129  The parameters \code{tnx} and \code{tny} Line 129  The parameters \code{tnx} and \code{tny}
129  the tiles into which the subdomains are decomposed, and must evenly  the tiles into which the subdomains are decomposed, and must evenly
130  divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.  divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
131  The result is a rectangular tiling of the subdomain.  Figure  The result is a rectangular tiling of the subdomain.  Figure
132  \ref{fig:24tile} shows one possible topology for a twenty-four tile  \ref{fig:24tile} shows one possible topology for a twentyfour-tile
133  cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\  cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
134    
135  \begin{figure}  \begin{figure}
# Line 139  cube, and figure \ref{fig:12tile} shows Line 139  cube, and figure \ref{fig:12tile} shows
139   }   }
140  \end{center}  \end{center}
141    
142  \caption{Plot of cubed sphere topology with a 32$\times$192 domain  \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
143  divided into six 32$\times$32 subdomains, each of which is divided into four tiles  divided into six 32$\times$32 subdomains, each of which is divided into four tiles
144  (\code{tnx=16, tny=16}) for a total of twenty-four tiles.  (\code{tnx=16, tny=16}) for a total of twentyfour tiles.
145  } \label{fig:24tile}  } \label{fig:24tile}
146  \end{figure}  \end{figure}
147    
# Line 151  divided into six 32$\times$32 subdomains Line 151  divided into six 32$\times$32 subdomains
151    \includegraphics{part6/s12t_16x32.ps}    \includegraphics{part6/s12t_16x32.ps}
152   }   }
153  \end{center}  \end{center}
154  \caption{Plot of cubed sphere topology with a 32$\times$192 domain  \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
155  divided into six 32$\times$32 subdomains of two tiles each  divided into six 32$\times$32 subdomains of two tiles each
156   (\code{tnx=16, tny=32}).   (\code{tnx=16, tny=32}).
157  } \label{fig:12tile}  } \label{fig:12tile}
158  \end{figure}  \end{figure}
159    
160    \begin{figure}
161    \begin{center}
162     \resizebox{4in}{!}{
163      \includegraphics{part6/s6t_32x32.ps}
164     }
165    \end{center}
166    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
167    divided into six 32$\times$32 subdomains with one tile each
168    (\code{tnx=32, tny=32}).  This is the default configuration.
169      }
170    \label{fig:6tile}
171    \end{figure}
172    
173    
174  Tiles can be selected from the topology to be omitted from being  Tiles can be selected from the topology to be omitted from being
175  allocated memory and processors.  This tuning is useful in ocean  allocated memory and processors.  This tuning is useful in ocean
176  modeling for omitting tiles that fall entirely on land.  The tiles  modeling for omitting tiles that fall entirely on land.  The tiles
# Line 171  by their tile number in the topology, se Line 185  by their tile number in the topology, se
185  \label{sec:exch2mpi}  \label{sec:exch2mpi}
186    
187  Once the topology configuration files are created, the Fortran  Once the topology configuration files are created, the Fortran
188  parameters in \file{SIZE.h} must be configured to match.  Section  \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
189  \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying a  Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
190  decomposition} provides a general description of domain decomposition  a decomposition} provides a general description of domain
191  within MITgcm and its relation to \file{SIZE.h}. The current section  decomposition within MITgcm and its relation to \file{SIZE.h}. The
192  specifies certain constraints the exch2 package imposes as well as  current section specifies certain constraints the exch2 package
193  describes how to enable parallel execution with MPI. \\  imposes as well as describes how to enable parallel execution with
194    MPI. \\
195    
196  As in the general case, the parameters \varlink{sNx}{sNx} and  As in the general case, the parameters \varlink{sNx}{sNx} and
197  \varlink{sNy}{sNy} define the size of the individual tiles, and so  \varlink{sNy}{sNy} define the size of the individual tiles, and so
# Line 266  generated by \file{driver.m}.\\ Line 281  generated by \file{driver.m}.\\
281  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
282  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
283  of tiles in the $x$ and $y$ global indices.  For example, the default  of tiles in the $x$ and $y$ global indices.  For example, the default
284  setup of six tiles has \code{exch2\_domain\_nxt=6} and  setup of six tiles (Fig. \ref{fig:6tile}) has
285  \code{exch2\_domain\_nyt=1}.  A topology of twenty-four square tiles,  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
286  four per subdomain (as in figure \ref{fig:24tile}), will have  topology of twenty-four square tiles, four per subdomain (as in figure
287  \code{exch2\_domain\_nxt=12} and \code{exch2\_domain\_nyt=2}.  Note  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
288  that these parameters express the tile layout to allow global data  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the
289  files that are tile-layout-neutral and have no bearing on the internal  tile layout to allow global data files that are tile-layout-neutral
290  storage of the arrays.  The tiles are internally stored in a range  and have no bearing on the internal storage of the arrays.  The tiles
291  from [1,\varlink{bi}{bi}] the $x$ axis and $y$ axis variable  are internally stored in a range from \code{(1:\varlink{bi}{bi})} the
292  \varlink{bj}{bj} is generally ignored within the package. \\  $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is generally
293    ignored within the package. \\
294    
295  \subsubsection{Arrays Indexed to Tile Number}  \subsubsection{Arrays Indexed to Tile Number}
296    
297  The following arrays are of size \code{NTILES}, are indexed to the  The following arrays are of length \code{NTILES}and are indexed to the
298  tile number, and the indices are omitted in their descriptions. \\  tile number, which is indicated in the diagrams with the notation
299    \textsf{t}$n$.  The indices are omitted in the descriptions. \\
300    
301  The arrays \varlink{exch2\_tnx}{exch2_tnx} and  The arrays \varlink{exch2\_tnx}{exch2_tnx} and
302  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
# Line 293  The location of the tiles' Cartesian ori Line 310  The location of the tiles' Cartesian ori
310  determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and  determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
311  \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to  \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to
312  relate the location of the edges of different tiles to each other.  As  relate the location of the edges of different tiles to each other.  As
313  an example, in the default six-tile topology ??  each index in these  an example, in the default six-tile topology (Fig. \ref{fig:6tile})
314  arrays are set to \code{0}.  The twentyfour-tile case discussed above  each index in these arrays is set to \code{0} since a tile occupies
315  will have values of \code{0} or \code{16}, depending on the quadrant  its entire subdomain.  The twentyfour-tile case discussed above will
316  the tile falls within the subdomain.  The array  have values of \code{0} or \code{16}, depending on the quadrant the
317  \varlink{exch2\_myFace}{exch2_myFace} contains the number of the  tile falls within the subdomain.  The elements of the arrays
318  subdomain of each tile, numbered \code{(1:6)} in the case of the  \varlink{exch2\_txglobalo}{exch2_txglobalo} and
319  standard cube topology and indicated by \textbf{\textsf{f}}$n$ in  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
 figures \ref{fig:12tile}) and \ref{fig:24tile}). \\  
   
 The elements of the arrays \varlink{exch2\_txglobalo}{exch2_txglobalo}  
 and \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to  
320  \varlink{exch2\_tbasex}{exch2_tbasex} and  \varlink{exch2\_tbasex}{exch2_tbasex} and
321  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the
322  global address space, similar to that used by global files. \\  global address space, similar to that used by global files. \\
323    
324    The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
325    the subdomain of each tile, in a range \code{(1:6)} in the case of the
326    standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
327    figures \ref{fig:12tile} and
328    \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
329    contains a count the  neighboring tiles each tile has, and is
330    used for setting bounds for looping over neighboring tiles.
331    \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
332    tile, and is used in interprocess communication.  \\
333    
334    
335  The arrays \varlink{exch2\_isWedge}{exch2_isWedge},  The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
336  \varlink{exch2\_isEedge}{exch2_isEedge},  \varlink{exch2\_isEedge}{exch2_isEedge},
337  \varlink{exch2\_isSedge}{exch2_isSedge}, and  \varlink{exch2\_isSedge}{exch2_isSedge}, and
338  \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the  \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
339  indexed tile lies on the edge of a subdomain, \code{0} if not.  The  indexed tile lies on the respective edge of a subdomain, \code{0} if
340  values are used within the topology generator to determine the  not.  The values are used within the topology generator to determine
341  orientation of neighboring tiles, and to indicate whether a tile lies  the orientation of neighboring tiles, and to indicate whether a tile
342  on the corner of a subdomain.  The latter case requires special  lies on the corner of a subdomain.  The latter case requires special
343  exchange and numerical handling for the singularities at the eight  exchange and numerical handling for the singularities at the eight
344  corners of the cube.  \varlink{exch2\_nNeighbours}{exch2_nNeighbours}  corners of the cube. \\
345  contains a count of how many neighboring tiles each tile has, and is  
 used for setting bounds for looping over neighboring tiles.  
 \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each  
 tile, and is used in interprocess communication.  \\  
346    
347  \subsubsection{Arrays Indexed to Tile Number and Neighbor}  \subsubsection{Arrays Indexed to Tile Number and Neighbor}
348    
# Line 331  orientations between the the tiles. \\ Line 352  orientations between the the tiles. \\
352    
353  The array \code{exch2\_neighbourId(a,T)} holds the tile number  The array \code{exch2\_neighbourId(a,T)} holds the tile number
354  \code{Tn} for each of the tile number \code{T}'s neighboring tiles  \code{Tn} for each of the tile number \code{T}'s neighboring tiles
355  \code{a}.  The neighbor tiles are indexed \code{(1:MAX\_NEIGHBOURS)}  \code{a}.  The neighbor tiles are indexed
356  in the order right to left on the north then south edges, and then top  \code{(1:exch2\_NNeighbours(T))} in the order right to left on the
357  to bottom on the east and west edges.  Maybe throw in a fig here, eh?  north then south edges, and then top to bottom on the east and west
358  \\  edges.  Maybe throw in a fig here, eh?  \\
359    
360  The \code{exch2\_opposingSend\_record(a,T)} array holds the index  \sloppy The \code{exch2\_opposingSend\_record(a,T)} array holds the
361  \code{b} in \texttt{exch2\_neighbourId(b,Tn)} that holds the tile  index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
362  number \code{T}.  In other words,  that holds the tile number \code{T}, given
363    \code{Tn=exch2\_neighborId(a,T)}.  In other words,
364  \begin{verbatim}  \begin{verbatim}
365     exch2_neighbourId( exch2_opposingSend_record(a,T),     exch2_neighbourId( exch2_opposingSend_record(a,T),
366                        exch2_neighbourId(a,T) ) = T                        exch2_neighbourId(a,T) ) = T
367  \end{verbatim}  \end{verbatim}
368  This provides a back-reference from the neighbor tiles. \\  This provides a back-reference from the neighbor tiles. \\
369    
370  The arrays \varlink{exch2\_pi}{exch2_pi},  The arrays \varlink{exch2\_pi}{exch2_pi} and
371  \varlink{exch2\_pj}{exch2_pj}, \varlink{exch2\_oi}{exch2_oi},  \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
372    in exchanges between the neighboring tiles.  These transformations are
373    necessary in exchanges between subdomains because the array index in
374    one dimension may map to the other index in an adjacent subdomain, and
375    may be have its indexing reversed. This swapping arises from the
376    ``folding'' of two-dimensional arrays into a three-dimensional cube.
377    
378    The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
379    are the neighbor ID \code{N} and the tile number \code{T} as explained
380    above, plus a vector of length \code{2} containing transformation
381    factors \code{t}.  The first element of the transformation vector
382    holds the factor to multiply the index in the same axis, and the
383    second element holds the the same for the orthogonal index.  To
384    clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
385    index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
386    \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
387    $x$ index to the neighbor \code{N}'s $y$ index. \\
388    
389    One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
390    given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
391    the fact that the two axes are orthogonal.  The other element will be
392    \code{1} or \code{-1}, depending on whether the axes are indexed in
393    the same or opposite directions.  For example, the transform vector of
394    the arrays for all tile neighbors on the same subdomain will be
395    \code{(1,0)}, since all tiles on the same subdomain are oriented
396    identically.  An axis that corresponds to the orthogonal dimension
397    with the same index direction in a particular tile-neighbor
398    orientation will have \code{(0,1)}.  Those in the opposite index
399    direction will have \code{(0,-1)} in order to reverse the ordering. \\
400    
401    The arrays \varlink{exch2\_oi}{exch2_oi},
402  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
403  \varlink{exch2\_oj\_f}{exch2_oj_f} specify the transformations in  \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
404  exchanges between the neighboring tiles.  The dimensions of  neighbor and specify the relative offset within the subdomain of the
405  \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)} are the neighbor  array index of a variable going from a neighboring tile $N$ to a local
406  ID \code{N} and the tile number \code{T} as explained above, plus a  tile $T$.  Consider \code{T=1} in the six-tile topology
407  vector of length 2 containing transformation factors \code{t}.  The  (Fig. \ref{fig:6tile}), where
408  first element of the transformation vector indicates the factor  
409  \code{t} by which variables representing the same vector component of  \begin{verbatim}
410  a tile \code{T} will be multiplied in exchanges with neighbor         exch2_oi(1,1)=33
411  \code{N}, and the second element indicates the transform to the         exch2_oi(2,1)=0
412  variable in the other direction.  As an example,         exch2_oi(3,1)=32
413  \code{exch2\_pi(1,N,T)} holds the transform of the $i$ component of a         exch2_oi(4,1)=-32
414  vector variable in tile \code{T} to the $i$ component of tile  \end{verbatim}
415  \code{T}'s neighbor \code{N}, and \code{exch2\_pi(2,N,T)} hold the  
416  component of neighbor \code{N}'s $j$ component. \\  The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
417    which is \code{Tn=6}.  The axes of \code{T} and \code{Tn} have the
418    same orientation and their $x$ axes have the same origin, and so an
419    exchange between the two requires no changes to the $x$ index.  For
420    the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
421    \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
422    \code{Tn}.  The eastern edge of \code{T} shows the reverse case
423    (\code{exch2\_oi(4,1)=-32)}, where \code{x=32} on \code{T} exchanges
424    with \code{x=0} on \code{Tn=2}.  The most interesting case, where
425    \code{exch2\_oi(1,1)=33} and \code{Tn=3}, involves a reversal of
426    indices.  As in every case, the offset \code{exch2\_oi} is added to
427    the original $x$ index of \code{T} multiplied by the transformation
428    factor \code{exch2\_pi(t,N,T)}.  Here \code{exch2\_pi(1,1,1)=0} since
429    the $x$ axis of \code{T} is orthogonal to the $x$ axis of \code{Tn}.
430    \code{exch2\_pi(2,1,1)=-1} since the $x$ axis of \code{T} corresponds
431    to the $y$ axis of \code{Tn}, but the axes are reversed.  The result
432    is that the index of the northern edge of \code{T}, which runs
433    \code{(1:32)}, is transformed to
434    \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
435    get back \code{(1:32)} -- the index of the $y$ axis of \code{Tn}.
436    This transformation may seem overly convoluted for the six-tile case,
437    but it is necessary to provide a general solution for various
438    topologies. \\
439    
440    
441    
442    Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
443    \varlink{exch2\_ithi\_c}{exch2_ithi_c},
444    \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
445    \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
446    bounds of the edge segment of the neighbor tile \code{N}'s subdomain
447    that gets exchanged with the local tile \code{T}.  To take the example
448    of tile \code{T=2} in the twelve-tile topology
449    (Fig. \ref{fig:12tile}): \\
450    
451    \begin{verbatim}
452           exch2_itlo_c(4,2)=17
453           exch2_ithi_c(4,2)=17
454           exch2_jtlo_c(4,2)=0
455           exch2_jthi_c(4,2)=33
456    \end{verbatim}
457    
458  Under the current cube topology, one of the two elements of  Here \code{N=4}, indicating the western neighbor, which is \code{Tn=1}.
459  \code{exch2\_pi} or \code{exch2\_pj} for a given tile \code{T} and  \code{Tn=1} resides on the same subdomain as \code{T=2}, so the tiles
460  neighbor \code{N} will be \code{0}, reflecting the fact that the two  have the same orientation and the same $x$ and $y$ axes.  The $i$
461  vector components are orthogonal.  The other element will be 1 or -1,  component is orthogonal to the western edge and the tile is 16 points
462  depending on whether the components are indexed in the same or  wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} indicate the
463  opposite directions.  For example, the transform vector of the arrays  column beyond \code{Tn=1}'s eastern edge, in that tile's halo
464  for all tile neighbors on the same subdomain will be \code{(1,0)},  region. Since the border of the tiles extends through the entire
465  since all tiles on the same subdomain are oriented identically.  A  height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
466  vector direction that corresponds to the orthogonal dimension with the  \code{exch2\_jthi\_c} cover the height, plus 1 in either direction to
467  same index direction in a particular tile-neighbor orientation will  cover part of the halo. \\
 have \code{(0,1)}, whereas those in the opposite index direction will  
 have \code{(0,-1)}.  This needs some diagrams.  
468    
469    For the north edge of the same tile \code{T=2} where \code{N=1} and
470    the neighbor tile is \code{Tn=5}:
471    
 {\footnotesize  
472  \begin{verbatim}  \begin{verbatim}
473  C      exch2_pi          :: X index row of target to source permutation         exch2_itlo_c(1,2)=0
474  C                        :: matrix for each neighbour entry.                     exch2_ithi_c(1,2)=0
475  C      exch2_pj          :: Y index row of target to source permutation         exch2_jtlo_c(1,2)=0
476  C                        :: matrix for each neighbour entry.                     exch2_jthi_c(1,2)=17
 C      exch2_oi          :: X index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oj          :: Y index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oi_f        :: X index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
 C      exch2_oj_f        :: Y index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
477  \end{verbatim}  \end{verbatim}
478  }  
479    \code{T}'s northern edge is parallel to the $x$ axis, but since
480    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis,
481    \code{T}'s northern edge exchanges with \code{Tn}'s western edge.
482    The western edge of the tiles corresponds to the lower bound of the
483    $x$ axis, so \code{exch2\_itlo\_c} \code{exch2\_ithi\_c} are \code{0}. The
484    range of \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
485    width of \code{T}'s northern edge, plus the halo. \\
486    
487    
488    
 \subsection{Key Routines}  
489    
490    
491    
492  \subsection{References}  
493    
494    
495    
496    
497    This needs some diagrams. \\
498    
499    
500    
501    \subsection{Key Routines}
502    
503    Most of the subroutines particular to exch2 handle the exchanges
504    themselves and are of the same format as those described in
505    \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
506    communication}.  Like the original routines, they are written as
507    templates which the local Makefile converts from RX into RL and RS
508    forms. \\
509    
510    The interfaces with the core model subroutines are
511    \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and \code{EXCH\_XY\_RX}.
512    They override the standard exchange routines when \code{genmake2} is
513    run with \code{exch2} option.  They in turn call the local exch2
514    subroutines \code{EXCH2\_UV\_XY\_RX} and \code{EXCH2\_UV\_XYZ\_RX} for two
515    and three dimensional vector quantities, and \code{EXCH2\_XY\_RX} and
516    \code{EXCH2\_XYZ\_RX} for two and three dimensional scalar quantities.
517    These subroutines set the dimensions of the area to be exchanged, call
518    \code{EXCH2\_RX1\_CUBE} for scalars and \code{EXCH2\_RX2\_CUBE} for
519    vectors, and then handle the singularities at the cube corners. \\
520    
521    The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
522    \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subrouine needs
523    to pass both the $x$ and $y$ components of the vectors.  This arises
524    from the topological folding discussed above, where the $x$ and $y$
525    axes get swapped in some cases.  This swapping is not an issue with
526    the scalar version. These subroutines call \code{EXCH2\_SEND\_RX1} and
527    \code{EXCH2\_SEND\_RX2}, which do most of the work using the variables
528    discussed above. \\
529    

Legend:
Removed from v.1.12  
changed lines
  Added in v.1.16

  ViewVC Help
Powered by ViewVC 1.1.22