/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by afe, Wed Jan 28 18:08:22 2004 UTC revision 1.11 by afe, Mon Mar 15 22:39:28 2004 UTC
# Line 10  Line 10 
10  %%    o automatically inserted at \section{Reference}  %%    o automatically inserted at \section{Reference}
11    
12    
13  \section{exch2: Extended Cubed Sphere Exchange}  \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14    \label{sec:exch2}
 \subsection{Introduction}  
   
 The exch2 package is an extension to the original cubed sphere exchanges  
 to allow more flexible domain decomposition and parallelization.  Cube faces  
 (subdomain) may be divided into whatever number of tiles that divide evenly  
 into the grid point dimensions of the subdomain.  Furthermore, the individual  
 tiles may be run on different processors in any combination, (tone this down  
 a bit), and whether exchanges between particular tiles occur between different  
 processors is decided at runtime.  
   
15    
16    
17    \subsection{Introduction}
18    
19    The \texttt{exch2} package is an extension to the original cubed
20    sphere topological configuration that allows more flexible domain
21    decomposition and parallelization.  Cube faces (also called
22    subdomains) may be divided into any number of tiles that divide evenly
23    into the grid point dimensions of the subdomain.  Furthermore, the
24    individual tiles may be run on separate processors in different
25    combinations, and whether exchanges between particular tiles occur
26    between different processors is determined at runtime.  This
27    flexibility provides for manual compile-time load balancing across a
28    relatively arbitrary number of processors. \\
29    
30    The exchange parameters are declared in
31    \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
32    and assigned in
33    \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
34    validity of the cube topology depends on the \file{SIZE.h} file as
35    detailed below.  Both files are generated by Matlab scripts in
36    \file{utils/exch2/matlab-topology-generator}; see Section
37    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
38    for details on creating alternate topologies.  The default files
39    provided in the release configure a cubed sphere topology of six
40    tiles, one per subdomain, each with 32$\times$32 grid points, all
41    running on a single processor.  Pregenerated examples of these files
42    with alternate topologies are provided under
43    \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
44    file for single-processor execution.
45    
46    \subsection{Invoking exch2}
47    
48    To use exch2 with the cubed sphere, the following conditions must be
49    met: \\
50    
51    $\bullet$ The exch2 package is included when \file{genmake2} is run.
52      The easiest way to do this is to add the line \code{exch2} to the
53      \file{profile.conf} file -- see Section
54      \ref{sect:buildingCode}\sectiontitle{Building the code} for general
55      details. \\
56    
57    $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
58      \file{w2\_e2setup.F} must reside in a directory containing code
59      linked when \file{genmake2} runs.  The safest place to put these
60      is the directory indicated in the \code{-mods=DIR} command line
61      modifier (typically \file{../code}), or the build directory.  The
62      default versions of these files reside in \file{pkg/exch2} and are
63      linked automatically if no other versions exist elsewhere in the
64      link path, but they should be left untouched to avoid breaking
65      configurations other than the one you intend to modify.\\
66    
67    $\bullet$ Files containing grid parameters, named
68      \file{tile???.mitgrid} where \file{???} is \file{001} through
69      \file{006} (one per subdomain), must be in the working directory
70      when the MITgcm executable is run.  These files are provided in the
71      example experiments for cubed sphere configurations with
72      32$\times$32 cube sides and are non-trivial to generate -- please
73      contact MITgcm support if you want to generate files for other
74      configurations. \\
75    
76    $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h}
77      must be placed where \file{genmake2} will find it.  In particular
78      for the exch2, the domain decomposition specified in \file{SIZE.h}
79      must correspond with the particular configuration's topology
80      specified in \file{W2\_EXCH2\_TOPOLOGY.h} and
81      \file{w2\_e2setup.F}.  Domain decomposition issues particular to
82      exch2 are addressed in Section \ref{sec:topogen} \sectiontitle{Generating
83      Topology Files for exch2}; a more general background on the subject
84      relvant to MITgcm is presented in Section
85      \ref{sect:specifying_a_decomposition}\sectiontitle{Specifying a
86      decomposition}.\\
87    
88    As of the time of writing the following examples use exch2 and may be
89    used for guidance:
90    
91    \begin{verbatim}
92    verification/adjust_nlfs.cs-32x32x1
93    verification/adjustment.cs-32x32x1
94    verification/aim.5l_cs
95    verification/global_ocean.cs32x15
96    verification/hs94.cs-32x32x5
97    \end{verbatim}
98    
99    
100    
101    
102    \subsection{Generating Topology Files for exch2}
103    \label{sec:topogen}
104    
105    Alternate cubed sphere topologies may be created using the Matlab
106    scripts in \file{utils/exch2/matlab-topology-generator}. Running the
107    m-file \file{driver.m} from the Matlab prompt (there are no parameters
108    to pass) generates exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h}
109    and \file{w2\_e2setup.F} in the working directory and displays a
110    figure of the topology via Matlab.  The other m-files in the directory
111    are subroutines of \file{driver.m} and should not be run except for
112    development purposes. \\
113    
114    The parameters that determine the dimensions and topology of the
115    generated configuration are \code{nr}, \code{nb}, \code{ng},
116    \code{tnx} and \code{tny}, and all are assigned early in the script.
117    
118    The first three determine the size of the subdomains (cube faces) and
119    hence the size of the overall domain.  Each one determines the number
120    of grid points, and therefore the resolution, along the subdomain
121    sides in a ``great circle'' around each axis of the cube.  At the time
122    of this writing MITgcm requires these three parameters to be equal,
123    but they provide for future releases of MITgcm to accomodate different
124    resolutions around the axes to allow (for example) greater resolution
125    around the equator.\\
126    
127    The parameters \code{tnx} and \code{tny} determine the dimensions of
128    the tiles into which the subdomains are decomposed, and must evenly
129    divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
130    The result is a rectangular tiling of the subdomain.  Figure
131    \ref{fig:24tile} shows one possible topology for a twenty-four tile
132    cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
133    
134    \begin{figure}
135    \begin{center}
136     \resizebox{4in}{!}{
137      \includegraphics{part6/s24t_16x16.ps}
138     }
139    \end{center}
140    \caption{Plot of cubed sphere topology with a 32$\times$32 grid and
141    twenty-four tiles (\code{tnx=16, tny=16})
142    } \label{fig:24tile}
143    \end{figure}
144    
145    \begin{figure}
146    \begin{center}
147     \resizebox{4in}{!}{
148      \includegraphics{part6/s12t_16x32.ps}
149     }
150    \end{center}
151    \caption{Plot of cubed sphere topology with a 32$\times$32 grid and
152    twelve tiles (\code{tnx=16, tny=32})
153    } \label{fig:12tile}
154    \end{figure}
155    
156    Tiles can be selected from the topology to be omitted from being
157    allocated memory and processors.  This kind otuning is useful in
158    ocean modeling for omitting tiles that fall entirely on land.  The
159    tiles omitted are specified in the file \file{blanklist.txt} by
160    their tile number in the topology, separated by a newline. \\
161    
162    
163    
164    
165    
166    
167    \subsection{Key Variables}
168    
169    The descriptions of the variables are divided up into scalars,
170    one-dimensional arrays indexed to the tile number, and two and three
171    dimensional arrays indexed to tile number and neighboring tile.  This
172    division actually reflects the functionality of these variables: the
173    scalars are common to every part of the topology, the tile-indexed
174    arrays to individual tiles, and the arrays indexed to tile and
175    neighbor to relationships between tiles and their neighbors.
176    
177    \subsubsection{Scalars}
178    
179    The number of tiles in a particular topology is set with the parameter
180    \texttt{NTILES}, and the maximum number of neighbors of any tiles by
181    \texttt{MAX\_NEIGHBOURS}.  These parameters are used for defining the
182    size of the various one and two dimensional arrays that store tile
183    parameters indexed to the tile number.\\
184    
185    The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
186    and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
187    of tiles in the x and y global indices.  For example, the default
188    setup of six tiles has \texttt{exch2\_domain\_nxt=6} and
189    \texttt{exch2\_domain\_nyt=1}.  A topology of twenty-four square (in
190    gridpoints) tiles, four (2x2) per subdomain, will have
191    \texttt{exch2\_domain\_nxt=12} and \texttt{exch2\_domain\_nyt=2}.
192    Note that these parameters express the tile layout to allow global
193    data files that are tile-layout-neutral and have no bearing on the
194    internal storage of the arrays.  The tiles are internally stored in a
195    range from \texttt{1,bi} (in the x axis) and y-axis variable
196    \texttt{bj} is generally ignored within the package.
197    
198    \subsubsection{Arrays Indexed to Tile Number}
199    
200    The following arrays are of size \texttt{NTILES}, are indexed to the
201    tile number, and the indices are omitted in their descriptions.
202    
203    The arrays \varlink{exch2\_tnx}{exch2_tnx} and
204    \varlink{exch2\_tny}{exch2_tny} express the x and y dimensions of each
205    tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
206    \texttt{exch2\_tny=sNy}, as assigned in \texttt{SIZE.h}.  Future
207    releases of MITgcm are to allow varying tile sizes.
208    
209    The location of the tiles' Cartesian origin within a subdomain are
210    determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
211    \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to
212    relate the location of the edges of the tiles to each other.  As an
213    example, in the default six-tile topology (the degenerate case) each
214    index in these arrays are set to 0.  The twenty-four, 32x32 cube face
215    case discussed above will have values of 0 or 16, depending on the
216    quadrant the tile falls within the subdomain.  The array
217    \varlink{exch2\_myFace}{exch2_myFace} contains the number of the
218    cubeface/subdomain of each tile, numbered 1-6 in the case of the
219    standard cube topology.
220    
221    The arrays \varlink{exch2\_txglobalo}{exch2_txglobalo} and
222    \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
223    \varlink{exch2\_tbasex}{exch2_tbasex} and
224    \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the
225    global address space, similar to that used by global files.
226    
227    The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
228    \varlink{exch2\_isEedge}{exch2_isEedge},
229    \varlink{exch2\_isSedge}{exch2_isSedge}, and
230    \varlink{exch2\_isNedge}{exch2_isNedge} are set to 1 if the indexed
231    tile lies on the edge of a subdomain, 0 if not.  The values are used
232    within the topology generator to determine the orientation of
233    neighboring tiles and to indicate whether a tile lies on the corner of
234    a subdomain.  The latter case indicates special exchange and numerical
235    handling for the singularities at the eight corners of the cube.
236    \varlink{exch2\_nNeighbours}{exch2_nNeighbours} contains a count of
237    how many neighboring tiles each tile has, and is used for setting
238    bounds for looping over neighboring tiles.
239    \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
240    tile, and is used in interprocess communication.
241    
242    \subsubsection{Arrays Indexed to Tile Number and Neighbor}
243    
244    The following arrays are all of size \texttt{MAX\_NEIGHBOURS} $\times$
245    \texttt{NTILES} and describe the orientations between the the tiles.
246    
247    The array \texttt{exch2\_neighbourId(a,T)} holds the tile number for
248    each of the $n$ neighboring tiles.  The neighbor tiles are indexed
249    \texttt{(1,MAX\_NEIGHBOURS} in the order right to left on the north
250    then south edges, and then top to bottom on the east and west edges.
251    Maybe throw in a fig here, eh?
252    
253    The \texttt{exch2\_opposingSend\_record(a,T)} array holds the index c
254    in \texttt{exch2\_neighbourId(b,$T_{n}$)} that holds the tile number T.
255    In other words,
256    \begin{verbatim}
257       exch2_neighbourId( exch2_opposingSend_record(a,T),
258                          exch2_neighbourId(a,T) ) = T
259    \end{verbatim}
260    and this provides a back-reference from the neighbor tiles.
261    
262    The arrays \varlink{exch2\_pi}{exch2_pi},
263    \varlink{exch2\_pj}{exch2_pj}, \varlink{exch2\_oi}{exch2_oi},
264    \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
265    \varlink{exch2\_oj\_f}{exch2_oj_f} specify the transformations in
266    exchanges between the neighboring tiles.  The dimensions of
267    \texttt{exch2\_pi(t,N,T)} and \texttt{exch2\_pj(t,N,T)} are the
268    neighbor ID \textit{N} and the tile number \textit{T} as explained
269    above, plus the transformation vector {\em t }, of length two.  The
270    first element of the transformation vector indicates the factor by
271    which variables representing the same vector component of a tile will
272    be multiplied, and the second element indicates the transform to the
273    variable in the other direction.  As an example,
274    \texttt{exch2\_pi(1,N,T)} holds the transform of the i-component of a
275    vector variable in tile \texttt{T} to the i-component of tile
276    \texttt{T}'s neighbor \texttt{N}, and \texttt{exch2\_pi(2,N,T)} hold
277    the component of neighbor \texttt{N}'s j-component.
278    
279    Under the current cube topology, one of the two elements of
280    \texttt{exch2\_pi} or \texttt{exch2\_pj} for a given tile \texttt{T}
281    and neighbor \texttt{N} will be 0, reflecting the fact that the vector
282    components are orthogonal.  The other element will be 1 or -1,
283    depending on whether the components are indexed in the same or
284    opposite directions.  For example, the transform dimension of the
285    arrays for all tile neighbors on the same subdomain will be [1,0],
286    since all tiles on the same subdomain are oriented identically.
287    Vectors that correspond to the orthogonal dimension with the same
288    index direction will have [0,1], whereas those in the opposite index
289    direction will have [0,-1].
290    
291    
292    {\footnotesize
293    \begin{verbatim}
294    C      exch2_pi          :: X index row of target to source permutation
295    C                        :: matrix for each neighbour entry.            
296    C      exch2_pj          :: Y index row of target to source permutation
297    C                        :: matrix for each neighbour entry.            
298    C      exch2_oi          :: X index element of target to source
299    C                        :: offset vector for cell-centered quantities  
300    C                        :: of each neighbor entry.                    
301    C      exch2_oj          :: Y index element of target to source
302    C                        :: offset vector for cell-centered quantities  
303    C                        :: of each neighbor entry.                    
304    C      exch2_oi_f        :: X index element of target to source
305    C                        :: offset vector for face quantities          
306    C                        :: of each neighbor entry.                    
307    C      exch2_oj_f        :: Y index element of target to source
308    C                        :: offset vector for face quantities          
309    C                        :: of each neighbor entry.                    
310    \end{verbatim}
311    }
312    
313    
314    

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.11

  ViewVC Help
Powered by ViewVC 1.1.22