/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.11 by afe, Mon Mar 15 22:39:28 2004 UTC revision 1.15 by afe, Thu Mar 18 14:56:25 2004 UTC
# Line 16  Line 16 
16    
17  \subsection{Introduction}  \subsection{Introduction}
18    
19  The \texttt{exch2} package is an extension to the original cubed  The \texttt{exch2} package extends the original cubed
20  sphere topological configuration that allows more flexible domain  sphere topology configuration to allow more flexible domain
21  decomposition and parallelization.  Cube faces (also called  decomposition and parallelization.  Cube faces (also called
22  subdomains) may be divided into any number of tiles that divide evenly  subdomains) may be divided into any number of tiles that divide evenly
23  into the grid point dimensions of the subdomain.  Furthermore, the  into the grid point dimensions of the subdomain.  Furthermore, the
24  individual tiles may be run on separate processors in different  individual tiles can run on separate processors in different
25  combinations, and whether exchanges between particular tiles occur  combinations, and whether exchanges between particular tiles occur
26  between different processors is determined at runtime.  This  between different processors is determined at runtime.  This
27  flexibility provides for manual compile-time load balancing across a  flexibility provides for manual compile-time load balancing across a
# Line 32  The exchange parameters are declared in Line 32  The exchange parameters are declared in
32  and assigned in  and assigned in
33  \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The  \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
34  validity of the cube topology depends on the \file{SIZE.h} file as  validity of the cube topology depends on the \file{SIZE.h} file as
35  detailed below.  Both files are generated by Matlab scripts in  detailed below.  The default files provided in the release configure a
36    cubed sphere topology of six tiles, one per subdomain, each with
37    32$\times$32 grid points, all running on a single processor.  Both
38    files are generated by Matlab scripts in
39  \file{utils/exch2/matlab-topology-generator}; see Section  \file{utils/exch2/matlab-topology-generator}; see Section
40  \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}  \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
41  for details on creating alternate topologies.  The default files  for details on creating alternate topologies.  Pregenerated examples
42  provided in the release configure a cubed sphere topology of six  of these files with alternate topologies are provided under
 tiles, one per subdomain, each with 32$\times$32 grid points, all  
 running on a single processor.  Pregenerated examples of these files  
 with alternate topologies are provided under  
43  \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}  \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
44  file for single-processor execution.  file for single-processor execution.
45    
# Line 51  met: \\ Line 51  met: \\
51  $\bullet$ The exch2 package is included when \file{genmake2} is run.  $\bullet$ The exch2 package is included when \file{genmake2} is run.
52    The easiest way to do this is to add the line \code{exch2} to the    The easiest way to do this is to add the line \code{exch2} to the
53    \file{profile.conf} file -- see Section    \file{profile.conf} file -- see Section
54    \ref{sect:buildingCode}\sectiontitle{Building the code} for general    \ref{sect:buildingCode} \sectiontitle{Building the code} for general
55    details. \\    details. \\
56    
57  $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and  $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
# Line 65  $\bullet$ An example of \file{W2\_EXCH2\ Line 65  $\bullet$ An example of \file{W2\_EXCH2\
65    configurations other than the one you intend to modify.\\    configurations other than the one you intend to modify.\\
66    
67  $\bullet$ Files containing grid parameters, named  $\bullet$ Files containing grid parameters, named
68    \file{tile???.mitgrid} where \file{???} is \file{001} through    \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),
69    \file{006} (one per subdomain), must be in the working directory    must be in the working directory when the MITgcm executable is run.
70    when the MITgcm executable is run.  These files are provided in the    These files are provided in the example experiments for cubed sphere
71    example experiments for cubed sphere configurations with    configurations with 32$\times$32 cube sides and are non-trivial to
72    32$\times$32 cube sides and are non-trivial to generate -- please    generate -- please contact MITgcm support if you want to generate
73    contact MITgcm support if you want to generate files for other    files for other configurations. \\
74    configurations. \\  
75    $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must
76  $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h}    be placed where \file{genmake2} will find it.  In particular for
77    must be placed where \file{genmake2} will find it.  In particular    exch2, the domain decomposition specified in \file{SIZE.h} must
78    for the exch2, the domain decomposition specified in \file{SIZE.h}    correspond with the particular configuration's topology specified in
79    must correspond with the particular configuration's topology    \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}.  Domain
80    specified in \file{W2\_EXCH2\_TOPOLOGY.h} and    decomposition issues particular to exch2 are addressed in Section
81    \file{w2\_e2setup.F}.  Domain decomposition issues particular to    \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
82    exch2 are addressed in Section \ref{sec:topogen} \sectiontitle{Generating    and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and MPI}; a more
83    Topology Files for exch2}; a more general background on the subject    general background on the subject relevant to MITgcm is presented in
84    relvant to MITgcm is presented in Section    Section \ref{sect:specifying_a_decomposition}
85    \ref{sect:specifying_a_decomposition}\sectiontitle{Specifying a    \sectiontitle{Specifying a decomposition}.\\
   decomposition}.\\  
86    
87  As of the time of writing the following examples use exch2 and may be  As of the time of writing the following examples use exch2 and may be
88  used for guidance:  used for guidance:
# Line 104  verification/hs94.cs-32x32x5 Line 103  verification/hs94.cs-32x32x5
103    
104  Alternate cubed sphere topologies may be created using the Matlab  Alternate cubed sphere topologies may be created using the Matlab
105  scripts in \file{utils/exch2/matlab-topology-generator}. Running the  scripts in \file{utils/exch2/matlab-topology-generator}. Running the
106  m-file \file{driver.m} from the Matlab prompt (there are no parameters  m-file
107  to pass) generates exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h}  \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
108  and \file{w2\_e2setup.F} in the working directory and displays a  from the Matlab prompt (there are no parameters to pass) generates
109  figure of the topology via Matlab.  The other m-files in the directory  exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
110  are subroutines of \file{driver.m} and should not be run except for  \file{w2\_e2setup.F} in the working directory and displays a figure of
111  development purposes. \\  the topology via Matlab.  The other m-files in the directory are
112    subroutines of \file{driver.m} and should not be run ``bare'' except
113    for development purposes. \\
114    
115  The parameters that determine the dimensions and topology of the  The parameters that determine the dimensions and topology of the
116  generated configuration are \code{nr}, \code{nb}, \code{ng},  generated configuration are \code{nr}, \code{nb}, \code{ng},
117  \code{tnx} and \code{tny}, and all are assigned early in the script.  \code{tnx} and \code{tny}, and all are assigned early in the script. \\
118    
119  The first three determine the size of the subdomains (cube faces) and  The first three determine the size of the subdomains and
120  hence the size of the overall domain.  Each one determines the number  hence the size of the overall domain.  Each one determines the number
121  of grid points, and therefore the resolution, along the subdomain  of grid points, and therefore the resolution, along the subdomain
122  sides in a ``great circle'' around each axis of the cube.  At the time  sides in a ``great circle'' around an axis of the cube.  At the time
123  of this writing MITgcm requires these three parameters to be equal,  of this writing MITgcm requires these three parameters to be equal,
124  but they provide for future releases of MITgcm to accomodate different  but they provide for future releases  to accomodate different
125  resolutions around the axes to allow (for example) greater resolution  resolutions around the axes to allow (for example) greater resolution
126  around the equator.\\  around the equator.\\
127    
# Line 128  The parameters \code{tnx} and \code{tny} Line 129  The parameters \code{tnx} and \code{tny}
129  the tiles into which the subdomains are decomposed, and must evenly  the tiles into which the subdomains are decomposed, and must evenly
130  divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.  divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
131  The result is a rectangular tiling of the subdomain.  Figure  The result is a rectangular tiling of the subdomain.  Figure
132  \ref{fig:24tile} shows one possible topology for a twenty-four tile  \ref{fig:24tile} shows one possible topology for a twentyfour-tile
133  cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\  cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
134    
135  \begin{figure}  \begin{figure}
# Line 137  cube, and figure \ref{fig:12tile} shows Line 138  cube, and figure \ref{fig:12tile} shows
138    \includegraphics{part6/s24t_16x16.ps}    \includegraphics{part6/s24t_16x16.ps}
139   }   }
140  \end{center}  \end{center}
141  \caption{Plot of cubed sphere topology with a 32$\times$32 grid and  
142  twenty-four tiles (\code{tnx=16, tny=16})  \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
143    divided into six 32$\times$32 subdomains, each of which is divided into four tiles
144    (\code{tnx=16, tny=16}) for a total of twentyfour tiles.
145  } \label{fig:24tile}  } \label{fig:24tile}
146  \end{figure}  \end{figure}
147    
# Line 148  twenty-four tiles (\code{tnx=16, tny=16} Line 151  twenty-four tiles (\code{tnx=16, tny=16}
151    \includegraphics{part6/s12t_16x32.ps}    \includegraphics{part6/s12t_16x32.ps}
152   }   }
153  \end{center}  \end{center}
154  \caption{Plot of cubed sphere topology with a 32$\times$32 grid and  \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
155  twelve tiles (\code{tnx=16, tny=32})  divided into six 32$\times$32 subdomains of two tiles each
156     (\code{tnx=16, tny=32}).
157  } \label{fig:12tile}  } \label{fig:12tile}
158  \end{figure}  \end{figure}
159    
160    \begin{figure}
161    \begin{center}
162     \resizebox{4in}{!}{
163      \includegraphics{part6/s6t_32x32.ps}
164     }
165    \end{center}
166    \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
167    divided into six 32$\times$32 subdomains with one tile each
168    (\code{tnx=32, tny=32}).  This is the default configuration.
169      }
170    \label{fig:6tile}
171    \end{figure}
172    
173    
174  Tiles can be selected from the topology to be omitted from being  Tiles can be selected from the topology to be omitted from being
175  allocated memory and processors.  This kind otuning is useful in  allocated memory and processors.  This tuning is useful in ocean
176  ocean modeling for omitting tiles that fall entirely on land.  The  modeling for omitting tiles that fall entirely on land.  The tiles
177  tiles omitted are specified in the file \file{blanklist.txt} by  omitted are specified in the file
178  their tile number in the topology, separated by a newline. \\  \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
179    by their tile number in the topology, separated by a newline. \\
180    
181    
182    
183    
184    \subsection{exch2, SIZE.h, and multiprocessing}
185    \label{sec:exch2mpi}
186    
187    Once the topology configuration files are created, the Fortran
188    \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
189    Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
190    a decomposition} provides a general description of domain
191    decomposition within MITgcm and its relation to \file{SIZE.h}. The
192    current section specifies certain constraints the exch2 package
193    imposes as well as describes how to enable parallel execution with
194    MPI. \\
195    
196    As in the general case, the parameters \varlink{sNx}{sNx} and
197    \varlink{sNy}{sNy} define the size of the individual tiles, and so
198    must be assigned the same respective values as \code{tnx} and
199    \code{tny} in \file{driver.m}.\\
200    
201    The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
202    have no special bearing on exch2 and may be assigned as in the general
203    case. The same holds for \varlink{Nr}{Nr}, the number of vertical
204    levels in the model.\\
205    
206    The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
207    \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
208    tiles and how they are distributed on processors.  When using exch2,
209    the tiles are stored in single dimension, and so
210    \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
211    configured by exch2 cannot be split up accross processors without
212    regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
213    
214    The number of tiles MITgcm allocates and how they are distributed
215    between processors depends on \varlink{nPx}{nPx} and
216    \varlink{nSx}{nSx}.  \varlink{nSx}{nSx} is the number of tiles per
217    processor and \varlink{nPx}{nPx} the number of processors.  The total
218    number of tiles in the topology minus those listed in
219    \file{blanklist.txt} must equal \code{nSx*nPx}. \\
220    
221    The following is an example of \file{SIZE.h} for the twelve-tile
222    configuration illustrated in figure \ref{fig:12tile} running on
223    one processor: \\
224    
225    \begin{verbatim}
226          PARAMETER (
227         &           sNx =  16,
228         &           sNy =  32,
229         &           OLx =   2,
230         &           OLy =   2,
231         &           nSx =  12,
232         &           nSy =   1,
233         &           nPx =   1,
234         &           nPy =   1,
235         &           Nx  = sNx*nSx*nPx,
236         &           Ny  = sNy*nSy*nPy,
237         &           Nr  =   5)
238    \end{verbatim}
239    
240    The following is an example for the twentyfour-tile topology in figure
241    \ref{fig:24tile} running on six processors:
242    
243    \begin{verbatim}
244          PARAMETER (
245         &           sNx =  16,
246         &           sNy =  16,
247         &           OLx =   2,
248         &           OLy =   2,
249         &           nSx =   4,
250         &           nSy =   1,
251         &           nPx =   6,
252         &           nPy =   1,
253         &           Nx  = sNx*nSx*nPx,
254         &           Ny  = sNy*nSy*nPy,
255         &           Nr  =   5)
256    \end{verbatim}
257    
258    
259    
260    
261    
262  \subsection{Key Variables}  \subsection{Key Variables}
# Line 169  their tile number in the topology, separ Line 264  their tile number in the topology, separ
264  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
265  one-dimensional arrays indexed to the tile number, and two and three  one-dimensional arrays indexed to the tile number, and two and three
266  dimensional arrays indexed to tile number and neighboring tile.  This  dimensional arrays indexed to tile number and neighboring tile.  This
267  division actually reflects the functionality of these variables: the  division reflects the functionality of these variables: The
268  scalars are common to every part of the topology, the tile-indexed  scalars are common to every part of the topology, the tile-indexed
269  arrays to individual tiles, and the arrays indexed to tile and  arrays to individual tiles, and the arrays indexed by tile and
270  neighbor to relationships between tiles and their neighbors.  neighbor to relationships between tiles and their neighbors. \\
271    
272  \subsubsection{Scalars}  \subsubsection{Scalars}
273    
274  The number of tiles in a particular topology is set with the parameter  The number of tiles in a particular topology is set with the parameter
275  \texttt{NTILES}, and the maximum number of neighbors of any tiles by  \code{NTILES}, and the maximum number of neighbors of any tiles by
276  \texttt{MAX\_NEIGHBOURS}.  These parameters are used for defining the  \code{MAX\_NEIGHBOURS}.  These parameters are used for defining the
277  size of the various one and two dimensional arrays that store tile  size of the various one and two dimensional arrays that store tile
278  parameters indexed to the tile number.\\  parameters indexed to the tile number and are assigned in the files
279    generated by \file{driver.m}.\\
280    
281  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
282  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
283  of tiles in the x and y global indices.  For example, the default  of tiles in the $x$ and $y$ global indices.  For example, the default
284  setup of six tiles has \texttt{exch2\_domain\_nxt=6} and  setup of six tiles (Fig. \ref{fig:6tile}) has
285  \texttt{exch2\_domain\_nyt=1}.  A topology of twenty-four square (in  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
286  gridpoints) tiles, four (2x2) per subdomain, will have  topology of twenty-four square tiles, four per subdomain (as in figure
287  \texttt{exch2\_domain\_nxt=12} and \texttt{exch2\_domain\_nyt=2}.  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
288  Note that these parameters express the tile layout to allow global  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the
289  data files that are tile-layout-neutral and have no bearing on the  tile layout to allow global data files that are tile-layout-neutral
290  internal storage of the arrays.  The tiles are internally stored in a  and have no bearing on the internal storage of the arrays.  The tiles
291  range from \texttt{1,bi} (in the x axis) and y-axis variable  are internally stored in a range from \code{(1:\varlink{bi}{bi})} the
292  \texttt{bj} is generally ignored within the package.  $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is generally
293    ignored within the package. \\
294    
295  \subsubsection{Arrays Indexed to Tile Number}  \subsubsection{Arrays Indexed to Tile Number}
296    
297  The following arrays are of size \texttt{NTILES}, are indexed to the  The following arrays are of length \code{NTILES}and are indexed to the
298  tile number, and the indices are omitted in their descriptions.  tile number, which is indicated in the diagrams with the notation
299    \textsf{t}$n$.  The indices are omitted in the descriptions. \\
300    
301  The arrays \varlink{exch2\_tnx}{exch2_tnx} and  The arrays \varlink{exch2\_tnx}{exch2_tnx} and
302  \varlink{exch2\_tny}{exch2_tny} express the x and y dimensions of each  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
303  tile.  At present for each tile \texttt{exch2\_tnx=sNx} and  each tile.  At present for each tile \texttt{exch2\_tnx=sNx} and
304  \texttt{exch2\_tny=sNy}, as assigned in \texttt{SIZE.h}.  Future  \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
305  releases of MITgcm are to allow varying tile sizes.  section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
306    multiprocessing}.  Future releases of MITgcm are to allow varying tile
307    sizes. \\
308    
309  The location of the tiles' Cartesian origin within a subdomain are  The location of the tiles' Cartesian origin within a subdomain are
310  determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and  determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
311  \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to  \varlink{exch2\_tbasey}{exch2_tbasey}.  These variables are used to
312  relate the location of the edges of the tiles to each other.  As an  relate the location of the edges of different tiles to each other.  As
313  example, in the default six-tile topology (the degenerate case) each  an example, in the default six-tile topology (Fig. \ref{fig:6tile})
314  index in these arrays are set to 0.  The twenty-four, 32x32 cube face  each index in these arrays is set to \code{0} since a tile occupies
315  case discussed above will have values of 0 or 16, depending on the  its entire subdomain.  The twentyfour-tile case discussed above will
316  quadrant the tile falls within the subdomain.  The array  have values of \code{0} or \code{16}, depending on the quadrant the
317  \varlink{exch2\_myFace}{exch2_myFace} contains the number of the  tile falls within the subdomain.  The elements of the arrays
318  cubeface/subdomain of each tile, numbered 1-6 in the case of the  \varlink{exch2\_txglobalo}{exch2_txglobalo} and
 standard cube topology.  
   
 The arrays \varlink{exch2\_txglobalo}{exch2_txglobalo} and  
319  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
320  \varlink{exch2\_tbasex}{exch2_tbasex} and  \varlink{exch2\_tbasex}{exch2_tbasex} and
321  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the
322  global address space, similar to that used by global files.  global address space, similar to that used by global files. \\
323    
324    The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
325    the subdomain of each tile, in a range \code{(1:6)} in the case of the
326    standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
327    figures \ref{fig:12tile} and
328    \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
329    contains a count the  neighboring tiles each tile has, and is
330    used for setting bounds for looping over neighboring tiles.
331    \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
332    tile, and is used in interprocess communication.  \\
333    
334    
335  The arrays \varlink{exch2\_isWedge}{exch2_isWedge},  The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
336  \varlink{exch2\_isEedge}{exch2_isEedge},  \varlink{exch2\_isEedge}{exch2_isEedge},
337  \varlink{exch2\_isSedge}{exch2_isSedge}, and  \varlink{exch2\_isSedge}{exch2_isSedge}, and
338  \varlink{exch2\_isNedge}{exch2_isNedge} are set to 1 if the indexed  \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
339  tile lies on the edge of a subdomain, 0 if not.  The values are used  indexed tile lies on the respective edge of a subdomain, \code{0} if
340  within the topology generator to determine the orientation of  not.  The values are used within the topology generator to determine
341  neighboring tiles and to indicate whether a tile lies on the corner of  the orientation of neighboring tiles, and to indicate whether a tile
342  a subdomain.  The latter case indicates special exchange and numerical  lies on the corner of a subdomain.  The latter case requires special
343  handling for the singularities at the eight corners of the cube.  exchange and numerical handling for the singularities at the eight
344  \varlink{exch2\_nNeighbours}{exch2_nNeighbours} contains a count of  corners of the cube. \\
 how many neighboring tiles each tile has, and is used for setting  
 bounds for looping over neighboring tiles.  
 \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each  
 tile, and is used in interprocess communication.  
345    
 \subsubsection{Arrays Indexed to Tile Number and Neighbor}  
346    
347  The following arrays are all of size \texttt{MAX\_NEIGHBOURS} $\times$  \subsubsection{Arrays Indexed to Tile Number and Neighbor}
 \texttt{NTILES} and describe the orientations between the the tiles.  
348    
349  The array \texttt{exch2\_neighbourId(a,T)} holds the tile number for  The following arrays are all of size
350  each of the $n$ neighboring tiles.  The neighbor tiles are indexed  \code{MAX\_NEIGHBOURS}$\times$\code{NTILES} and describe the
351  \texttt{(1,MAX\_NEIGHBOURS} in the order right to left on the north  orientations between the the tiles. \\
352  then south edges, and then top to bottom on the east and west edges.  
353  Maybe throw in a fig here, eh?  The array \code{exch2\_neighbourId(a,T)} holds the tile number
354    \code{Tn} for each of the tile number \code{T}'s neighboring tiles
355  The \texttt{exch2\_opposingSend\_record(a,T)} array holds the index c  \code{a}.  The neighbor tiles are indexed
356  in \texttt{exch2\_neighbourId(b,$T_{n}$)} that holds the tile number T.  \code{(1:exch2\_NNeighbours(T))} in the order right to left on the
357  In other words,  north then south edges, and then top to bottom on the east and west
358    edges.  Maybe throw in a fig here, eh?  \\
359    
360    \sloppy The \code{exch2\_opposingSend\_record(a,T)} array holds the
361    index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
362    that holds the tile number \code{T}, given
363    \code{Tn=exch2\_neighborId(a,T)}.  In other words,
364  \begin{verbatim}  \begin{verbatim}
365     exch2_neighbourId( exch2_opposingSend_record(a,T),     exch2_neighbourId( exch2_opposingSend_record(a,T),
366                        exch2_neighbourId(a,T) ) = T                        exch2_neighbourId(a,T) ) = T
367  \end{verbatim}  \end{verbatim}
368  and this provides a back-reference from the neighbor tiles.  This provides a back-reference from the neighbor tiles. \\
369    
370  The arrays \varlink{exch2\_pi}{exch2_pi},  The arrays \varlink{exch2\_pi}{exch2_pi} and
371  \varlink{exch2\_pj}{exch2_pj}, \varlink{exch2\_oi}{exch2_oi},  \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
372    in exchanges between the neighboring tiles.  These transformations are
373    necessary in exchanges between subdomains because the array index in
374    one dimension may map to the other index in an adjacent subdomain, and
375    may be have its indexing reversed. This swapping arises from the
376    ``folding'' of two-dimensional arrays into a three-dimensional cube.
377    
378    The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
379    are the neighbor ID \code{N} and the tile number \code{T} as explained
380    above, plus a vector of length \code{2} containing transformation
381    factors \code{t}.  The first element of the transformation vector
382    holds the factor to multiply the index in the same axis, and the
383    second element holds the the same for the orthogonal index.  To
384    clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
385    index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
386    \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
387    $x$ index to the neighbor \code{N}'s $y$ index. \\
388    
389    One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
390    given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
391    the fact that the two axes are orthogonal.  The other element will be
392    \code{1} or \code{-1}, depending on whether the axes are indexed in
393    the same or opposite directions.  For example, the transform vector of
394    the arrays for all tile neighbors on the same subdomain will be
395    \code{(1,0)}, since all tiles on the same subdomain are oriented
396    identically.  An axis that corresponds to the orthogonal dimension
397    with the same index direction in a particular tile-neighbor
398    orientation will have \code{(0,1)}.  Those in the opposite index
399    direction will have \code{(0,-1)} in order to reverse the ordering. \\
400    
401    The arrays \varlink{exch2\_oi}{exch2_oi},
402  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
403  \varlink{exch2\_oj\_f}{exch2_oj_f} specify the transformations in  \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
404  exchanges between the neighboring tiles.  The dimensions of  neighbor and specify the relative offset within the subdomain of the
405  \texttt{exch2\_pi(t,N,T)} and \texttt{exch2\_pj(t,N,T)} are the  array index of a variable going from a neighboring tile $N$ to a local
406  neighbor ID \textit{N} and the tile number \textit{T} as explained  tile $T$.  Consider the six-tile case (Fig. \ref{fig:6tile}), where
407  above, plus the transformation vector {\em t }, of length two.  The  \code{exch2\_oi(1,1)=33}, \code{exch2\_oi(2,1)=0},
408  first element of the transformation vector indicates the factor by  \code{exch2\_oi(3,1)=32}, and \code{exch2\_oi(4,1)=-32}.  Each of these
409  which variables representing the same vector component of a tile will  indicates the offset in the $x$ direction \\
410  be multiplied, and the second element indicates the transform to the  
411  variable in the other direction.  As an example,  Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
412  \texttt{exch2\_pi(1,N,T)} holds the transform of the i-component of a  \varlink{exch2\_ithi\_c}{exch2_ithi_c},
413  vector variable in tile \texttt{T} to the i-component of tile  \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
414  \texttt{T}'s neighbor \texttt{N}, and \texttt{exch2\_pi(2,N,T)} hold  \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
415  the component of neighbor \texttt{N}'s j-component.  bounds of the edge segment of the neighbor tile \code{N}'s subdomain
416    that gets exchanged with the local tile \code{T}.  To take the example
417  Under the current cube topology, one of the two elements of  of tile \code{T=2} in the twelve-tile topology
418  \texttt{exch2\_pi} or \texttt{exch2\_pj} for a given tile \texttt{T}  (Fig. \ref{fig:12tile}): \\
 and neighbor \texttt{N} will be 0, reflecting the fact that the vector  
 components are orthogonal.  The other element will be 1 or -1,  
 depending on whether the components are indexed in the same or  
 opposite directions.  For example, the transform dimension of the  
 arrays for all tile neighbors on the same subdomain will be [1,0],  
 since all tiles on the same subdomain are oriented identically.  
 Vectors that correspond to the orthogonal dimension with the same  
 index direction will have [0,1], whereas those in the opposite index  
 direction will have [0,-1].  
419    
420    \begin{verbatim}
421           exch2_itlo_c(4,2)=17
422           exch2_ithi_c(4,2)=17
423           exch2_jtlo_c(4,2)=0
424           exch2_jthi_c(4,2)=33
425    \end{verbatim}
426    
427    Here \code{N=4}, indicating the western neighbor, which is \code{Tn=1}.
428    \code{Tn=1} resides on the same subdomain as \code{T=2}, so the tiles
429    have the same orientation and the same $x$ and $y$ axes.  The $i$
430    component is orthogonal to the western edge and the tile is 16 points
431    wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} indicate the
432    column beyond \code{Tn=1}'s eastern edge, in that tile's halo
433    region. Since the border of the tiles extends through the entire
434    height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
435    \code{exch2\_jthi\_c} cover the height, plus 1 in either direction to
436    cover part of the halo. \\
437    
438    For the north edge of the same tile \code{T=2} where \code{N=1} and
439    the neighbor tile is \code{Tn=5}:
440    
 {\footnotesize  
441  \begin{verbatim}  \begin{verbatim}
442  C      exch2_pi          :: X index row of target to source permutation         exch2_itlo_c(1,2)=0
443  C                        :: matrix for each neighbour entry.                     exch2_ithi_c(1,2)=0
444  C      exch2_pj          :: Y index row of target to source permutation         exch2_jtlo_c(1,2)=0
445  C                        :: matrix for each neighbour entry.                     exch2_jthi_c(1,2)=17
 C      exch2_oi          :: X index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oj          :: Y index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oi_f        :: X index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
 C      exch2_oj_f        :: Y index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
446  \end{verbatim}  \end{verbatim}
447  }  
448    \code{T}'s northern edge is parallel to the $x$ axis, but since
449    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis,
450    \code{T}'s northern edge exchanges with \code{Tn}'s western edge.
451    The western edge of the tiles corresponds to the lower bound of the
452    $x$ axis, so \code{exch2\_itlo\_c} \code{exch2\_ithi\_c} are \code{0}. The
453    range of \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
454    width of \code{T}'s northern edge, plus the halo. \\
455    
456    
457    
458    
459    
460    
461    
462    
463    
464    
465    
466    This needs some diagrams. \\
467    
468    
469    

Legend:
Removed from v.1.11  
changed lines
  Added in v.1.15

  ViewVC Help
Powered by ViewVC 1.1.22