/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.24 - (hide annotations) (download) (as text)
Mon Jul 18 20:45:27 2005 UTC (19 years, 11 months ago) by molod
Branch: MAIN
Changes since 1.23: +11 -11 lines
File MIME type: application/x-tex
Reorganization of chap 6 and 7 -- move some tex files, demote many
sections in section hierarchy

1 molod 1.24 % $Header: /u/gcmpack/manual/part6/exch2.tex,v 1.23 2005/06/10 19:34:09 afe Exp $
2 afe 1.1 % $Name: $
3    
4     %% * Introduction
5     %% o what it does, citations (refs go into mitgcm_manual.bib,
6     %% preferably in alphabetic order)
7     %% o Equations
8     %% * Key subroutines and parameters
9     %% * Reference material (auto generated from Protex and structured comments)
10     %% o automatically inserted at \section{Reference}
11    
12    
13 molod 1.24 \subsection{exch2: Extended Cubed Sphere \mbox{Topology}}
14 afe 1.3 \label{sec:exch2}
15    
16 afe 1.1
17 molod 1.24 \subsubsection{Introduction}
18 afe 1.2
19 afe 1.17 The \texttt{exch2} package extends the original cubed sphere topology
20     configuration to allow more flexible domain decomposition and
21     parallelization. Cube faces (also called subdomains) may be divided
22     into any number of tiles that divide evenly into the grid point
23     dimensions of the subdomain. Furthermore, the tiles can run on
24     separate processors individually or in groups, which provides for
25     manual compile-time load balancing across a relatively arbitrary
26     number of processors. \\
27 edhill 1.8
28     The exchange parameters are declared in
29     \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
30     and assigned in
31 afe 1.9 \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
32 afe 1.11 validity of the cube topology depends on the \file{SIZE.h} file as
33 afe 1.12 detailed below. The default files provided in the release configure a
34     cubed sphere topology of six tiles, one per subdomain, each with
35 afe 1.18 32$\times$32 grid points, with all tiles running on a single processor. Both
36 afe 1.12 files are generated by Matlab scripts in
37 afe 1.11 \file{utils/exch2/matlab-topology-generator}; see Section
38     \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
39 afe 1.12 for details on creating alternate topologies. Pregenerated examples
40     of these files with alternate topologies are provided under
41 afe 1.11 \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
42     file for single-processor execution.
43 afe 1.9
44 molod 1.24 \subsubsection{Invoking exch2}
45 afe 1.9
46 afe 1.10 To use exch2 with the cubed sphere, the following conditions must be
47 afe 1.23 met: \\
48 afe 1.9
49 afe 1.23 $\bullet$ The exch2 package is included when \file{genmake2} is run.
50     The easiest way to do this is to add the line \code{exch2} to the
51     \file{profile.conf} file -- see Section
52     \ref{sect:buildingCode} \sectiontitle{Building the code} for general
53     details. \\
54    
55     $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
56 afe 1.17 \file{w2\_e2setup.F} must reside in a directory containing files
57 afe 1.23 symbolically linked by the \file{genmake2} script. The safest place to
58     put these is the directory indicated in the \code{-mods=DIR} command
59     line modifier (typically \file{../code}), or the build directory.
60     The default versions of these files reside in \file{pkg/exch2} and
61     are linked automatically if no other versions exist elsewhere in the
62     build path, but they should be left untouched to avoid breaking
63     configurations other than the one you intend to modify.\\
64    
65     $\bullet$ Files containing grid parameters, named
66     \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),
67     must be in the working directory when the MITgcm executable is run.
68     These files are provided in the example experiments for cubed sphere
69     configurations with 32$\times$32 cube sides
70     -- please contact MITgcm support if you want to generate
71     files for other configurations. \\
72    
73     $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must
74     be placed where \file{genmake2} will find it. In particular for
75     exch2, the domain decomposition specified in \file{SIZE.h} must
76     correspond with the particular configuration's topology specified in
77 afe 1.12 \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}. Domain
78     decomposition issues particular to exch2 are addressed in Section
79     \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
80 afe 1.23 and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and Multiprocessing}; a more
81     general background on the subject relevant to MITgcm is presented in
82     Section \ref{sect:specifying_a_decomposition}
83     \sectiontitle{Specifying a decomposition}.\\
84 afe 1.9
85 afe 1.17 At the time of this writing the following examples use exch2 and may
86     be used for guidance:
87 afe 1.9
88     \begin{verbatim}
89     verification/adjust_nlfs.cs-32x32x1
90     verification/adjustment.cs-32x32x1
91     verification/aim.5l_cs
92     verification/global_ocean.cs32x15
93     verification/hs94.cs-32x32x5
94     \end{verbatim}
95    
96    
97    
98    
99 molod 1.24 \subsubsection{Generating Topology Files for exch2}
100 afe 1.10 \label{sec:topogen}
101    
102     Alternate cubed sphere topologies may be created using the Matlab
103 afe 1.11 scripts in \file{utils/exch2/matlab-topology-generator}. Running the
104 afe 1.12 m-file
105     \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
106     from the Matlab prompt (there are no parameters to pass) generates
107     exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
108     \file{w2\_e2setup.F} in the working directory and displays a figure of
109 afe 1.18 the topology via Matlab -- figures \ref{fig:6tile}, \ref{fig:12tile},
110 afe 1.19 and \ref{fig:24tile} are examples of the generated diagrams. The other
111     m-files in the directory are
112     subroutines called from \file{driver.m} and should not be run ``bare'' except
113 afe 1.12 for development purposes. \\
114 afe 1.10
115     The parameters that determine the dimensions and topology of the
116 afe 1.11 generated configuration are \code{nr}, \code{nb}, \code{ng},
117 afe 1.12 \code{tnx} and \code{tny}, and all are assigned early in the script. \\
118 afe 1.10
119 afe 1.19 The first three determine the height and width of the subdomains and
120 afe 1.10 hence the size of the overall domain. Each one determines the number
121     of grid points, and therefore the resolution, along the subdomain
122 afe 1.18 sides in a ``great circle'' around each the three spatial axes of the cube. At the time
123 afe 1.10 of this writing MITgcm requires these three parameters to be equal,
124 afe 1.12 but they provide for future releases to accomodate different
125 afe 1.19 resolutions around the axes to allow subdomains with differing resolutions.\\
126 afe 1.10
127 afe 1.18 The parameters \code{tnx} and \code{tny} determine the width and height of
128 afe 1.11 the tiles into which the subdomains are decomposed, and must evenly
129     divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
130     The result is a rectangular tiling of the subdomain. Figure
131 afe 1.17 \ref{fig:24tile} shows one possible topology for a twenty-four-tile
132 afe 1.11 cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
133 afe 1.10
134     \begin{figure}
135     \begin{center}
136     \resizebox{4in}{!}{
137     \includegraphics{part6/s24t_16x16.ps}
138     }
139     \end{center}
140 afe 1.12
141 afe 1.13 \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
142 afe 1.17 divided into six 32$\times$32 subdomains, each of which is divided
143 afe 1.18 into four tiles of width \code{tnx=16} and height \code{tny=16} for a
144     total of twenty-four tiles. The colored borders of the subdomains
145     represent the parameters \code{nr} (red), \code{nb} (blue), and
146     \code{ng} (green). } \label{fig:24tile}
147 afe 1.10 \end{figure}
148    
149     \begin{figure}
150     \begin{center}
151     \resizebox{4in}{!}{
152     \includegraphics{part6/s12t_16x32.ps}
153     }
154     \end{center}
155 afe 1.13 \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
156 afe 1.12 divided into six 32$\times$32 subdomains of two tiles each
157     (\code{tnx=16, tny=32}).
158 afe 1.10 } \label{fig:12tile}
159     \end{figure}
160    
161 afe 1.13 \begin{figure}
162     \begin{center}
163     \resizebox{4in}{!}{
164     \includegraphics{part6/s6t_32x32.ps}
165     }
166     \end{center}
167     \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
168     divided into six 32$\times$32 subdomains with one tile each
169     (\code{tnx=32, tny=32}). This is the default configuration.
170     }
171     \label{fig:6tile}
172     \end{figure}
173    
174    
175 afe 1.10 Tiles can be selected from the topology to be omitted from being
176 afe 1.12 allocated memory and processors. This tuning is useful in ocean
177     modeling for omitting tiles that fall entirely on land. The tiles
178     omitted are specified in the file
179     \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
180     by their tile number in the topology, separated by a newline. \\
181    
182 afe 1.10
183    
184    
185 molod 1.24 \subsubsection{exch2, SIZE.h, and Multiprocessing}
186 afe 1.12 \label{sec:exch2mpi}
187    
188     Once the topology configuration files are created, the Fortran
189 afe 1.13 \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
190     Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
191     a decomposition} provides a general description of domain
192     decomposition within MITgcm and its relation to \file{SIZE.h}. The
193 afe 1.19 current section specifies constraints that the exch2 package
194     imposes and describes how to enable parallel execution with
195 afe 1.13 MPI. \\
196 afe 1.12
197     As in the general case, the parameters \varlink{sNx}{sNx} and
198     \varlink{sNy}{sNy} define the size of the individual tiles, and so
199     must be assigned the same respective values as \code{tnx} and
200     \code{tny} in \file{driver.m}.\\
201    
202     The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
203     have no special bearing on exch2 and may be assigned as in the general
204     case. The same holds for \varlink{Nr}{Nr}, the number of vertical
205     levels in the model.\\
206    
207     The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
208     \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
209     tiles and how they are distributed on processors. When using exch2,
210 afe 1.19 the tiles are stored in the $x$ dimension, and so
211 afe 1.12 \code{\varlink{nSy}{nSy}=1} in all cases. Since the tiles as
212     configured by exch2 cannot be split up accross processors without
213     regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
214    
215     The number of tiles MITgcm allocates and how they are distributed
216     between processors depends on \varlink{nPx}{nPx} and
217     \varlink{nSx}{nSx}. \varlink{nSx}{nSx} is the number of tiles per
218 afe 1.23 processor and \varlink{nPx}{nPx} is the number of processors. The
219     total number of tiles in the topology minus those listed in
220     \file{blanklist.txt} must equal \code{nSx*nPx}. Note that in order to
221 afe 1.19 obtain maximum usage from a given number of processors in some cases,
222 afe 1.23 this restriction might entail sharing a processor with a tile that
223     would otherwise be excluded because it is topographically outside of
224     the domain and therefore in \file{blanklist.txt}. For example,
225     suppose you have five processors and a domain decomposition of
226     thirty-six tiles that allows you to exclude seven tiles. To evenly
227     distribute the remaining twenty-nine tiles among five processors, you
228     would have to run one ``dummy'' tile to make an even six tiles per
229     processor. Such dummy tiles are \emph{not} listed in
230     \file{blanklist.txt}.\\
231    
232 afe 1.12
233     The following is an example of \file{SIZE.h} for the twelve-tile
234     configuration illustrated in figure \ref{fig:12tile} running on
235     one processor: \\
236    
237     \begin{verbatim}
238     PARAMETER (
239     & sNx = 16,
240     & sNy = 32,
241     & OLx = 2,
242     & OLy = 2,
243     & nSx = 12,
244     & nSy = 1,
245     & nPx = 1,
246     & nPy = 1,
247     & Nx = sNx*nSx*nPx,
248     & Ny = sNy*nSy*nPy,
249     & Nr = 5)
250     \end{verbatim}
251    
252 afe 1.17 The following is an example for the twenty-four-tile topology in
253     figure \ref{fig:24tile} running on six processors:
254 afe 1.12
255     \begin{verbatim}
256     PARAMETER (
257     & sNx = 16,
258     & sNy = 16,
259     & OLx = 2,
260     & OLy = 2,
261     & nSx = 4,
262     & nSy = 1,
263     & nPx = 6,
264     & nPy = 1,
265     & Nx = sNx*nSx*nPx,
266     & Ny = sNy*nSy*nPy,
267     & Nr = 5)
268     \end{verbatim}
269    
270    
271 afe 1.10
272    
273 afe 1.4
274 molod 1.24 \subsubsection{Key Variables}
275 afe 1.4
276     The descriptions of the variables are divided up into scalars,
277 afe 1.17 one-dimensional arrays indexed to the tile number, and two and
278     three-dimensional arrays indexed to tile number and neighboring tile.
279     This division reflects the functionality of these variables: The
280 edhill 1.8 scalars are common to every part of the topology, the tile-indexed
281 afe 1.12 arrays to individual tiles, and the arrays indexed by tile and
282     neighbor to relationships between tiles and their neighbors. \\
283 afe 1.4
284 molod 1.24 Scalars:
285 afe 1.4
286     The number of tiles in a particular topology is set with the parameter
287 afe 1.12 \code{NTILES}, and the maximum number of neighbors of any tiles by
288     \code{MAX\_NEIGHBOURS}. These parameters are used for defining the
289 edhill 1.8 size of the various one and two dimensional arrays that store tile
290 afe 1.12 parameters indexed to the tile number and are assigned in the files
291     generated by \file{driver.m}.\\
292 edhill 1.8
293     The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
294     and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
295 afe 1.12 of tiles in the $x$ and $y$ global indices. For example, the default
296 afe 1.15 setup of six tiles (Fig. \ref{fig:6tile}) has
297     \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}. A
298     topology of twenty-four square tiles, four per subdomain (as in figure
299     \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
300     \code{exch2\_domain\_nyt=2}. Note that these parameters express the
301 afe 1.19 tile layout in order to allow global data files that are tile-layout-neutral.
302     They have no bearing on the internal storage of the arrays. The tiles
303     are stored internally in a range from \code{\varlink{bi}{bi}=(1:NTILES)} in the
304 afe 1.18 $x$ axis, and the $y$ axis variable \varlink{bj}{bj} is assumed to
305     equal \code{1} throughout the package. \\
306 afe 1.4
307 molod 1.24 Arrays indexed to tile number:
308 afe 1.4
309 afe 1.17 The following arrays are of length \code{NTILES} and are indexed to
310     the tile number, which is indicated in the diagrams with the notation
311 afe 1.23 \textsf{t}$n$. The indices are omitted in the descriptions. \\
312 afe 1.4
313 edhill 1.8 The arrays \varlink{exch2\_tnx}{exch2_tnx} and
314 afe 1.12 \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
315     each tile. At present for each tile \texttt{exch2\_tnx=sNx} and
316     \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
317 afe 1.19 Section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
318     Multiprocessing}. Future releases of MITgcm may allow varying tile
319 afe 1.12 sizes. \\
320 edhill 1.8
321 afe 1.19 The arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
322     \varlink{exch2\_tbasey}{exch2_tbasey} determine the tiles'
323     Cartesian origin within a subdomain
324     and locate the edges of different tiles relative to each other. As
325 afe 1.13 an example, in the default six-tile topology (Fig. \ref{fig:6tile})
326     each index in these arrays is set to \code{0} since a tile occupies
327 afe 1.17 its entire subdomain. The twenty-four-tile case discussed above will
328 afe 1.19 have values of \code{0} or \code{16}, depending on the quadrant of the
329     tile within the subdomain. The elements of the arrays
330 afe 1.13 \varlink{exch2\_txglobalo}{exch2_txglobalo} and
331     \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
332 edhill 1.8 \varlink{exch2\_tbasex}{exch2_tbasex} and
333 afe 1.19 \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tile edges within the
334 afe 1.17 global address space, similar to that used by global output and input
335     files. \\
336 edhill 1.8
337 afe 1.13 The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
338     the subdomain of each tile, in a range \code{(1:6)} in the case of the
339 afe 1.23 standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
340     figures \ref{fig:12tile} and
341     \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
342     contains a count of the neighboring tiles each tile has, and sets
343     the bounds for looping over neighboring tiles.
344 afe 1.13 \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
345     tile, and is used in interprocess communication. \\
346    
347    
348 edhill 1.8 The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
349     \varlink{exch2\_isEedge}{exch2_isEedge},
350     \varlink{exch2\_isSedge}{exch2_isSedge}, and
351 afe 1.12 \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
352 afe 1.19 indexed tile lies on the edge of its subdomain, \code{0} if
353 afe 1.15 not. The values are used within the topology generator to determine
354     the orientation of neighboring tiles, and to indicate whether a tile
355     lies on the corner of a subdomain. The latter case requires special
356 afe 1.12 exchange and numerical handling for the singularities at the eight
357 afe 1.13 corners of the cube. \\
358    
359 afe 1.4
360 molod 1.24 Arrays Indexed to Tile Number and Neighbor:
361 afe 1.4
362 afe 1.17 The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
363     \code{NTILES} and describe the orientations between the the tiles. \\
364 afe 1.12
365     The array \code{exch2\_neighbourId(a,T)} holds the tile number
366     \code{Tn} for each of the tile number \code{T}'s neighboring tiles
367 afe 1.15 \code{a}. The neighbor tiles are indexed
368 afe 1.17 \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
369     north then south edges, and then top to bottom on the east then west
370     edges. \\
371 afe 1.15
372 afe 1.17 The \code{exch2\_opposingSend\_record(a,T)} array holds the
373 afe 1.15 index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
374     that holds the tile number \code{T}, given
375     \code{Tn=exch2\_neighborId(a,T)}. In other words,
376 edhill 1.8 \begin{verbatim}
377     exch2_neighbourId( exch2_opposingSend_record(a,T),
378     exch2_neighbourId(a,T) ) = T
379 afe 1.5 \end{verbatim}
380 afe 1.12 This provides a back-reference from the neighbor tiles. \\
381 afe 1.5
382 afe 1.13 The arrays \varlink{exch2\_pi}{exch2_pi} and
383 afe 1.15 \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
384 afe 1.13 in exchanges between the neighboring tiles. These transformations are
385 afe 1.19 necessary in exchanges between subdomains because a horizontal dimension
386     in one subdomain
387     may map to other horizonal dimension in an adjacent subdomain, and
388     may also have its indexing reversed. This swapping arises from the
389 afe 1.17 ``folding'' of two-dimensional arrays into a three-dimensional
390     cube. \\
391 afe 1.13
392     The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
393     are the neighbor ID \code{N} and the tile number \code{T} as explained
394 afe 1.15 above, plus a vector of length \code{2} containing transformation
395     factors \code{t}. The first element of the transformation vector
396 afe 1.19 holds the factor to multiply the index in the same dimension, and the
397     second element holds the the same for the orthogonal dimension. To
398 afe 1.15 clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
399     index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
400     \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
401     $x$ index to the neighbor \code{N}'s $y$ index. \\
402 afe 1.12
403 afe 1.15 One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
404     given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
405     the fact that the two axes are orthogonal. The other element will be
406     \code{1} or \code{-1}, depending on whether the axes are indexed in
407     the same or opposite directions. For example, the transform vector of
408     the arrays for all tile neighbors on the same subdomain will be
409 afe 1.13 \code{(1,0)}, since all tiles on the same subdomain are oriented
410 afe 1.15 identically. An axis that corresponds to the orthogonal dimension
411     with the same index direction in a particular tile-neighbor
412 afe 1.19 orientation will have \code{(0,1)}. Those with the opposite index
413 afe 1.15 direction will have \code{(0,-1)} in order to reverse the ordering. \\
414 afe 1.13
415 afe 1.14 The arrays \varlink{exch2\_oi}{exch2_oi},
416     \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
417     \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
418     neighbor and specify the relative offset within the subdomain of the
419 afe 1.17 array index of a variable going from a neighboring tile \code{N} to a
420     local tile \code{T}. Consider \code{T=1} in the six-tile topology
421 afe 1.16 (Fig. \ref{fig:6tile}), where
422    
423     \begin{verbatim}
424     exch2_oi(1,1)=33
425     exch2_oi(2,1)=0
426     exch2_oi(3,1)=32
427     exch2_oi(4,1)=-32
428     \end{verbatim}
429    
430     The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
431     which is \code{Tn=6}. The axes of \code{T} and \code{Tn} have the
432     same orientation and their $x$ axes have the same origin, and so an
433     exchange between the two requires no changes to the $x$ index. For
434     the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
435     \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
436     \code{Tn}. The eastern edge of \code{T} shows the reverse case
437 afe 1.17 (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
438     with \code{x=0} on \code{Tn=2}. \\
439    
440     The most interesting case, where \code{exch2\_oi(1,1)=33} and
441     \code{Tn=3}, involves a reversal of indices. As in every case, the
442     offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
443     multiplied by the transformation factor \code{exch2\_pi(t,N,T)}. Here
444     \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
445     to the $x$ axis of \code{Tn}. \code{exch2\_pi(2,1,1)=-1} since the
446     $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
447     index is reversed. The result is that the index of the northern edge
448     of \code{T}, which runs \code{(1:32)}, is transformed to
449 afe 1.16 \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
450 afe 1.17 get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
451     relative to \code{T}. This transformation may seem overly convoluted
452     for the six-tile case, but it is necessary to provide a general
453     solution for various topologies. \\
454 afe 1.16
455    
456 afe 1.14
457     Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
458     \varlink{exch2\_ithi\_c}{exch2_ithi_c},
459     \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
460     \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
461     bounds of the edge segment of the neighbor tile \code{N}'s subdomain
462     that gets exchanged with the local tile \code{T}. To take the example
463     of tile \code{T=2} in the twelve-tile topology
464     (Fig. \ref{fig:12tile}): \\
465    
466     \begin{verbatim}
467     exch2_itlo_c(4,2)=17
468     exch2_ithi_c(4,2)=17
469     exch2_jtlo_c(4,2)=0
470     exch2_jthi_c(4,2)=33
471     \end{verbatim}
472    
473 afe 1.17 Here \code{N=4}, indicating the western neighbor, which is
474     \code{Tn=1}. \code{Tn} resides on the same subdomain as \code{T}, so
475     the tiles have the same orientation and the same $x$ and $y$ axes.
476     The $x$ axis is orthogonal to the western edge and the tile is 16
477     points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
478     indicate the column beyond \code{Tn}'s eastern edge, in that tile's
479     halo region. Since the border of the tiles extends through the entire
480 afe 1.14 height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
481 afe 1.17 \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
482     either direction to cover part of the halo. \\
483 afe 1.14
484     For the north edge of the same tile \code{T=2} where \code{N=1} and
485     the neighbor tile is \code{Tn=5}:
486    
487     \begin{verbatim}
488     exch2_itlo_c(1,2)=0
489     exch2_ithi_c(1,2)=0
490     exch2_jtlo_c(1,2)=0
491     exch2_jthi_c(1,2)=17
492     \end{verbatim}
493    
494     \code{T}'s northern edge is parallel to the $x$ axis, but since
495 afe 1.17 \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
496     northern edge exchanges with \code{Tn}'s western edge. The western
497     edge of the tiles corresponds to the lower bound of the $x$ axis, so
498 afe 1.19 \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c} are \code{0}, in the
499     western halo region of \code{Tn}. The range of
500 afe 1.17 \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
501 afe 1.19 width of \code{T}'s northern edge, expanded by one into the halo. \\
502 afe 1.14
503    
504 molod 1.24 \subsubsection{Key Routines}
505 afe 1.1
506 afe 1.16 Most of the subroutines particular to exch2 handle the exchanges
507     themselves and are of the same format as those described in
508     \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
509     communication}. Like the original routines, they are written as
510 afe 1.19 templates which the local Makefile converts from \code{RX} into
511     \code{RL} and \code{RS} forms. \\
512 afe 1.16
513     The interfaces with the core model subroutines are
514 afe 1.17 \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
515     \code{EXCH\_XY\_RX}. They override the standard exchange routines
516     when \code{genmake2} is run with \code{exch2} option. They in turn
517     call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
518     \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
519     quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
520     and three-dimensional scalar quantities. These subroutines set the
521     dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
522     for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
523     the singularities at the cube corners. \\
524 afe 1.16
525     The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
526 afe 1.19 \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subroutine
527     needs to pass both the $u$ and $v$ components of the physical vectors.
528     This swapping arises from the topological folding discussed above, where the
529     $x$ and $y$ axes get swapped in some cases, and is not an
530     issue with the scalar case. These subroutines call
531 afe 1.17 \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
532     the work using the variables discussed above. \\
533 afe 1.1

  ViewVC Help
Powered by ViewVC 1.1.22