/[MITgcm]/manual/s_phys_pkgs/mnc.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/mnc.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.12 - (show annotations) (download) (as text)
Tue Oct 12 18:16:03 2004 UTC (19 years, 7 months ago) by edhill
Branch: MAIN
Changes since 1.11: +167 -92 lines
File MIME type: application/x-tex
 o add HTML reference tags so that URLs are more permanent and legible
 o update MNC

1 % $Header: /u/gcmpack/manual/part6/mnc.tex,v 1.11 2004/09/22 15:11:32 edhill Exp $
2 % $Name: $
3
4 \section{NetCDF I/O Integration: MNC}
5 \label{sec:pkg:mnc}
6 \begin{rawhtml}
7 <!-- CMIREDIR:package_mnc: -->
8 \end{rawhtml}
9
10 The \texttt{mnc} package is a set of convenience routines written to
11 expedite the process of creating, appending, and reading NetCDF files.
12 NetCDF is an increasingly popular self-describing file format
13 \cite{rew:97} intended primarily for scientific data sets. An
14 extensive collection of NetCDF reference papers, user guides,
15 software, FAQs, and other information can be obtained from UCAR's web
16 site at:
17 \begin{rawhtml} <A href="http://www.unidata.ucar.edu/packages/netcdf/"> \end{rawhtml}
18 \begin{verbatim}
19 http://www.unidata.ucar.edu/packages/netcdf/
20 \end{verbatim}
21 \begin{rawhtml} </A> \end{rawhtml}
22
23
24 \subsection{Using MNC}
25
26 \subsubsection{MNC Configuration and Inputs}
27
28 As with all MITgcm packages, MNC can be turned on/off at compile time
29 using the \texttt{packages.conf} file or the genmake2
30 \texttt{-enable=mnc} or \texttt{-disable=mnc} switches.
31
32 For run-time configuration, most of the MNC--related model parameters
33 are contained within a Fortran namelist file called \texttt{data.mnc}.
34 If this file does not exist, then the MNC package will interpret that
35 as an indication that it is not to be used. If the \texttt{data.mnc}
36 file does exist, then it may contain the following parameters:
37
38 \begin{center}
39 {\footnotesize
40 \begin{tabular}[htb]{|l|c|l|l|}\hline
41 \textbf{Name} & \textbf{T} &
42 \textbf{Default} & \textbf{Description} \\\hline
43 & & & \\
44 \texttt{useMNC} & L & \texttt{.FALSE.} &
45 \textbf{overall MNC ON/OFF switch} \\
46 \texttt{mnc\_echo\_gvtypes} & L & \texttt{.FALSE.} &
47 echo pre-defined ``types'' (debugging) \\
48 \texttt{mnc\_use\_outdir} & L & \texttt{.FALSE.} &
49 create a directory for output \\
50 \texttt{mnc\_outdir\_str} & S & \texttt{'mnc\_'} &
51 output directory name \\
52 \texttt{mnc\_outdir\_date} & L & \texttt{.FALSE.} &
53 embed date in the output dir name \\
54 \texttt{pickup\_write\_mnc} & L & \texttt{.FALSE.} &
55 use MNC to write (create) pickup files \\
56 \texttt{pickup\_read\_mnc} & L & \texttt{.FALSE.} &
57 use MNC to read pickup files \\
58 \texttt{mnc\_use\_indir} & L & \texttt{.FALSE.} &
59 use a directory (path) for input \\
60 \texttt{mnc\_indir\_str} & S & \texttt{''} &
61 input directory (or path) name \\
62 \texttt{snapshot\_mnc} & L & \texttt{.FALSE.} &
63 write \texttt{snapshot} (instantaneous) w/MNC \\
64 \texttt{monitor\_mnc} & L & \texttt{.FALSE.} &
65 write \texttt{monitor} w/MNC \\
66 \texttt{timeave\_mnc} & L & \texttt{.FALSE.} &
67 write \texttt{timeave} w/MNC \\
68 \texttt{autodiff\_mnc} & L & \texttt{.FALSE.} &
69 write \texttt{autodiff} w/MNC \\\hline
70 \end{tabular}
71 }
72 \end{center}
73
74 Additional MNC--related parameters are contained within the main
75 \texttt{data} namelist file and in some of the namelist files for
76 individual packages. These options are:
77 \begin{center}
78 {\footnotesize
79 \begin{tabular}[htb]{|l|c|l|l|}\hline
80 \textbf{Name} & \textbf{T} &
81 \textbf{Default} & \textbf{Description} \\\hline
82 \multicolumn{4}{|c|}{\ } \\
83 \multicolumn{4}{|c|}{Main namelist file:
84 ``\textbf{data}''} \\\hline
85 \texttt{snapshot\_ioinc} & L & \texttt{.FALSE.} &
86 write \texttt{snapshot} ``inclusively'' \\
87 \texttt{timeave\_ioinc} & L & \texttt{.FALSE.} &
88 write \texttt{timeave} ``inclusively'' \\
89 \texttt{monitor\_ioinc} & L & \texttt{.FALSE.} &
90 write \texttt{monitor} ``inclusively'' \\
91 \texttt{the\_run\_name} & C & ``name...'' &
92 name is included in all MNC output \\\hline
93 \multicolumn{4}{|c|}{\ } \\
94 \multicolumn{4}{|c|}{Diagnostics namelist file:
95 ``\textbf{data.diagnostics}''} \\\hline
96 \texttt{diag\_mnc} & L & \texttt{.FALSE.} &
97 write \texttt{diagnostics} w/MNC \\
98 \texttt{diag\_ioinc} & L & \texttt{.FALSE.} &
99 write \texttt{diagnostics} ``inclusively'' \\\hline
100 \end{tabular}
101 }
102 \end{center}
103
104 By default, turning on MNC for a particular output type will result in
105 turning off all the corresponding (usually, default) MDSIO or STDOUT
106 output mechanisms. In other words, output defaults to being an
107 exclusive selection. To enable multiple kinds of simultaneous output,
108 flags of the form \texttt{NAME\_ioinc} have been created where
109 \texttt{NAME} corresponds to the various MNC output flags. When a
110 \texttt{NAME\_ioinc} flag is set to \texttt{.TRUE.}, then multiple
111 simultaneous forms of output are allowed for the \texttt{NAME} output
112 mechanism. The intent of this design is that typical users will only
113 want one kind of output while people debugging the code (particularly
114 the I/O routines) may want simultaneous types of output.
115
116 This ``inclusive'' versus ``exclusive'' design is easily applied in
117 cases where three or more kinds of output may be generated. Thus, it
118 can be readily extended to additional new output types (eg. HDF5).
119
120 Input types are always exclusive.
121
122 \subsubsection{MNC Output}
123
124 While NetCDF files are supposed to be ``self-describing'', it is
125 helpful to note the following:
126
127 \begin{itemize}
128 \item The constraints placed upon the ``unlimited'' (or ``record'')
129 dimension inherent with NetCDF v3.x make it very inefficient to put
130 variables written at potentially different intervals within the same
131 file. For this reason, MNC output is split into a few file ``base
132 names'' which try to reflect the nature of their content.
133
134 \item All MNC output is currently done in a ``tile-per-file'' fashion
135 since most NetCDF v3.x implementions cannot write safely within MPI
136 or multi-threaded environments. This tiling is done in a global
137 fashion and the tile numbers are appended to the base names
138 described above. Some scripts to ``assemble'' output are available
139 (\texttt{MITgcm/utils/matlab}). More general manipulations can be
140 accomplished with the
141 \begin{rawhtml}
142 <A href="http://nco.sourceforge.net">
143 \end{rawhtml}
144 \begin{verbatim}
145 NetCDF Operators (or ``NCO'') at http://nco.sourceforge.net
146 \end{verbatim}
147 \begin{rawhtml} </A> \end{rawhtml}
148 which is a very powerful and convenient set of tools for working
149 with all NetCDF files.
150
151 \item MNC does not (yet) provide a mechanism for reading information
152 from a single ``global'' file as can be done with the MDSIO
153 package.
154
155 \end{itemize}
156
157
158 \subsection{MNC Internals}
159
160 The \texttt{mnc} package is a two-level convenience library (or
161 ``wrapper'') for most of the NetCDF Fortran API. Its purpose is to
162 streamline the user interface to NetCDF by maintaining internal
163 relations (look-up tables) keyed with strings (or names) and entities
164 such as NetCDF files, variables, and attributes.
165
166 The two levels of the \texttt{mnc} package are:
167 \begin{description}
168
169 \item[Upper level] \
170
171 The upper level contains information about two kinds of
172 associations:
173 \begin{description}
174 \item[grid type] is lookup table indexed with a grid type name.
175 Each grid type name is associated with a number of dimensions, the
176 dimension sizes (one of which may be unlimited), and starting and
177 ending index arrays. The intent is to store all the necessary
178 size and shape information for the Fortran arrays containing
179 MITgcm--style ``tile'' variables (that is, a central region
180 surrounded by a variably-sized ``halo'' or exchange region as
181 shown in Figures \ref{fig:communication_primitives} and
182 \ref{fig:tiling-strategy}).
183
184 \item[variable type] is a lookup table indexed by a variable type
185 name. For each name, the table contains a reference to a grid
186 type for the variable and the names and values of various
187 attributes.
188 \end{description}
189
190 Within the upper level, these associations are not permanently tied
191 to any particular NetCDF file. This allows the information to be
192 re-used over multiple file reads and writes.
193
194 \item[Lower level] \
195
196 In the lower (or internal) level, associations are stored for NetCDF
197 files and many of the entities that they contain including
198 dimensions, variables, and global attributes. All associations are
199 on a per-file basis. Thus, each entity is tied to a unique NetCDF
200 file and will be created or destroyed when files are, respectively,
201 opened or closed.
202
203 \end{description}
204
205
206 \subsubsection{MNC Grid--Types and Variable--Types}
207
208 As a convenience for users, the MNC package includes numerous routines
209 to aid in the writing of data to NetCDF format. Probably the biggest
210 convenience is the use of pre-defined ``grid types'' and ``variable
211 types''. These ``types'' are simply look-up tables that store
212 dimensions, indicies, attributes, and other information that can all
213 be retrieved using a single character string.
214
215 The ``grid types'' are a way of mapping variables within MITgcm to
216 NetCDF arrays. Within MITgcm, most spatial variables are defined
217 using two-- or three--dimensional arrays with ``overlap'' regions (see
218 Figures \ref{fig:communication_primitives}, a possible vertical index,
219 and \ref{fig:tiling-strategy}) and tile indicies such as the following
220 ``U'' velocity:
221 \begin{verbatim}
222 _RL uVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
223 \end{verbatim}
224 as defined in \filelink{model/inc/DYNVARS.h}{model-inc-DYNVARS.h}
225
226 The grid type is a character string that encodes the presence and
227 types associated with the four possible dimensions. The character
228 string follows the format
229 \begin{center}
230 \texttt{H0\_H1\_H2\_\_V\_\_T}
231 \end{center}
232 where the terms \textit{H0}, \textit{H1}, \textit{H2}, \textit{V},
233 \textit{T} can be almost any combination of the following:
234 \begin{center}
235 \begin{tabular}[h]{|ccc|c|c|}\hline
236 \multicolumn{3}{|c|}{Horizontal} & Vertical & Time \\
237 \textbf{H0}: location & \textbf{H1}: dimensions & \textbf{H2}: halo
238 & \textbf{V}: location & \textbf{T}: level \\\hline
239 \texttt{-} & xy & Hn & \texttt{-} & \texttt{-} \\
240 U & x & Hy & i & t \\
241 V & y & & c & \\
242 Cen & & & & \\
243 Cor & & & & \\\hline
244 \end{tabular}
245 \end{center}
246 A example list of all pre-defined combinations is contained in the
247 file
248 \begin{center}
249 \texttt{pkg/mnc/pre-defined\_grids.txt}.
250 \end{center}
251
252 The variable type is an association between a variable type name and the
253 following items:
254 \begin{center}
255 \begin{tabular}[h]{|l|l|}\hline
256 \textbf{Item} & \textbf{Purpose} \\\hline
257 grid type & defines the in-memory arrangement \\
258 \texttt{bi,bj} dimensions & tiling indices, if present \\\hline
259 \end{tabular}
260 \end{center}
261 and is used by the \texttt{mnc\_cw\_*\_[R|W]} subroutines for reading
262 and writing variables.
263
264
265 \subsubsection{Using MNC: Examples}
266
267 Writing variables to NetCDF files can be accomplished in as few as two
268 function calls. The first function call defines a variable type,
269 associates it with a name (character string), and provides additional
270 information about the indicies for the tile (\texttt{bi},\texttt{bj})
271 dimensions. The second function call will write the data at, if
272 necessary, the current time level within the model.
273
274 Examples of the initialization calls can be found in the file
275 \filelink{model/src/ini\_mnc\_io.F}{model-src-ini_mnc_io.F}
276 where these function calls:
277 {\footnotesize
278 \begin{verbatim}
279 C Create MNC definitions for DYNVARS.h variables
280 CALL MNC_CW_ADD_VNAME('iter', '-_-_--__-__t', 0,0, myThid)
281 CALL MNC_CW_ADD_VATTR_TEXT('iter',1,
282 & 'long_name','iteration_count', myThid)
283
284 CALL MNC_CW_ADD_VNAME('model_time', '-_-_--__-__t', 0,0, myThid)
285 CALL MNC_CW_ADD_VATTR_TEXT('model_time',1,
286 & 'long_name','Model Time', myThid)
287 CALL MNC_CW_ADD_VATTR_TEXT('model_time',1,'units','s', myThid)
288
289 CALL MNC_CW_ADD_VNAME('U', 'U_xy_Hn__C__t', 4,5, myThid)
290 CALL MNC_CW_ADD_VATTR_TEXT('U',1,'units','m/s', myThid)
291 CALL MNC_CW_ADD_VATTR_TEXT('U',1,
292 & 'coordinates','XU YU RC iter', myThid)
293
294 CALL MNC_CW_ADD_VNAME('T', 'Cen_xy_Hn__C__t', 4,5, myThid)
295 CALL MNC_CW_ADD_VATTR_TEXT('T',1,'units','degC', myThid)
296 CALL MNC_CW_ADD_VATTR_TEXT('T',1,'long_name',
297 & 'potential_temperature', myThid)
298 CALL MNC_CW_ADD_VATTR_TEXT('T',1,
299 & 'coordinates','XC YC RC iter', myThid)
300 \end{verbatim}
301 }
302 {\noindent initialize four \texttt{VNAME}s and add one or more NetCDF
303 attributes to each.}
304
305 The four variables defined above are subsequently written at specific
306 time steps within
307 \filelink{model/src/write\_state.F}{model-src-write_state.F}
308 using the function calls:
309 {\footnotesize
310 \begin{verbatim}
311 C Write dynvars using the MNC package
312 CALL MNC_CW_SET_UDIM('state', -1, myThid)
313 CALL MNC_CW_I_W('I','state',0,0,'iter', myIter, myThid)
314 CALL MNC_CW_SET_UDIM('state', 0, myThid)
315 CALL MNC_CW_RL_W('D','state',0,0,'model_time',myTime, myThid)
316 CALL MNC_CW_RL_W('D','state',0,0,'U', uVel, myThid)
317 CALL MNC_CW_RL_W('D','state',0,0,'T', theta, myThid)
318 \end{verbatim}
319 }
320
321 While it is easiest to write variables within typical 2D and 3D fields
322 where all data is known at a given time, it is also possible to write
323 fields where only a portion (\textit{eg.} a ``slab'' or ``slice'') is
324 known at a given instant. An example is provided within
325 \filelink{pkg/mom\_vecinv/mom\_vecinv.F}{pkg-mom_vecinv-mom_vecinv.F}
326 where an offset vector is used: {\footnotesize
327 \begin{verbatim}
328 IF (useMNC .AND. snapshot_mnc) THEN
329 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'fV', uCf,
330 & offsets, myThid)
331 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'fU', vCf,
332 & offsets, myThid)
333 ENDIF
334 \end{verbatim}
335 }
336 to write a 3D field one depth slice at a time.
337
338 Each element in the offset vector corresponds (in order) to the
339 dimensions of the ``full'' (or virtual) array and specifies which are
340 known at the time of the call. A zero within the offset array means
341 that all values along that dimension are available while a positive
342 integer means that only values along that index of the dimension are
343 available. In all cases, the matrix passed is assumed to start (that
344 is, have an in-memory structure) coinciding with the start of the
345 specified slice. Thus, using this offset array mechanism, a slice
346 can be written along any single dimension or combinations of
347 dimensions.
348

  ViewVC Help
Powered by ViewVC 1.1.22