/[MITgcm]/manual/s_phys_pkgs/mnc.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/mnc.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (hide annotations) (download) (as text)
Sat Apr 3 23:05:05 2004 UTC (20 years, 1 month ago) by edhill
Branch: MAIN
Changes since 1.7: +31 -18 lines
File MIME type: application/x-tex
 o update with an example of the latest interface

1 edhill 1.8 % $Header: /u/gcmpack/manual/part6/mnc.tex,v 1.7 2004/04/02 15:56:02 edhill Exp $
2 edhill 1.1 % $Name: $
3    
4 edhill 1.6 \section{NetCDF I/O Integration: MNC}
5 edhill 1.3 \label{sec:pkg:mnc}
6 edhill 1.1
7 edhill 1.3 The \texttt{mnc} package is a set of convenience routines written to
8     expedite the process of creating, appending, and reading NetCDF files.
9     NetCDF is an increasingly popular self-describing file format
10     \cite{rew:97} intended primarily for scientific data sets. An
11     extensive collection of NetCDF reference papers, user guides,
12     software, FAQs, and other information can be obtained from UCAR's web
13     site at:
14     \begin{rawhtml} <A href="http://www.unidata.ucar.edu/packages/netcdf/"> \end{rawhtml}
15     \begin{verbatim}
16     http://www.unidata.ucar.edu/packages/netcdf/
17     \end{verbatim}
18     \begin{rawhtml} </A> \end{rawhtml}
19 edhill 1.1
20    
21     \subsection{Introduction}
22    
23 edhill 1.3 The \texttt{mnc} package is a two-level convenience library (or
24     ``wrapper'') for most of the NetCDF Fortran API. Its purpose is to
25     streamline the user interface to NetCDF by maintaining internal
26 edhill 1.6 relations (look-up tables) keyed with strings (or names) and entities
27     such as NetCDF files, variables, and attributes.
28 edhill 1.3
29     The two levels of the \texttt{mnc} package are:
30     \begin{description}
31    
32     \item[Upper level] \
33    
34     The upper level contains information about two kinds of
35     associations:
36     \begin{description}
37 edhill 1.6 \item[grid type] is lookup table indexed with a grid type name.
38 edhill 1.3 Each grid type name is associated with a number of dimensions, the
39     dimension sizes (one of which may be unlimited), and starting and
40     ending index arrays. The intent is to store all the necessary
41     size and shape information for the Fortran arrays containing
42     MITgcm--style ``tile'' variables (that is, a central region
43     surrounded by a variably-sized ``halo'' or exchange region as
44     shown in Figures \ref{fig:communication_primitives} and
45     \ref{fig:tiling-strategy}).
46    
47 edhill 1.6 \item[variable type] is a lookup table indexed by a variable type
48 edhill 1.3 name. For each name, the table contains a reference to a grid
49     type for the variable and the names and values of various
50     attributes.
51     \end{description}
52    
53     Within the upper level, these associations are not permanently tied
54     to any particular NetCDF file. This allows the information to be
55     re-used over multiple file reads and writes.
56    
57     \item[Lower level] \
58    
59     In the lower (or internal) level, associations are stored for NetCDF
60     files and many of the entities that they contain including
61     dimensions, variables, and global attributes. All associations are
62     on a per-file basis. Thus, each entity is tied to a unique NetCDF
63     file and will be created or destroyed when files are, respectively,
64     opened or closed.
65    
66     \end{description}
67 edhill 1.1
68    
69 edhill 1.5 \subsection{Using MNC}
70    
71 edhill 1.6 \subsubsection{Grid--Types and Variable--Types}
72 edhill 1.5
73     As a convenience for users, the MNC package includes numerous routines
74     to aid in the writing of data to NetCDF format. Probably the biggest
75     convenience is the use of pre-defined ``grid types'' and ``variable
76     types''. These ``types'' are simply look-up tables that store
77     dimensions, indicies, attributes, and other information that can all
78     be retrieved using a single character string.
79    
80     The ``grid types'' are a way of mapping variables within MITgcm to
81     NetCDF arrays. Within MITgcm, most spatial variables are defined
82     using two-- or three--dimensional arrays with ``overlap'' regions (see
83     Figures \ref{fig:communication_primitives}, a possible vertical index,
84     and \ref{fig:tiling-strategy}) and tile indicies such as the following
85     ``U'' velocity:
86     \begin{verbatim}
87     _RL uVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
88     \end{verbatim}
89     as defined in \filelink{model/inc/DYNVARS.h}{model-inc-DYNVARS.h}
90    
91     The grid type is a character string that encodes the presence and
92     types associated with the four possible dimensions. The character
93     string follows the format
94     \begin{center}
95     \texttt{H0\_H1\_H2\_\_V\_\_T}
96     \end{center}
97 edhill 1.6 where the terms \textit{H0}, \textit{H1}, \textit{H2}, \textit{V},
98     \textit{T} can be almost any combination of the following:
99 edhill 1.5 \begin{center}
100     \begin{tabular}[h]{|ccc|c|c|}\hline
101 edhill 1.6 \multicolumn{3}{|c|}{Horizontal} & Vertical & Time \\
102 edhill 1.7 \textbf{H0}: location & \textbf{H1}: dimensions & \textbf{H2}: halo
103     & \textbf{V}: location & \textbf{T}: level \\\hline
104 edhill 1.5 \texttt{-} & xy & Hn & \texttt{-} & \texttt{-} \\
105     U & x & Hy & i & t \\
106     V & y & & c & \\
107     Cen & & & & \\
108     Cor & & & & \\\hline
109     \end{tabular}
110     \end{center}
111     A example list of all pre-defined combinations is contained in the
112     file
113     \begin{center}
114     \texttt{pkg/mnc/pre-defined\_grids.txt}.
115     \end{center}
116 edhill 1.7
117     The variable type is an association between a variable type name and the
118     following items:
119     \begin{center}
120     \begin{tabular}[h]{|ll|}\hline
121     \textbf{Item} & \textbf{Purpose} \\\hline
122     grid type & defines the in-memory arrangement \\
123     \texttt{bi,bj} dimensions & tiling indices, if present \\\hline
124     \end{tabular}
125     \end{center}
126     and is used by the \texttt{mnc\_cw\_*\_[R|W]} subroutines for reading
127     and writing variables.
128 edhill 1.5
129    
130     \subsubsection{An Example}
131    
132     Writing variables to NetCDF files can be accomplished in as few as two
133     function calls. The first function call defines a variable type,
134     associates it with a name (character string), and provides additional
135 edhill 1.6 information about the indicies for the tile (\texttt{bi},\texttt{bj})
136     dimensions. The second function call will write the data at, if
137     necessary, the current time level within the model.
138 edhill 1.5
139     Examples of the initialization calls can be found in the file
140 edhill 1.8 \filelink{model/src/ini\_mnc\_io.F}{model-src-ini_mnc_io.F}
141 edhill 1.6 where these four function calls:
142     {\footnotesize
143 edhill 1.5 \begin{verbatim}
144 edhill 1.8 C Create MNC definitions for DYNVARS.h variables
145     CALL MNC_CW_ADD_VNAME('iter', '-_-_--__-__t', 0,0, myThid)
146     CALL MNC_CW_ADD_VATTR_TEXT('iter',1,
147     & 'long_name','iteration_count', myThid)
148    
149     CALL MNC_CW_ADD_VNAME('model_time', '-_-_--__-__t', 0,0, myThid)
150     CALL MNC_CW_ADD_VATTR_TEXT('model_time',1,
151     & 'long_name','Model Time', myThid)
152     CALL MNC_CW_ADD_VATTR_TEXT('model_time',1,'units','s', myThid)
153    
154     CALL MNC_CW_ADD_VNAME('U', 'U_xy_Hn__C__t', 4,5, myThid)
155     CALL MNC_CW_ADD_VATTR_TEXT('U',1,'units','m/s', myThid)
156     CALL MNC_CW_ADD_VATTR_TEXT('U',1,
157     & 'coordinates','XU YU RC iter', myThid)
158    
159     CALL MNC_CW_ADD_VNAME('T', 'Cen_xy_Hn__C__t', 4,5, myThid)
160     CALL MNC_CW_ADD_VATTR_TEXT('T',1,'units','degC', myThid)
161     CALL MNC_CW_ADD_VATTR_TEXT('T',1,'long_name',
162     & 'potential_temperature', myThid)
163     CALL MNC_CW_ADD_VATTR_TEXT('T',1,
164     & 'coordinates','XC YC RC iter', myThid)
165 edhill 1.6 \end{verbatim}
166     }
167     {\noindent initialize two \texttt{VNAME}s and add one NetCDF
168     attribute to each.}
169 edhill 1.5
170 edhill 1.6 The two variables defined above are subsequently written at specific
171     time steps within
172     \filelink{model/src/write\_state.F}{model-src-write_state.F}
173     using the function calls:
174     {\footnotesize
175 edhill 1.5 \begin{verbatim}
176 edhill 1.8 C Write dynvars using the MNC package
177 edhill 1.5 mnc_iter = myIter
178 edhill 1.8 CALL MNC_CW_SET_UDIM('state', -1, myThid)
179     CALL MNC_CW_RL_W('D','state',0,0,'iter',mnc_iter, myThid)
180     CALL MNC_CW_SET_UDIM('state', 0, myThid)
181     CALL MNC_CW_RL_W('D','state',0,0,'model_time',myTime, myThid)
182     CALL MNC_CW_RL_W('D','state',0,0,'U', uVel, myThid)
183     CALL MNC_CW_RL_W('D','state',0,0,'T', theta, myThid)
184 edhill 1.6 \end{verbatim}
185     }
186 edhill 1.5
187 edhill 1.8 %\subsection{Key subroutines, parameters and files}
188 edhill 1.1
189 edhill 1.3 \subsection{Package Reference}
190 edhill 1.5

  ViewVC Help
Powered by ViewVC 1.1.22