/[MITgcm]/manual/s_phys_pkgs/diagnostics.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/diagnostics.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.8 by molod, Thu Oct 28 22:41:16 2004 UTC revision 1.11 by molod, Fri Jul 15 18:58:21 2005 UTC
# Line 20  diagnostic output and defining new diagn Line 20  diagnostic output and defining new diagn
20  \ref{sec:diagnostics:usersguide} of this document.  \ref{sec:diagnostics:usersguide} of this document.
21    
22  \noindent  \noindent
23  The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within  The Diagnostic Menu in this section of the manual is a listing of diagnostic quantities available
24  the GCM. Once a diagnostic is enabled, the GCM will continually increment an array  within the main (dynamics) part of the GCM. Additional diagnostic quantities, defined within the
25  specifically allocated for that diagnostic whenever the appropriate quantity is computed.    different GCM packages, are available and are listed in the diagnostic menu subsection of
26  A counter is defined which records how many times each diagnostic quantity has been  the manual section associated with each relevant package. Once a diagnostic is enabled, the
27  incremented.  Several special diagnostics are included in the menu. Quantities refered to  GCM will continually increment an array specifically allocated for that diagnostic whenever the
28  as ``Counter Diagnostics'', are defined for selected diagnostics which record the  appropriate quantity is computed.  A counter is defined which records how many times each diagnostic
29    quantity has been incremented.  Several special diagnostics are included in the menu. Quantities
30    refered to as ``Counter Diagnostics'', are defined for selected diagnostics which record the
31  frequency at which a diagnostic is incremented separately for each model grid location.  frequency at which a diagnostic is incremented separately for each model grid location.
32  Quantitied refered to as ``User Diagnostics'' are included in the menu to facilitate  Quantitied refered to as ``User Diagnostics'' are included in the menu to facilitate
33  defining new diagnostics for a particular experiment.  defining new diagnostics for a particular experiment.
# Line 37  Not relevant. Line 39  Not relevant.
39  \label{sec:diagnostics:diagover}  \label{sec:diagnostics:diagover}
40    
41  \noindent  \noindent
 The diagnostics are computed at various times and places within the GCM. Because the  
 MIT GCM may employ a staggered grid, diagnostics may be computed at grid box centers,  
 corners, or edges, and at the middle or edge in the vertical. Some diagnostics are scalars,  
 while others are components of vectors. An internal array is defined which contains  
 information concerning various grid attributes of each diagnostic. The GDIAG  
 array (in common block \\diagnostics in file diagnostics.h) is internally defined as a  
 character*8 variable, and is equivalenced to a character*1 "parse" array in output in  
 order to extract the grid-attribute information.  The GDIAG array is described in  
 Table \ref{tab:diagnostics:gdiag.tabl}.  
   
 \begin{table}  
 \caption{Diagnostic Parsing Array}  
 \label{tab:diagnostics:gdiag.tabl}  
 \begin{center}  
 \begin{tabular}{ |c|c|l| }  
 \hline  
 \multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\  
 \hline  
 \hline  
 Array & Value & Description \\  
 \hline  
   parse(1)   & $\rightarrow$ S &  Scalar Diagnostic                 \\  
              & $\rightarrow$ U &  U-vector component Diagnostic     \\  
              & $\rightarrow$ V &  V-vector component Diagnostic     \\ \hline  
   parse(2)   & $\rightarrow$ U &  C-Grid U-Point                    \\  
              & $\rightarrow$ V &  C-Grid V-Point                    \\  
              & $\rightarrow$ M &  C-Grid Mass Point                 \\  
              & $\rightarrow$ Z &  C-Grid Vorticity (Corner) Point   \\ \hline  
   parse(3)   & $\rightarrow$ R &  Not Currently in Use              \\ \hline  
   parse(4)   & $\rightarrow$ P &  Positive Definite Diagnostic      \\ \hline  
   parse(5)   & $\rightarrow$ C &  Counter Diagnostic                \\  
              & $\rightarrow$ D &  Disabled Diagnostic for output    \\ \hline  
   parse(6-8) & $\rightarrow$ C &  3-digit integer corresponding to  \\  
              &                 &  vector or counter component mate  \\ \hline  
 \end{tabular}  
 \addcontentsline{lot}{section}{Table 3:  Diagnostic Parsing Array}  
 \end{center}  
 \end{table}  
   
   
 \noindent  
 As an example, consider a diagnostic whose associated GDIAG parameter is equal  
 to ``UU  002''.  From GDIAG we can determine that this diagnostic is a  
 U-vector component located at the C-grid U-point.  
 Its corresponding V-component diagnostic is located in Diagnostic \# 002.  
   
   
 \noindent  
 In this way, each Diagnostic in the model has its attributes (ie. vector or scalar,  
 C-grid location, etc.) defined internally.  The Output routines use this information  
 in order to determine what type of transformations need to be performed.  Any  
 interpolations are done at the time of output rather than during each model step.  
 In this way the User has flexibility in determining the type of gridded data which  
 is output.  
   
   
 \noindent  
42  There are several utilities within the GCM available to users to enable, disable,  There are several utilities within the GCM available to users to enable, disable,
43  clear, write and retrieve model diagnostics, and may be called from any routine.    clear, write and retrieve model diagnostics, and may be called from any routine.  
44  The available utilities and the CALL sequences are listed below.  The available utilities and the CALL sequences are listed below.
45    
   
46  \noindent  \noindent
47  {\bf fill\_diagnostics}:  This routine will increment the specified diagnostic  {\bf diagnostics\_fill}:  This is the main user interface routine to the diagnostics
48  quantity with a field sent through the argument list.  package. This routine will increment the specified diagnostic quantity with a field
49    sent through the argument list.
50    
51  \noindent  \noindent
52  \begin{tabbing}  \begin{tabbing}
53  XXXXXXXXX\=XXXXXX\= \kill  XXXXXXXXX\=XXXXXX\= \kill
54  \>        call fill\_diagnostics (myThid, chardiag, levflg, nlevs, \\  \>        call diagnostics\_fill (arrayin, chardiag, levflg, nlevs, \\
55                  bibjflg, bi, bj, arrayin) \\  \>              bibjflg, bi, bj, myThid) \\
56  \\  \\
57  where \>  myThid   \>= Current Process(or) \\  where \>  arrayin  \>= Field to increment diagnostics array \\
58        \>  chardiag \>= Character *8 expression for diag to fill \\        \>  chardiag \>= Character *8 expression for diag to fill \\
59        \>  levflg   \>= Integer flag for vertical levels: \\        \>  levflg   \>= Integer flag for vertical levels: \\
60        \>           \> 0 indicates multiple levels incremented in qdiag \\        \>           \>= 0 indicates multiple (nlevs) levels incremented \\
61        \>           \> non-0 (any integer) - WHICH single level to increment. \\        \>           \>= -1 indicates multiple (nlevs) levels incremented, \\
62        \>           \> negative integer - the input data array is single-leveled \\        \>           \> but in reverse vertical order \\
63        \>           \> positive integer - the input data array is multi-leveled \\        \>           \> positive integer - WHICH single level to increment. \\
64        \>  nlevs    \>= indicates Number of levels to be filled (1 if levflg <> 0) \\        \>  nlevs    \>= indicates Number of levels to be filled (1 if levflg gt 0) \\
       \>           \> positive: fill in "nlevs" levels in the same order as \\  
       \>           \> the input array \\  
       \>           \> negative: fill in -nlevs levels in reverse order. \\  
65        \>  bibjflg  \>= Integer flag to indicate instructions for bi bj loop \\        \>  bibjflg  \>= Integer flag to indicate instructions for bi bj loop \\
66        \>           \> 0 indicates that the bi-bj loop must be done here \\        \>           \>= 0 indicates that the bi-bj loop must be done here \\
67        \>           \> 1 indicates that the bi-bj loop is done OUTSIDE \\        \>           \>= 1 indicates that the bi-bj loop is done OUTSIDE \\
68        \>           \> 2 indicates that the bi-bj loop is done OUTSIDE \\        \>           \>= 2 indicates that the bi-bj loop is done OUTSIDE \\
       \>           \>    AND that we have been sent a local array \\  
       \>           \> 3 indicates that the bi-bj loop is done OUTSIDE \\  
69        \>           \>    AND that we have been sent a local array \\        \>           \>    AND that we have been sent a local array \\
70        \>           \>    AND that the array has the shadow regions \\        \>           \>    AND that the array has the shadow regions \\
71          \>           \>= 3 indicates that the bi-bj loop is done OUTSIDE \\
72          \>           \>    AND that we have been sent a local array \\
73          \>           \>    AND that the array has no shadow regions \\
74        \>  bi       \>= X-direction process(or) number - used for bibjflg=1-3 \\        \>  bi       \>= X-direction process(or) number - used for bibjflg=1-3 \\
75        \>  bj       \>= Y-direction process(or) number - used for bibjflg=1-3 \\        \>  bj       \>= Y-direction process(or) number - used for bibjflg=1-3 \\
76        \>  arrayin  \>= Field to increment diagnostics array \\        \>  myThid   \>= Current Thread number \\
77  \end{tabbing}  \end{tabbing}
78    
79    \noindent
80    {\bf diagnostics\_scale\_fill}:  This is a possible alternative routine to
81    diagnostics\_fill which performs the same functions and has an additional option
82    to scale the field before filling or raise the field to a power before filling.
83    
84  \noindent  \noindent
85  {\bf setdiag}:  This subroutine enables a diagnostic from the Diagnostic Menu, meaning  \begin{tabbing}
86  that space is allocated for the diagnostic and the model routines will increment the  XXXXXXXXX\=XXXXXX\= \kill
87  diagnostic value during execution.  This routine is the underlying interface  \>        call diagnostics\_scale\_fill (arrayin, scalefactor, power, chardiag, \\
88  between the user and the desired diagnostic.  The diagnostic is referenced by its diagnostic  \>        levflg, nlevs, bibjflg, bi, bj, myThid) \\
89  number from the menu, and its calling sequence is given by:  \\
90    where \>  All the arguments are the same as for diagnostics\_fill with the addition of: \\
91          \>  scalefactor \>= Factor to scale field \\
92          \>  power       \>= Integer power to which to raise the input field \\
93    \end{tabbing}
94    
95    \noindent
96    {\bf diagnostics\_is\_on}: Function call to inquire whether a diagnostic is active
97    and can be incremented. Useful when there is a computation that must be done locally
98    before a call to diagnostics\_fill. The call sequence:
99    
100    \noindent
101    \begin{tabbing}
102    XXXXXXXXX\=XXXXXX\= \kill
103    \> flag = diagnostics\_is\_on( diagName, myThid )
104    \\
105    where \>  diagName \>= Character *8 expression for diagnostic \\
106          \>  myThid   \>= Current Thread number \\
107    \end{tabbing}
108    
109    \noindent
110    {\bf diagnostics\_get\_pointers}:  This subroutine retrieves the value of a the diagnostics
111    pointers that other routines require as input - can be useful if the diagnostics common
112    blocks are not local to a routine.
113    
114  \noindent  \noindent
115  \begin{tabbing}  \begin{tabbing}
116  XXXXXXXXX\=XXXXXX\= \kill  XXXXXXXXX\=XXXXXX\= \kill
117  \>        call setdiag (num) \\  \> call diagnostics\_get\_pointers( diagName, ipoint, jpoint, myThid )
118  \\  \\
119  where \>  num   \>= Diagnostic number from menu \\  where \>  diagName \>= Character *8 expression of diagnostic \\
120          \>  ipoint   \>= Pointer into qdiag array - from idiag array in common \\
121          \>  jpoint   \>= Pointer into diagnostics menu - from jdiag array in common \\
122          \>  myThid   \>= Current Thread number \\
123  \end{tabbing}  \end{tabbing}
124    
125  \noindent  \noindent
# Line 161  the diagnostic with its time-average.  T Line 133  the diagnostic with its time-average.  T
133  \noindent  \noindent
134  \begin{tabbing}  \begin{tabbing}
135  XXXXXXXXX\=XXXXXX\= \kill  XXXXXXXXX\=XXXXXX\= \kill
136  \>        call getdiag (lev,num,qtmp,undef) \\  \>        call getdiag (lev, undef, qtmp, ipoint, mate, bi, bj, myThid) \\
137  \\  \\
138  where \>  lev   \>= Model Level at which the diagnostic is desired \\  where \>  lev     \>= Model Level at which the diagnostic is desired \\
139        \>  num   \>= Diagnostic number from menu \\        \>  undef   \>= Fill value to be used when diagnostic is undefined \\
140        \>  qtmp  \>= Time-Averaged Diagnostic Output \\        \>  qtmp    \>= Time-Averaged Diagnostic Output \\
141        \>  undef \>= Fill value to be used when diagnostic is undefined \\        \>  ipoint  \>= Pointer into qdiag array - from idiag array in common \\
142          \>  mate    \>= Diagnostic mate pointer number \\
143          \>  bi      \>= X-direction process(or) number \\
144          \>  bj      \>= Y-direction process(or) number \\
145          \>  myThid  \>= Current Thread number \\
146  \end{tabbing}  \end{tabbing}
147    
148  \noindent  \noindent
149  {\bf clrdiag}:  This subroutine initializes the values of model diagnostics to zero, and is  {\bf diagnostics\_add2list}:  This subroutine enables a diagnostic from the Diagnostic Menu, meaning
150  particularly useful when called from user output routines to re-initialize diagnostics  that space is allocated for the diagnostic and the model routines will increment the
151  during the run.  The calling sequence is:  diagnostic value during execution.  This routine is the underlying interface routine
152    for defining a new permanent diagnostic in the main model or in a package.  The calling sequence is:
153    
154  \noindent  \noindent
155  \begin{tabbing}  \begin{tabbing}
156  XXXXXXXXX\=XXXXXX\= \kill  XXXXXXXXX\=XXXXXX\= \kill
157  \>        call clrdiag (num) \\  \>        call diagnostics\_add2list( diagNum,diagName, diagCode, \\
158    \>        diagUnits, diagTitle, myThid ) \\
159  \\  \\
160  where \>  num   \>= Diagnostic number from menu \\  where \> diagNum   \>=Diagnostic number - Output from routine \\
161          \> diagName  \>=character*8 diagnostic name \\
162          \> diagCode  \>=character*16 parsing code (see description of gdiag below) \\
163          \> diagUnits \>=Diagnostic units (character*16) \\
164          \> diagTitle \>=Diagnostic title or long name (up to character*80) \\
165          \> myThid    \>=Current Thread number \\
166  \end{tabbing}  \end{tabbing}
167    
168  \noindent  \noindent
169  {\bf zapdiag}:  This entry into subroutine SETDIAG disables model diagnostics, meaning  {\bf clrdiag}:  This subroutine initializes the values of model diagnostics to zero, and is
170  that the diagnostic is no longer available to the user.  The memory previously allocated  particularly useful when called from user output routines to re-initialize diagnostics
171  to the diagnostic is released when ZAPDIAG is invoked.  The calling sequence is given by:  during the run.  The calling sequence is:
172    
173  \noindent  \noindent
174  \begin{tabbing}  \begin{tabbing}
175  XXXXXXXXX\=XXXXXX\= \kill  XXXXXXXXX\=XXXXXX\= \kill
176  \>        call zapdiag (NUM) \\  \>        call diagnostics\_clrdiag (jpoint, ipoint, myThid) \\
177  \\  \\
178  where \>  num   \>= Diagnostic number from menu \\  where \>  jpoint \>= Diagnostic number from menu - from jdiag array \\
179              ipoint \>= Pointer number into qdiag array - from idiag array \\
180          \>  myThid \>=Current Thread number \\
181  \end{tabbing}  \end{tabbing}
182    
183    \noindent
184    The diagnostics are computed at various times and places within the GCM. Because the
185    MIT GCM may employ a staggered grid, diagnostics may be computed at grid box centers,
186    corners, or edges, and at the middle or edge in the vertical. Some diagnostics are scalars,
187    while others are components of vectors. An internal array is defined which contains
188    information concerning various grid attributes of each diagnostic. The GDIAG
189    array (in common block \\diagnostics in file diagnostics.h) is internally defined as a
190    character*8 variable, and is equivalenced to a character*1 "parse" array in output in
191    order to extract the grid-attribute information.  The GDIAG array is described in
192    Table \ref{tab:diagnostics:gdiag.tabl}.
193    
194    \begin{table}
195    \caption{Diagnostic Parsing Array}
196    \label{tab:diagnostics:gdiag.tabl}
197    \begin{center}
198    \begin{tabular}{ |c|c|l| }
199    \hline
200    \multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\
201    \hline
202    \hline
203    Array & Value & Description \\
204    \hline
205      parse(1)   & $\rightarrow$ S &  Scalar Diagnostic                 \\
206                 & $\rightarrow$ U &  U-vector component Diagnostic     \\
207                 & $\rightarrow$ V &  V-vector component Diagnostic     \\ \hline
208      parse(2)   & $\rightarrow$ U &  C-Grid U-Point                    \\
209                 & $\rightarrow$ V &  C-Grid V-Point                    \\
210                 & $\rightarrow$ M &  C-Grid Mass Point                 \\
211                 & $\rightarrow$ Z &  C-Grid Vorticity (Corner) Point   \\ \hline
212      parse(3)   & $\rightarrow$ R &  Not Currently in Use              \\ \hline
213      parse(4)   & $\rightarrow$ P &  Positive Definite Diagnostic      \\ \hline
214      parse(5)   & $\rightarrow$ C &  Counter Diagnostic                \\
215                 & $\rightarrow$ D &  Disabled Diagnostic for output    \\ \hline
216      parse(6-8) & $\rightarrow$ C &  3-digit integer corresponding to  \\
217                 &                 &  vector or counter component mate  \\ \hline
218    \end{tabular}
219    \addcontentsline{lot}{section}{Table 3:  Diagnostic Parsing Array}
220    \end{center}
221    \end{table}
222    
 \subsection{Usage Notes}  
 \label{sec:diagnostics:usersguide}  
223    
224  \noindent  \noindent
225  We begin this section with a discussion on the manner in which computer  As an example, consider a diagnostic whose associated GDIAG parameter is equal
226  memory is allocated for diagnostics. All GCM diagnostic quantities are stored in the  to ``UU  002''.  From GDIAG we can determine that this diagnostic is a
227  single diagnostic array QDIAG which is located in the file \\  U-vector component located at the C-grid U-point.
228  \filelink{pkg/diagnostics/diagnostics.h}{pkg-diagnostics-diagnostics.h}.  Its corresponding V-component diagnostic is located in Diagnostic \# 002.
 and has the form:  
   
 common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy)  
229    
230  \noindent  \noindent
231  where numdiags is an Integer variable which should be set equal to the number of  In this way, each Diagnostic in the model has its attributes (ie. vector or scalar,
232  enabled diagnostics, and qdiag is a three-dimensional array.  The first two-dimensions  C-grid location, etc.) defined internally.  The Output routines use this information
233  of qdiag correspond to the horizontal dimension of a given diagnostic, while the third  in order to determine what type of transformations need to be performed.  Any
234  dimension of qdiag is used to identify diagnostic fields and levels combined. In order  interpolations are done at the time of output rather than during each model step.
235  to minimize the memory requirement of the model for diagnostics, the default GCM  In this way the User has flexibility in determining the type of gridded data which
236  executable is compiled with room for only one horizontal diagnostic array, or with  is output.
237  numdiags set to 1. In order for the User to enable more than 1 two-dimensional diagnostic,  
238  the size of the diagnostics common must be expanded to accomodate the desired diagnostics.  \subsection{Usage Notes}
239  This can be accomplished by manually changing the parameter numdiags in the  \label{sec:diagnostics:usersguide}
 file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}.  
 numdiags should be set greater than or equal to the sum of all the diagnostics activated  
 for output each multiplied by the number of levels defined for that diagnostic quantity.  
 This is illustrated in the example below:  
240    
241  \noindent  \noindent
242  To use the diagnostics package, other than enabling it in packages.conf  To use the diagnostics package, other than enabling it in packages.conf
243  and turning the usediagnostics flag in data.pkg to .TRUE., a namelist  and turning the usediagnostics flag in data.pkg to .TRUE., there are two
244  must be supplied in the run directory called data.diagnostics. The namelist  further steps the user must take to enable the diagnostics package for
245  will activate a user-defined list of diagnostics quantities to be computed,  output of quantities that are already defined in the GCM under an experiment's
246  specify the frequency of output, the number of levels, and the name of  configuration of packages.  A namelist must be supplied in the run directory
247  up to 10 separate output files. A sample data.diagnostics namelist file:  called data.diagnostics, and the file DIAGNOSTICS\_SIZE.h must be included in the
248    code directory.  The steps for defining a new (permanent or experiment-specific
249    temporary) diagnostic quantity will be outlined later.
250    
251    \noindent The namelist will activate a user-defined list of diagnostics quantities
252    to be computed, specify the frequency and type of output, the number of levels, and
253    the name of all the separate output files. A sample data.diagnostics namelist file:
254    
255  \noindent  \noindent
256  $\#$ Diagnostic Package Choices \\  $\#$ Diagnostic Package Choices \\
257   $\&$diagnostics\_list \\   $\&$diagnostics\_list \\
258    frequency(1) = 10, \ \\    frequency(1) = 86400., \ \\
259     levels(1,1) = 1.,2.,3.,4.,5., \ \\     levels(1,1) = 1., \ \\
260     fields(1,1) = 'UVEL    ','VVEL    ', \ \\     fields(1,1) = 'RSURF   ', \ \\
261     filename(1) = 'diagout1', \ \\     filename(1) = 'surface', \ \\
262    frequency(2) = 100, \ \\    frequency(2) = 86400., \ \\
263     levels(1,2) = 1.,2.,3.,4.,5., \ \\     levels(1,2) = 1.,2.,3.,4.,5., \ \\
264     fields(1,2) = 'THETA   ','SALT    ', \ \\     fields(1,2) = 'UVEL    ','VVEL    ', \ \\
265     filename(2) = 'diagout2', \ \\     filename(2) = 'diagout1', \ \\
266      frequency(3) = 3600., \ \\
267       fields(1,3) = 'UVEL    ','VVEL    ','PRESSURE', \ \\
268       filename(3) = 'diagout2', \ \\
269      fileflags(3) = ' P1     ', \ \\
270   $\&$end \ \\   $\&$end \ \\
271    
272  \noindent  \noindent
273  In this example, there are two output files that will be generated  In this example, there are two output files that will be generated
274  for each tile and for each output time. The first set of output files  for each tile and for each output time. The first set of output files
275  has the prefix diagout1, does time averaging every 10 time steps  has the prefix diagout1, does time averaging every 86400. seconds,
276  (frequency is 10), they will write fields which are multiple-level  (frequency is 86400.), and will write fields which are multiple-level
277  fields and output levels 1-5. The names of diagnostics quantities are  fields at output levels 1-5. The names of diagnostics quantities are
278  UVEL and VVEL.  The second set of output files  UVEL and VVEL.  The second set of output files
279  has the prefix diagout2, does time averaging every 100 time steps,  has the prefix diagout2, does time averaging every 3600. seconds,
280  they include fields which are multiple-level fields, levels output are 1-5,  includes fields which are multiple-level fields, levels output are 1-5,
281  and the names of diagnostics quantities are THETA and SALT.  and the names of diagnostics quantities are THETA and SALT.
282    
283  \noindent  \noindent
284    The user must assure that enough computer memory is allocated for the diagnostics
285    and the output streams selected for a particular experiment.  This is acomplished by
286    modifying the file DIAGNOSTICS\_SIZE.h and including it in the experiment code directory.
287    The parameters that should be checked are called numdiags, numlists, numperlist, and
288    diagSt\_size.
289    
290    \noindent numdiags (and diagSt\_size): \\
291    \noindent All GCM diagnostic quantities are stored in the single diagnostic array QDIAG
292    which is located in the file \\ \filelink{pkg/diagnostics/diagnostics.h}{pkg-diagnostics-diagnostics.h}.\\
293    and has the form:\\
294    common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy) \\
295    \noindent
296    The first two-dimensions of qdiag correspond to the horizontal dimension of a given diagnostic,
297    and the third dimension of qdiag is used to identify diagnostic fields and levels combined. In
298    order to minimize the memory requirement of the model for diagnostics, the default GCM
299    executable is compiled with room for only one horizontal diagnostic array, or with
300    numdiags set to Nr. In order for the User to enable more than 1 three-dimensional diagnostic,
301    the size of the diagnostics common must be expanded to accomodate the desired diagnostics.
302    This can be accomplished by manually changing the parameter numdiags in the
303    file \filelink{pkg/diagnostics/DIAGNOSTICS\_SIZE.h}{pkg-diagnostics-DIAGNOSTICS\_SIZE.h}.
304    numdiags should be set greater than or equal to the sum of all the diagnostics activated
305    for output each multiplied by the number of levels defined for that diagnostic quantity.
306    For the above example, there are 4 multiple level fields, which the diagnostics menu
307    (see below) indicates are defined at the GCM vertical resolution, Nr. The value of
308    numdiag in DIAGNOSTICS\_SIZE.h would therefore be equal to 4*Nr, or, say 40 if $Nr=10$.
309    
310    \noindent numlists and numperlist: \\
311    \noindent The parameter numlists must be set greater than or equal to the number of
312    separate output streams that the user specifies in the namelist file data.diagnostics.
313    The parameter numperlist corresponds to the number of diagnostics requested in each
314    output stream.
315    
316    \noindent
317  In order to define and include as part of the diagnostic output any field  In order to define and include as part of the diagnostic output any field
318  that is desired for a particular experiment, two steps must be taken. The  that is desired for a particular experiment, two steps must be taken. The
319  first is to enable the ``User Diagnostic'' in data.diagnostics. This is  first is to enable the ``User Diagnostic'' in data.diagnostics. This is
320  accomplished by setting one of the fields slots to either UDIAG1 through  accomplished by adding one of the ``User Diagnostic'' field names (UDIAG1 through
321  UDIAG10, for multi-level fields, or SDIAG1 through SDIAG10 for single level  UDIAG10, for multi-level fields, or SDIAG1 through SDIAG10 for single level
322  fields. These are listed in the diagnostics menu. The second step is to  fields) to the data.diagnostics namelist in one of the output streams. These
323  add a call to fill\_diagnostics from the subroutine in which the quantity  fields are listed in the diagnostics menu. The second step is to
324    add a call to diagnostics\_fill from the subroutine in which the quantity
325  desired for diagnostic output is computed.  desired for diagnostic output is computed.
326    
327    \noindent
328    In order to add a new diagnostic to the permanent set of diagnostics that the
329    main model or any package contains as part of its diagnostics menu, the subroutine
330    diagnostics\_add2list should be called during the initialization phase of the
331    main model or package. For the main model, the call should be made from
332    subroutine diagnostics\_main\_init, and for a package, the call should probably
333    be made from somewhere in the packages\_init\_fixed sequence (probaby from inside
334    the particular package's init\_fixed routine). A typical code sequence to set the
335    input arguments to diagnostics\_add2list would look like:
336    
337    \noindent
338    \begin{tabbing}
339    XXXXXXXXX\=XXXXXX\= \kill
340    \>      diagName  = 'THETA   ' \\
341    \>      diagTitle = 'Potential Temperature (degC,K)' \\
342    \>      diagUnits = 'Degrees K       ' \\
343    \>      diagCode  = 'SM      MR      ' \\
344    \>      CALL DIAGNOSTICS\_ADD2LIST( diagNum, \\
345    \>     I          diagName, diagCode, diagUnits, diagTitle, myThid ) \\
346    \\
347    \end{tabbing}
348    
349    \noindent If the new diagnostic quantity is associated with either a vector
350    pair or a diagnostic counter, the diagCode argument must be filled with the
351    proper index for the ``mate''. The output argument from diagnostics\_add2list
352    that is called diagNum here contains a running total of the number of diagnostics
353    defined in the code up to any point during the run. The sequence number for the
354    next two diagnostics defined (the two components of the vector pair, for instance)
355    will be diagNum+1 and diagNum+2. The definition of the first component of the vector
356    pair must fill the ``mate'' segment of the diagCode as diagnostic number diagNum+2.
357    Since the subroutine increments diagNum, the definition of the second component of
358    the vector fills the ``mate'' part of diagCode with diagNum. A code sequence for
359    this case would look like:
360    
361    \noindent
362    \begin{tabbing}
363    XXXXXXXXX\=XXXXXX\= \kill
364    \>      diagName  = 'UVEL    ' \\
365    \>      diagTitle = 'Zonal Velocity                ' \\
366    \>      diagUnits = 'm / sec         ' \\
367    \>      diagCode  = 'SM      MR      ' \\
368    \>      write(diagCode,'(A,I3.3,A)') 'VV   ', diagNum+2 ,'MR      ' \\
369    \>      call diagnostics\_add2list( diagNum, \\
370    \>     I          diagName, diagCode, diagUnits, diagTitle, myThid ) \\
371    \>      diagName  = 'VVEL    ' \\
372    \>      diagTitle = 'Meridional Velocity           ' \\
373    \>      diagUnits = 'm / sec         ' \\
374    \>      diagCode  = 'SM      MR      ' \\
375    \>      write(diagCode,'(A,I3.3,A)') 'VV   ', diagNum ,'MR      ' \\
376    \>      call diagnostics\_add2list( diagNum, \\
377    \>     I          diagName, diagCode, diagUnits, diagTitle, myThid ) \\
378    \\
379    \end{tabbing}
380    
381    
382  \newpage  \newpage
383    
384  \subsubsection{GCM Diagnostic Menu}  \subsubsection{GCM Diagnostic Menu}
385  \label{sec:diagnostics:menu}  \label{sec:diagnostics:menu}
386    
387  \begin{tabular}{lllll}  \begin{tabular}{llll}
388  \hline\hline  \hline\hline
389  N & NAME & UNITS & LEVELS & DESCRIPTION \\   NAME & UNITS & LEVELS & DESCRIPTION \\
390  \hline  \hline
391    
392  &\\  &\\
393  1 & UFLUX    &   $Newton/m^2$  &    1     SDIAG1   &             &    1  
394             &\begin{minipage}[t]{3in}
395              {User-Defined Surface Diagnostic-1}
396             \end{minipage}\\
397     SDIAG2   &             &    1  
398             &\begin{minipage}[t]{3in}
399              {User-Defined Surface Diagnostic-2}
400             \end{minipage}\\
401     UDIAG1   &             &    Nrphys
402             &\begin{minipage}[t]{3in}
403              {User-Defined Upper-Air Diagnostic-1}
404             \end{minipage}\\
405     UDIAG2   &             &    Nrphys
406             &\begin{minipage}[t]{3in}
407              {User-Defined Upper-Air Diagnostic-2}
408             \end{minipage}\\
409     SDIAG3   &             &    1  
410             &\begin{minipage}[t]{3in}
411              {User-Defined Surface Diagnostic-3}
412             \end{minipage}\\
413     SDIAG4   &             &    1  
414           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
415            {Surface U-Wind Stress on the atmosphere}            {User-Defined Surface Diagnostic-4}
416           \end{minipage}\\           \end{minipage}\\
417  2 & VFLUX    &   $Newton/m^2$  &    1     SDIAG5   &             &    1  
418           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
419            {Surface V-Wind Stress on the atmosphere}            {User-Defined Surface Diagnostic-5}
420           \end{minipage}\\           \end{minipage}\\
421  3 & HFLUX    &   $Watts/m^2$  &    1     SDIAG6   &             &    1  
422           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
423            {Surface Flux of Sensible Heat}            {User-Defined Surface Diagnostic-6}
424           \end{minipage}\\           \end{minipage}\\
425  4 & EFLUX    &   $Watts/m^2$  &    1     SDIAG7   &             &    1  
426           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
427            {Surface Flux of Latent Heat}            {User-Defined Surface Diagnostic-7}
428           \end{minipage}\\           \end{minipage}\\
429  5 & QICE     &   $Watts/m^2$  &    1     SDIAG8   &             &    1  
430           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
431            {Heat Conduction through Sea-Ice}            {User-Defined Surface Diagnostic-8}
432           \end{minipage}\\           \end{minipage}\\
433  6 & RADLWG   &   $Watts/m^2$ &    1     SDIAG9   &             &    1  
434           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
435            {Net upward LW flux at the ground}            {User-Defined Surface Diagnostic-9}
436           \end{minipage}\\           \end{minipage}\\
437  7 & RADSWG   &   $Watts/m^2$  &    1   SDIAG10  &             &    1  
438           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
439            {Net downward SW flux at the ground}            {User-Defined Surface Diagnostic-1-}
440           \end{minipage}\\           \end{minipage}\\
441  8 & RI       &  $dimensionless$ &  Nrphys   UDIAG3   &             &    Nrphys  
442           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
443            {Richardson Number}            {User-Defined Multi-Level Diagnostic-3}
444           \end{minipage}\\           \end{minipage}\\
445  9 & CT       &  $dimensionless$ &  1   UDIAG4   &             &    Nrphys  
446           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
447            {Surface Drag coefficient for T and Q}            {User-Defined Multi-Level Diagnostic-4}
448           \end{minipage}\\           \end{minipage}\\
449  10 & CU       & $dimensionless$ &  1   UDIAG5   &             &    Nrphys  
450           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
451            {Surface Drag coefficient for U and V}            {User-Defined Multi-Level Diagnostic-5}
452           \end{minipage}\\           \end{minipage}\\
453  11 & ET       &  $m^2/sec$ &  Nrphys   UDIAG6   &             &    Nrphys  
454           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
455            {Diffusivity coefficient for T and Q}            {User-Defined Multi-Level Diagnostic-6}
456           \end{minipage}\\           \end{minipage}\\
457  12 & EU       &  $m^2/sec$ &  Nrphys   UDIAG7   &             &    Nrphys  
458           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
459            {Diffusivity coefficient for U and V}            {User-Defined Multi-Level Diagnostic-7}
460           \end{minipage}\\           \end{minipage}\\
461  13 & TURBU    &  $m/sec/day$ &  Nrphys   UDIAG8   &             &    Nrphys  
462           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
463            {U-Momentum Changes due to Turbulence}            {User-Defined Multi-Level Diagnostic-8}
464           \end{minipage}\\           \end{minipage}\\
465  14 & TURBV    &  $m/sec/day$ &  Nrphys   UDIAG9   &             &    Nrphys  
466           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
467            {V-Momentum Changes due to Turbulence}            {User-Defined Multi-Level Diagnostic-9}
468           \end{minipage}\\           \end{minipage}\\
469  15 & TURBT    &  $deg/day$ &  Nrphys   UDIAG10  &             &    Nrphys  
470           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
471            {Temperature Changes due to Turbulence}            {User-Defined Multi-Level Diagnostic-10}
472           \end{minipage}\\           \end{minipage}\\
473  16 & TURBQ    &  $g/kg/day$ &  Nrphys   SDIAGC   &             &    1  
474           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
475            {Specific Humidity Changes due to Turbulence}            {User-Defined Counted Surface Diagnostic}
476           \end{minipage}\\           \end{minipage}\\
477  17 & MOISTT   &   $deg/day$ &  Nrphys   SDIAGCC  &             &    1  
478           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
479            {Temperature Changes due to Moist Processes}            {User-Defined Counted Surface Diagnostic Counter}
480           \end{minipage}\\           \end{minipage}\\
481  18 & MOISTQ   &  $g/kg/day$ &  Nrphys   ETAN     & $(hPa,m)$ &    1
482           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
483            {Specific Humidity Changes due to Moist Processes}            {Perturbation of Surface (pressure, height)}
484           \end{minipage}\\           \end{minipage}\\
485  19 & RADLW    &  $deg/day$ &  Nrphys   ETANSQ   & $(hPa^2,m^2)$ & 1
486           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
487            {Net Longwave heating rate for each level}            {Square of Perturbation of Surface (pressure, height)}
488           \end{minipage}\\           \end{minipage}\\
489  20 & RADSW    &  $deg/day$ &  Nrphys   DETADT2  & ${r-unit}^2/s^2$ & 1
490           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
491            {Net Shortwave heating rate for each level}            {Square of Eta (Surf.P,SSH) Tendency}
492           \end{minipage}\\           \end{minipage}\\
493  21 & PREACC   &  $mm/day$ &  1   THETA    & $deg K$ & Nr
494           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
495            {Total Precipitation}            {Potential Temperature}
496           \end{minipage}\\           \end{minipage}\\
497  22 & PRECON   &  $mm/day$ &  1   SST      & $deg K$ & 1
498           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
499            {Convective Precipitation}            {Sea Surface Temperature}
500           \end{minipage}\\           \end{minipage}\\
501  23 & TUFLUX   &  $Newton/m^2$ &  Nrphys   SALT     & $g/kg$ & Nr
502           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
503            {Turbulent Flux of U-Momentum}            {Salt (or Water Vapor Mixing Ratio)}
504           \end{minipage}\\           \end{minipage}\\
505  24 & TVFLUX   &  $Newton/m^2$ &  Nrphys   SSS      & $g/kg$ & 1
506           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
507            {Turbulent Flux of V-Momentum}            {Sea Surface Salinity}
508           \end{minipage}\\           \end{minipage}\\
509  25 & TTFLUX   &  $Watts/m^2$ &  Nrphys   SALTanom & $g/kg$ & Nr
510           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
511            {Turbulent Flux of Sensible Heat}            {Salt anomaly (=SALT-35)}
512           \end{minipage}\\           \end{minipage}\\
513  \end{tabular}  \end{tabular}
514    \vspace{1.5in}
515    \vfill
516    
517  \newpage  \newpage
518  \vspace*{\fill}  \vspace*{\fill}
519  \begin{tabular}{lllll}  \begin{tabular}{llll}
520  \hline\hline  \hline\hline
521  N & NAME & UNITS & LEVELS & DESCRIPTION \\   NAME & UNITS & LEVELS & DESCRIPTION \\
522  \hline  \hline
523    
524  &\\  &\\
525  26 & TQFLUX   &  $Watts/m^2$ &  Nrphys   UVEL     & $m/sec$ & Nr
526             &\begin{minipage}[t]{3in}
527              {U-Velocity}
528             \end{minipage}\\
529     VVEL     & $m/sec$ & Nr
530             &\begin{minipage}[t]{3in}
531              {V-Velocity}
532             \end{minipage}\\
533     UVEL\_k2  & $m/sec$ & 1
534           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
535            {Turbulent Flux of Latent Heat}            {U-Velocity}
536           \end{minipage}\\           \end{minipage}\\
537  27 & CN       &  $dimensionless$ &  1   VVEL\_k2  & $m/sec$ & 1
538           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
539            {Neutral Drag Coefficient}            {V-Velocity}
540           \end{minipage}\\           \end{minipage}\\
541  28 & WINDS     &  $m/sec$ &  1   WVEL     & $m/sec$ & Nr
542           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
543            {Surface Wind Speed}            {Vertical-Velocity}
544           \end{minipage}\\           \end{minipage}\\
545  29 & DTSRF     &  $deg$ &  1   THETASQ  & $deg^2$ & Nr
546           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
547            {Air/Surface virtual temperature difference}            {Square of Potential Temperature}
548           \end{minipage}\\           \end{minipage}\\
549  30 & TG        &  $deg$ &  1   SALTSQ   & $g^2/{kg}^2$ & Nr
550           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
551            {Ground temperature}            {Square of Salt (or Water Vapor Mixing Ratio)}
552           \end{minipage}\\           \end{minipage}\\
553  31 & TS        &  $deg$ &  1   SALTSQan & $g^2/{kg}^2$ & Nr
554           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
555            {Surface air temperature (Adiabatic from lowest model layer)}            {Square of Salt anomaly (=SALT-35)}
556           \end{minipage}\\           \end{minipage}\\
557  32 & DTG       &  $deg$ &  1   UVELSQ   & $m^2/sec^2$ & Nr
558           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
559            {Ground temperature adjustment}            {Square of U-Velocity}
560           \end{minipage}\\           \end{minipage}\\
561     VVELSQ   & $m^2/sec^2$ & Nr
562  33 & QG        &  $g/kg$ &  1           &\begin{minipage}[t]{3in}
563              {Square of V-Velocity}
564             \end{minipage}\\
565     WVELSQ   & $m^2/sec^2$ & Nr
566             &\begin{minipage}[t]{3in}
567              {Square of Vertical-Velocity}
568             \end{minipage}\\
569     UV\_VEL\_C & $m^2/sec^2$ & Nr
570             &\begin{minipage}[t]{3in}
571              {Meridional Transport of Zonal Momentum (cell center)}
572             \end{minipage}\\
573     UV\_VEL\_Z & $m^2/sec^2$ & Nr
574           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
575            {Ground specific humidity}            {Meridional Transport of Zonal Momentum (corner)}
576           \end{minipage}\\           \end{minipage}\\
577  34 & QS        &  $g/kg$ &  1   WU\_VEL   & $m^2/sec^2$ & Nr
578           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
579            {Saturation surface specific humidity}            {Vertical Transport of Zonal Momentum (cell center)}
580           \end{minipage}\\           \end{minipage}\\
581  35 & TGRLW    &    $deg$   &    1     WV\_VEL   & $m^2/sec^2$ & Nr
582           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
583            {Instantaneous ground temperature used as input to the            {Vertical Transport of Meridional Momentum (cell center)}
            Longwave radiation subroutine}  
584           \end{minipage}\\           \end{minipage}\\
585  36 & ST4      &   $Watts/m^2$  &    1     UVELMASS & $m/sec$ & Nr
586           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
587            {Upward Longwave flux at the ground ($\sigma T^4$)}            {Zonal Mass-Weighted Component of Velocity}
588           \end{minipage}\\           \end{minipage}\\
589  37 & OLR      &   $Watts/m^2$  &    1     VVELMASS & $m/sec$ & Nr
590           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
591            {Net upward Longwave flux at the top of the model}            {Meridional Mass-Weighted Component of Velocity}
592           \end{minipage}\\           \end{minipage}\\
593  38 & OLRCLR   &   $Watts/m^2$  &    1     WVELMASS & $m/sec$ & Nr
594           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
595            {Net upward clearsky Longwave flux at the top of the model}            {Vertical Mass-Weighted Component of Velocity}
596           \end{minipage}\\           \end{minipage}\\
597  39 & LWGCLR   &   $Watts/m^2$  &    1     UTHMASS  & $m-deg/sec$ & Nr
598           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
599            {Net upward clearsky Longwave flux at the ground}            {Zonal Mass-Weight Transp of Pot Temp}
600           \end{minipage}\\           \end{minipage}\\
601  40 & LWCLR    &  $deg/day$ &  Nrphys   VTHMASS  & $m-deg/sec$ & Nr
602           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
603            {Net clearsky Longwave heating rate for each level}            {Meridional Mass-Weight Transp of Pot Temp}
604           \end{minipage}\\           \end{minipage}\\
605  41 & TLW      &    $deg$   &  Nrphys   WTHMASS  & $m-deg/sec$ & Nr
606           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
607            {Instantaneous temperature used as input to the Longwave radiation            {Vertical Mass-Weight Transp of Pot Temp}
           subroutine}  
608           \end{minipage}\\           \end{minipage}\\
609  42 & SHLW     &    $g/g$   &  Nrphys   USLTMASS & $m-kg/sec-kg$ & Nr
610           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
611            {Instantaneous specific humidity used as input to the Longwave radiation            {Zonal Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}
           subroutine}  
612           \end{minipage}\\           \end{minipage}\\
613  43 & OZLW     &    $g/g$   &  Nrphys   VSLTMASS & $m-kg/sec-kg$ & Nr
614           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
615            {Instantaneous ozone used as input to the Longwave radiation            {Meridional Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}
           subroutine}  
616           \end{minipage}\\           \end{minipage}\\
617  44 & CLMOLW   &    $0-1$   &  Nrphys   WSLTMASS & $m-kg/sec-kg$ & Nr
618           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
619            {Maximum overlap cloud fraction used in the Longwave radiation            {Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}
           subroutine}  
620           \end{minipage}\\           \end{minipage}\\
621  45 & CLDTOT   &    $0-1$   &  Nrphys   UVELTH   & $m-deg/sec$ & Nr
622           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
623            {Total cloud fraction used in the Longwave and Shortwave radiation            {Zonal Transp of Pot Temp}
           subroutines}  
624           \end{minipage}\\           \end{minipage}\\
625  46 & LWGDOWN  &    $Watts/m^2$   &  1   VVELTH   & $m-deg/sec$ & Nr
626           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
627            {Downwelling Longwave radiation at the ground}            {Meridional Transp of Pot Temp}
628           \end{minipage}\\           \end{minipage}\\
629  47 & GWDT     &    $deg/day$ &  Nrphys   WVELTH   & $m-deg/sec$ & Nr
630           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
631            {Temperature tendency due to Gravity Wave Drag}            {Vertical Transp of Pot Temp}
632           \end{minipage}\\           \end{minipage}\\
633  48 & RADSWT   &    $Watts/m^2$   &  1   UVELSLT  & $m-kg/sec-kg$ & Nr
634           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
635            {Incident Shortwave radiation at the top of the atmosphere}            {Zonal Transp of Salt (or W.Vap Mix Rat.)}
636           \end{minipage}\\           \end{minipage}\\
637  49 & TAUCLD   &    $per 100 mb$   &  Nrphys   VVELSLT  & $m-kg/sec-kg$ & Nr
638           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
639            {Counted Cloud Optical Depth (non-dimensional) per 100 mb}            {Meridional Transp of Salt (or W.Vap Mix Rat.)}
640           \end{minipage}\\           \end{minipage}\\
641  50 & TAUCLDC  &    $Number$   &  Nrphys   WVELSLT  & $m-kg/sec-kg$ & Nr
642           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
643            {Cloud Optical Depth Counter}            {Vertical Transp of Salt (or W.Vap Mix Rat.)}
644           \end{minipage}\\           \end{minipage}\\
645  \end{tabular}  \end{tabular}
646    \vspace{1.5in}
647  \vfill  \vfill
648    
649  \newpage  \newpage
650  \vspace*{\fill}  \vspace*{\fill}
651  \begin{tabular}{lllll}  \begin{tabular}{llll}
652  \hline\hline  \hline\hline
653  N & NAME & UNITS & LEVELS & DESCRIPTION \\   NAME & UNITS & LEVELS & DESCRIPTION \\
654  \hline  \hline
655    
656  &\\  &\\
657  51 & CLDLOW   &    $0-1$   &  Nrphys   RHOAnoma & $kg/m^3  $  &  Nr  
658           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
659            {Low-Level ( 1000-700 hPa) Cloud Fraction  (0-1)}            {Density Anomaly (=Rho-rhoConst)}
660           \end{minipage}\\           \end{minipage}\\
661  52 & EVAP     &    $mm/day$   &  1   RHOANOSQ & $kg^2/m^6$  &  Nr  
662           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
663            {Surface evaporation}            {Square of Density Anomaly (=(Rho-rhoConst))}
664           \end{minipage}\\           \end{minipage}\\
665  53 & DPDT     &    $hPa/day$ &  1   URHOMASS & $kg/m^2/s$  &  Nr  
666           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
667            {Surface Pressure tendency}            {Zonal Transport of Density}
668           \end{minipage}\\           \end{minipage}\\
669  54 & UAVE     &    $m/sec$ &  Nrphys   VRHOMASS & $kg/m^2/s$  &  Nr  
670           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
671            {Average U-Wind}            {Meridional Transport of Density}
672           \end{minipage}\\           \end{minipage}\\
673  55 & VAVE     &    $m/sec$ &  Nrphys   WRHOMASS & $kg/m^2/s$  &  Nr  
674           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
675            {Average V-Wind}            {Vertical Transport of Potential Density}
676           \end{minipage}\\           \end{minipage}\\
677  56 & TAVE     &    $deg$ &  Nrphys   PHIHYD   & $m^2/s^2 $  &  Nr  
678           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
679            {Average Temperature}            {Hydrostatic (ocean) pressure / (atmos) geo-Potential}
680           \end{minipage}\\           \end{minipage}\\
681  57 & QAVE     &    $g/kg$ &  Nrphys   PHIHYDSQ & $m^4/s^4 $  &  Nr  
682           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
683            {Average Specific Humidity}            {Square of Hyd. (ocean) press / (atmos) geoPotential}
684           \end{minipage}\\           \end{minipage}\\
685  58 & OMEGA    &    $hPa/day$ &  Nrphys   PHIBOT   & $m^2/s^2 $  &  Nr  
686           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
687            {Vertical Velocity}            {ocean bottom pressure / top. atmos geo-Potential}
688           \end{minipage}\\           \end{minipage}\\
689  59 & DUDT     &    $m/sec/day$ &  Nrphys   PHIBOTSQ & $m^4/s^4 $  &  Nr  
690           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
691            {Total U-Wind tendency}            {Square of ocean bottom pressure / top. geo-Potential}
692           \end{minipage}\\           \end{minipage}\\
693  60 & DVDT     &    $m/sec/day$ &  Nrphys   DRHODR   & $kg/m^3/{r-unit}$ & Nr
694           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
695            {Total V-Wind tendency}            {Stratification: d.Sigma/dr}
696             \end{minipage}\\
697     VISCA4   & $m^4/sec$ & 1
698             &\begin{minipage}[t]{3in}
699              {Biharmonic Viscosity Coefficient}
700             \end{minipage}\\
701     VISCAH   & $m^2/sec$ & 1
702             &\begin{minipage}[t]{3in}
703              {Harmonic Viscosity Coefficient}
704             \end{minipage}\\
705     TAUX     & $N/m^2        $ & 1
706             &\begin{minipage}[t]{3in}
707              {zonal surface wind stress, >0 increases uVel}
708             \end{minipage}\\
709     TAUY     & $N/m^2        $ & 1
710             &\begin{minipage}[t]{3in}
711              {meridional surf. wind stress, >0 increases vVel}
712             \end{minipage}\\
713     TFLUX    & $W/m^2        $ & 1
714             &\begin{minipage}[t]{3in}
715              {net surface heat flux, >0 increases theta}
716           \end{minipage}\\           \end{minipage}\\
717  61 & DTDT     &    $deg/day$ &  Nrphys   TRELAX   & $W/m^2        $ & 1
718           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
719            {Total Temperature tendency}            {surface temperature relaxation, >0 increases theta}
720           \end{minipage}\\           \end{minipage}\\
721  62 & DQDT     &    $g/kg/day$ &  Nrphys   TICE     & $W/m^2        $ & 1
722           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
723            {Total Specific Humidity tendency}            {heat from melt/freeze of sea-ice, >0 increases theta}
724           \end{minipage}\\           \end{minipage}\\
725  63 & VORT     &    $10^{-4}/sec$ &  Nrphys   SFLUX    & $g/m^2/s      $ & 1
726           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
727            {Relative Vorticity}            {net surface salt flux, >0 increases salt}
728           \end{minipage}\\           \end{minipage}\\
729  64 & NOT USED &    $$ &     SRELAX   & $g/m^2/s      $ & 1
730           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
731            {}            {surface salinity relaxation, >0 increases salt}
732           \end{minipage}\\           \end{minipage}\\
733  65 & DTLS     &    $deg/day$ &  Nrphys   PRESSURE & $Pa           $ & Nr
734           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
735            {Temperature tendency due to Stratiform Cloud Formation}            {Atmospheric Pressure (Pa)}
736           \end{minipage}\\           \end{minipage}\\
737  66 & DQLS     &    $g/kg/day$ &  Nrphys   ADVr\_TH  & $K.Pa.m^2/s   $ & Nr
738           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
739            {Specific Humidity tendency due to Stratiform Cloud Formation}            {Vertical   Advective Flux of Pot.Temperature}
740           \end{minipage}\\           \end{minipage}\\
741  67 & USTAR    &    $m/sec$ &  1   ADVx\_TH  & $K.Pa.m^2/s   $ & Nr
742           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
743            {Surface USTAR wind}            {Zonal      Advective Flux of Pot.Temperature}
744           \end{minipage}\\           \end{minipage}\\
745  68 & Z0       &    $m$ &  1   ADVy\_TH  & $K.Pa.m^2/s   $ & Nr
746           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
747            {Surface roughness}            {Meridional Advective Flux of Pot.Temperature}
748           \end{minipage}\\           \end{minipage}\\
749  69 & FRQTRB   &    $0-1$ &  Nrphys-1   DFrE\_TH  & $K.Pa.m^2/s   $ & Nr
750           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
751            {Frequency of Turbulence}            {Vertical Diffusive Flux of Pot.Temperature (Explicit part)}
752           \end{minipage}\\           \end{minipage}\\
753  70 & PBL      &    $mb$ &  1   DIFx\_TH  & $K.Pa.m^2/s   $ & Nr
754           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
755            {Planetary Boundary Layer depth}            {Zonal      Diffusive Flux of Pot.Temperature}
756           \end{minipage}\\           \end{minipage}\\
757  71 & SWCLR    &  $deg/day$ &  Nrphys   DIFy\_TH  & $K.Pa.m^2/s   $ & Nr
758           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
759            {Net clearsky Shortwave heating rate for each level}            {Meridional Diffusive Flux of Pot.Temperature}
760           \end{minipage}\\           \end{minipage}\\
761  72 & OSR      &   $Watts/m^2$  &    1   DFrI\_TH  & $K.Pa.m^2/s   $ & Nr
762           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
763            {Net downward Shortwave flux at the top of the model}            {Vertical Diffusive Flux of Pot.Temperature (Implicit part)}
764           \end{minipage}\\           \end{minipage}\\
765  73 & OSRCLR   &   $Watts/m^2$  &    1     ADVr\_SLT & $g/kg.Pa.m^2/s$ & Nr
766           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
767            {Net downward clearsky Shortwave flux at the top of the model}            {Vertical   Advective Flux of Water-Vapor}
768           \end{minipage}\\           \end{minipage}\\
769  74 & CLDMAS   &   $kg / m^2$  &    Nrphys   ADVx\_SLT & $g/kg.Pa.m^2/s$ & Nr
770           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
771            {Convective cloud mass flux}            {Zonal      Advective Flux of Water-Vapor}
772           \end{minipage}\\           \end{minipage}\\
773  75 & UAVE     &   $m/sec$  &    Nrphys   ADVy\_SLT & $g/kg.Pa.m^2/s$ & Nr
774           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
775            {Time-averaged $u-Wind$}            {Meridional Advective Flux of Water-Vapor}
776           \end{minipage}\\           \end{minipage}\\
777  \end{tabular}  \end{tabular}
778    \vspace{1.5in}
779  \vfill  \vfill
780    
781  \newpage  \newpage
782  \vspace*{\fill}  \vspace*{\fill}
783  \begin{tabular}{lllll}  \begin{tabular}{llll}
784  \hline\hline  \hline\hline
785  N & NAME & UNITS & LEVELS & DESCRIPTION \\   NAME & UNITS & LEVELS & DESCRIPTION \\
786  \hline  \hline
787    
788  &\\  &\\
789  76 & VAVE     &   $m/sec$  &    Nrphys   DFrE\_SLT & $g/kg.Pa.m^2/s$ & Nr
          &\begin{minipage}[t]{3in}  
           {Time-averaged $v-Wind$}  
          \end{minipage}\\  
 77 & TAVE     &   $deg$  &    Nrphys  
790           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
791            {Time-averaged $Temperature$}            {Vertical Diffusive Flux of Water-Vapor (Explicit part)}
792           \end{minipage}\\           \end{minipage}\\
793  78 & QAVE     &   $g/g$  &    Nrphys   DIFx\_SLT & $g/kg.Pa.m^2/s$ & Nr
794           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
795            {Time-averaged $Specific \, \, Humidity$}            {Zonal      Diffusive Flux of Water-Vapor}
796           \end{minipage}\\           \end{minipage}\\
797  79 & RFT      &    $deg/day$ &  Nrphys   DIFy\_SLT & $g/kg.Pa.m^2/s$ & Nr
798           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
799            {Temperature tendency due Rayleigh Friction}            {Meridional Diffusive Flux of Water-Vapor}
800           \end{minipage}\\           \end{minipage}\\
801  80 & PS       &   $mb$  &    1   DFrI\_SLT & $g/kg.Pa.m^2/s$ & Nr
802           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
803            {Surface Pressure}            {Vertical Diffusive Flux of Water-Vapor (Implicit part)}
          \end{minipage}\\  
 81 & QQAVE    &   $(m/sec)^2$  &    Nrphys  
          &\begin{minipage}[t]{3in}  
           {Time-averaged $Turbulent Kinetic Energy$}  
          \end{minipage}\\  
 82 & SWGCLR   &   $Watts/m^2$  &    1    
          &\begin{minipage}[t]{3in}  
           {Net downward clearsky Shortwave flux at the ground}  
          \end{minipage}\\  
 83 & PAVE     &   $mb$  &    1  
          &\begin{minipage}[t]{3in}  
           {Time-averaged Surface Pressure}  
          \end{minipage}\\  
 84 & SDIAG1   &             &    1    
          &\begin{minipage}[t]{3in}  
           {User-Defined Surface Diagnostic-1}  
          \end{minipage}\\  
 85 & SDIAG2   &             &    1    
          &\begin{minipage}[t]{3in}  
           {User-Defined Surface Diagnostic-2}  
          \end{minipage}\\  
 86 & UDIAG1   &             &    Nrphys  
          &\begin{minipage}[t]{3in}  
           {User-Defined Upper-Air Diagnostic-1}  
          \end{minipage}\\  
 87 & UDIAG2   &             &    Nrphys  
          &\begin{minipage}[t]{3in}  
           {User-Defined Upper-Air Diagnostic-2}  
          \end{minipage}\\  
 88 & DIABU    & $m/sec/day$ &    Nrphys  
          &\begin{minipage}[t]{3in}  
           {Total Diabatic forcing on $u-Wind$}  
          \end{minipage}\\  
 89 & DIABV    & $m/sec/day$ &    Nrphys  
          &\begin{minipage}[t]{3in}  
           {Total Diabatic forcing on $v-Wind$}  
          \end{minipage}\\  
 90 & DIABT    & $deg/day$ &    Nrphys  
          &\begin{minipage}[t]{3in}  
           {Total Diabatic forcing on $Temperature$}  
          \end{minipage}\\  
 91 & DIABQ    & $g/kg/day$ &    Nrphys  
          &\begin{minipage}[t]{3in}  
           {Total Diabatic forcing on $Specific \, \, Humidity$}  
          \end{minipage}\\  
 92 & RFU      &    $m/sec/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {U-Wind tendency due to Rayleigh Friction}  
          \end{minipage}\\  
 93 & RFV      &    $m/sec/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {V-Wind tendency due to Rayleigh Friction}  
          \end{minipage}\\  
 94 & GWDU     &    $m/sec/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {U-Wind tendency due to Gravity Wave Drag}  
          \end{minipage}\\  
 95 & GWDU     &    $m/sec/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {V-Wind tendency due to Gravity Wave Drag}  
          \end{minipage}\\  
 96 & GWDUS    &    $N/m^2$ &  1  
          &\begin{minipage}[t]{3in}  
           {U-Wind Gravity Wave Drag Stress at Surface}  
          \end{minipage}\\  
 97 & GWDVS    &    $N/m^2$ &  1  
          &\begin{minipage}[t]{3in}  
           {V-Wind Gravity Wave Drag Stress at Surface}  
          \end{minipage}\\  
 98 & GWDUT    &    $N/m^2$ &  1  
          &\begin{minipage}[t]{3in}  
           {U-Wind Gravity Wave Drag Stress at Top}  
          \end{minipage}\\  
 99 & GWDVT    &    $N/m^2$ &  1  
          &\begin{minipage}[t]{3in}  
           {V-Wind Gravity Wave Drag Stress at Top}  
          \end{minipage}\\  
 100& LZRAD    &    $mg/kg$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Estimated Cloud Liquid Water used in Radiation}  
          \end{minipage}\\  
 \end{tabular}  
 \vfill  
   
 \newpage  
 \vspace*{\fill}  
 \begin{tabular}{lllll}  
 \hline\hline  
 N & NAME & UNITS & LEVELS & DESCRIPTION \\  
 \hline  
   
 &\\  
 101& SLP      &   $mb$  &    1  
          &\begin{minipage}[t]{3in}  
           {Time-averaged Sea-level Pressure}  
          \end{minipage}\\  
 102& NOT USED &    $$ &    
          &\begin{minipage}[t]{3in}  
           {}  
          \end{minipage}\\  
 103& NOT USED &    $$ &    
          &\begin{minipage}[t]{3in}  
           {}  
          \end{minipage}\\  
 104& NOT USED &    $$ &    
          &\begin{minipage}[t]{3in}  
           {}  
          \end{minipage}\\  
 105& NOT USED &    $$ &    
          &\begin{minipage}[t]{3in}  
           {}  
          \end{minipage}\\  
 106& CLDFRC  & $0-1$ &    1  
          &\begin{minipage}[t]{3in}  
           {Total Cloud Fraction}  
          \end{minipage}\\  
 107& TPW     & $gm/cm^2$ &    1  
          &\begin{minipage}[t]{3in}  
           {Precipitable water}  
          \end{minipage}\\  
 108& U2M     & $m/sec$ &    1  
          &\begin{minipage}[t]{3in}  
           {U-Wind at 2 meters}  
          \end{minipage}\\  
 109& V2M     & $m/sec$ &    1  
          &\begin{minipage}[t]{3in}  
           {V-Wind at 2 meters}  
          \end{minipage}\\  
 110& T2M     & $deg$ &    1  
          &\begin{minipage}[t]{3in}  
           {Temperature at 2 meters}  
          \end{minipage}\\  
 111& Q2M     & $g/kg$ &    1  
          &\begin{minipage}[t]{3in}  
           {Specific Humidity at 2 meters}  
          \end{minipage}\\  
 112& U10M    & $m/sec$ &    1  
          &\begin{minipage}[t]{3in}  
           {U-Wind at 10 meters}  
          \end{minipage}\\  
 113& V10M    & $m/sec$ &    1  
          &\begin{minipage}[t]{3in}  
           {V-Wind at 10 meters}  
          \end{minipage}\\  
 114& T10M    & $deg$ &    1  
          &\begin{minipage}[t]{3in}  
           {Temperature at 10 meters}  
          \end{minipage}\\  
 115& Q10M    & $g/kg$ &    1  
          &\begin{minipage}[t]{3in}  
           {Specific Humidity at 10 meters}  
          \end{minipage}\\  
 116& DTRAIN  & $kg/m^2$ &    Nrphys  
          &\begin{minipage}[t]{3in}  
           {Detrainment Cloud Mass Flux}  
          \end{minipage}\\  
 117& QFILL   & $g/kg/day$ &    Nrphys  
          &\begin{minipage}[t]{3in}  
           {Filling of negative specific humidity}  
          \end{minipage}\\  
 118& NOT USED &    $$ &    
          &\begin{minipage}[t]{3in}  
           {}  
          \end{minipage}\\  
 119& NOT USED &    $$ &    
          &\begin{minipage}[t]{3in}  
           {}  
          \end{minipage}\\  
 120& SHAPU    &    $m/sec/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {U-Wind tendency due to Shapiro Filter}  
          \end{minipage}\\  
 121& SHAPV    &    $m/sec/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {V-Wind tendency due to Shapiro Filter}  
          \end{minipage}\\  
 122& SHAPT    &    $deg/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Temperature tendency due Shapiro Filter}  
          \end{minipage}\\  
 123& SHAPQ    &    $g/kg/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Specific Humidity tendency due to Shapiro Filter}  
          \end{minipage}\\  
 124& SDIAG3   &             &    1    
          &\begin{minipage}[t]{3in}  
           {User-Defined Surface Diagnostic-3}  
          \end{minipage}\\  
 125& SDIAG4   &             &    1    
          &\begin{minipage}[t]{3in}  
           {User-Defined Surface Diagnostic-4}  
          \end{minipage}\\  
 \end{tabular}  
 \vspace{1.5in}  
 \vfill  
   
 \newpage  
 \vspace*{\fill}  
 \begin{tabular}{lllll}  
 \hline\hline  
 N & NAME & UNITS & LEVELS & DESCRIPTION \\  
 \hline  
   
 &\\  
 126& SDIAG5   &             &    1    
          &\begin{minipage}[t]{3in}  
           {User-Defined Surface Diagnostic-5}  
          \end{minipage}\\  
 127& SDIAG6   &             &    1    
          &\begin{minipage}[t]{3in}  
           {User-Defined Surface Diagnostic-6}  
          \end{minipage}\\  
 128& SDIAG7   &             &    1    
          &\begin{minipage}[t]{3in}  
           {User-Defined Surface Diagnostic-7}  
          \end{minipage}\\  
 129& SDIAG8   &             &    1    
          &\begin{minipage}[t]{3in}  
           {User-Defined Surface Diagnostic-8}  
          \end{minipage}\\  
 130& SDIAG9   &             &    1    
          &\begin{minipage}[t]{3in}  
           {User-Defined Surface Diagnostic-9}  
          \end{minipage}\\  
 131& SDIAG10  &             &    1    
          &\begin{minipage}[t]{3in}  
           {User-Defined Surface Diagnostic-1-}  
          \end{minipage}\\  
 132& UDIAG3   &             &    Nrphys    
          &\begin{minipage}[t]{3in}  
           {User-Defined Multi-Level Diagnostic-3}  
          \end{minipage}\\  
 133& UDIAG4   &             &    Nrphys    
          &\begin{minipage}[t]{3in}  
           {User-Defined Multi-Level Diagnostic-4}  
          \end{minipage}\\  
 134& UDIAG5   &             &    Nrphys    
          &\begin{minipage}[t]{3in}  
           {User-Defined Multi-Level Diagnostic-5}  
          \end{minipage}\\  
 135& UDIAG6   &             &    Nrphys    
          &\begin{minipage}[t]{3in}  
           {User-Defined Multi-Level Diagnostic-6}  
          \end{minipage}\\  
 136& UDIAG7   &             &    Nrphys    
          &\begin{minipage}[t]{3in}  
           {User-Defined Multi-Level Diagnostic-7}  
          \end{minipage}\\  
 137& UDIAG8   &             &    Nrphys    
          &\begin{minipage}[t]{3in}  
           {User-Defined Multi-Level Diagnostic-8}  
          \end{minipage}\\  
 138& UDIAG9   &             &    Nrphys    
          &\begin{minipage}[t]{3in}  
           {User-Defined Multi-Level Diagnostic-9}  
          \end{minipage}\\  
 139& UDIAG10  &             &    Nrphys    
          &\begin{minipage}[t]{3in}  
           {User-Defined Multi-Level Diagnostic-10}  
804           \end{minipage}\\           \end{minipage}\\
805  \end{tabular}  \end{tabular}
806  \vspace{1.5in}  \vspace{1.5in}
807  \vfill  \vfill
808    
809  \newpage  \newpage
 \vspace*{\fill}  
 \begin{tabular}{lllll}  
 \hline\hline  
 N & NAME & UNITS & LEVELS & DESCRIPTION \\  
 \hline  
810    
811  &\\  \subsubsection{Diagnostic Description}
 238& ETAN     & $(hPa,m)$ &    1  
          &\begin{minipage}[t]{3in}  
           {Perturbation of Surface (pressure, height)}  
          \end{minipage}\\  
 239& ETANSQ   & $(hPa^2,m^2)$ & 1  
          &\begin{minipage}[t]{3in}  
           {Square of Perturbation of Surface (pressure, height)}  
          \end{minipage}\\  
 240& THETA    & $deg K$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Potential Temperature}  
          \end{minipage}\\  
 241& SALT     & $g/kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Salt (or Water Vapor Mixing Ratio)}  
          \end{minipage}\\  
 242& UVEL     & $m/sec$ & Nr  
          &\begin{minipage}[t]{3in}  
           {U-Velocity}  
          \end{minipage}\\  
 243& VVEL     & $m/sec$ & Nr  
          &\begin{minipage}[t]{3in}  
           {V-Velocity}  
          \end{minipage}\\  
 244& WVEL     & $m/sec$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Vertical-Velocity}  
          \end{minipage}\\  
 245& THETASQ  & $deg^2$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Square of Potential Temperature}  
          \end{minipage}\\  
 246& SALTSQ   & $g^2/{kg}^2$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Square of Salt (or Water Vapor Mixing Ratio)}  
          \end{minipage}\\  
 247& UVELSQ   & $m^2/sec^2$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Square of U-Velocity}  
          \end{minipage}\\  
 248& VVELSQ   & $m^2/sec^2$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Square of V-Velocity}  
          \end{minipage}\\  
 249& WVELSQ   & $m^2/sec^2$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Square of Vertical-Velocity}  
          \end{minipage}\\  
 250& UVELVVEL & $m^2/sec^2$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Meridional Transport of Zonal Momentum}  
          \end{minipage}\\  
 \end{tabular}  
 \vspace{1.5in}  
 \vfill  
812    
813  \newpage  In this section we list and describe the diagnostic quantities available within the
814  \vspace*{\fill}  GCM.  The diagnostics are listed in the order that they appear in the
815  \begin{tabular}{lllll}  Diagnostic Menu, Section \ref{sec:diagnostics:menu}.
816  \hline\hline  In all cases, each diagnostic as currently archived on the output datasets
817  N & NAME & UNITS & LEVELS & DESCRIPTION \\  is time-averaged over its diagnostic output frequency:
 \hline  
   
 &\\  
 251& UVELMASS & $m/sec$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Zonal Mass-Weighted Component of Velocity}  
          \end{minipage}\\  
 252& VVELMASS & $m/sec$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Meridional Mass-Weighted Component of Velocity}  
          \end{minipage}\\  
 253& WVELMASS & $m/sec$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Vertical Mass-Weighted Component of Velocity}  
          \end{minipage}\\  
 254& UTHMASS  & $m-deg/sec$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Zonal Mass-Weight Transp of Pot Temp}  
          \end{minipage}\\  
 255& VTHMASS  & $m-deg/sec$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Meridional Mass-Weight Transp of Pot Temp}  
          \end{minipage}\\  
 256& WTHMASS  & $m-deg/sec$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Vertical Mass-Weight Transp of Pot Temp}  
          \end{minipage}\\  
 257& USLTMASS & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Zonal Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}  
          \end{minipage}\\  
 258& VSLTMASS & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Meridional Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}  
          \end{minipage}\\  
 259& WSLTMASS & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}  
          \end{minipage}\\  
 260& UVELTH   & $m-deg/sec$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Zonal Transp of Pot Temp}  
          \end{minipage}\\  
 261& VVELTH   & $m-deg/sec$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Meridional Transp of Pot Temp}  
          \end{minipage}\\  
 262& WVELTH   & $m-deg/sec$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Vertical Transp of Pot Temp}  
          \end{minipage}\\  
 263& UVELSLT  & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Zonal Transp of Salt (or W.Vap Mix Rat.)}  
          \end{minipage}\\  
 264& VVELSLT  & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Meridional Transp of Salt (or W.Vap Mix Rat.)}  
          \end{minipage}\\  
 265& WVELSLT  & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Vertical Transp of Salt (or W.Vap Mix Rat.)}  
          \end{minipage}\\  
 266& UTRAC1   & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Zonal Transp of Tracer 1}  
          \end{minipage}\\  
 267& VTRAC1   & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Meridional Transp of Tracer 1}  
          \end{minipage}\\  
 268& WTRAC1   & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Vertical Transp of Tracer 1}  
          \end{minipage}\\  
 269& UTRAC2   & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Zonal Transp of Tracer 2}  
          \end{minipage}\\  
 270& VTRAC2   & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Meridional Transp of Tracer 2}  
          \end{minipage}\\  
 271& WTRAC2   & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Vertical Transp of Tracer 2}  
          \end{minipage}\\  
 272& UTRAC3   & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Zonal Transp of Tracer 3}  
          \end{minipage}\\  
 273& VTRAC3   & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Meridional Transp of Tracer 3}  
          \end{minipage}\\  
 274& WTRAC3   & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Vertical Transp of Tracer 3}  
          \end{minipage}\\  
 275& WSLTMASS & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}  
          \end{minipage}\\  
 \end{tabular}  
 \vspace{1.5in}  
 \vfill  
   
 \newpage  
 \vspace*{\fill}  
 \begin{tabular}{lllll}  
 \hline\hline  
 N & NAME & UNITS & LEVELS & DESCRIPTION \\  
 \hline  
   
 &\\  
 275& UTRAC4   & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Zonal Transp of Tracer 4}  
          \end{minipage}\\  
 276& VTRAC4   & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Meridional Transp of Tracer 4}  
          \end{minipage}\\  
 277& WTRAC4   & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Vertical Transp of Tracer 4}  
          \end{minipage}\\  
 278& UTRAC5   & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Zonal Transp of Tracer 5}  
          \end{minipage}\\  
 279& VTRAC5   & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Meridional Transp of Tracer 5}  
          \end{minipage}\\  
 280& WTRAC5   & $m-kg/sec-kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Vertical Transp of Tracer 5}  
          \end{minipage}\\  
 281& TRAC1    & $kg/kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Mass-Weight Tracer 1}  
          \end{minipage}\\  
 282& TRAC2    & $kg/kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Mass-Weight Tracer 2}  
          \end{minipage}\\  
 283& TRAC3    & $kg/kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Mass-Weight Tracer 3}  
          \end{minipage}\\  
 284& TRAC4    & $kg/kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Mass-Weight Tracer 4}  
          \end{minipage}\\  
 285& TRAC5    & $kg/kg$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Mass-Weight Tracer 5}  
          \end{minipage}\\  
 286& DICBIOA  & $mol/m3/s$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Biological Productivity}  
          \end{minipage}\\  
 287& DICCARB  & $mol eq/m3/s$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Carbonate chg-biol prod and remin}  
          \end{minipage}\\  
 288& DICTFLX  & $mol/m3/s$ & 1  
          &\begin{minipage}[t]{3in}  
           {Tendency of DIC due to air-sea exch}  
          \end{minipage}\\  
 289& DICOFLX  & $mol/m3/s$ & 1  
          &\begin{minipage}[t]{3in}  
           {Tendency of O2 due to air-sea exch}  
          \end{minipage}\\  
 290& DICCFLX  & $mol/m2/s$ & 1  
          &\begin{minipage}[t]{3in}  
           {Flux of CO2 - air-sea exch}  
          \end{minipage}\\  
 291& DICPCO2  & $atm$ & 1  
          &\begin{minipage}[t]{3in}  
           {Partial Pressure of CO2}  
          \end{minipage}\\  
 292& DICPHAV  & $dimensionless$ & 1  
          &\begin{minipage}[t]{3in}  
           {Average pH}  
          \end{minipage}\\  
 293& DTCONV   & $deg/sec$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Temp Change due to Convection}  
          \end{minipage}\\  
 294& DQCONV   & $g/kg/sec$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Specific Humidity Change due to Convection}  
          \end{minipage}\\  
 295& RELHUM   & $percent$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Relative Humidity}  
          \end{minipage}\\  
 296& PRECLS   & $g/m^2/sec$ & 1  
          &\begin{minipage}[t]{3in}  
           {Large Scale Precipitation}  
          \end{minipage}\\  
 297& ENPREC   & $J/g$ & 1  
          &\begin{minipage}[t]{3in}  
           {Energy of Precipitation (snow, rain Temp)}  
          \end{minipage}\\  
 298& VISCA4   & $m^4/sec$ & 1  
          &\begin{minipage}[t]{3in}  
           {Biharmonic Viscosity Coefficient}  
          \end{minipage}\\  
 299& VISCAH   & $m^2/sec$ & 1  
          &\begin{minipage}[t]{3in}  
           {Harmonic Viscosity Coefficient}  
          \end{minipage}\\  
 300& DRHODR   & $kg/m^3/{r-unit}$ & Nr  
          &\begin{minipage}[t]{3in}  
           {Stratification: d.Sigma/dr}  
          \end{minipage}\\  
 \end{tabular}  
 \vspace{1.5in}  
 \vfill  
   
 \newpage  
 \vspace*{\fill}  
 \begin{tabular}{lllll}  
 \hline\hline  
 N & NAME & UNITS & LEVELS & DESCRIPTION \\  
 \hline  
   
 &\\  
 301& DETADT2  & ${r-unit}^2/s^2$ & 1  
          &\begin{minipage}[t]{3in}  
           {Square of Eta (Surf.P,SSH) Tendency}  
          \end{minipage}\\  
 \end{tabular}  
 \vspace{1.5in}  
 \vfill  
   
 \newpage  
   
 \subsubsection{Diagnostic Description}  
   
 In this section we list and describe the diagnostic quantities available within the  
 GCM.  The diagnostics are listed in the order that they appear in the  
 Diagnostic Menu, Section \ref{sec:diagnostics:menu}.  
 In all cases, each diagnostic as currently archived on the output datasets  
 is time-averaged over its diagnostic output frequency:  
818    
819  \[  \[
820  {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)  {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
# Line 1223  where $TTOT = {{\bf NQDIAG} \over \Delta Line 823  where $TTOT = {{\bf NQDIAG} \over \Delta
823  output frequency of the diagnostic, and $\Delta t$ is  output frequency of the diagnostic, and $\Delta t$ is
824  the timestep over which the diagnostic is updated.    the timestep over which the diagnostic is updated.  
825    
 {\bf 1)  \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }  
   
 The zonal wind stress is the turbulent flux of zonal momentum from  
 the surface. See section 3.3 for a description of the surface layer parameterization.  
 \[  
 {\bf UFLUX} =  - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u  
 \]  
 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface  
 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum  
 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is  
 the zonal wind in the lowest model layer.  
 \\  
   
   
 {\bf 2)  \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }  
   
 The meridional wind stress is the turbulent flux of meridional momentum from  
 the surface. See section 3.3 for a description of the surface layer parameterization.  
 \[  
 {\bf VFLUX} =  - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u  
 \]  
 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface  
 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum  
 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is  
 the meridional wind in the lowest model layer.  
 \\  
   
 {\bf 3)  \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }  
   
 The turbulent flux of sensible heat from the surface to the atmosphere is a function of the  
 gradient of virtual potential temperature and the eddy exchange coefficient:  
 \[  
 {\bf HFLUX} =  P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})  
 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t  
 \]  
 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific  
 heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the  
 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient  
 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient  
 for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature  
 at the surface and at the bottom model level.  
 \\  
   
   
 {\bf 4)  \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }  
   
 The turbulent flux of latent heat from the surface to the atmosphere is a function of the  
 gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:  
 \[  
 {\bf EFLUX} =  \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})  
 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t  
 \]  
 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of  
 the potential evapotranspiration actually evaporated, L is the latent  
 heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the  
 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient  
 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient  
 for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific  
 humidity at the surface and at the bottom model level, respectively.  
 \\  
   
 {\bf 5)  \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }  
   
 Over sea ice there is an additional source of energy at the surface due to the heat  
 conduction from the relatively warm ocean through the sea ice. The heat conduction  
 through sea ice represents an additional energy source term for the ground temperature equation.  
   
 \[  
 {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)  
 \]  
   
 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to  
 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and  
 $T_g$ is the temperature of the sea ice.  
   
 NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.  
 \\  
   
   
 {\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}  
   
 \begin{eqnarray*}  
 {\bf RADLWG} & =  & F_{LW,Nrphys+1}^{Net} \\  
              & =  & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow  
 \end{eqnarray*}  
 \\  
 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.  
 $F_{LW}^\uparrow$ is  
 the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.  
 \\  
   
 {\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}  
   
 \begin{eqnarray*}  
 {\bf RADSWG} & =  & F_{SW,Nrphys+1}^{Net} \\  
              & =  & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow  
 \end{eqnarray*}  
 \\  
 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.  
 $F_{SW}^\downarrow$ is  
 the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.  
 \\  
   
   
 \noindent  
 {\bf 8)  \underline {RI} Richardson Number} ($dimensionless$)  
   
 \noindent  
 The non-dimensional stability indicator is the ratio of the buoyancy to the shear:  
 \[  
 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }  
  =  {  {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }  
 \]  
 \\  
 where we used the hydrostatic equation:  
 \[  
 {\pp{\Phi}{P^ \kappa}} = c_p \theta_v  
 \]  
 Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)  
 indicate dominantly unstable shear, and large positive values indicate dominantly stable  
 stratification.  
 \\  
   
 \noindent  
 {\bf 9)  \underline {CT}  Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }  
   
 \noindent  
 The surface exchange coefficient is obtained from the similarity functions for the stability  
  dependant flux profile relationships:  
 \[  
 {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =  
 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =  
 { k \over { (\psi_{h} + \psi_{g}) } }  
 \]  
 where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the  
 viscous sublayer non-dimensional temperature or moisture change:  
 \[  
 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and  
 \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }  
 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}  
 \]  
 and:  
 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01  
   
 \noindent  
 $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of  
 the temperature and moisture gradients, specified differently for stable and unstable  
 layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the  
 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular  
 viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity  
 (see diagnostic number 67), and the subscript ref refers to a reference value.  
 \\  
   
 \noindent  
 {\bf 10)  \underline {CU}  Surface Exchange Coefficient for Momentum ($dimensionless$) }  
   
 \noindent  
 The surface exchange coefficient is obtained from the similarity functions for the stability  
  dependant flux profile relationships:  
 \[  
 {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }  
 \]  
 where $\psi_m$ is the surface layer non-dimensional wind shear:  
 \[  
 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}  
 \]  
 \noindent  
 $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of  
 the temperature and moisture gradients, specified differently for stable and unstable layers  
 according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the  
 non-dimensional stability parameter, $u_*$ is the surface stress velocity  
 (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.  
 \\  
   
 \noindent  
 {\bf 11)  \underline {ET}  Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }  
   
 \noindent  
 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or  
 moisture flux for the atmosphere above the surface layer can be expressed as a turbulent  
 diffusion coefficient $K_h$ times the negative of the gradient of potential temperature  
 or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$  
 takes the form:  
 \[  
 {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }  
  = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}  
 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.  
 \]  
 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}  
 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,  
 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer  
 depth,  
 $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and  
 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium  
 dimensionless buoyancy and wind shear  
 parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,  
 are functions of the Richardson number.  
   
 \noindent  
 For the detailed equations and derivations of the modified level 2.5 closure scheme,  
 see Helfand and Labraga, 1988.  
   
 \noindent  
 In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,  
 in units of $m/sec$, given by:  
 \[  
 {\bf ET_{Nrphys}} =  C_t * u_* = C_H W_s  
 \]  
 \noindent  
 where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the  
 surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface  
 friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,  
 and $W_s$ is the magnitude of the surface layer wind.  
 \\  
   
 \noindent  
 {\bf 12)  \underline {EU}  Diffusivity Coefficient for Momentum ($m^2/sec$) }  
   
 \noindent    
 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat  
 momentum flux for the atmosphere above the surface layer can be expressed as a turbulent  
 diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.  
 In the Helfand and Labraga (1988) adaptation of this closure, $K_m$  
 takes the form:  
 \[  
 {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }  
  = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}  
 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.  
 \]  
 \noindent  
 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}  
 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,  
 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer  
 depth,  
 $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and  
 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium  
 dimensionless buoyancy and wind shear  
 parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,  
 are functions of the Richardson number.  
   
 \noindent  
 For the detailed equations and derivations of the modified level 2.5 closure scheme,  
 see Helfand and Labraga, 1988.  
   
 \noindent  
 In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,  
 in units of $m/sec$, given by:  
 \[  
 {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s  
 \]  
 \noindent  
 where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer  
 similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity  
 (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the  
 magnitude of the surface layer wind.  
 \\  
   
 \noindent  
 {\bf 13)  \underline {TURBU}  Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }  
   
 \noindent  
 The tendency of U-Momentum due to turbulence is written:  
 \[  
 {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}  
  = {\pp{}{z} }{(K_m \pp{u}{z})}  
 \]  
   
 \noindent  
 The Helfand and Labraga level 2.5 scheme models the turbulent  
 flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion  
 equation.  
   
 \noindent  
 {\bf 14)  \underline {TURBV}  Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }  
   
 \noindent  
 The tendency of V-Momentum due to turbulence is written:  
 \[  
 {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}  
  = {\pp{}{z} }{(K_m \pp{v}{z})}  
 \]  
   
 \noindent  
 The Helfand and Labraga level 2.5 scheme models the turbulent  
 flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion  
 equation.  
 \\  
   
 \noindent  
 {\bf 15)  \underline {TURBT}  Temperature changes due to Turbulence ($deg/day$) }  
   
 \noindent  
 The tendency of temperature due to turbulence is written:  
 \[  
 {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =  
 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}  
  = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}  
 \]  
   
 \noindent  
 The Helfand and Labraga level 2.5 scheme models the turbulent  
 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion  
 equation.  
 \\  
   
 \noindent  
 {\bf 16)  \underline {TURBQ}  Specific Humidity changes due to Turbulence ($g/kg/day$) }  
   
 \noindent  
 The tendency of specific humidity due to turbulence is written:  
 \[  
 {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}  
  = {\pp{}{z} }{(K_h \pp{q}{z})}  
 \]  
   
 \noindent  
 The Helfand and Labraga level 2.5 scheme models the turbulent  
 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion  
 equation.  
 \\  
   
 \noindent  
 {\bf 17)  \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }  
   
 \noindent  
 \[  
 {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}  
 \]  
 where:  
 \[  
 \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i  
 \hspace{.4cm} and  
 \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)  
 \]  
 and  
 \[  
 \Gamma_s = g \eta \pp{s}{p}  
 \]  
   
 \noindent  
 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale  
 precipitation processes, or supersaturation rain.  
 The summation refers to contributions from each cloud type called by RAS.    
 The dry static energy is given  
 as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is  
 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},  
 the description of the convective parameterization.  The fractional adjustment, or relaxation  
 parameter, for each cloud type is given as $\alpha$, while  
 $R$ is the rain re-evaporation adjustment.  
 \\  
   
 \noindent  
 {\bf 18)  \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }  
   
 \noindent  
 \[  
 {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}  
 \]  
 where:  
 \[  
 \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i  
 \hspace{.4cm} and  
 \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)  
 \]  
 and  
 \[  
 \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}  
 \]  
 \noindent  
 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale  
 precipitation processes, or supersaturation rain.  
 The summation refers to contributions from each cloud type called by RAS.    
 The dry static energy is given as $s$,  
 the moist static energy is given as $h$,  
 the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is  
 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},  
 the description of the convective parameterization.  The fractional adjustment, or relaxation  
 parameter, for each cloud type is given as $\alpha$, while  
 $R$ is the rain re-evaporation adjustment.  
 \\  
   
 \noindent  
 {\bf 19)  \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }  
   
 \noindent  
 The net longwave heating rate is calculated as the vertical divergence of the  
 net terrestrial radiative fluxes.  
 Both the clear-sky and cloudy-sky longwave fluxes are computed within the  
 longwave routine.  
 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.  
 For a given cloud fraction,  
 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$  
 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,  
 for the upward and downward radiative fluxes.  
 (see Section \ref{sec:fizhi:radcloud}).  
 The cloudy-sky flux is then obtained as:  
     
 \noindent  
 \[  
 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},  
 \]  
   
 \noindent  
 Finally, the net longwave heating rate is calculated as the vertical divergence of the  
 net terrestrial radiative fluxes:  
 \[  
 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,  
 \]  
 or  
 \[  
 {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .  
 \]  
   
 \noindent  
 where $g$ is the accelation due to gravity,  
 $c_p$ is the heat capacity of air at constant pressure,  
 and  
 \[  
 F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow  
 \]  
 \\  
   
   
 \noindent  
 {\bf 20)  \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }  
   
 \noindent  
 The net Shortwave heating rate is calculated as the vertical divergence of the  
 net solar radiative fluxes.  
 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.  
 For the clear-sky case, the shortwave fluxes and heating rates are computed with  
 both CLMO (maximum overlap cloud fraction) and  
 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).  
 The shortwave routine is then called a second time, for the cloudy-sky case, with the  
 true time-averaged cloud fractions CLMO  
 and CLRO being used.  In all cases, a normalized incident shortwave flux is used as  
 input at the top of the atmosphere.  
   
 \noindent  
 The heating rate due to Shortwave Radiation under cloudy skies is defined as:  
 \[  
 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},  
 \]  
 or  
 \[  
 {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .  
 \]  
   
 \noindent  
 where $g$ is the accelation due to gravity,  
 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident  
 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and  
 \[  
 F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow  
 \]  
 \\  
   
 \noindent  
 {\bf 21)  \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }  
   
 \noindent  
 For a change in specific humidity due to moist processes, $\Delta q_{moist}$,  
 the vertical integral or total precipitable amount is given by:    
 \[  
 {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta  q_{moist}  
 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp  
 \]  
 \\  
   
 \noindent  
 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes  
 time step, scaled to $mm/day$.  
 \\  
   
 \noindent  
 {\bf 22)  \underline {PRECON} Convective Precipition ($mm/day$) }  
   
 \noindent  
 For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,  
 the vertical integral or total precipitable amount is given by:    
 \[  
 {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta  q_{cum}  
 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp  
 \]  
 \\  
   
 \noindent  
 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes  
 time step, scaled to $mm/day$.  
 \\  
   
 \noindent  
 {\bf 23)  \underline {TUFLUX}  Turbulent Flux of U-Momentum ($Newton/m^2$) }  
   
 \noindent  
 The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes  
  \hspace{.2cm} only$ from the eddy coefficient for momentum:  
   
 \[  
 {\bf TUFLUX} =  {\rho } {(\overline{u^{\prime}w^{\prime}})} =    
 {\rho } {(- K_m \pp{U}{z})}  
 \]  
   
 \noindent  
 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.  
 \\  
   
 \noindent  
 {\bf 24)  \underline {TVFLUX}  Turbulent Flux of V-Momentum ($Newton/m^2$) }  
   
 \noindent  
 The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes  
 \hspace{.2cm} only$ from the eddy coefficient for momentum:  
   
 \[  
 {\bf TVFLUX} =  {\rho } {(\overline{v^{\prime}w^{\prime}})} =  
  {\rho } {(- K_m \pp{V}{z})}  
 \]  
   
 \noindent  
 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.  
 \\  
   
   
 \noindent  
 {\bf 25)  \underline {TTFLUX}  Turbulent Flux of Sensible Heat ($Watts/m^2$) }  
   
 \noindent  
 The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes  
 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:  
   
 \noindent  
 \[  
 {\bf TTFLUX} = c_p {\rho }    
 P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}  
  = c_p  {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}  
 \]  
   
 \noindent  
 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.  
 \\  
   
   
 \noindent  
 {\bf 26)  \underline {TQFLUX}  Turbulent Flux of Latent Heat ($Watts/m^2$) }  
   
 \noindent  
 The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes  
 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:  
   
 \noindent  
 \[  
 {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =  
 {L {\rho }(- K_h \pp{q}{z})}  
 \]  
   
 \noindent  
 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.  
 \\  
   
   
 \noindent  
 {\bf 27)  \underline {CN}  Neutral Drag Coefficient ($dimensionless$) }  
   
 \noindent  
 The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:  
 \[  
 {\bf CN} = { k \over { \ln({h \over {z_0}})} }  
 \]  
   
 \noindent  
 where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and  
 $z_0$ is the surface roughness.  
   
 \noindent  
 NOTE: CN is not available through model version 5.3, but is available in subsequent  
 versions.  
 \\  
   
 \noindent  
 {\bf 28)  \underline {WINDS}  Surface Wind Speed ($meter/sec$) }  
   
 \noindent  
 The surface wind speed is calculated for the last internal turbulence time step:  
 \[  
 {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}  
 \]  
   
 \noindent  
 where the subscript $Nrphys$ refers to the lowest model level.  
 \\  
   
 \noindent  
 {\bf 29)  \underline {DTSRF}  Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }  
   
 \noindent  
 The air/surface virtual temperature difference measures the stability of the surface layer:  
 \[  
 {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}  
 \]  
 \noindent  
 where  
 \[  
 \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}  
 and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})  
 \]  
   
 \noindent  
 $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),  
 $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature  
 and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$  
 refers to the surface.  
 \\  
   
   
 \noindent  
 {\bf 30)  \underline {TG}  Ground Temperature ($deg \hspace{.1cm} K$) }  
   
 \noindent  
 The ground temperature equation is solved as part of the turbulence package  
 using a backward implicit time differencing scheme:  
 \[  
 {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}  
 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE  
 \]  
   
 \noindent  
 where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the  
 net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through  
 sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat  
 flux, and $C_g$ is the total heat capacity of the ground.  
 $C_g$ is obtained by solving a heat diffusion equation  
 for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:  
 \[  
 C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}  
 { 86400. \over {2 \pi} } } \, \, .  
 \]  
 \noindent  
 Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}  
 {cm \over {^oK}}$,  
 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided  
 by $2 \pi$ $radians/  
 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,  
 is a function of the ground wetness, $W$.  
 \\  
   
 \noindent  
 {\bf 31)  \underline {TS}  Surface Temperature ($deg \hspace{.1cm} K$) }  
   
 \noindent  
 The surface temperature estimate is made by assuming that the model's lowest  
 layer is well-mixed, and therefore that $\theta$ is constant in that layer.  
 The surface temperature is therefore:  
 \[  
 {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}  
 \]  
 \\  
   
 \noindent  
 {\bf 32)  \underline {DTG}  Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }  
   
 \noindent  
 The change in surface temperature from one turbulence time step to the next, solved  
 using the Ground Temperature Equation (see diagnostic number 30) is calculated:  
 \[  
 {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}  
 \]  
   
 \noindent  
 where superscript $n$ refers to the new, updated time level, and the superscript $n-1$  
 refers to the value at the previous turbulence time level.  
 \\  
   
 \noindent  
 {\bf 33)  \underline {QG}  Ground Specific Humidity ($g/kg$) }  
   
 \noindent  
 The ground specific humidity is obtained by interpolating between the specific  
 humidity at the lowest model level and the specific humidity of a saturated ground.  
 The interpolation is performed using the potential evapotranspiration function:  
 \[  
 {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})  
 \]  
   
 \noindent  
 where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),  
 and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface  
 pressure.  
 \\  
   
 \noindent  
 {\bf 34)  \underline {QS}  Saturation Surface Specific Humidity ($g/kg$) }  
   
 \noindent  
 The surface saturation specific humidity is the saturation specific humidity at  
 the ground temprature and surface pressure:  
 \[  
 {\bf QS} = q^*(T_g,P_s)  
 \]  
 \\  
   
 \noindent  
 {\bf 35)  \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave  
  radiation subroutine (deg)}  
 \[  
 {\bf TGRLW}  = T_g(\lambda , \phi ,n)  
 \]  
 \noindent  
 where $T_g$ is the model ground temperature at the current time step $n$.  
 \\  
   
   
 \noindent  
 {\bf 36)  \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }  
 \[  
 {\bf ST4} = \sigma T^4  
 \]  
 \noindent  
 where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.  
 \\  
   
 \noindent  
 {\bf 37)  \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }  
 \[  
 {\bf OLR}  =  F_{LW,top}^{NET}  
 \]  
 \noindent  
 where top indicates the top of the first model layer.  
 In the GCM, $p_{top}$ = 0.0 mb.  
 \\  
   
   
 \noindent  
 {\bf 38)  \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }  
 \[  
 {\bf OLRCLR}  =  F(clearsky)_{LW,top}^{NET}  
 \]  
 \noindent  
 where top indicates the top of the first model layer.  
 In the GCM, $p_{top}$ = 0.0 mb.  
 \\  
   
 \noindent  
 {\bf 39)  \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }  
   
 \noindent  
 \begin{eqnarray*}  
 {\bf LWGCLR} & =  & F(clearsky)_{LW,Nrphys+1}^{Net} \\  
              & =  & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow  
 \end{eqnarray*}  
 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.  
 $F(clearsky)_{LW}^\uparrow$ is  
 the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.  
 \\  
   
 \noindent  
 {\bf 40)  \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }  
   
 \noindent  
 The net longwave heating rate is calculated as the vertical divergence of the  
 net terrestrial radiative fluxes.  
 Both the clear-sky and cloudy-sky longwave fluxes are computed within the  
 longwave routine.  
 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.  
 For a given cloud fraction,  
 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$  
 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,  
 for the upward and downward radiative fluxes.  
 (see Section \ref{sec:fizhi:radcloud}).  
 The cloudy-sky flux is then obtained as:  
     
 \noindent  
 \[  
 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},  
 \]  
   
 \noindent  
 Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the  
 vertical divergence of the  
 clear-sky longwave radiative flux:  
 \[  
 \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,  
 \]  
 or  
 \[  
 {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .  
 \]  
   
 \noindent  
 where $g$ is the accelation due to gravity,  
 $c_p$ is the heat capacity of air at constant pressure,  
 and  
 \[  
 F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow  
 \]  
 \\  
   
   
 \noindent  
 {\bf 41)  \underline {TLW} Instantaneous temperature used as input to the Longwave  
  radiation subroutine (deg)}  
 \[  
 {\bf TLW}  = T(\lambda , \phi ,level, n)  
 \]  
 \noindent  
 where $T$ is the model temperature at the current time step $n$.  
 \\  
   
   
 \noindent  
 {\bf 42)  \underline {SHLW} Instantaneous specific humidity used as input to  
  the Longwave radiation subroutine (kg/kg)}  
 \[  
 {\bf SHLW}  = q(\lambda , \phi , level , n)  
 \]  
 \noindent  
 where $q$ is the model specific humidity at the current time step $n$.  
 \\  
   
   
 \noindent  
 {\bf 43)  \underline {OZLW} Instantaneous ozone used as input to  
  the Longwave radiation subroutine (kg/kg)}  
 \[  
 {\bf OZLW}  = {\rm OZ}(\lambda , \phi , level , n)  
 \]  
 \noindent  
 where $\rm OZ$ is the interpolated ozone data set from the climatological monthly  
 mean zonally averaged ozone data set.  
 \\  
   
   
 \noindent  
 {\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }  
   
 \noindent  
 {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed  
 Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm.  These are  
 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.  
 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.  
 \[  
 {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi,  level )  
 \]  
 \\  
   
   
 {\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }  
   
 {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed  
 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave  
 Radiation packages.  
 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.  
 \[  
 {\bf CLDTOT} = F_{RAS} + F_{LS}  
 \]  
 \\  
 where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the  
 time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.  
 \\  
   
   
 \noindent  
 {\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }  
   
 \noindent  
 {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed  
 Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm.  These are  
 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.  
 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.  
 \[  
 {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi,  level )  
 \]  
 \\  
   
 \noindent  
 {\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }  
   
 \noindent  
 {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed  
 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave  
 Radiation algorithm.  These are  
 convective and large-scale clouds whose radiative characteristics are not  
 assumed to be correlated in the vertical.  
 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.  
 \[  
 {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi,  level )  
 \]  
 \\  
   
 \noindent  
 {\bf 48)  \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }  
 \[  
 {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z  
 \]  
 \noindent  
 where $S_0$, is the extra-terrestial solar contant,  
 $R_a$ is the earth-sun distance in Astronomical Units,  
 and $cos \phi_z$ is the cosine of the zenith angle.  
 It should be noted that {\bf RADSWT}, as well as  
 {\bf OSR} and {\bf OSRCLR},  
 are calculated at the top of the atmosphere (p=0 mb).  However, the  
 {\bf OLR} and {\bf OLRCLR} diagnostics are currently  
 calculated at $p= p_{top}$ (0.0 mb for the GCM).  
 \\  
     
 \noindent  
 {\bf 49)  \underline {EVAP}  Surface Evaporation ($mm/day$) }  
   
 \noindent  
 The surface evaporation is a function of the gradient of moisture, the potential  
 evapotranspiration fraction and the eddy exchange coefficient:  
 \[  
 {\bf EVAP} =  \rho \beta K_{h} (q_{surface} - q_{Nrphys})  
 \]  
 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of  
 the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the  
 turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and  
 $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic  
 number 34) and at the bottom model level, respectively.  
 \\  
   
 \noindent  
 {\bf 50)  \underline {DUDT} Total Zonal U-Wind Tendency  ($m/sec/day$) }  
   
 \noindent  
 {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,  
 and Analysis forcing.  
 \[  
 {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}  
 \]  
 \\  
   
 \noindent  
 {\bf 51)  \underline {DVDT} Total Zonal V-Wind Tendency  ($m/sec/day$) }  
   
 \noindent  
 {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,  
 and Analysis forcing.  
 \[  
 {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}  
 \]  
 \\  
   
 \noindent  
 {\bf 52)  \underline {DTDT} Total Temperature Tendency  ($deg/day$) }  
   
 \noindent  
 {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,  
 and Analysis forcing.  
 \begin{eqnarray*}  
 {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\  
            & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}  
 \end{eqnarray*}  
 \\  
   
 \noindent  
 {\bf 53)  \underline {DQDT} Total Specific Humidity Tendency  ($g/kg/day$) }  
   
 \noindent  
 {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,  
 and Analysis forcing.  
 \[  
 {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}  
 + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}  
 \]  
 \\  
     
 \noindent  
 {\bf 54)  \underline {USTAR}  Surface-Stress Velocity ($m/sec$) }  
   
 \noindent  
 The surface stress velocity, or the friction velocity, is the wind speed at  
 the surface layer top impeded by the surface drag:  
 \[  
 {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}  
 C_u = {k \over {\psi_m} }  
 \]  
   
 \noindent  
 $C_u$ is the non-dimensional surface drag coefficient (see diagnostic  
 number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).  
   
 \noindent  
 {\bf 55)  \underline {Z0}  Surface Roughness Length ($m$) }  
   
 \noindent  
 Over the land surface, the surface roughness length is interpolated to the local  
 time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,  
 the roughness length is a function of the surface-stress velocity, $u_*$.  
 \[  
 {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}  
 \]  
   
 \noindent  
 where the constants are chosen to interpolate between the reciprocal relation of  
 Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)  
 for moderate to large winds.  
 \\  
   
 \noindent  
 {\bf 56)  \underline {FRQTRB}  Frequency of Turbulence ($0-1$) }  
   
 \noindent  
 The fraction of time when turbulence is present is defined as the fraction of  
 time when the turbulent kinetic energy exceeds some minimum value, defined here  
 to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is  
 incremented. The fraction over the averaging interval is reported.  
 \\  
   
 \noindent  
 {\bf 57)  \underline {PBL}  Planetary Boundary Layer Depth ($mb$) }  
   
 \noindent  
 The depth of the PBL is defined by the turbulence parameterization to be the  
 depth at which the turbulent kinetic energy reduces to ten percent of its surface  
 value.  
   
 \[  
 {\bf PBL} = P_{PBL} - P_{surface}  
 \]  
   
 \noindent  
 where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy  
 reaches one tenth of its surface value, and $P_s$ is the surface pressure.  
 \\  
   
 \noindent  
 {\bf 58)  \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }  
   
 \noindent  
 The net Shortwave heating rate is calculated as the vertical divergence of the  
 net solar radiative fluxes.  
 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.  
 For the clear-sky case, the shortwave fluxes and heating rates are computed with  
 both CLMO (maximum overlap cloud fraction) and  
 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).  
 The shortwave routine is then called a second time, for the cloudy-sky case, with the  
 true time-averaged cloud fractions CLMO  
 and CLRO being used.  In all cases, a normalized incident shortwave flux is used as  
 input at the top of the atmosphere.  
   
 \noindent  
 The heating rate due to Shortwave Radiation under clear skies is defined as:  
 \[  
 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},  
 \]  
 or  
 \[  
 {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .  
 \]  
   
 \noindent  
 where $g$ is the accelation due to gravity,  
 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident  
 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and  
 \[  
 F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow  
 \]  
 \\  
   
 \noindent  
 {\bf 59)  \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }  
 \[  
 {\bf OSR}  =  F_{SW,top}^{NET}  
 \]                                                                                        
 \noindent  
 where top indicates the top of the first model layer used in the shortwave radiation  
 routine.  
 In the GCM, $p_{SW_{top}}$ = 0 mb.  
 \\  
   
 \noindent  
 {\bf 60)  \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }  
 \[  
 {\bf OSRCLR}  =  F(clearsky)_{SW,top}^{NET}  
 \]  
 \noindent  
 where top indicates the top of the first model layer used in the shortwave radiation  
 routine.  
 In the GCM, $p_{SW_{top}}$ = 0 mb.  
 \\  
   
   
 \noindent  
 {\bf 61)  \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }  
   
 \noindent  
 The amount of cloud mass moved per RAS timestep from all convective clouds is written:  
 \[  
 {\bf CLDMAS} = \eta m_B  
 \]  
 where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is  
 the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the  
 description of the convective parameterization.  
 \\  
   
   
   
 \noindent  
 {\bf 62)  \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }  
   
 \noindent  
 The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over  
 the {\bf NUAVE} output frequency.  This is contrasted to the instantaneous  
 Zonal U-Wind which is archived on the Prognostic Output data stream.  
 \[  
 {\bf UAVE} = u(\lambda, \phi, level , t)  
 \]  
 \\  
 Note, {\bf UAVE} is computed and stored on the staggered C-grid.  
 \\  
   
 \noindent  
 {\bf 63)  \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }  
   
 \noindent  
 The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over  
 the {\bf NVAVE} output frequency.  This is contrasted to the instantaneous  
 Meridional V-Wind which is archived on the Prognostic Output data stream.  
 \[  
 {\bf VAVE} = v(\lambda, \phi, level , t)  
 \]  
 \\  
 Note, {\bf VAVE} is computed and stored on the staggered C-grid.  
 \\  
   
 \noindent  
 {\bf 64)  \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }  
   
 \noindent  
 The diagnostic {\bf TAVE} is simply the time-averaged Temperature over  
 the {\bf NTAVE} output frequency.  This is contrasted to the instantaneous  
 Temperature which is archived on the Prognostic Output data stream.  
 \[  
 {\bf TAVE} = T(\lambda, \phi, level , t)  
 \]  
 \\  
   
 \noindent  
 {\bf 65)  \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }  
   
 \noindent  
 The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over  
 the {\bf NQAVE} output frequency.  This is contrasted to the instantaneous  
 Specific Humidity which is archived on the Prognostic Output data stream.  
 \[  
 {\bf QAVE} = q(\lambda, \phi, level , t)  
 \]  
 \\  
   
 \noindent  
 {\bf 66)  \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }  
   
 \noindent  
 The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over  
 the {\bf NPAVE} output frequency.  This is contrasted to the instantaneous  
 Surface Pressure - PTOP which is archived on the Prognostic Output data stream.  
 \begin{eqnarray*}  
 {\bf PAVE} & =  & \pi(\lambda, \phi, level , t) \\  
            & =  & p_s(\lambda, \phi, level , t) - p_T  
 \end{eqnarray*}  
 \\  
   
   
 \noindent  
 {\bf 67)  \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }  
   
 \noindent  
 The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy  
 produced by the GCM Turbulence parameterization over  
 the {\bf NQQAVE} output frequency.  This is contrasted to the instantaneous  
 Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.  
 \[  
 {\bf QQAVE} = qq(\lambda, \phi, level , t)  
 \]  
 \\  
 Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.  
 \\  
   
 \noindent  
 {\bf 68)  \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }  
   
 \noindent  
 \begin{eqnarray*}  
 {\bf SWGCLR} & =  & F(clearsky)_{SW,Nrphys+1}^{Net} \\  
              & =  & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow  
 \end{eqnarray*}  
 \noindent  
 \\  
 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.  
 $F(clearsky){SW}^\downarrow$ is  
 the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is  
 the upward clearsky Shortwave flux.  
 \\  
   
 \noindent  
 {\bf 69)  \underline {SDIAG1} User-Defined Surface Diagnostic-1 }  
   
 \noindent  
 The GCM provides Users with a built-in mechanism for archiving user-defined  
 diagnostics.  The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated  
 diagnostic counters and pointers located in COMMON /DIAGP/,  
 must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}).    
 A convenient method for incorporating all necessary COMMON files is to  
 include the GCM {\em vstate.com} file in the routine which employs the  
 user-defined diagnostics.  
   
 \noindent  
 In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill  
 the QDIAG array with the desired quantity within the User's  
 application program or within modified GCM subroutines, as well as increment  
 the diagnostic counter at the time when the diagnostic is updated.    
 The QDIAG location index for {\bf SDIAG1} and its corresponding counter is  
 automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the  
 diagnostic has been enabled.    
 The syntax for its use is given by  
 \begin{verbatim}  
       do j=1,jm  
       do i=1,im  
       qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ...  
       enddo  
       enddo  
   
       NSDIAG1 = NSDIAG1 + 1  
 \end{verbatim}  
 The diagnostics defined in this manner will automatically be archived by the output routines.  
 \\  
   
 \noindent  
 {\bf 70)  \underline {SDIAG2} User-Defined Surface Diagnostic-2 }  
   
 \noindent  
 The GCM provides Users with a built-in mechanism for archiving user-defined  
 diagnostics.  For a complete description refer to Diagnostic \#84.  
 The syntax for using the surface SDIAG2 diagnostic is given by  
 \begin{verbatim}  
       do j=1,jm  
       do i=1,im  
       qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ...  
       enddo  
       enddo  
   
       NSDIAG2 = NSDIAG2 + 1  
 \end{verbatim}  
 The diagnostics defined in this manner will automatically be archived by the output routines.  
 \\  
   
 \noindent  
 {\bf 71)  \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 }  
   
 \noindent  
 The GCM provides Users with a built-in mechanism for archiving user-defined  
 diagnostics.  For a complete description refer to Diagnostic \#84.  
 The syntax for using the upper-air UDIAG1 diagnostic is given by  
 \begin{verbatim}  
       do L=1,Nrphys  
       do j=1,jm  
       do i=1,im  
       qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ...  
       enddo  
       enddo  
       enddo  
   
       NUDIAG1 = NUDIAG1 + 1  
 \end{verbatim}  
 The diagnostics defined in this manner will automatically be archived by the  
 output programs.  
 \\  
   
 \noindent  
 {\bf 72)  \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 }  
   
 \noindent  
 The GCM provides Users with a built-in mechanism for archiving user-defined  
 diagnostics.  For a complete description refer to Diagnostic \#84.  
 The syntax for using the upper-air UDIAG2 diagnostic is given by  
 \begin{verbatim}  
       do L=1,Nrphys  
       do j=1,jm  
       do i=1,im  
       qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ...  
       enddo  
       enddo  
       enddo  
   
       NUDIAG2 = NUDIAG2 + 1  
 \end{verbatim}  
 The diagnostics defined in this manner will automatically be archived by the  
 output programs.  
 \\  
   
   
 \noindent  
 {\bf 73)  \underline {DIABU} Total Diabatic Zonal U-Wind Tendency  ($m/sec/day$) }  
   
 \noindent  
 {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes  
 and the Analysis forcing.  
 \[  
 {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}  
 \]  
 \\  
   
 \noindent  
 {\bf 74)  \underline {DIABV} Total Diabatic Meridional V-Wind Tendency  ($m/sec/day$) }  
   
 \noindent  
 {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes  
 and the Analysis forcing.  
 \[  
 {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}  
 \]  
 \\  
   
 \noindent  
 {\bf 75)  \underline {DIABT} Total Diabatic Temperature Tendency  ($deg/day$) }  
   
 \noindent  
 {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes  
 and the Analysis forcing.  
 \begin{eqnarray*}  
 {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\  
            & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}  
 \end{eqnarray*}  
 \\  
 If we define the time-tendency of Temperature due to Diabatic processes as  
 \begin{eqnarray*}  
 \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\  
                      & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}  
 \end{eqnarray*}  
 then, since there are no surface pressure changes due to Diabatic processes, we may write  
 \[  
 \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}  
 \]  
 where $\theta = T/p^\kappa$.  Thus, {\bf DIABT} may be written as  
 \[  
 {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)  
 \]  
 \\  
   
 \noindent  
 {\bf 76)  \underline {DIABQ} Total Diabatic Specific Humidity Tendency  ($g/kg/day$) }  
   
 \noindent  
 {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes  
 and the Analysis forcing.  
 \[  
 {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}  
 \]  
 If we define the time-tendency of Specific Humidity due to Diabatic processes as  
 \[  
 \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}  
 \]  
 then, since there are no surface pressure changes due to Diabatic processes, we may write  
 \[  
 \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}  
 \]  
 Thus, {\bf DIABQ} may be written as  
 \[  
 {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)  
 \]  
 \\  
   
 \noindent  
 {\bf 77)  \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }  
   
 \noindent  
 The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating  
 $u q$ over the depth of the atmosphere at each model timestep,  
 and dividing by the total mass of the column.  
 \[  
 {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz  } { \int_{surf}^{top} \rho dz  }  
 \]  
 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have  
 \[  
 {\bf VINTUQ} = { \int_0^1 u q dp  }  
 \]  
 \\  
   
   
 \noindent  
 {\bf 78)  \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }  
   
 \noindent  
 The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating  
 $v q$ over the depth of the atmosphere at each model timestep,  
 and dividing by the total mass of the column.  
 \[  
 {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz  } { \int_{surf}^{top} \rho dz  }  
 \]  
 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have  
 \[  
 {\bf VINTVQ} = { \int_0^1 v q dp  }  
 \]  
 \\  
   
   
 \noindent  
 {\bf 79)  \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }  
   
 \noindent  
 The vertically integrated heat flux due to the zonal u-wind is obtained by integrating  
 $u T$ over the depth of the atmosphere at each model timestep,  
 and dividing by the total mass of the column.  
 \[  
 {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz  } { \int_{surf}^{top} \rho dz  }  
 \]  
 Or,  
 \[  
 {\bf VINTUT} = { \int_0^1 u T dp  }  
 \]  
 \\  
   
 \noindent  
 {\bf 80)  \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }  
   
 \noindent  
 The vertically integrated heat flux due to the meridional v-wind is obtained by integrating  
 $v T$ over the depth of the atmosphere at each model timestep,  
 and dividing by the total mass of the column.  
 \[  
 {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz  } { \int_{surf}^{top} \rho dz  }  
 \]  
 Using $\rho \delta z = -{\delta p \over g} $, we have  
 \[  
 {\bf VINTVT} = { \int_0^1 v T dp  }  
 \]  
 \\  
   
 \noindent  
 {\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }  
   
 If we define the  
 time-averaged random and maximum overlapped cloudiness as CLRO and  
 CLMO respectively, then the probability of clear sky associated  
 with random overlapped clouds at any level is (1-CLRO) while the probability of  
 clear sky associated with maximum overlapped clouds at any level is (1-CLMO).  
 The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus  
 the total cloud fraction at each  level may be obtained by  
 1-(1-CLRO)*(1-CLMO).  
   
 At any given level, we may define the clear line-of-site probability by  
 appropriately accounting for the maximum and random overlap  
 cloudiness.  The clear line-of-site probability is defined to be  
 equal to the product of the clear line-of-site probabilities  
 associated with random and maximum overlap cloudiness.  The clear  
 line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,  
 from the current pressure $p$  
 to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,  
 is simply 1.0 minus the largest maximum overlap cloud value along  the  
 line-of-site, ie.  
   
 $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$  
   
 Thus, even in the time-averaged sense it is assumed that the  
 maximum overlap clouds are correlated in the vertical.  The clear  
 line-of-site probability associated with random overlap clouds is  
 defined to be the product of the clear sky probabilities at each  
 level along the line-of-site, ie.  
   
 $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$  
   
 The total cloud fraction at a given level associated with a line-  
 of-site calculation is given by  
   
 $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)  
     \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$  
   
   
 \noindent  
 The 2-dimensional net cloud fraction as seen from the top of the  
 atmosphere is given by  
 \[  
 {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)  
     \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)  
 \]  
 \\  
 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.  
   
   
 \noindent  
 {\bf 82)  \underline {QINT} Total Precipitable Water ($gm/cm^2$) }  
   
 \noindent  
 The Total Precipitable Water is defined as the vertical integral of the specific humidity,  
 given by:  
 \begin{eqnarray*}  
 {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\  
            & = & {\pi \over g} \int_0^1 q dp  
 \end{eqnarray*}  
 where we have used the hydrostatic relation  
 $\rho \delta z = -{\delta p \over g} $.  
 \\  
   
   
 \noindent  
 {\bf 83)  \underline {U2M}  Zonal U-Wind at 2 Meter Depth ($m/sec$) }  
   
 \noindent  
 The u-wind at the 2-meter depth is determined from the similarity theory:  
 \[  
 {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =  
 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}  
 \]  
   
 \noindent  
 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript  
 $sl$ refers to the height of the top of the surface layer. If the roughness height  
 is above two meters, ${\bf U2M}$ is undefined.  
 \\  
   
 \noindent  
 {\bf 84)  \underline {V2M}  Meridional V-Wind at 2 Meter Depth ($m/sec$) }  
   
 \noindent  
 The v-wind at the 2-meter depth is a determined from the similarity theory:  
 \[  
 {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =  
 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}  
 \]  
   
 \noindent  
 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript  
 $sl$ refers to the height of the top of the surface layer. If the roughness height  
 is above two meters, ${\bf V2M}$ is undefined.  
 \\  
   
 \noindent  
 {\bf 85)  \underline {T2M}  Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }  
   
 \noindent  
 The temperature at the 2-meter depth is a determined from the similarity theory:  
 \[  
 {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =  
 P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }  
 (\theta_{sl} - \theta_{surf}))  
 \]  
 where:  
 \[  
 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }  
 \]  
   
 \noindent  
 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is  
 the non-dimensional temperature gradient in the viscous sublayer, and the subscript  
 $sl$ refers to the height of the top of the surface layer. If the roughness height  
 is above two meters, ${\bf T2M}$ is undefined.  
 \\  
   
 \noindent  
 {\bf 86)  \underline {Q2M}  Specific Humidity at 2 Meter Depth ($g/kg$) }  
   
 \noindent  
 The specific humidity at the 2-meter depth is determined from the similarity theory:  
 \[  
 {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =  
 P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }  
 (q_{sl} - q_{surf}))  
 \]  
 where:  
 \[  
 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }  
 \]  
   
 \noindent  
 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is  
 the non-dimensional temperature gradient in the viscous sublayer, and the subscript  
 $sl$ refers to the height of the top of the surface layer. If the roughness height  
 is above two meters, ${\bf Q2M}$ is undefined.  
 \\  
   
 \noindent  
 {\bf 87)  \underline {U10M}  Zonal U-Wind at 10 Meter Depth ($m/sec$) }  
   
 \noindent  
 The u-wind at the 10-meter depth is an interpolation between the surface wind  
 and the model lowest level wind using the ratio of the non-dimensional wind shear  
 at the two levels:  
 \[  
 {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =  
 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}  
 \]  
   
 \noindent  
 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript  
 $sl$ refers to the height of the top of the surface layer.  
 \\  
   
 \noindent  
 {\bf 88)  \underline {V10M}  Meridional V-Wind at 10 Meter Depth ($m/sec$) }  
   
 \noindent  
 The v-wind at the 10-meter depth is an interpolation between the surface wind  
 and the model lowest level wind using the ratio of the non-dimensional wind shear  
 at the two levels:  
 \[  
 {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =  
 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}  
 \]  
   
 \noindent  
 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript  
 $sl$ refers to the height of the top of the surface layer.  
 \\  
   
 \noindent  
 {\bf 89)  \underline {T10M}  Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }  
   
 \noindent  
 The temperature at the 10-meter depth is an interpolation between the surface potential  
 temperature and the model lowest level potential temperature using the ratio of the  
 non-dimensional temperature gradient at the two levels:  
 \[  
 {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =  
 P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }  
 (\theta_{sl} - \theta_{surf}))  
 \]  
 where:  
 \[  
 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }  
 \]  
   
 \noindent  
 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is  
 the non-dimensional temperature gradient in the viscous sublayer, and the subscript  
 $sl$ refers to the height of the top of the surface layer.  
 \\  
   
 \noindent  
 {\bf 90)  \underline {Q10M}  Specific Humidity at 10 Meter Depth ($g/kg$) }  
   
 \noindent  
 The specific humidity at the 10-meter depth is an interpolation between the surface specific  
 humidity and the model lowest level specific humidity using the ratio of the  
 non-dimensional temperature gradient at the two levels:  
 \[  
 {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =  
 P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }  
 (q_{sl} - q_{surf}))  
 \]  
 where:  
 \[  
 q_* =  - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }  
 \]  
   
 \noindent  
 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is  
 the non-dimensional temperature gradient in the viscous sublayer, and the subscript  
 $sl$ refers to the height of the top of the surface layer.  
 \\  
   
 \noindent  
 {\bf 91)  \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }  
   
 The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:  
 \[  
 {\bf DTRAIN} = \eta_{r_D}m_B  
 \]  
 \noindent  
 where $r_D$ is the detrainment level,  
 $m_B$ is the cloud base mass flux, and $\eta$  
 is the entrainment, defined in Section \ref{sec:fizhi:mc}.  
 \\  
   
 \noindent  
 {\bf 92)  \underline {QFILL}  Filling of negative Specific Humidity ($g/kg/day$) }  
   
 \noindent  
 Due to computational errors associated with the numerical scheme used for  
 the advection of moisture, negative values of specific humidity may be generated.  The  
 specific humidity is checked for negative values after every dynamics timestep.  If negative  
 values have been produced, a filling algorithm is invoked which redistributes moisture from  
 below.  Diagnostic {\bf QFILL} is equal to the net filling needed  
 to eliminate negative specific humidity, scaled to a per-day rate:  
 \[  
 {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}  
 \]  
 where  
 \[  
 q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}  
 \]  
   
826  \subsection{Dos and Donts}  \subsection{Dos and Donts}
827    
828  \subsection{Diagnostics Reference}  \subsection{Diagnostics Reference}

Legend:
Removed from v.1.8  
changed lines
  Added in v.1.11

  ViewVC Help
Powered by ViewVC 1.1.22