/[MITgcm]/manual/s_phys_pkgs/diagnostics.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/diagnostics.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (show annotations) (download) (as text)
Thu Oct 28 22:41:16 2004 UTC (20 years, 9 months ago) by molod
Branch: MAIN
CVS Tags: checkpoint57l_post
Changes since 1.7: +585 -71 lines
File MIME type: application/x-tex
Completed Diagnostics Menu Entries

1 \section{Diagnostics--A Flexible Infrastructure}
2 \label{sec:pkg:diagnostics}
3 \begin{rawhtml}
4 <!-- CMIREDIR:package_diagnostics: -->
5 \end{rawhtml}
6
7 \subsection{Introduction}
8
9 \noindent
10 This section of the documentation describes the Diagnostics package available within
11 the GCM. A large selection of model diagnostics is available for output.
12 In addition to the diagnostic quantities pre-defined in the GCM, there exists
13 the option, in any experiment, to define a new diagnostic quantity and include it
14 as part of the diagnostic output with the addition of a single subroutine call in the
15 routine where the field is computed. As a matter of philosophy, no diagnostic is enabled
16 as default, thus each user must specify the exact diagnostic information required for an
17 experiment. This is accomplished by enabling the specific diagnostic of interest cataloged
18 in the Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). Instructions for enabling
19 diagnostic output and defining new diagnostic quantities are found in Section
20 \ref{sec:diagnostics:usersguide} of this document.
21
22 \noindent
23 The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within
24 the GCM. Once a diagnostic is enabled, the GCM will continually increment an array
25 specifically allocated for that diagnostic whenever the appropriate quantity is computed.
26 A counter is defined which records how many times each diagnostic quantity has been
27 incremented. Several special diagnostics are included in the menu. Quantities refered to
28 as ``Counter Diagnostics'', are defined for selected diagnostics which record the
29 frequency at which a diagnostic is incremented separately for each model grid location.
30 Quantitied refered to as ``User Diagnostics'' are included in the menu to facilitate
31 defining new diagnostics for a particular experiment.
32
33 \subsection{Equations}
34 Not relevant.
35
36 \subsection{Key Subroutines and Parameters}
37 \label{sec:diagnostics:diagover}
38
39 \noindent
40 The diagnostics are computed at various times and places within the GCM. Because the
41 MIT GCM may employ a staggered grid, diagnostics may be computed at grid box centers,
42 corners, or edges, and at the middle or edge in the vertical. Some diagnostics are scalars,
43 while others are components of vectors. An internal array is defined which contains
44 information concerning various grid attributes of each diagnostic. The GDIAG
45 array (in common block \\diagnostics in file diagnostics.h) is internally defined as a
46 character*8 variable, and is equivalenced to a character*1 "parse" array in output in
47 order to extract the grid-attribute information. The GDIAG array is described in
48 Table \ref{tab:diagnostics:gdiag.tabl}.
49
50 \begin{table}
51 \caption{Diagnostic Parsing Array}
52 \label{tab:diagnostics:gdiag.tabl}
53 \begin{center}
54 \begin{tabular}{ |c|c|l| }
55 \hline
56 \multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\
57 \hline
58 \hline
59 Array & Value & Description \\
60 \hline
61 parse(1) & $\rightarrow$ S & Scalar Diagnostic \\
62 & $\rightarrow$ U & U-vector component Diagnostic \\
63 & $\rightarrow$ V & V-vector component Diagnostic \\ \hline
64 parse(2) & $\rightarrow$ U & C-Grid U-Point \\
65 & $\rightarrow$ V & C-Grid V-Point \\
66 & $\rightarrow$ M & C-Grid Mass Point \\
67 & $\rightarrow$ Z & C-Grid Vorticity (Corner) Point \\ \hline
68 parse(3) & $\rightarrow$ R & Not Currently in Use \\ \hline
69 parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline
70 parse(5) & $\rightarrow$ C & Counter Diagnostic \\
71 & $\rightarrow$ D & Disabled Diagnostic for output \\ \hline
72 parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\
73 & & vector or counter component mate \\ \hline
74 \end{tabular}
75 \addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array}
76 \end{center}
77 \end{table}
78
79
80 \noindent
81 As an example, consider a diagnostic whose associated GDIAG parameter is equal
82 to ``UU 002''. From GDIAG we can determine that this diagnostic is a
83 U-vector component located at the C-grid U-point.
84 Its corresponding V-component diagnostic is located in Diagnostic \# 002.
85
86
87 \noindent
88 In this way, each Diagnostic in the model has its attributes (ie. vector or scalar,
89 C-grid location, etc.) defined internally. The Output routines use this information
90 in order to determine what type of transformations need to be performed. Any
91 interpolations are done at the time of output rather than during each model step.
92 In this way the User has flexibility in determining the type of gridded data which
93 is output.
94
95
96 \noindent
97 There are several utilities within the GCM available to users to enable, disable,
98 clear, write and retrieve model diagnostics, and may be called from any routine.
99 The available utilities and the CALL sequences are listed below.
100
101
102 \noindent
103 {\bf fill\_diagnostics}: This routine will increment the specified diagnostic
104 quantity with a field sent through the argument list.
105
106
107 \noindent
108 \begin{tabbing}
109 XXXXXXXXX\=XXXXXX\= \kill
110 \> call fill\_diagnostics (myThid, chardiag, levflg, nlevs, \\
111 bibjflg, bi, bj, arrayin) \\
112 \\
113 where \> myThid \>= Current Process(or) \\
114 \> chardiag \>= Character *8 expression for diag to fill \\
115 \> levflg \>= Integer flag for vertical levels: \\
116 \> \> 0 indicates multiple levels incremented in qdiag \\
117 \> \> non-0 (any integer) - WHICH single level to increment. \\
118 \> \> negative integer - the input data array is single-leveled \\
119 \> \> positive integer - the input data array is multi-leveled \\
120 \> nlevs \>= indicates Number of levels to be filled (1 if levflg <> 0) \\
121 \> \> positive: fill in "nlevs" levels in the same order as \\
122 \> \> the input array \\
123 \> \> negative: fill in -nlevs levels in reverse order. \\
124 \> bibjflg \>= Integer flag to indicate instructions for bi bj loop \\
125 \> \> 0 indicates that the bi-bj loop must be done here \\
126 \> \> 1 indicates that the bi-bj loop is done OUTSIDE \\
127 \> \> 2 indicates that the bi-bj loop is done OUTSIDE \\
128 \> \> AND that we have been sent a local array \\
129 \> \> 3 indicates that the bi-bj loop is done OUTSIDE \\
130 \> \> AND that we have been sent a local array \\
131 \> \> AND that the array has the shadow regions \\
132 \> bi \>= X-direction process(or) number - used for bibjflg=1-3 \\
133 \> bj \>= Y-direction process(or) number - used for bibjflg=1-3 \\
134 \> arrayin \>= Field to increment diagnostics array \\
135 \end{tabbing}
136
137
138 \noindent
139 {\bf setdiag}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning
140 that space is allocated for the diagnostic and the model routines will increment the
141 diagnostic value during execution. This routine is the underlying interface
142 between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic
143 number from the menu, and its calling sequence is given by:
144
145 \noindent
146 \begin{tabbing}
147 XXXXXXXXX\=XXXXXX\= \kill
148 \> call setdiag (num) \\
149 \\
150 where \> num \>= Diagnostic number from menu \\
151 \end{tabbing}
152
153 \noindent
154 {\bf getdiag}: This subroutine retrieves the value of a model diagnostic. This routine
155 is particulary useful when called from a user output routine, although it can be called
156 from any routine. This routine returns the time-averaged value of the diagnostic by
157 dividing the current accumulated diagnostic value by its corresponding counter. This
158 routine does not change the value of the diagnostic itself, that is, it does not replace
159 the diagnostic with its time-average. The calling sequence for this routine is givin by:
160
161 \noindent
162 \begin{tabbing}
163 XXXXXXXXX\=XXXXXX\= \kill
164 \> call getdiag (lev,num,qtmp,undef) \\
165 \\
166 where \> lev \>= Model Level at which the diagnostic is desired \\
167 \> num \>= Diagnostic number from menu \\
168 \> qtmp \>= Time-Averaged Diagnostic Output \\
169 \> undef \>= Fill value to be used when diagnostic is undefined \\
170 \end{tabbing}
171
172 \noindent
173 {\bf clrdiag}: This subroutine initializes the values of model diagnostics to zero, and is
174 particularly useful when called from user output routines to re-initialize diagnostics
175 during the run. The calling sequence is:
176
177 \noindent
178 \begin{tabbing}
179 XXXXXXXXX\=XXXXXX\= \kill
180 \> call clrdiag (num) \\
181 \\
182 where \> num \>= Diagnostic number from menu \\
183 \end{tabbing}
184
185 \noindent
186 {\bf zapdiag}: This entry into subroutine SETDIAG disables model diagnostics, meaning
187 that the diagnostic is no longer available to the user. The memory previously allocated
188 to the diagnostic is released when ZAPDIAG is invoked. The calling sequence is given by:
189
190 \noindent
191 \begin{tabbing}
192 XXXXXXXXX\=XXXXXX\= \kill
193 \> call zapdiag (NUM) \\
194 \\
195 where \> num \>= Diagnostic number from menu \\
196 \end{tabbing}
197
198
199 \subsection{Usage Notes}
200 \label{sec:diagnostics:usersguide}
201
202 \noindent
203 We begin this section with a discussion on the manner in which computer
204 memory is allocated for diagnostics. All GCM diagnostic quantities are stored in the
205 single diagnostic array QDIAG which is located in the file \\
206 \filelink{pkg/diagnostics/diagnostics.h}{pkg-diagnostics-diagnostics.h}.
207 and has the form:
208
209 common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy)
210
211 \noindent
212 where numdiags is an Integer variable which should be set equal to the number of
213 enabled diagnostics, and qdiag is a three-dimensional array. The first two-dimensions
214 of qdiag correspond to the horizontal dimension of a given diagnostic, while the third
215 dimension of qdiag is used to identify diagnostic fields and levels combined. In order
216 to minimize the memory requirement of the model for diagnostics, the default GCM
217 executable is compiled with room for only one horizontal diagnostic array, or with
218 numdiags set to 1. In order for the User to enable more than 1 two-dimensional diagnostic,
219 the size of the diagnostics common must be expanded to accomodate the desired diagnostics.
220 This can be accomplished by manually changing the parameter numdiags in the
221 file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}.
222 numdiags should be set greater than or equal to the sum of all the diagnostics activated
223 for output each multiplied by the number of levels defined for that diagnostic quantity.
224 This is illustrated in the example below:
225
226 \noindent
227 To use the diagnostics package, other than enabling it in packages.conf
228 and turning the usediagnostics flag in data.pkg to .TRUE., a namelist
229 must be supplied in the run directory called data.diagnostics. The namelist
230 will activate a user-defined list of diagnostics quantities to be computed,
231 specify the frequency of output, the number of levels, and the name of
232 up to 10 separate output files. A sample data.diagnostics namelist file:
233
234 \noindent
235 $\#$ Diagnostic Package Choices \\
236 $\&$diagnostics\_list \\
237 frequency(1) = 10, \ \\
238 levels(1,1) = 1.,2.,3.,4.,5., \ \\
239 fields(1,1) = 'UVEL ','VVEL ', \ \\
240 filename(1) = 'diagout1', \ \\
241 frequency(2) = 100, \ \\
242 levels(1,2) = 1.,2.,3.,4.,5., \ \\
243 fields(1,2) = 'THETA ','SALT ', \ \\
244 filename(2) = 'diagout2', \ \\
245 $\&$end \ \\
246
247 \noindent
248 In this example, there are two output files that will be generated
249 for each tile and for each output time. The first set of output files
250 has the prefix diagout1, does time averaging every 10 time steps
251 (frequency is 10), they will write fields which are multiple-level
252 fields and output levels 1-5. The names of diagnostics quantities are
253 UVEL and VVEL. The second set of output files
254 has the prefix diagout2, does time averaging every 100 time steps,
255 they include fields which are multiple-level fields, levels output are 1-5,
256 and the names of diagnostics quantities are THETA and SALT.
257
258 \noindent
259 In order to define and include as part of the diagnostic output any field
260 that is desired for a particular experiment, two steps must be taken. The
261 first is to enable the ``User Diagnostic'' in data.diagnostics. This is
262 accomplished by setting one of the fields slots to either UDIAG1 through
263 UDIAG10, for multi-level fields, or SDIAG1 through SDIAG10 for single level
264 fields. These are listed in the diagnostics menu. The second step is to
265 add a call to fill\_diagnostics from the subroutine in which the quantity
266 desired for diagnostic output is computed.
267
268 \newpage
269
270 \subsubsection{GCM Diagnostic Menu}
271 \label{sec:diagnostics:menu}
272
273 \begin{tabular}{lllll}
274 \hline\hline
275 N & NAME & UNITS & LEVELS & DESCRIPTION \\
276 \hline
277
278 &\\
279 1 & UFLUX & $Newton/m^2$ & 1
280 &\begin{minipage}[t]{3in}
281 {Surface U-Wind Stress on the atmosphere}
282 \end{minipage}\\
283 2 & VFLUX & $Newton/m^2$ & 1
284 &\begin{minipage}[t]{3in}
285 {Surface V-Wind Stress on the atmosphere}
286 \end{minipage}\\
287 3 & HFLUX & $Watts/m^2$ & 1
288 &\begin{minipage}[t]{3in}
289 {Surface Flux of Sensible Heat}
290 \end{minipage}\\
291 4 & EFLUX & $Watts/m^2$ & 1
292 &\begin{minipage}[t]{3in}
293 {Surface Flux of Latent Heat}
294 \end{minipage}\\
295 5 & QICE & $Watts/m^2$ & 1
296 &\begin{minipage}[t]{3in}
297 {Heat Conduction through Sea-Ice}
298 \end{minipage}\\
299 6 & RADLWG & $Watts/m^2$ & 1
300 &\begin{minipage}[t]{3in}
301 {Net upward LW flux at the ground}
302 \end{minipage}\\
303 7 & RADSWG & $Watts/m^2$ & 1
304 &\begin{minipage}[t]{3in}
305 {Net downward SW flux at the ground}
306 \end{minipage}\\
307 8 & RI & $dimensionless$ & Nrphys
308 &\begin{minipage}[t]{3in}
309 {Richardson Number}
310 \end{minipage}\\
311 9 & CT & $dimensionless$ & 1
312 &\begin{minipage}[t]{3in}
313 {Surface Drag coefficient for T and Q}
314 \end{minipage}\\
315 10 & CU & $dimensionless$ & 1
316 &\begin{minipage}[t]{3in}
317 {Surface Drag coefficient for U and V}
318 \end{minipage}\\
319 11 & ET & $m^2/sec$ & Nrphys
320 &\begin{minipage}[t]{3in}
321 {Diffusivity coefficient for T and Q}
322 \end{minipage}\\
323 12 & EU & $m^2/sec$ & Nrphys
324 &\begin{minipage}[t]{3in}
325 {Diffusivity coefficient for U and V}
326 \end{minipage}\\
327 13 & TURBU & $m/sec/day$ & Nrphys
328 &\begin{minipage}[t]{3in}
329 {U-Momentum Changes due to Turbulence}
330 \end{minipage}\\
331 14 & TURBV & $m/sec/day$ & Nrphys
332 &\begin{minipage}[t]{3in}
333 {V-Momentum Changes due to Turbulence}
334 \end{minipage}\\
335 15 & TURBT & $deg/day$ & Nrphys
336 &\begin{minipage}[t]{3in}
337 {Temperature Changes due to Turbulence}
338 \end{minipage}\\
339 16 & TURBQ & $g/kg/day$ & Nrphys
340 &\begin{minipage}[t]{3in}
341 {Specific Humidity Changes due to Turbulence}
342 \end{minipage}\\
343 17 & MOISTT & $deg/day$ & Nrphys
344 &\begin{minipage}[t]{3in}
345 {Temperature Changes due to Moist Processes}
346 \end{minipage}\\
347 18 & MOISTQ & $g/kg/day$ & Nrphys
348 &\begin{minipage}[t]{3in}
349 {Specific Humidity Changes due to Moist Processes}
350 \end{minipage}\\
351 19 & RADLW & $deg/day$ & Nrphys
352 &\begin{minipage}[t]{3in}
353 {Net Longwave heating rate for each level}
354 \end{minipage}\\
355 20 & RADSW & $deg/day$ & Nrphys
356 &\begin{minipage}[t]{3in}
357 {Net Shortwave heating rate for each level}
358 \end{minipage}\\
359 21 & PREACC & $mm/day$ & 1
360 &\begin{minipage}[t]{3in}
361 {Total Precipitation}
362 \end{minipage}\\
363 22 & PRECON & $mm/day$ & 1
364 &\begin{minipage}[t]{3in}
365 {Convective Precipitation}
366 \end{minipage}\\
367 23 & TUFLUX & $Newton/m^2$ & Nrphys
368 &\begin{minipage}[t]{3in}
369 {Turbulent Flux of U-Momentum}
370 \end{minipage}\\
371 24 & TVFLUX & $Newton/m^2$ & Nrphys
372 &\begin{minipage}[t]{3in}
373 {Turbulent Flux of V-Momentum}
374 \end{minipage}\\
375 25 & TTFLUX & $Watts/m^2$ & Nrphys
376 &\begin{minipage}[t]{3in}
377 {Turbulent Flux of Sensible Heat}
378 \end{minipage}\\
379 \end{tabular}
380
381 \newpage
382 \vspace*{\fill}
383 \begin{tabular}{lllll}
384 \hline\hline
385 N & NAME & UNITS & LEVELS & DESCRIPTION \\
386 \hline
387
388 &\\
389 26 & TQFLUX & $Watts/m^2$ & Nrphys
390 &\begin{minipage}[t]{3in}
391 {Turbulent Flux of Latent Heat}
392 \end{minipage}\\
393 27 & CN & $dimensionless$ & 1
394 &\begin{minipage}[t]{3in}
395 {Neutral Drag Coefficient}
396 \end{minipage}\\
397 28 & WINDS & $m/sec$ & 1
398 &\begin{minipage}[t]{3in}
399 {Surface Wind Speed}
400 \end{minipage}\\
401 29 & DTSRF & $deg$ & 1
402 &\begin{minipage}[t]{3in}
403 {Air/Surface virtual temperature difference}
404 \end{minipage}\\
405 30 & TG & $deg$ & 1
406 &\begin{minipage}[t]{3in}
407 {Ground temperature}
408 \end{minipage}\\
409 31 & TS & $deg$ & 1
410 &\begin{minipage}[t]{3in}
411 {Surface air temperature (Adiabatic from lowest model layer)}
412 \end{minipage}\\
413 32 & DTG & $deg$ & 1
414 &\begin{minipage}[t]{3in}
415 {Ground temperature adjustment}
416 \end{minipage}\\
417
418 33 & QG & $g/kg$ & 1
419 &\begin{minipage}[t]{3in}
420 {Ground specific humidity}
421 \end{minipage}\\
422 34 & QS & $g/kg$ & 1
423 &\begin{minipage}[t]{3in}
424 {Saturation surface specific humidity}
425 \end{minipage}\\
426 35 & TGRLW & $deg$ & 1
427 &\begin{minipage}[t]{3in}
428 {Instantaneous ground temperature used as input to the
429 Longwave radiation subroutine}
430 \end{minipage}\\
431 36 & ST4 & $Watts/m^2$ & 1
432 &\begin{minipage}[t]{3in}
433 {Upward Longwave flux at the ground ($\sigma T^4$)}
434 \end{minipage}\\
435 37 & OLR & $Watts/m^2$ & 1
436 &\begin{minipage}[t]{3in}
437 {Net upward Longwave flux at the top of the model}
438 \end{minipage}\\
439 38 & OLRCLR & $Watts/m^2$ & 1
440 &\begin{minipage}[t]{3in}
441 {Net upward clearsky Longwave flux at the top of the model}
442 \end{minipage}\\
443 39 & LWGCLR & $Watts/m^2$ & 1
444 &\begin{minipage}[t]{3in}
445 {Net upward clearsky Longwave flux at the ground}
446 \end{minipage}\\
447 40 & LWCLR & $deg/day$ & Nrphys
448 &\begin{minipage}[t]{3in}
449 {Net clearsky Longwave heating rate for each level}
450 \end{minipage}\\
451 41 & TLW & $deg$ & Nrphys
452 &\begin{minipage}[t]{3in}
453 {Instantaneous temperature used as input to the Longwave radiation
454 subroutine}
455 \end{minipage}\\
456 42 & SHLW & $g/g$ & Nrphys
457 &\begin{minipage}[t]{3in}
458 {Instantaneous specific humidity used as input to the Longwave radiation
459 subroutine}
460 \end{minipage}\\
461 43 & OZLW & $g/g$ & Nrphys
462 &\begin{minipage}[t]{3in}
463 {Instantaneous ozone used as input to the Longwave radiation
464 subroutine}
465 \end{minipage}\\
466 44 & CLMOLW & $0-1$ & Nrphys
467 &\begin{minipage}[t]{3in}
468 {Maximum overlap cloud fraction used in the Longwave radiation
469 subroutine}
470 \end{minipage}\\
471 45 & CLDTOT & $0-1$ & Nrphys
472 &\begin{minipage}[t]{3in}
473 {Total cloud fraction used in the Longwave and Shortwave radiation
474 subroutines}
475 \end{minipage}\\
476 46 & LWGDOWN & $Watts/m^2$ & 1
477 &\begin{minipage}[t]{3in}
478 {Downwelling Longwave radiation at the ground}
479 \end{minipage}\\
480 47 & GWDT & $deg/day$ & Nrphys
481 &\begin{minipage}[t]{3in}
482 {Temperature tendency due to Gravity Wave Drag}
483 \end{minipage}\\
484 48 & RADSWT & $Watts/m^2$ & 1
485 &\begin{minipage}[t]{3in}
486 {Incident Shortwave radiation at the top of the atmosphere}
487 \end{minipage}\\
488 49 & TAUCLD & $per 100 mb$ & Nrphys
489 &\begin{minipage}[t]{3in}
490 {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
491 \end{minipage}\\
492 50 & TAUCLDC & $Number$ & Nrphys
493 &\begin{minipage}[t]{3in}
494 {Cloud Optical Depth Counter}
495 \end{minipage}\\
496 \end{tabular}
497 \vfill
498
499 \newpage
500 \vspace*{\fill}
501 \begin{tabular}{lllll}
502 \hline\hline
503 N & NAME & UNITS & LEVELS & DESCRIPTION \\
504 \hline
505
506 &\\
507 51 & CLDLOW & $0-1$ & Nrphys
508 &\begin{minipage}[t]{3in}
509 {Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)}
510 \end{minipage}\\
511 52 & EVAP & $mm/day$ & 1
512 &\begin{minipage}[t]{3in}
513 {Surface evaporation}
514 \end{minipage}\\
515 53 & DPDT & $hPa/day$ & 1
516 &\begin{minipage}[t]{3in}
517 {Surface Pressure tendency}
518 \end{minipage}\\
519 54 & UAVE & $m/sec$ & Nrphys
520 &\begin{minipage}[t]{3in}
521 {Average U-Wind}
522 \end{minipage}\\
523 55 & VAVE & $m/sec$ & Nrphys
524 &\begin{minipage}[t]{3in}
525 {Average V-Wind}
526 \end{minipage}\\
527 56 & TAVE & $deg$ & Nrphys
528 &\begin{minipage}[t]{3in}
529 {Average Temperature}
530 \end{minipage}\\
531 57 & QAVE & $g/kg$ & Nrphys
532 &\begin{minipage}[t]{3in}
533 {Average Specific Humidity}
534 \end{minipage}\\
535 58 & OMEGA & $hPa/day$ & Nrphys
536 &\begin{minipage}[t]{3in}
537 {Vertical Velocity}
538 \end{minipage}\\
539 59 & DUDT & $m/sec/day$ & Nrphys
540 &\begin{minipage}[t]{3in}
541 {Total U-Wind tendency}
542 \end{minipage}\\
543 60 & DVDT & $m/sec/day$ & Nrphys
544 &\begin{minipage}[t]{3in}
545 {Total V-Wind tendency}
546 \end{minipage}\\
547 61 & DTDT & $deg/day$ & Nrphys
548 &\begin{minipage}[t]{3in}
549 {Total Temperature tendency}
550 \end{minipage}\\
551 62 & DQDT & $g/kg/day$ & Nrphys
552 &\begin{minipage}[t]{3in}
553 {Total Specific Humidity tendency}
554 \end{minipage}\\
555 63 & VORT & $10^{-4}/sec$ & Nrphys
556 &\begin{minipage}[t]{3in}
557 {Relative Vorticity}
558 \end{minipage}\\
559 64 & NOT USED & $$ &
560 &\begin{minipage}[t]{3in}
561 {}
562 \end{minipage}\\
563 65 & DTLS & $deg/day$ & Nrphys
564 &\begin{minipage}[t]{3in}
565 {Temperature tendency due to Stratiform Cloud Formation}
566 \end{minipage}\\
567 66 & DQLS & $g/kg/day$ & Nrphys
568 &\begin{minipage}[t]{3in}
569 {Specific Humidity tendency due to Stratiform Cloud Formation}
570 \end{minipage}\\
571 67 & USTAR & $m/sec$ & 1
572 &\begin{minipage}[t]{3in}
573 {Surface USTAR wind}
574 \end{minipage}\\
575 68 & Z0 & $m$ & 1
576 &\begin{minipage}[t]{3in}
577 {Surface roughness}
578 \end{minipage}\\
579 69 & FRQTRB & $0-1$ & Nrphys-1
580 &\begin{minipage}[t]{3in}
581 {Frequency of Turbulence}
582 \end{minipage}\\
583 70 & PBL & $mb$ & 1
584 &\begin{minipage}[t]{3in}
585 {Planetary Boundary Layer depth}
586 \end{minipage}\\
587 71 & SWCLR & $deg/day$ & Nrphys
588 &\begin{minipage}[t]{3in}
589 {Net clearsky Shortwave heating rate for each level}
590 \end{minipage}\\
591 72 & OSR & $Watts/m^2$ & 1
592 &\begin{minipage}[t]{3in}
593 {Net downward Shortwave flux at the top of the model}
594 \end{minipage}\\
595 73 & OSRCLR & $Watts/m^2$ & 1
596 &\begin{minipage}[t]{3in}
597 {Net downward clearsky Shortwave flux at the top of the model}
598 \end{minipage}\\
599 74 & CLDMAS & $kg / m^2$ & Nrphys
600 &\begin{minipage}[t]{3in}
601 {Convective cloud mass flux}
602 \end{minipage}\\
603 75 & UAVE & $m/sec$ & Nrphys
604 &\begin{minipage}[t]{3in}
605 {Time-averaged $u-Wind$}
606 \end{minipage}\\
607 \end{tabular}
608 \vfill
609
610 \newpage
611 \vspace*{\fill}
612 \begin{tabular}{lllll}
613 \hline\hline
614 N & NAME & UNITS & LEVELS & DESCRIPTION \\
615 \hline
616
617 &\\
618 76 & VAVE & $m/sec$ & Nrphys
619 &\begin{minipage}[t]{3in}
620 {Time-averaged $v-Wind$}
621 \end{minipage}\\
622 77 & TAVE & $deg$ & Nrphys
623 &\begin{minipage}[t]{3in}
624 {Time-averaged $Temperature$}
625 \end{minipage}\\
626 78 & QAVE & $g/g$ & Nrphys
627 &\begin{minipage}[t]{3in}
628 {Time-averaged $Specific \, \, Humidity$}
629 \end{minipage}\\
630 79 & RFT & $deg/day$ & Nrphys
631 &\begin{minipage}[t]{3in}
632 {Temperature tendency due Rayleigh Friction}
633 \end{minipage}\\
634 80 & PS & $mb$ & 1
635 &\begin{minipage}[t]{3in}
636 {Surface Pressure}
637 \end{minipage}\\
638 81 & QQAVE & $(m/sec)^2$ & Nrphys
639 &\begin{minipage}[t]{3in}
640 {Time-averaged $Turbulent Kinetic Energy$}
641 \end{minipage}\\
642 82 & SWGCLR & $Watts/m^2$ & 1
643 &\begin{minipage}[t]{3in}
644 {Net downward clearsky Shortwave flux at the ground}
645 \end{minipage}\\
646 83 & PAVE & $mb$ & 1
647 &\begin{minipage}[t]{3in}
648 {Time-averaged Surface Pressure}
649 \end{minipage}\\
650 84 & SDIAG1 & & 1
651 &\begin{minipage}[t]{3in}
652 {User-Defined Surface Diagnostic-1}
653 \end{minipage}\\
654 85 & SDIAG2 & & 1
655 &\begin{minipage}[t]{3in}
656 {User-Defined Surface Diagnostic-2}
657 \end{minipage}\\
658 86 & UDIAG1 & & Nrphys
659 &\begin{minipage}[t]{3in}
660 {User-Defined Upper-Air Diagnostic-1}
661 \end{minipage}\\
662 87 & UDIAG2 & & Nrphys
663 &\begin{minipage}[t]{3in}
664 {User-Defined Upper-Air Diagnostic-2}
665 \end{minipage}\\
666 88 & DIABU & $m/sec/day$ & Nrphys
667 &\begin{minipage}[t]{3in}
668 {Total Diabatic forcing on $u-Wind$}
669 \end{minipage}\\
670 89 & DIABV & $m/sec/day$ & Nrphys
671 &\begin{minipage}[t]{3in}
672 {Total Diabatic forcing on $v-Wind$}
673 \end{minipage}\\
674 90 & DIABT & $deg/day$ & Nrphys
675 &\begin{minipage}[t]{3in}
676 {Total Diabatic forcing on $Temperature$}
677 \end{minipage}\\
678 91 & DIABQ & $g/kg/day$ & Nrphys
679 &\begin{minipage}[t]{3in}
680 {Total Diabatic forcing on $Specific \, \, Humidity$}
681 \end{minipage}\\
682 92 & RFU & $m/sec/day$ & Nrphys
683 &\begin{minipage}[t]{3in}
684 {U-Wind tendency due to Rayleigh Friction}
685 \end{minipage}\\
686 93 & RFV & $m/sec/day$ & Nrphys
687 &\begin{minipage}[t]{3in}
688 {V-Wind tendency due to Rayleigh Friction}
689 \end{minipage}\\
690 94 & GWDU & $m/sec/day$ & Nrphys
691 &\begin{minipage}[t]{3in}
692 {U-Wind tendency due to Gravity Wave Drag}
693 \end{minipage}\\
694 95 & GWDU & $m/sec/day$ & Nrphys
695 &\begin{minipage}[t]{3in}
696 {V-Wind tendency due to Gravity Wave Drag}
697 \end{minipage}\\
698 96 & GWDUS & $N/m^2$ & 1
699 &\begin{minipage}[t]{3in}
700 {U-Wind Gravity Wave Drag Stress at Surface}
701 \end{minipage}\\
702 97 & GWDVS & $N/m^2$ & 1
703 &\begin{minipage}[t]{3in}
704 {V-Wind Gravity Wave Drag Stress at Surface}
705 \end{minipage}\\
706 98 & GWDUT & $N/m^2$ & 1
707 &\begin{minipage}[t]{3in}
708 {U-Wind Gravity Wave Drag Stress at Top}
709 \end{minipage}\\
710 99 & GWDVT & $N/m^2$ & 1
711 &\begin{minipage}[t]{3in}
712 {V-Wind Gravity Wave Drag Stress at Top}
713 \end{minipage}\\
714 100& LZRAD & $mg/kg$ & Nrphys
715 &\begin{minipage}[t]{3in}
716 {Estimated Cloud Liquid Water used in Radiation}
717 \end{minipage}\\
718 \end{tabular}
719 \vfill
720
721 \newpage
722 \vspace*{\fill}
723 \begin{tabular}{lllll}
724 \hline\hline
725 N & NAME & UNITS & LEVELS & DESCRIPTION \\
726 \hline
727
728 &\\
729 101& SLP & $mb$ & 1
730 &\begin{minipage}[t]{3in}
731 {Time-averaged Sea-level Pressure}
732 \end{minipage}\\
733 102& NOT USED & $$ &
734 &\begin{minipage}[t]{3in}
735 {}
736 \end{minipage}\\
737 103& NOT USED & $$ &
738 &\begin{minipage}[t]{3in}
739 {}
740 \end{minipage}\\
741 104& NOT USED & $$ &
742 &\begin{minipage}[t]{3in}
743 {}
744 \end{minipage}\\
745 105& NOT USED & $$ &
746 &\begin{minipage}[t]{3in}
747 {}
748 \end{minipage}\\
749 106& CLDFRC & $0-1$ & 1
750 &\begin{minipage}[t]{3in}
751 {Total Cloud Fraction}
752 \end{minipage}\\
753 107& TPW & $gm/cm^2$ & 1
754 &\begin{minipage}[t]{3in}
755 {Precipitable water}
756 \end{minipage}\\
757 108& U2M & $m/sec$ & 1
758 &\begin{minipage}[t]{3in}
759 {U-Wind at 2 meters}
760 \end{minipage}\\
761 109& V2M & $m/sec$ & 1
762 &\begin{minipage}[t]{3in}
763 {V-Wind at 2 meters}
764 \end{minipage}\\
765 110& T2M & $deg$ & 1
766 &\begin{minipage}[t]{3in}
767 {Temperature at 2 meters}
768 \end{minipage}\\
769 111& Q2M & $g/kg$ & 1
770 &\begin{minipage}[t]{3in}
771 {Specific Humidity at 2 meters}
772 \end{minipage}\\
773 112& U10M & $m/sec$ & 1
774 &\begin{minipage}[t]{3in}
775 {U-Wind at 10 meters}
776 \end{minipage}\\
777 113& V10M & $m/sec$ & 1
778 &\begin{minipage}[t]{3in}
779 {V-Wind at 10 meters}
780 \end{minipage}\\
781 114& T10M & $deg$ & 1
782 &\begin{minipage}[t]{3in}
783 {Temperature at 10 meters}
784 \end{minipage}\\
785 115& Q10M & $g/kg$ & 1
786 &\begin{minipage}[t]{3in}
787 {Specific Humidity at 10 meters}
788 \end{minipage}\\
789 116& DTRAIN & $kg/m^2$ & Nrphys
790 &\begin{minipage}[t]{3in}
791 {Detrainment Cloud Mass Flux}
792 \end{minipage}\\
793 117& QFILL & $g/kg/day$ & Nrphys
794 &\begin{minipage}[t]{3in}
795 {Filling of negative specific humidity}
796 \end{minipage}\\
797 118& NOT USED & $$ &
798 &\begin{minipage}[t]{3in}
799 {}
800 \end{minipage}\\
801 119& NOT USED & $$ &
802 &\begin{minipage}[t]{3in}
803 {}
804 \end{minipage}\\
805 120& SHAPU & $m/sec/day$ & Nrphys
806 &\begin{minipage}[t]{3in}
807 {U-Wind tendency due to Shapiro Filter}
808 \end{minipage}\\
809 121& SHAPV & $m/sec/day$ & Nrphys
810 &\begin{minipage}[t]{3in}
811 {V-Wind tendency due to Shapiro Filter}
812 \end{minipage}\\
813 122& SHAPT & $deg/day$ & Nrphys
814 &\begin{minipage}[t]{3in}
815 {Temperature tendency due Shapiro Filter}
816 \end{minipage}\\
817 123& SHAPQ & $g/kg/day$ & Nrphys
818 &\begin{minipage}[t]{3in}
819 {Specific Humidity tendency due to Shapiro Filter}
820 \end{minipage}\\
821 124& SDIAG3 & & 1
822 &\begin{minipage}[t]{3in}
823 {User-Defined Surface Diagnostic-3}
824 \end{minipage}\\
825 125& SDIAG4 & & 1
826 &\begin{minipage}[t]{3in}
827 {User-Defined Surface Diagnostic-4}
828 \end{minipage}\\
829 \end{tabular}
830 \vspace{1.5in}
831 \vfill
832
833 \newpage
834 \vspace*{\fill}
835 \begin{tabular}{lllll}
836 \hline\hline
837 N & NAME & UNITS & LEVELS & DESCRIPTION \\
838 \hline
839
840 &\\
841 126& SDIAG5 & & 1
842 &\begin{minipage}[t]{3in}
843 {User-Defined Surface Diagnostic-5}
844 \end{minipage}\\
845 127& SDIAG6 & & 1
846 &\begin{minipage}[t]{3in}
847 {User-Defined Surface Diagnostic-6}
848 \end{minipage}\\
849 128& SDIAG7 & & 1
850 &\begin{minipage}[t]{3in}
851 {User-Defined Surface Diagnostic-7}
852 \end{minipage}\\
853 129& SDIAG8 & & 1
854 &\begin{minipage}[t]{3in}
855 {User-Defined Surface Diagnostic-8}
856 \end{minipage}\\
857 130& SDIAG9 & & 1
858 &\begin{minipage}[t]{3in}
859 {User-Defined Surface Diagnostic-9}
860 \end{minipage}\\
861 131& SDIAG10 & & 1
862 &\begin{minipage}[t]{3in}
863 {User-Defined Surface Diagnostic-1-}
864 \end{minipage}\\
865 132& UDIAG3 & & Nrphys
866 &\begin{minipage}[t]{3in}
867 {User-Defined Multi-Level Diagnostic-3}
868 \end{minipage}\\
869 133& UDIAG4 & & Nrphys
870 &\begin{minipage}[t]{3in}
871 {User-Defined Multi-Level Diagnostic-4}
872 \end{minipage}\\
873 134& UDIAG5 & & Nrphys
874 &\begin{minipage}[t]{3in}
875 {User-Defined Multi-Level Diagnostic-5}
876 \end{minipage}\\
877 135& UDIAG6 & & Nrphys
878 &\begin{minipage}[t]{3in}
879 {User-Defined Multi-Level Diagnostic-6}
880 \end{minipage}\\
881 136& UDIAG7 & & Nrphys
882 &\begin{minipage}[t]{3in}
883 {User-Defined Multi-Level Diagnostic-7}
884 \end{minipage}\\
885 137& UDIAG8 & & Nrphys
886 &\begin{minipage}[t]{3in}
887 {User-Defined Multi-Level Diagnostic-8}
888 \end{minipage}\\
889 138& UDIAG9 & & Nrphys
890 &\begin{minipage}[t]{3in}
891 {User-Defined Multi-Level Diagnostic-9}
892 \end{minipage}\\
893 139& UDIAG10 & & Nrphys
894 &\begin{minipage}[t]{3in}
895 {User-Defined Multi-Level Diagnostic-10}
896 \end{minipage}\\
897 \end{tabular}
898 \vspace{1.5in}
899 \vfill
900
901 \newpage
902 \vspace*{\fill}
903 \begin{tabular}{lllll}
904 \hline\hline
905 N & NAME & UNITS & LEVELS & DESCRIPTION \\
906 \hline
907
908 &\\
909 238& ETAN & $(hPa,m)$ & 1
910 &\begin{minipage}[t]{3in}
911 {Perturbation of Surface (pressure, height)}
912 \end{minipage}\\
913 239& ETANSQ & $(hPa^2,m^2)$ & 1
914 &\begin{minipage}[t]{3in}
915 {Square of Perturbation of Surface (pressure, height)}
916 \end{minipage}\\
917 240& THETA & $deg K$ & Nr
918 &\begin{minipage}[t]{3in}
919 {Potential Temperature}
920 \end{minipage}\\
921 241& SALT & $g/kg$ & Nr
922 &\begin{minipage}[t]{3in}
923 {Salt (or Water Vapor Mixing Ratio)}
924 \end{minipage}\\
925 242& UVEL & $m/sec$ & Nr
926 &\begin{minipage}[t]{3in}
927 {U-Velocity}
928 \end{minipage}\\
929 243& VVEL & $m/sec$ & Nr
930 &\begin{minipage}[t]{3in}
931 {V-Velocity}
932 \end{minipage}\\
933 244& WVEL & $m/sec$ & Nr
934 &\begin{minipage}[t]{3in}
935 {Vertical-Velocity}
936 \end{minipage}\\
937 245& THETASQ & $deg^2$ & Nr
938 &\begin{minipage}[t]{3in}
939 {Square of Potential Temperature}
940 \end{minipage}\\
941 246& SALTSQ & $g^2/{kg}^2$ & Nr
942 &\begin{minipage}[t]{3in}
943 {Square of Salt (or Water Vapor Mixing Ratio)}
944 \end{minipage}\\
945 247& UVELSQ & $m^2/sec^2$ & Nr
946 &\begin{minipage}[t]{3in}
947 {Square of U-Velocity}
948 \end{minipage}\\
949 248& VVELSQ & $m^2/sec^2$ & Nr
950 &\begin{minipage}[t]{3in}
951 {Square of V-Velocity}
952 \end{minipage}\\
953 249& WVELSQ & $m^2/sec^2$ & Nr
954 &\begin{minipage}[t]{3in}
955 {Square of Vertical-Velocity}
956 \end{minipage}\\
957 250& UVELVVEL & $m^2/sec^2$ & Nr
958 &\begin{minipage}[t]{3in}
959 {Meridional Transport of Zonal Momentum}
960 \end{minipage}\\
961 \end{tabular}
962 \vspace{1.5in}
963 \vfill
964
965 \newpage
966 \vspace*{\fill}
967 \begin{tabular}{lllll}
968 \hline\hline
969 N & NAME & UNITS & LEVELS & DESCRIPTION \\
970 \hline
971
972 &\\
973 251& UVELMASS & $m/sec$ & Nr
974 &\begin{minipage}[t]{3in}
975 {Zonal Mass-Weighted Component of Velocity}
976 \end{minipage}\\
977 252& VVELMASS & $m/sec$ & Nr
978 &\begin{minipage}[t]{3in}
979 {Meridional Mass-Weighted Component of Velocity}
980 \end{minipage}\\
981 253& WVELMASS & $m/sec$ & Nr
982 &\begin{minipage}[t]{3in}
983 {Vertical Mass-Weighted Component of Velocity}
984 \end{minipage}\\
985 254& UTHMASS & $m-deg/sec$ & Nr
986 &\begin{minipage}[t]{3in}
987 {Zonal Mass-Weight Transp of Pot Temp}
988 \end{minipage}\\
989 255& VTHMASS & $m-deg/sec$ & Nr
990 &\begin{minipage}[t]{3in}
991 {Meridional Mass-Weight Transp of Pot Temp}
992 \end{minipage}\\
993 256& WTHMASS & $m-deg/sec$ & Nr
994 &\begin{minipage}[t]{3in}
995 {Vertical Mass-Weight Transp of Pot Temp}
996 \end{minipage}\\
997 257& USLTMASS & $m-kg/sec-kg$ & Nr
998 &\begin{minipage}[t]{3in}
999 {Zonal Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}
1000 \end{minipage}\\
1001 258& VSLTMASS & $m-kg/sec-kg$ & Nr
1002 &\begin{minipage}[t]{3in}
1003 {Meridional Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}
1004 \end{minipage}\\
1005 259& WSLTMASS & $m-kg/sec-kg$ & Nr
1006 &\begin{minipage}[t]{3in}
1007 {Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}
1008 \end{minipage}\\
1009 260& UVELTH & $m-deg/sec$ & Nr
1010 &\begin{minipage}[t]{3in}
1011 {Zonal Transp of Pot Temp}
1012 \end{minipage}\\
1013 261& VVELTH & $m-deg/sec$ & Nr
1014 &\begin{minipage}[t]{3in}
1015 {Meridional Transp of Pot Temp}
1016 \end{minipage}\\
1017 262& WVELTH & $m-deg/sec$ & Nr
1018 &\begin{minipage}[t]{3in}
1019 {Vertical Transp of Pot Temp}
1020 \end{minipage}\\
1021 263& UVELSLT & $m-kg/sec-kg$ & Nr
1022 &\begin{minipage}[t]{3in}
1023 {Zonal Transp of Salt (or W.Vap Mix Rat.)}
1024 \end{minipage}\\
1025 264& VVELSLT & $m-kg/sec-kg$ & Nr
1026 &\begin{minipage}[t]{3in}
1027 {Meridional Transp of Salt (or W.Vap Mix Rat.)}
1028 \end{minipage}\\
1029 265& WVELSLT & $m-kg/sec-kg$ & Nr
1030 &\begin{minipage}[t]{3in}
1031 {Vertical Transp of Salt (or W.Vap Mix Rat.)}
1032 \end{minipage}\\
1033 266& UTRAC1 & $m-kg/sec-kg$ & Nr
1034 &\begin{minipage}[t]{3in}
1035 {Zonal Transp of Tracer 1}
1036 \end{minipage}\\
1037 267& VTRAC1 & $m-kg/sec-kg$ & Nr
1038 &\begin{minipage}[t]{3in}
1039 {Meridional Transp of Tracer 1}
1040 \end{minipage}\\
1041 268& WTRAC1 & $m-kg/sec-kg$ & Nr
1042 &\begin{minipage}[t]{3in}
1043 {Vertical Transp of Tracer 1}
1044 \end{minipage}\\
1045 269& UTRAC2 & $m-kg/sec-kg$ & Nr
1046 &\begin{minipage}[t]{3in}
1047 {Zonal Transp of Tracer 2}
1048 \end{minipage}\\
1049 270& VTRAC2 & $m-kg/sec-kg$ & Nr
1050 &\begin{minipage}[t]{3in}
1051 {Meridional Transp of Tracer 2}
1052 \end{minipage}\\
1053 271& WTRAC2 & $m-kg/sec-kg$ & Nr
1054 &\begin{minipage}[t]{3in}
1055 {Vertical Transp of Tracer 2}
1056 \end{minipage}\\
1057 272& UTRAC3 & $m-kg/sec-kg$ & Nr
1058 &\begin{minipage}[t]{3in}
1059 {Zonal Transp of Tracer 3}
1060 \end{minipage}\\
1061 273& VTRAC3 & $m-kg/sec-kg$ & Nr
1062 &\begin{minipage}[t]{3in}
1063 {Meridional Transp of Tracer 3}
1064 \end{minipage}\\
1065 274& WTRAC3 & $m-kg/sec-kg$ & Nr
1066 &\begin{minipage}[t]{3in}
1067 {Vertical Transp of Tracer 3}
1068 \end{minipage}\\
1069 275& WSLTMASS & $m-kg/sec-kg$ & Nr
1070 &\begin{minipage}[t]{3in}
1071 {Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}
1072 \end{minipage}\\
1073 \end{tabular}
1074 \vspace{1.5in}
1075 \vfill
1076
1077 \newpage
1078 \vspace*{\fill}
1079 \begin{tabular}{lllll}
1080 \hline\hline
1081 N & NAME & UNITS & LEVELS & DESCRIPTION \\
1082 \hline
1083
1084 &\\
1085 275& UTRAC4 & $m-kg/sec-kg$ & Nr
1086 &\begin{minipage}[t]{3in}
1087 {Zonal Transp of Tracer 4}
1088 \end{minipage}\\
1089 276& VTRAC4 & $m-kg/sec-kg$ & Nr
1090 &\begin{minipage}[t]{3in}
1091 {Meridional Transp of Tracer 4}
1092 \end{minipage}\\
1093 277& WTRAC4 & $m-kg/sec-kg$ & Nr
1094 &\begin{minipage}[t]{3in}
1095 {Vertical Transp of Tracer 4}
1096 \end{minipage}\\
1097 278& UTRAC5 & $m-kg/sec-kg$ & Nr
1098 &\begin{minipage}[t]{3in}
1099 {Zonal Transp of Tracer 5}
1100 \end{minipage}\\
1101 279& VTRAC5 & $m-kg/sec-kg$ & Nr
1102 &\begin{minipage}[t]{3in}
1103 {Meridional Transp of Tracer 5}
1104 \end{minipage}\\
1105 280& WTRAC5 & $m-kg/sec-kg$ & Nr
1106 &\begin{minipage}[t]{3in}
1107 {Vertical Transp of Tracer 5}
1108 \end{minipage}\\
1109 281& TRAC1 & $kg/kg$ & Nr
1110 &\begin{minipage}[t]{3in}
1111 {Mass-Weight Tracer 1}
1112 \end{minipage}\\
1113 282& TRAC2 & $kg/kg$ & Nr
1114 &\begin{minipage}[t]{3in}
1115 {Mass-Weight Tracer 2}
1116 \end{minipage}\\
1117 283& TRAC3 & $kg/kg$ & Nr
1118 &\begin{minipage}[t]{3in}
1119 {Mass-Weight Tracer 3}
1120 \end{minipage}\\
1121 284& TRAC4 & $kg/kg$ & Nr
1122 &\begin{minipage}[t]{3in}
1123 {Mass-Weight Tracer 4}
1124 \end{minipage}\\
1125 285& TRAC5 & $kg/kg$ & Nr
1126 &\begin{minipage}[t]{3in}
1127 {Mass-Weight Tracer 5}
1128 \end{minipage}\\
1129 286& DICBIOA & $mol/m3/s$ & Nr
1130 &\begin{minipage}[t]{3in}
1131 {Biological Productivity}
1132 \end{minipage}\\
1133 287& DICCARB & $mol eq/m3/s$ & Nr
1134 &\begin{minipage}[t]{3in}
1135 {Carbonate chg-biol prod and remin}
1136 \end{minipage}\\
1137 288& DICTFLX & $mol/m3/s$ & 1
1138 &\begin{minipage}[t]{3in}
1139 {Tendency of DIC due to air-sea exch}
1140 \end{minipage}\\
1141 289& DICOFLX & $mol/m3/s$ & 1
1142 &\begin{minipage}[t]{3in}
1143 {Tendency of O2 due to air-sea exch}
1144 \end{minipage}\\
1145 290& DICCFLX & $mol/m2/s$ & 1
1146 &\begin{minipage}[t]{3in}
1147 {Flux of CO2 - air-sea exch}
1148 \end{minipage}\\
1149 291& DICPCO2 & $atm$ & 1
1150 &\begin{minipage}[t]{3in}
1151 {Partial Pressure of CO2}
1152 \end{minipage}\\
1153 292& DICPHAV & $dimensionless$ & 1
1154 &\begin{minipage}[t]{3in}
1155 {Average pH}
1156 \end{minipage}\\
1157 293& DTCONV & $deg/sec$ & Nr
1158 &\begin{minipage}[t]{3in}
1159 {Temp Change due to Convection}
1160 \end{minipage}\\
1161 294& DQCONV & $g/kg/sec$ & Nr
1162 &\begin{minipage}[t]{3in}
1163 {Specific Humidity Change due to Convection}
1164 \end{minipage}\\
1165 295& RELHUM & $percent$ & Nr
1166 &\begin{minipage}[t]{3in}
1167 {Relative Humidity}
1168 \end{minipage}\\
1169 296& PRECLS & $g/m^2/sec$ & 1
1170 &\begin{minipage}[t]{3in}
1171 {Large Scale Precipitation}
1172 \end{minipage}\\
1173 297& ENPREC & $J/g$ & 1
1174 &\begin{minipage}[t]{3in}
1175 {Energy of Precipitation (snow, rain Temp)}
1176 \end{minipage}\\
1177 298& VISCA4 & $m^4/sec$ & 1
1178 &\begin{minipage}[t]{3in}
1179 {Biharmonic Viscosity Coefficient}
1180 \end{minipage}\\
1181 299& VISCAH & $m^2/sec$ & 1
1182 &\begin{minipage}[t]{3in}
1183 {Harmonic Viscosity Coefficient}
1184 \end{minipage}\\
1185 300& DRHODR & $kg/m^3/{r-unit}$ & Nr
1186 &\begin{minipage}[t]{3in}
1187 {Stratification: d.Sigma/dr}
1188 \end{minipage}\\
1189 \end{tabular}
1190 \vspace{1.5in}
1191 \vfill
1192
1193 \newpage
1194 \vspace*{\fill}
1195 \begin{tabular}{lllll}
1196 \hline\hline
1197 N & NAME & UNITS & LEVELS & DESCRIPTION \\
1198 \hline
1199
1200 &\\
1201 301& DETADT2 & ${r-unit}^2/s^2$ & 1
1202 &\begin{minipage}[t]{3in}
1203 {Square of Eta (Surf.P,SSH) Tendency}
1204 \end{minipage}\\
1205 \end{tabular}
1206 \vspace{1.5in}
1207 \vfill
1208
1209 \newpage
1210
1211 \subsubsection{Diagnostic Description}
1212
1213 In this section we list and describe the diagnostic quantities available within the
1214 GCM. The diagnostics are listed in the order that they appear in the
1215 Diagnostic Menu, Section \ref{sec:diagnostics:menu}.
1216 In all cases, each diagnostic as currently archived on the output datasets
1217 is time-averaged over its diagnostic output frequency:
1218
1219 \[
1220 {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1221 \]
1222 where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1223 output frequency of the diagnostic, and $\Delta t$ is
1224 the timestep over which the diagnostic is updated.
1225
1226 {\bf 1) \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1227
1228 The zonal wind stress is the turbulent flux of zonal momentum from
1229 the surface. See section 3.3 for a description of the surface layer parameterization.
1230 \[
1231 {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1232 \]
1233 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1234 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1235 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1236 the zonal wind in the lowest model layer.
1237 \\
1238
1239
1240 {\bf 2) \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1241
1242 The meridional wind stress is the turbulent flux of meridional momentum from
1243 the surface. See section 3.3 for a description of the surface layer parameterization.
1244 \[
1245 {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1246 \]
1247 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1248 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1249 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1250 the meridional wind in the lowest model layer.
1251 \\
1252
1253 {\bf 3) \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1254
1255 The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1256 gradient of virtual potential temperature and the eddy exchange coefficient:
1257 \[
1258 {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1259 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1260 \]
1261 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1262 heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1263 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1264 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1265 for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1266 at the surface and at the bottom model level.
1267 \\
1268
1269
1270 {\bf 4) \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1271
1272 The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1273 gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1274 \[
1275 {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1276 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1277 \]
1278 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1279 the potential evapotranspiration actually evaporated, L is the latent
1280 heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1281 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1282 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1283 for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1284 humidity at the surface and at the bottom model level, respectively.
1285 \\
1286
1287 {\bf 5) \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1288
1289 Over sea ice there is an additional source of energy at the surface due to the heat
1290 conduction from the relatively warm ocean through the sea ice. The heat conduction
1291 through sea ice represents an additional energy source term for the ground temperature equation.
1292
1293 \[
1294 {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1295 \]
1296
1297 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1298 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1299 $T_g$ is the temperature of the sea ice.
1300
1301 NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1302 \\
1303
1304
1305 {\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1306
1307 \begin{eqnarray*}
1308 {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
1309 & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1310 \end{eqnarray*}
1311 \\
1312 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1313 $F_{LW}^\uparrow$ is
1314 the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1315 \\
1316
1317 {\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1318
1319 \begin{eqnarray*}
1320 {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
1321 & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1322 \end{eqnarray*}
1323 \\
1324 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1325 $F_{SW}^\downarrow$ is
1326 the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1327 \\
1328
1329
1330 \noindent
1331 {\bf 8) \underline {RI} Richardson Number} ($dimensionless$)
1332
1333 \noindent
1334 The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1335 \[
1336 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1337 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1338 \]
1339 \\
1340 where we used the hydrostatic equation:
1341 \[
1342 {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1343 \]
1344 Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1345 indicate dominantly unstable shear, and large positive values indicate dominantly stable
1346 stratification.
1347 \\
1348
1349 \noindent
1350 {\bf 9) \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1351
1352 \noindent
1353 The surface exchange coefficient is obtained from the similarity functions for the stability
1354 dependant flux profile relationships:
1355 \[
1356 {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1357 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1358 { k \over { (\psi_{h} + \psi_{g}) } }
1359 \]
1360 where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1361 viscous sublayer non-dimensional temperature or moisture change:
1362 \[
1363 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1364 \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1365 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1366 \]
1367 and:
1368 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1369
1370 \noindent
1371 $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1372 the temperature and moisture gradients, specified differently for stable and unstable
1373 layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1374 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1375 viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1376 (see diagnostic number 67), and the subscript ref refers to a reference value.
1377 \\
1378
1379 \noindent
1380 {\bf 10) \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
1381
1382 \noindent
1383 The surface exchange coefficient is obtained from the similarity functions for the stability
1384 dependant flux profile relationships:
1385 \[
1386 {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1387 \]
1388 where $\psi_m$ is the surface layer non-dimensional wind shear:
1389 \[
1390 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1391 \]
1392 \noindent
1393 $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1394 the temperature and moisture gradients, specified differently for stable and unstable layers
1395 according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1396 non-dimensional stability parameter, $u_*$ is the surface stress velocity
1397 (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1398 \\
1399
1400 \noindent
1401 {\bf 11) \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1402
1403 \noindent
1404 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1405 moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1406 diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1407 or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
1408 takes the form:
1409 \[
1410 {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1411 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1412 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1413 \]
1414 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1415 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1416 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1417 depth,
1418 $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1419 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1420 dimensionless buoyancy and wind shear
1421 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1422 are functions of the Richardson number.
1423
1424 \noindent
1425 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1426 see Helfand and Labraga, 1988.
1427
1428 \noindent
1429 In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1430 in units of $m/sec$, given by:
1431 \[
1432 {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
1433 \]
1434 \noindent
1435 where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1436 surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1437 friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1438 and $W_s$ is the magnitude of the surface layer wind.
1439 \\
1440
1441 \noindent
1442 {\bf 12) \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
1443
1444 \noindent
1445 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1446 momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1447 diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1448 In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
1449 takes the form:
1450 \[
1451 {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1452 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1453 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1454 \]
1455 \noindent
1456 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1457 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1458 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1459 depth,
1460 $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1461 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1462 dimensionless buoyancy and wind shear
1463 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1464 are functions of the Richardson number.
1465
1466 \noindent
1467 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1468 see Helfand and Labraga, 1988.
1469
1470 \noindent
1471 In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1472 in units of $m/sec$, given by:
1473 \[
1474 {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1475 \]
1476 \noindent
1477 where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1478 similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1479 (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1480 magnitude of the surface layer wind.
1481 \\
1482
1483 \noindent
1484 {\bf 13) \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1485
1486 \noindent
1487 The tendency of U-Momentum due to turbulence is written:
1488 \[
1489 {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1490 = {\pp{}{z} }{(K_m \pp{u}{z})}
1491 \]
1492
1493 \noindent
1494 The Helfand and Labraga level 2.5 scheme models the turbulent
1495 flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1496 equation.
1497
1498 \noindent
1499 {\bf 14) \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1500
1501 \noindent
1502 The tendency of V-Momentum due to turbulence is written:
1503 \[
1504 {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1505 = {\pp{}{z} }{(K_m \pp{v}{z})}
1506 \]
1507
1508 \noindent
1509 The Helfand and Labraga level 2.5 scheme models the turbulent
1510 flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1511 equation.
1512 \\
1513
1514 \noindent
1515 {\bf 15) \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1516
1517 \noindent
1518 The tendency of temperature due to turbulence is written:
1519 \[
1520 {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1521 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1522 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1523 \]
1524
1525 \noindent
1526 The Helfand and Labraga level 2.5 scheme models the turbulent
1527 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1528 equation.
1529 \\
1530
1531 \noindent
1532 {\bf 16) \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1533
1534 \noindent
1535 The tendency of specific humidity due to turbulence is written:
1536 \[
1537 {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1538 = {\pp{}{z} }{(K_h \pp{q}{z})}
1539 \]
1540
1541 \noindent
1542 The Helfand and Labraga level 2.5 scheme models the turbulent
1543 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1544 equation.
1545 \\
1546
1547 \noindent
1548 {\bf 17) \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1549
1550 \noindent
1551 \[
1552 {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1553 \]
1554 where:
1555 \[
1556 \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1557 \hspace{.4cm} and
1558 \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1559 \]
1560 and
1561 \[
1562 \Gamma_s = g \eta \pp{s}{p}
1563 \]
1564
1565 \noindent
1566 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1567 precipitation processes, or supersaturation rain.
1568 The summation refers to contributions from each cloud type called by RAS.
1569 The dry static energy is given
1570 as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1571 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1572 the description of the convective parameterization. The fractional adjustment, or relaxation
1573 parameter, for each cloud type is given as $\alpha$, while
1574 $R$ is the rain re-evaporation adjustment.
1575 \\
1576
1577 \noindent
1578 {\bf 18) \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1579
1580 \noindent
1581 \[
1582 {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1583 \]
1584 where:
1585 \[
1586 \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1587 \hspace{.4cm} and
1588 \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1589 \]
1590 and
1591 \[
1592 \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1593 \]
1594 \noindent
1595 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1596 precipitation processes, or supersaturation rain.
1597 The summation refers to contributions from each cloud type called by RAS.
1598 The dry static energy is given as $s$,
1599 the moist static energy is given as $h$,
1600 the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1601 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1602 the description of the convective parameterization. The fractional adjustment, or relaxation
1603 parameter, for each cloud type is given as $\alpha$, while
1604 $R$ is the rain re-evaporation adjustment.
1605 \\
1606
1607 \noindent
1608 {\bf 19) \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1609
1610 \noindent
1611 The net longwave heating rate is calculated as the vertical divergence of the
1612 net terrestrial radiative fluxes.
1613 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1614 longwave routine.
1615 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1616 For a given cloud fraction,
1617 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1618 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1619 for the upward and downward radiative fluxes.
1620 (see Section \ref{sec:fizhi:radcloud}).
1621 The cloudy-sky flux is then obtained as:
1622
1623 \noindent
1624 \[
1625 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1626 \]
1627
1628 \noindent
1629 Finally, the net longwave heating rate is calculated as the vertical divergence of the
1630 net terrestrial radiative fluxes:
1631 \[
1632 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1633 \]
1634 or
1635 \[
1636 {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1637 \]
1638
1639 \noindent
1640 where $g$ is the accelation due to gravity,
1641 $c_p$ is the heat capacity of air at constant pressure,
1642 and
1643 \[
1644 F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1645 \]
1646 \\
1647
1648
1649 \noindent
1650 {\bf 20) \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1651
1652 \noindent
1653 The net Shortwave heating rate is calculated as the vertical divergence of the
1654 net solar radiative fluxes.
1655 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1656 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1657 both CLMO (maximum overlap cloud fraction) and
1658 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1659 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1660 true time-averaged cloud fractions CLMO
1661 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1662 input at the top of the atmosphere.
1663
1664 \noindent
1665 The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1666 \[
1667 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1668 \]
1669 or
1670 \[
1671 {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1672 \]
1673
1674 \noindent
1675 where $g$ is the accelation due to gravity,
1676 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1677 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1678 \[
1679 F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1680 \]
1681 \\
1682
1683 \noindent
1684 {\bf 21) \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1685
1686 \noindent
1687 For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1688 the vertical integral or total precipitable amount is given by:
1689 \[
1690 {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1691 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1692 \]
1693 \\
1694
1695 \noindent
1696 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1697 time step, scaled to $mm/day$.
1698 \\
1699
1700 \noindent
1701 {\bf 22) \underline {PRECON} Convective Precipition ($mm/day$) }
1702
1703 \noindent
1704 For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1705 the vertical integral or total precipitable amount is given by:
1706 \[
1707 {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1708 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1709 \]
1710 \\
1711
1712 \noindent
1713 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1714 time step, scaled to $mm/day$.
1715 \\
1716
1717 \noindent
1718 {\bf 23) \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1719
1720 \noindent
1721 The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1722 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1723
1724 \[
1725 {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1726 {\rho } {(- K_m \pp{U}{z})}
1727 \]
1728
1729 \noindent
1730 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1731 \\
1732
1733 \noindent
1734 {\bf 24) \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1735
1736 \noindent
1737 The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1738 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1739
1740 \[
1741 {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1742 {\rho } {(- K_m \pp{V}{z})}
1743 \]
1744
1745 \noindent
1746 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1747 \\
1748
1749
1750 \noindent
1751 {\bf 25) \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1752
1753 \noindent
1754 The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1755 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1756
1757 \noindent
1758 \[
1759 {\bf TTFLUX} = c_p {\rho }
1760 P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1761 = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1762 \]
1763
1764 \noindent
1765 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1766 \\
1767
1768
1769 \noindent
1770 {\bf 26) \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1771
1772 \noindent
1773 The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1774 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1775
1776 \noindent
1777 \[
1778 {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1779 {L {\rho }(- K_h \pp{q}{z})}
1780 \]
1781
1782 \noindent
1783 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1784 \\
1785
1786
1787 \noindent
1788 {\bf 27) \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1789
1790 \noindent
1791 The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1792 \[
1793 {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1794 \]
1795
1796 \noindent
1797 where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1798 $z_0$ is the surface roughness.
1799
1800 \noindent
1801 NOTE: CN is not available through model version 5.3, but is available in subsequent
1802 versions.
1803 \\
1804
1805 \noindent
1806 {\bf 28) \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1807
1808 \noindent
1809 The surface wind speed is calculated for the last internal turbulence time step:
1810 \[
1811 {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1812 \]
1813
1814 \noindent
1815 where the subscript $Nrphys$ refers to the lowest model level.
1816 \\
1817
1818 \noindent
1819 {\bf 29) \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1820
1821 \noindent
1822 The air/surface virtual temperature difference measures the stability of the surface layer:
1823 \[
1824 {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1825 \]
1826 \noindent
1827 where
1828 \[
1829 \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1830 and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1831 \]
1832
1833 \noindent
1834 $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1835 $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1836 and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1837 refers to the surface.
1838 \\
1839
1840
1841 \noindent
1842 {\bf 30) \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
1843
1844 \noindent
1845 The ground temperature equation is solved as part of the turbulence package
1846 using a backward implicit time differencing scheme:
1847 \[
1848 {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
1849 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
1850 \]
1851
1852 \noindent
1853 where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
1854 net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
1855 sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
1856 flux, and $C_g$ is the total heat capacity of the ground.
1857 $C_g$ is obtained by solving a heat diffusion equation
1858 for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
1859 \[
1860 C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
1861 { 86400. \over {2 \pi} } } \, \, .
1862 \]
1863 \noindent
1864 Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
1865 {cm \over {^oK}}$,
1866 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
1867 by $2 \pi$ $radians/
1868 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
1869 is a function of the ground wetness, $W$.
1870 \\
1871
1872 \noindent
1873 {\bf 31) \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
1874
1875 \noindent
1876 The surface temperature estimate is made by assuming that the model's lowest
1877 layer is well-mixed, and therefore that $\theta$ is constant in that layer.
1878 The surface temperature is therefore:
1879 \[
1880 {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
1881 \]
1882 \\
1883
1884 \noindent
1885 {\bf 32) \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
1886
1887 \noindent
1888 The change in surface temperature from one turbulence time step to the next, solved
1889 using the Ground Temperature Equation (see diagnostic number 30) is calculated:
1890 \[
1891 {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
1892 \]
1893
1894 \noindent
1895 where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
1896 refers to the value at the previous turbulence time level.
1897 \\
1898
1899 \noindent
1900 {\bf 33) \underline {QG} Ground Specific Humidity ($g/kg$) }
1901
1902 \noindent
1903 The ground specific humidity is obtained by interpolating between the specific
1904 humidity at the lowest model level and the specific humidity of a saturated ground.
1905 The interpolation is performed using the potential evapotranspiration function:
1906 \[
1907 {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1908 \]
1909
1910 \noindent
1911 where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1912 and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
1913 pressure.
1914 \\
1915
1916 \noindent
1917 {\bf 34) \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
1918
1919 \noindent
1920 The surface saturation specific humidity is the saturation specific humidity at
1921 the ground temprature and surface pressure:
1922 \[
1923 {\bf QS} = q^*(T_g,P_s)
1924 \]
1925 \\
1926
1927 \noindent
1928 {\bf 35) \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
1929 radiation subroutine (deg)}
1930 \[
1931 {\bf TGRLW} = T_g(\lambda , \phi ,n)
1932 \]
1933 \noindent
1934 where $T_g$ is the model ground temperature at the current time step $n$.
1935 \\
1936
1937
1938 \noindent
1939 {\bf 36) \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
1940 \[
1941 {\bf ST4} = \sigma T^4
1942 \]
1943 \noindent
1944 where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
1945 \\
1946
1947 \noindent
1948 {\bf 37) \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1949 \[
1950 {\bf OLR} = F_{LW,top}^{NET}
1951 \]
1952 \noindent
1953 where top indicates the top of the first model layer.
1954 In the GCM, $p_{top}$ = 0.0 mb.
1955 \\
1956
1957
1958 \noindent
1959 {\bf 38) \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1960 \[
1961 {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
1962 \]
1963 \noindent
1964 where top indicates the top of the first model layer.
1965 In the GCM, $p_{top}$ = 0.0 mb.
1966 \\
1967
1968 \noindent
1969 {\bf 39) \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
1970
1971 \noindent
1972 \begin{eqnarray*}
1973 {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
1974 & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
1975 \end{eqnarray*}
1976 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1977 $F(clearsky)_{LW}^\uparrow$ is
1978 the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
1979 \\
1980
1981 \noindent
1982 {\bf 40) \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
1983
1984 \noindent
1985 The net longwave heating rate is calculated as the vertical divergence of the
1986 net terrestrial radiative fluxes.
1987 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1988 longwave routine.
1989 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1990 For a given cloud fraction,
1991 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1992 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1993 for the upward and downward radiative fluxes.
1994 (see Section \ref{sec:fizhi:radcloud}).
1995 The cloudy-sky flux is then obtained as:
1996
1997 \noindent
1998 \[
1999 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2000 \]
2001
2002 \noindent
2003 Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2004 vertical divergence of the
2005 clear-sky longwave radiative flux:
2006 \[
2007 \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2008 \]
2009 or
2010 \[
2011 {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2012 \]
2013
2014 \noindent
2015 where $g$ is the accelation due to gravity,
2016 $c_p$ is the heat capacity of air at constant pressure,
2017 and
2018 \[
2019 F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2020 \]
2021 \\
2022
2023
2024 \noindent
2025 {\bf 41) \underline {TLW} Instantaneous temperature used as input to the Longwave
2026 radiation subroutine (deg)}
2027 \[
2028 {\bf TLW} = T(\lambda , \phi ,level, n)
2029 \]
2030 \noindent
2031 where $T$ is the model temperature at the current time step $n$.
2032 \\
2033
2034
2035 \noindent
2036 {\bf 42) \underline {SHLW} Instantaneous specific humidity used as input to
2037 the Longwave radiation subroutine (kg/kg)}
2038 \[
2039 {\bf SHLW} = q(\lambda , \phi , level , n)
2040 \]
2041 \noindent
2042 where $q$ is the model specific humidity at the current time step $n$.
2043 \\
2044
2045
2046 \noindent
2047 {\bf 43) \underline {OZLW} Instantaneous ozone used as input to
2048 the Longwave radiation subroutine (kg/kg)}
2049 \[
2050 {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
2051 \]
2052 \noindent
2053 where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2054 mean zonally averaged ozone data set.
2055 \\
2056
2057
2058 \noindent
2059 {\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2060
2061 \noindent
2062 {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2063 Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
2064 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2065 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2066 \[
2067 {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
2068 \]
2069 \\
2070
2071
2072 {\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2073
2074 {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2075 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2076 Radiation packages.
2077 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2078 \[
2079 {\bf CLDTOT} = F_{RAS} + F_{LS}
2080 \]
2081 \\
2082 where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2083 time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2084 \\
2085
2086
2087 \noindent
2088 {\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2089
2090 \noindent
2091 {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2092 Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
2093 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2094 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2095 \[
2096 {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
2097 \]
2098 \\
2099
2100 \noindent
2101 {\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2102
2103 \noindent
2104 {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2105 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2106 Radiation algorithm. These are
2107 convective and large-scale clouds whose radiative characteristics are not
2108 assumed to be correlated in the vertical.
2109 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2110 \[
2111 {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
2112 \]
2113 \\
2114
2115 \noindent
2116 {\bf 48) \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2117 \[
2118 {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2119 \]
2120 \noindent
2121 where $S_0$, is the extra-terrestial solar contant,
2122 $R_a$ is the earth-sun distance in Astronomical Units,
2123 and $cos \phi_z$ is the cosine of the zenith angle.
2124 It should be noted that {\bf RADSWT}, as well as
2125 {\bf OSR} and {\bf OSRCLR},
2126 are calculated at the top of the atmosphere (p=0 mb). However, the
2127 {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2128 calculated at $p= p_{top}$ (0.0 mb for the GCM).
2129 \\
2130
2131 \noindent
2132 {\bf 49) \underline {EVAP} Surface Evaporation ($mm/day$) }
2133
2134 \noindent
2135 The surface evaporation is a function of the gradient of moisture, the potential
2136 evapotranspiration fraction and the eddy exchange coefficient:
2137 \[
2138 {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2139 \]
2140 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2141 the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2142 turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2143 $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2144 number 34) and at the bottom model level, respectively.
2145 \\
2146
2147 \noindent
2148 {\bf 50) \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
2149
2150 \noindent
2151 {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2152 and Analysis forcing.
2153 \[
2154 {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2155 \]
2156 \\
2157
2158 \noindent
2159 {\bf 51) \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
2160
2161 \noindent
2162 {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2163 and Analysis forcing.
2164 \[
2165 {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2166 \]
2167 \\
2168
2169 \noindent
2170 {\bf 52) \underline {DTDT} Total Temperature Tendency ($deg/day$) }
2171
2172 \noindent
2173 {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2174 and Analysis forcing.
2175 \begin{eqnarray*}
2176 {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2177 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2178 \end{eqnarray*}
2179 \\
2180
2181 \noindent
2182 {\bf 53) \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
2183
2184 \noindent
2185 {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2186 and Analysis forcing.
2187 \[
2188 {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2189 + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2190 \]
2191 \\
2192
2193 \noindent
2194 {\bf 54) \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
2195
2196 \noindent
2197 The surface stress velocity, or the friction velocity, is the wind speed at
2198 the surface layer top impeded by the surface drag:
2199 \[
2200 {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2201 C_u = {k \over {\psi_m} }
2202 \]
2203
2204 \noindent
2205 $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2206 number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2207
2208 \noindent
2209 {\bf 55) \underline {Z0} Surface Roughness Length ($m$) }
2210
2211 \noindent
2212 Over the land surface, the surface roughness length is interpolated to the local
2213 time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
2214 the roughness length is a function of the surface-stress velocity, $u_*$.
2215 \[
2216 {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2217 \]
2218
2219 \noindent
2220 where the constants are chosen to interpolate between the reciprocal relation of
2221 Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
2222 for moderate to large winds.
2223 \\
2224
2225 \noindent
2226 {\bf 56) \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
2227
2228 \noindent
2229 The fraction of time when turbulence is present is defined as the fraction of
2230 time when the turbulent kinetic energy exceeds some minimum value, defined here
2231 to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2232 incremented. The fraction over the averaging interval is reported.
2233 \\
2234
2235 \noindent
2236 {\bf 57) \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
2237
2238 \noindent
2239 The depth of the PBL is defined by the turbulence parameterization to be the
2240 depth at which the turbulent kinetic energy reduces to ten percent of its surface
2241 value.
2242
2243 \[
2244 {\bf PBL} = P_{PBL} - P_{surface}
2245 \]
2246
2247 \noindent
2248 where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2249 reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2250 \\
2251
2252 \noindent
2253 {\bf 58) \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2254
2255 \noindent
2256 The net Shortwave heating rate is calculated as the vertical divergence of the
2257 net solar radiative fluxes.
2258 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2259 For the clear-sky case, the shortwave fluxes and heating rates are computed with
2260 both CLMO (maximum overlap cloud fraction) and
2261 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2262 The shortwave routine is then called a second time, for the cloudy-sky case, with the
2263 true time-averaged cloud fractions CLMO
2264 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
2265 input at the top of the atmosphere.
2266
2267 \noindent
2268 The heating rate due to Shortwave Radiation under clear skies is defined as:
2269 \[
2270 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2271 \]
2272 or
2273 \[
2274 {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2275 \]
2276
2277 \noindent
2278 where $g$ is the accelation due to gravity,
2279 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2280 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2281 \[
2282 F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2283 \]
2284 \\
2285
2286 \noindent
2287 {\bf 59) \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2288 \[
2289 {\bf OSR} = F_{SW,top}^{NET}
2290 \]
2291 \noindent
2292 where top indicates the top of the first model layer used in the shortwave radiation
2293 routine.
2294 In the GCM, $p_{SW_{top}}$ = 0 mb.
2295 \\
2296
2297 \noindent
2298 {\bf 60) \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2299 \[
2300 {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
2301 \]
2302 \noindent
2303 where top indicates the top of the first model layer used in the shortwave radiation
2304 routine.
2305 In the GCM, $p_{SW_{top}}$ = 0 mb.
2306 \\
2307
2308
2309 \noindent
2310 {\bf 61) \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2311
2312 \noindent
2313 The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2314 \[
2315 {\bf CLDMAS} = \eta m_B
2316 \]
2317 where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2318 the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2319 description of the convective parameterization.
2320 \\
2321
2322
2323
2324 \noindent
2325 {\bf 62) \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2326
2327 \noindent
2328 The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2329 the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
2330 Zonal U-Wind which is archived on the Prognostic Output data stream.
2331 \[
2332 {\bf UAVE} = u(\lambda, \phi, level , t)
2333 \]
2334 \\
2335 Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2336 \\
2337
2338 \noindent
2339 {\bf 63) \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2340
2341 \noindent
2342 The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2343 the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
2344 Meridional V-Wind which is archived on the Prognostic Output data stream.
2345 \[
2346 {\bf VAVE} = v(\lambda, \phi, level , t)
2347 \]
2348 \\
2349 Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2350 \\
2351
2352 \noindent
2353 {\bf 64) \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2354
2355 \noindent
2356 The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2357 the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
2358 Temperature which is archived on the Prognostic Output data stream.
2359 \[
2360 {\bf TAVE} = T(\lambda, \phi, level , t)
2361 \]
2362 \\
2363
2364 \noindent
2365 {\bf 65) \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2366
2367 \noindent
2368 The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2369 the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
2370 Specific Humidity which is archived on the Prognostic Output data stream.
2371 \[
2372 {\bf QAVE} = q(\lambda, \phi, level , t)
2373 \]
2374 \\
2375
2376 \noindent
2377 {\bf 66) \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2378
2379 \noindent
2380 The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2381 the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
2382 Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2383 \begin{eqnarray*}
2384 {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
2385 & = & p_s(\lambda, \phi, level , t) - p_T
2386 \end{eqnarray*}
2387 \\
2388
2389
2390 \noindent
2391 {\bf 67) \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2392
2393 \noindent
2394 The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2395 produced by the GCM Turbulence parameterization over
2396 the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
2397 Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2398 \[
2399 {\bf QQAVE} = qq(\lambda, \phi, level , t)
2400 \]
2401 \\
2402 Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2403 \\
2404
2405 \noindent
2406 {\bf 68) \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2407
2408 \noindent
2409 \begin{eqnarray*}
2410 {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2411 & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2412 \end{eqnarray*}
2413 \noindent
2414 \\
2415 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2416 $F(clearsky){SW}^\downarrow$ is
2417 the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2418 the upward clearsky Shortwave flux.
2419 \\
2420
2421 \noindent
2422 {\bf 69) \underline {SDIAG1} User-Defined Surface Diagnostic-1 }
2423
2424 \noindent
2425 The GCM provides Users with a built-in mechanism for archiving user-defined
2426 diagnostics. The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated
2427 diagnostic counters and pointers located in COMMON /DIAGP/,
2428 must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}).
2429 A convenient method for incorporating all necessary COMMON files is to
2430 include the GCM {\em vstate.com} file in the routine which employs the
2431 user-defined diagnostics.
2432
2433 \noindent
2434 In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill
2435 the QDIAG array with the desired quantity within the User's
2436 application program or within modified GCM subroutines, as well as increment
2437 the diagnostic counter at the time when the diagnostic is updated.
2438 The QDIAG location index for {\bf SDIAG1} and its corresponding counter is
2439 automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the
2440 diagnostic has been enabled.
2441 The syntax for its use is given by
2442 \begin{verbatim}
2443 do j=1,jm
2444 do i=1,im
2445 qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ...
2446 enddo
2447 enddo
2448
2449 NSDIAG1 = NSDIAG1 + 1
2450 \end{verbatim}
2451 The diagnostics defined in this manner will automatically be archived by the output routines.
2452 \\
2453
2454 \noindent
2455 {\bf 70) \underline {SDIAG2} User-Defined Surface Diagnostic-2 }
2456
2457 \noindent
2458 The GCM provides Users with a built-in mechanism for archiving user-defined
2459 diagnostics. For a complete description refer to Diagnostic \#84.
2460 The syntax for using the surface SDIAG2 diagnostic is given by
2461 \begin{verbatim}
2462 do j=1,jm
2463 do i=1,im
2464 qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ...
2465 enddo
2466 enddo
2467
2468 NSDIAG2 = NSDIAG2 + 1
2469 \end{verbatim}
2470 The diagnostics defined in this manner will automatically be archived by the output routines.
2471 \\
2472
2473 \noindent
2474 {\bf 71) \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 }
2475
2476 \noindent
2477 The GCM provides Users with a built-in mechanism for archiving user-defined
2478 diagnostics. For a complete description refer to Diagnostic \#84.
2479 The syntax for using the upper-air UDIAG1 diagnostic is given by
2480 \begin{verbatim}
2481 do L=1,Nrphys
2482 do j=1,jm
2483 do i=1,im
2484 qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ...
2485 enddo
2486 enddo
2487 enddo
2488
2489 NUDIAG1 = NUDIAG1 + 1
2490 \end{verbatim}
2491 The diagnostics defined in this manner will automatically be archived by the
2492 output programs.
2493 \\
2494
2495 \noindent
2496 {\bf 72) \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 }
2497
2498 \noindent
2499 The GCM provides Users with a built-in mechanism for archiving user-defined
2500 diagnostics. For a complete description refer to Diagnostic \#84.
2501 The syntax for using the upper-air UDIAG2 diagnostic is given by
2502 \begin{verbatim}
2503 do L=1,Nrphys
2504 do j=1,jm
2505 do i=1,im
2506 qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ...
2507 enddo
2508 enddo
2509 enddo
2510
2511 NUDIAG2 = NUDIAG2 + 1
2512 \end{verbatim}
2513 The diagnostics defined in this manner will automatically be archived by the
2514 output programs.
2515 \\
2516
2517
2518 \noindent
2519 {\bf 73) \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2520
2521 \noindent
2522 {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2523 and the Analysis forcing.
2524 \[
2525 {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2526 \]
2527 \\
2528
2529 \noindent
2530 {\bf 74) \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2531
2532 \noindent
2533 {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2534 and the Analysis forcing.
2535 \[
2536 {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2537 \]
2538 \\
2539
2540 \noindent
2541 {\bf 75) \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2542
2543 \noindent
2544 {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2545 and the Analysis forcing.
2546 \begin{eqnarray*}
2547 {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2548 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2549 \end{eqnarray*}
2550 \\
2551 If we define the time-tendency of Temperature due to Diabatic processes as
2552 \begin{eqnarray*}
2553 \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2554 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2555 \end{eqnarray*}
2556 then, since there are no surface pressure changes due to Diabatic processes, we may write
2557 \[
2558 \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2559 \]
2560 where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2561 \[
2562 {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2563 \]
2564 \\
2565
2566 \noindent
2567 {\bf 76) \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2568
2569 \noindent
2570 {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2571 and the Analysis forcing.
2572 \[
2573 {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2574 \]
2575 If we define the time-tendency of Specific Humidity due to Diabatic processes as
2576 \[
2577 \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2578 \]
2579 then, since there are no surface pressure changes due to Diabatic processes, we may write
2580 \[
2581 \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2582 \]
2583 Thus, {\bf DIABQ} may be written as
2584 \[
2585 {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2586 \]
2587 \\
2588
2589 \noindent
2590 {\bf 77) \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2591
2592 \noindent
2593 The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2594 $u q$ over the depth of the atmosphere at each model timestep,
2595 and dividing by the total mass of the column.
2596 \[
2597 {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2598 \]
2599 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2600 \[
2601 {\bf VINTUQ} = { \int_0^1 u q dp }
2602 \]
2603 \\
2604
2605
2606 \noindent
2607 {\bf 78) \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2608
2609 \noindent
2610 The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2611 $v q$ over the depth of the atmosphere at each model timestep,
2612 and dividing by the total mass of the column.
2613 \[
2614 {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2615 \]
2616 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2617 \[
2618 {\bf VINTVQ} = { \int_0^1 v q dp }
2619 \]
2620 \\
2621
2622
2623 \noindent
2624 {\bf 79) \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2625
2626 \noindent
2627 The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2628 $u T$ over the depth of the atmosphere at each model timestep,
2629 and dividing by the total mass of the column.
2630 \[
2631 {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2632 \]
2633 Or,
2634 \[
2635 {\bf VINTUT} = { \int_0^1 u T dp }
2636 \]
2637 \\
2638
2639 \noindent
2640 {\bf 80) \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2641
2642 \noindent
2643 The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2644 $v T$ over the depth of the atmosphere at each model timestep,
2645 and dividing by the total mass of the column.
2646 \[
2647 {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2648 \]
2649 Using $\rho \delta z = -{\delta p \over g} $, we have
2650 \[
2651 {\bf VINTVT} = { \int_0^1 v T dp }
2652 \]
2653 \\
2654
2655 \noindent
2656 {\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2657
2658 If we define the
2659 time-averaged random and maximum overlapped cloudiness as CLRO and
2660 CLMO respectively, then the probability of clear sky associated
2661 with random overlapped clouds at any level is (1-CLRO) while the probability of
2662 clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2663 The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2664 the total cloud fraction at each level may be obtained by
2665 1-(1-CLRO)*(1-CLMO).
2666
2667 At any given level, we may define the clear line-of-site probability by
2668 appropriately accounting for the maximum and random overlap
2669 cloudiness. The clear line-of-site probability is defined to be
2670 equal to the product of the clear line-of-site probabilities
2671 associated with random and maximum overlap cloudiness. The clear
2672 line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2673 from the current pressure $p$
2674 to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2675 is simply 1.0 minus the largest maximum overlap cloud value along the
2676 line-of-site, ie.
2677
2678 $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2679
2680 Thus, even in the time-averaged sense it is assumed that the
2681 maximum overlap clouds are correlated in the vertical. The clear
2682 line-of-site probability associated with random overlap clouds is
2683 defined to be the product of the clear sky probabilities at each
2684 level along the line-of-site, ie.
2685
2686 $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2687
2688 The total cloud fraction at a given level associated with a line-
2689 of-site calculation is given by
2690
2691 $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2692 \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2693
2694
2695 \noindent
2696 The 2-dimensional net cloud fraction as seen from the top of the
2697 atmosphere is given by
2698 \[
2699 {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2700 \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2701 \]
2702 \\
2703 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2704
2705
2706 \noindent
2707 {\bf 82) \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2708
2709 \noindent
2710 The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2711 given by:
2712 \begin{eqnarray*}
2713 {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2714 & = & {\pi \over g} \int_0^1 q dp
2715 \end{eqnarray*}
2716 where we have used the hydrostatic relation
2717 $\rho \delta z = -{\delta p \over g} $.
2718 \\
2719
2720
2721 \noindent
2722 {\bf 83) \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2723
2724 \noindent
2725 The u-wind at the 2-meter depth is determined from the similarity theory:
2726 \[
2727 {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2728 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2729 \]
2730
2731 \noindent
2732 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2733 $sl$ refers to the height of the top of the surface layer. If the roughness height
2734 is above two meters, ${\bf U2M}$ is undefined.
2735 \\
2736
2737 \noindent
2738 {\bf 84) \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2739
2740 \noindent
2741 The v-wind at the 2-meter depth is a determined from the similarity theory:
2742 \[
2743 {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2744 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2745 \]
2746
2747 \noindent
2748 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2749 $sl$ refers to the height of the top of the surface layer. If the roughness height
2750 is above two meters, ${\bf V2M}$ is undefined.
2751 \\
2752
2753 \noindent
2754 {\bf 85) \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2755
2756 \noindent
2757 The temperature at the 2-meter depth is a determined from the similarity theory:
2758 \[
2759 {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2760 P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2761 (\theta_{sl} - \theta_{surf}))
2762 \]
2763 where:
2764 \[
2765 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2766 \]
2767
2768 \noindent
2769 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2770 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2771 $sl$ refers to the height of the top of the surface layer. If the roughness height
2772 is above two meters, ${\bf T2M}$ is undefined.
2773 \\
2774
2775 \noindent
2776 {\bf 86) \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2777
2778 \noindent
2779 The specific humidity at the 2-meter depth is determined from the similarity theory:
2780 \[
2781 {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2782 P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2783 (q_{sl} - q_{surf}))
2784 \]
2785 where:
2786 \[
2787 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2788 \]
2789
2790 \noindent
2791 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2792 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2793 $sl$ refers to the height of the top of the surface layer. If the roughness height
2794 is above two meters, ${\bf Q2M}$ is undefined.
2795 \\
2796
2797 \noindent
2798 {\bf 87) \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2799
2800 \noindent
2801 The u-wind at the 10-meter depth is an interpolation between the surface wind
2802 and the model lowest level wind using the ratio of the non-dimensional wind shear
2803 at the two levels:
2804 \[
2805 {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2806 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2807 \]
2808
2809 \noindent
2810 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2811 $sl$ refers to the height of the top of the surface layer.
2812 \\
2813
2814 \noindent
2815 {\bf 88) \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2816
2817 \noindent
2818 The v-wind at the 10-meter depth is an interpolation between the surface wind
2819 and the model lowest level wind using the ratio of the non-dimensional wind shear
2820 at the two levels:
2821 \[
2822 {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2823 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2824 \]
2825
2826 \noindent
2827 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2828 $sl$ refers to the height of the top of the surface layer.
2829 \\
2830
2831 \noindent
2832 {\bf 89) \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2833
2834 \noindent
2835 The temperature at the 10-meter depth is an interpolation between the surface potential
2836 temperature and the model lowest level potential temperature using the ratio of the
2837 non-dimensional temperature gradient at the two levels:
2838 \[
2839 {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2840 P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2841 (\theta_{sl} - \theta_{surf}))
2842 \]
2843 where:
2844 \[
2845 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2846 \]
2847
2848 \noindent
2849 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2850 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2851 $sl$ refers to the height of the top of the surface layer.
2852 \\
2853
2854 \noindent
2855 {\bf 90) \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2856
2857 \noindent
2858 The specific humidity at the 10-meter depth is an interpolation between the surface specific
2859 humidity and the model lowest level specific humidity using the ratio of the
2860 non-dimensional temperature gradient at the two levels:
2861 \[
2862 {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2863 P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2864 (q_{sl} - q_{surf}))
2865 \]
2866 where:
2867 \[
2868 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2869 \]
2870
2871 \noindent
2872 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2873 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2874 $sl$ refers to the height of the top of the surface layer.
2875 \\
2876
2877 \noindent
2878 {\bf 91) \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2879
2880 The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2881 \[
2882 {\bf DTRAIN} = \eta_{r_D}m_B
2883 \]
2884 \noindent
2885 where $r_D$ is the detrainment level,
2886 $m_B$ is the cloud base mass flux, and $\eta$
2887 is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2888 \\
2889
2890 \noindent
2891 {\bf 92) \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2892
2893 \noindent
2894 Due to computational errors associated with the numerical scheme used for
2895 the advection of moisture, negative values of specific humidity may be generated. The
2896 specific humidity is checked for negative values after every dynamics timestep. If negative
2897 values have been produced, a filling algorithm is invoked which redistributes moisture from
2898 below. Diagnostic {\bf QFILL} is equal to the net filling needed
2899 to eliminate negative specific humidity, scaled to a per-day rate:
2900 \[
2901 {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2902 \]
2903 where
2904 \[
2905 q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2906 \]
2907
2908 \subsection{Dos and Donts}
2909
2910 \subsection{Diagnostics Reference}
2911

  ViewVC Help
Powered by ViewVC 1.1.22