/[MITgcm]/manual/s_phys_pkgs/diagnostics.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/diagnostics.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (show annotations) (download) (as text)
Thu Oct 14 15:28:53 2004 UTC (20 years, 9 months ago) by molod
Branch: MAIN
Changes since 1.2: +51 -26 lines
File MIME type: application/x-tex
Bringing diagnostics documentation more current

1 \section{Diagnostics--A Flexible Infrastructure}
2 \label{sec:pkg:diagnostics}
3 \begin{rawhtml}
4 <!-- CMIREDIR:package_diagnostics: -->
5 \end{rawhtml}
6
7 \subsection{Introduction}
8
9 This section of the documentation describes the Diagnostics Utilities available within
10 the GCM. In addition to a description on how to set and extract diagnostic quantities,
11 this document also provides a comprehensive list of all available diagnostic quantities
12 and a short description of how they are computed. It should be noted that this document
13 is not intended to be a complete documentation of the various packages used in the GCM,
14 and the reader should refer to original publications and the appropriate sections of this
15 documentation for further insight.
16
17 \subsection{Equations}
18 Not relevant.
19
20 \subsection{Key Subroutines and Parameters}
21 \label{sec:diagnostics:diagover}
22
23 A large selection of model diagnostics is available in the GCM. At the time of
24 this writing there are 280 different diagnostic quantities which can be enabled for an
25 experiment. As a matter of philosophy, no diagnostic is enabled as default, thus each user must
26 specify the exact diagnostic information required for an experiment. This is accomplished by
27 enabling the specific diagnostic of interest cataloged in the
28 Diagnostic Menu (see Section \ref{sec:diagnostics:menu}).
29 The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within the
30 GCM. Diagnostics are internally referred to by their associated number in the Diagnostic
31 Menu. Once a diagnostic is enabled, the GCM will continually increment an array
32 specifically allocated for that diagnostic whenever the associated process for the diagnostic is
33 computed. Separate arrays are used both for the diagnostic quantity and its diagnostic counter
34 which records how many times each diagnostic quantity has been computed. In addition
35 special diagnostics, called
36 ``Counter Diagnostics'', records the frequency of diagnostic updates separately for each
37 model grid location.
38
39 The diagnostics are computed at various times and places within the GCM.
40 Some diagnostics are computed on the geophysical A-grid (such as
41 those within the Physics routines), while others are computed on the C-grid
42 (those computed during the dynamics time-stepping). Some diagnostics are
43 scalars, while others are vectors. Each of these possibilities requires
44 separate tasks for A-grid to C-grid transformations and coordinate transformations. Due
45 to this complexity, and since the specific diagnostics enabled are User determined at the
46 time of the run,
47 a diagnostic parameter has been developed and implemented into the GCM, defined as GDIAG,
48 which contains information concerning various grid attributes of each diagnostic. The GDIAG
49 array is internally defined as a character*8 variable, and is equivalenced to
50 a character*1 "parse" array in output in order to extract the grid-attribute information.
51 The GDIAG array is described in Table \ref{tab:diagnostics:gdiag.tabl}.
52
53 \begin{table}
54 \caption{Diagnostic Parsing Array}
55 \label{tab:diagnostics:gdiag.tabl}
56 \begin{center}
57 \begin{tabular}{ |c|c|l| }
58 \hline
59 \multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\
60 \hline
61 \hline
62 Array & Value & Description \\
63 \hline
64 parse(1) & $\rightarrow$ S & Scalar Diagnostic \\
65 & $\rightarrow$ U & U-vector component Diagnostic \\
66 & $\rightarrow$ V & V-vector component Diagnostic \\ \hline
67 parse(2) & $\rightarrow$ U & C-Grid U-Point \\
68 & $\rightarrow$ V & C-Grid V-Point \\
69 & $\rightarrow$ M & C-Grid Mass Point \\
70 & $\rightarrow$ Z & C-Grid Vorticity (Corner) Point \\ \hline
71 parse(3) & $\rightarrow$ R & Not Currently in Use \\ \hline
72 parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline
73 parse(5) & $\rightarrow$ C & Counter Diagnostic \\
74 & $\rightarrow$ D & Disabled Diagnostic for output \\ \hline
75 parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\
76 & & vector or counter component mate \\ \hline
77 \end{tabular}
78 \addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array}
79 \end{center}
80 \end{table}
81
82 As an example, consider a diagnostic whose associated GDIAG parameter is equal
83 to ``UU 002''. From GDIAG we can determine that this diagnostic is a
84 U-vector component located at the C-grid U-point.
85 Its corresponding V-component diagnostic is located in Diagnostic \# 002.
86
87 In this way, each Diagnostic in the model has its attributes (ie. vector or scalar,
88 A-Grid or C-grid, etc.) defined internally. The Output routines
89 use this information in order to determine
90 what type of transformations need to be performed. Thus, all Diagnostic
91 interpolations are done at the time of output rather than during each model dynamic step.
92 In this way the User now has more flexibility
93 in determining the type of gridded data which is output.
94
95 There are several utilities within the GCM available to users to enable, disable,
96 clear, and retrieve model diagnostics, and may be called from any user-supplied application
97 and/or output routine. The available utilities and the CALL sequences are listed below.
98
99
100 {\bf SETDIAG}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning that
101 space is allocated for the diagnostic and the
102 model routines will increment the diagnostic value during execution. This routine is useful when
103 called from either user application routines or user output routines, and is the underlying interface
104 between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic
105 number from the menu, and its calling sequence is given by:
106
107 \begin{tabbing}
108 XXXXXXXXX\=XXXXXX\= \kill
109 \> CALL SETDIAG (NUM) \\
110 \\
111 where \> NUM \>= Diagnostic number from menu \\
112 \end{tabbing}
113
114
115 {\bf GETDIAG}: This subroutine retrieves the value of a model diagnostic. This routine is
116 particulary useful when called from a user output routine, although it can be called from an
117 application routine as well. This routine returns the time-averaged value of the diagnostic by
118 dividing the current accumulated diagnostic value by its corresponding counter. This routine does
119 not change the value of the diagnostic itself, that is, it does not replace the diagnostic with its
120 time-average. The calling sequence for this routine is givin by:
121
122 \begin{tabbing}
123 XXXXXXXXX\=XXXXXX\= \kill
124 \> CALL GETDIAG (LEV,NUM,QTMP,UNDEF) \\
125 \\
126 where \> LEV \>= Model Level at which the diagnostic is desired \\
127 \> NUM \>= Diagnostic number from menu \\
128 \> QTMP \>= Time-Averaged Diagnostic Output \\
129 \> UNDEF \>= Fill value to be used when diagnostic is undefined \\
130 \end{tabbing}
131
132 {\bf CLRDIAG}: This subroutine initializes the values of model diagnostics to zero, and is
133 particularly useful when called from user output routines to re-initialize diagnostics during the
134 run. The calling sequence is:
135
136
137 \begin{tabbing}
138 XXXXXXXXX\=XXXXXX\= \kill
139 \> CALL CLRDIAG (NUM) \\
140 \\
141 where \> NUM \>= Diagnostic number from menu \\
142 \end{tabbing}
143
144
145
146 {\bf ZAPDIAG}: This entry into subroutine SETDIAG disables model diagnostics, meaning that the
147 diagnostic is no longer available to the user. The memory previously allocated to the diagnostic
148 is released when ZAPDIAG is invoked. The calling sequence is given by:
149
150
151 \begin{tabbing}
152 XXXXXXXXX\=XXXXXX\= \kill
153 \> CALL ZAPDIAG (NUM) \\
154 \\
155 where \> NUM \>= Diagnostic number from menu \\
156 \end{tabbing}
157
158 {\bf DIAGSIZE}: We end this section with a discussion on the manner in which computer memory
159 is allocated for diagnostics.
160 All GCM diagnostic quantities are stored in the single
161 diagnostic array QDIAG which is located in diagnostics.h, and has the form:
162
163 common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy)
164
165 where numdiags is an Integer variable which should be
166 set equal to the number of enabled diagnostics, and QDIAG is a three-dimensional
167 array. The first two-dimensions of QDIAG correspond to the horizontal dimension
168 of a given diagnostic, while the third dimension of QDIAG is used to identify
169 specific diagnostic types.
170 In order to minimize the memory requirement of the model for diagnostics,
171 the default GCM executable is compiled with room for only one horizontal
172 diagnostic array, as shown in the above example.
173 In order for the User to enable more than 1 two-dimensional diagnostic,
174 the size of the diagnostics common must be expanded to accomodate the desired diagnostics.
175 This can be accomplished by manually changing the parameter numdiags in the
176 file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}, or by allowing the
177 shell script (???????) to make this
178 change based on the choice of diagnostic output made in the namelist.
179
180 \subsection{Usage Notes}
181 \label{sec:diagnostics:usersguide}
182 To use the diagnostics package, other than enabling it in packages.conf
183 and turning the usediagnostics flag in data.pkg to .TRUE., a namelist
184 must be supplied in the run directory called data.diagnostics. The namelist
185 will activate a user-defined list of diagnostics quantities to be computed,
186 specify the frequency of output, the number of levels, and the name of
187 up to 10 separate output files. A sample data.diagnostics namelist file:
188
189 \# Diagnostic Package Choices
190 \&diagnostics_list
191 frequency(1) = 10, \
192 levels(1,1) = 1.,2.,3.,4.,5., \
193 fields(1,1) = 'UVEL ','VVEL ', \
194 filename(1) = 'diagout1', \
195 frequency(2) = 100, \
196 levels(1,2) = 1.,2.,3.,4.,5., \
197 fields(1,2) = 'THETA ','SALT ', \
198 filename(2) = 'diagout2', \
199 \&end \
200
201 In this example, there are two output files that will be generated
202 for each tile and for each output time. The first set of output files
203 has the prefix diagout1, does time averaging every 10 time steps,
204 for fields which are multiple-level fields the levels output are 1-5,
205 and the names of diagnostics quantities are UVEL and VVEL.
206 The second set of output files
207 has the prefix diagout2, does time averaging every 100 time steps,
208 for fields which are multiple-level fields the levels output are 1-5,
209 and the names of diagnostics quantities are THETA and SALT.
210
211 \newpage
212
213 \subsubsection{GCM Diagnostic Menu}
214 \label{sec:diagnostics:menu}
215
216 \begin{tabular}{lllll}
217 \hline\hline
218 N & NAME & UNITS & LEVELS & DESCRIPTION \\
219 \hline
220
221 &\\
222 1 & UFLUX & $Newton/m^2$ & 1
223 &\begin{minipage}[t]{3in}
224 {Surface U-Wind Stress on the atmosphere}
225 \end{minipage}\\
226 2 & VFLUX & $Newton/m^2$ & 1
227 &\begin{minipage}[t]{3in}
228 {Surface V-Wind Stress on the atmosphere}
229 \end{minipage}\\
230 3 & HFLUX & $Watts/m^2$ & 1
231 &\begin{minipage}[t]{3in}
232 {Surface Flux of Sensible Heat}
233 \end{minipage}\\
234 4 & EFLUX & $Watts/m^2$ & 1
235 &\begin{minipage}[t]{3in}
236 {Surface Flux of Latent Heat}
237 \end{minipage}\\
238 5 & QICE & $Watts/m^2$ & 1
239 &\begin{minipage}[t]{3in}
240 {Heat Conduction through Sea-Ice}
241 \end{minipage}\\
242 6 & RADLWG & $Watts/m^2$ & 1
243 &\begin{minipage}[t]{3in}
244 {Net upward LW flux at the ground}
245 \end{minipage}\\
246 7 & RADSWG & $Watts/m^2$ & 1
247 &\begin{minipage}[t]{3in}
248 {Net downward SW flux at the ground}
249 \end{minipage}\\
250 8 & RI & $dimensionless$ & Nrphys
251 &\begin{minipage}[t]{3in}
252 {Richardson Number}
253 \end{minipage}\\
254 9 & CT & $dimensionless$ & 1
255 &\begin{minipage}[t]{3in}
256 {Surface Drag coefficient for T and Q}
257 \end{minipage}\\
258 10 & CU & $dimensionless$ & 1
259 &\begin{minipage}[t]{3in}
260 {Surface Drag coefficient for U and V}
261 \end{minipage}\\
262 11 & ET & $m^2/sec$ & Nrphys
263 &\begin{minipage}[t]{3in}
264 {Diffusivity coefficient for T and Q}
265 \end{minipage}\\
266 12 & EU & $m^2/sec$ & Nrphys
267 &\begin{minipage}[t]{3in}
268 {Diffusivity coefficient for U and V}
269 \end{minipage}\\
270 13 & TURBU & $m/sec/day$ & Nrphys
271 &\begin{minipage}[t]{3in}
272 {U-Momentum Changes due to Turbulence}
273 \end{minipage}\\
274 14 & TURBV & $m/sec/day$ & Nrphys
275 &\begin{minipage}[t]{3in}
276 {V-Momentum Changes due to Turbulence}
277 \end{minipage}\\
278 15 & TURBT & $deg/day$ & Nrphys
279 &\begin{minipage}[t]{3in}
280 {Temperature Changes due to Turbulence}
281 \end{minipage}\\
282 16 & TURBQ & $g/kg/day$ & Nrphys
283 &\begin{minipage}[t]{3in}
284 {Specific Humidity Changes due to Turbulence}
285 \end{minipage}\\
286 17 & MOISTT & $deg/day$ & Nrphys
287 &\begin{minipage}[t]{3in}
288 {Temperature Changes due to Moist Processes}
289 \end{minipage}\\
290 18 & MOISTQ & $g/kg/day$ & Nrphys
291 &\begin{minipage}[t]{3in}
292 {Specific Humidity Changes due to Moist Processes}
293 \end{minipage}\\
294 19 & RADLW & $deg/day$ & Nrphys
295 &\begin{minipage}[t]{3in}
296 {Net Longwave heating rate for each level}
297 \end{minipage}\\
298 20 & RADSW & $deg/day$ & Nrphys
299 &\begin{minipage}[t]{3in}
300 {Net Shortwave heating rate for each level}
301 \end{minipage}\\
302 21 & PREACC & $mm/day$ & 1
303 &\begin{minipage}[t]{3in}
304 {Total Precipitation}
305 \end{minipage}\\
306 22 & PRECON & $mm/day$ & 1
307 &\begin{minipage}[t]{3in}
308 {Convective Precipitation}
309 \end{minipage}\\
310 23 & TUFLUX & $Newton/m^2$ & Nrphys
311 &\begin{minipage}[t]{3in}
312 {Turbulent Flux of U-Momentum}
313 \end{minipage}\\
314 24 & TVFLUX & $Newton/m^2$ & Nrphys
315 &\begin{minipage}[t]{3in}
316 {Turbulent Flux of V-Momentum}
317 \end{minipage}\\
318 25 & TTFLUX & $Watts/m^2$ & Nrphys
319 &\begin{minipage}[t]{3in}
320 {Turbulent Flux of Sensible Heat}
321 \end{minipage}\\
322 26 & TQFLUX & $Watts/m^2$ & Nrphys
323 &\begin{minipage}[t]{3in}
324 {Turbulent Flux of Latent Heat}
325 \end{minipage}\\
326 27 & CN & $dimensionless$ & 1
327 &\begin{minipage}[t]{3in}
328 {Neutral Drag Coefficient}
329 \end{minipage}\\
330 28 & WINDS & $m/sec$ & 1
331 &\begin{minipage}[t]{3in}
332 {Surface Wind Speed}
333 \end{minipage}\\
334 29 & DTSRF & $deg$ & 1
335 &\begin{minipage}[t]{3in}
336 {Air/Surface virtual temperature difference}
337 \end{minipage}\\
338 30 & TG & $deg$ & 1
339 &\begin{minipage}[t]{3in}
340 {Ground temperature}
341 \end{minipage}\\
342 31 & TS & $deg$ & 1
343 &\begin{minipage}[t]{3in}
344 {Surface air temperature (Adiabatic from lowest model layer)}
345 \end{minipage}\\
346 32 & DTG & $deg$ & 1
347 &\begin{minipage}[t]{3in}
348 {Ground temperature adjustment}
349 \end{minipage}\\
350
351 \end{tabular}
352
353 \newpage
354 \vspace*{\fill}
355 \begin{tabular}{lllll}
356 \hline\hline
357 N & NAME & UNITS & LEVELS & DESCRIPTION \\
358 \hline
359
360 &\\
361 33 & QG & $g/kg$ & 1
362 &\begin{minipage}[t]{3in}
363 {Ground specific humidity}
364 \end{minipage}\\
365 34 & QS & $g/kg$ & 1
366 &\begin{minipage}[t]{3in}
367 {Saturation surface specific humidity}
368 \end{minipage}\\
369
370 &\\
371 35 & TGRLW & $deg$ & 1
372 &\begin{minipage}[t]{3in}
373 {Instantaneous ground temperature used as input to the
374 Longwave radiation subroutine}
375 \end{minipage}\\
376 36 & ST4 & $Watts/m^2$ & 1
377 &\begin{minipage}[t]{3in}
378 {Upward Longwave flux at the ground ($\sigma T^4$)}
379 \end{minipage}\\
380 37 & OLR & $Watts/m^2$ & 1
381 &\begin{minipage}[t]{3in}
382 {Net upward Longwave flux at the top of the model}
383 \end{minipage}\\
384 38 & OLRCLR & $Watts/m^2$ & 1
385 &\begin{minipage}[t]{3in}
386 {Net upward clearsky Longwave flux at the top of the model}
387 \end{minipage}\\
388 39 & LWGCLR & $Watts/m^2$ & 1
389 &\begin{minipage}[t]{3in}
390 {Net upward clearsky Longwave flux at the ground}
391 \end{minipage}\\
392 40 & LWCLR & $deg/day$ & Nrphys
393 &\begin{minipage}[t]{3in}
394 {Net clearsky Longwave heating rate for each level}
395 \end{minipage}\\
396 41 & TLW & $deg$ & Nrphys
397 &\begin{minipage}[t]{3in}
398 {Instantaneous temperature used as input to the Longwave radiation
399 subroutine}
400 \end{minipage}\\
401 42 & SHLW & $g/g$ & Nrphys
402 &\begin{minipage}[t]{3in}
403 {Instantaneous specific humidity used as input to the Longwave radiation
404 subroutine}
405 \end{minipage}\\
406 43 & OZLW & $g/g$ & Nrphys
407 &\begin{minipage}[t]{3in}
408 {Instantaneous ozone used as input to the Longwave radiation
409 subroutine}
410 \end{minipage}\\
411 44 & CLMOLW & $0-1$ & Nrphys
412 &\begin{minipage}[t]{3in}
413 {Maximum overlap cloud fraction used in the Longwave radiation
414 subroutine}
415 \end{minipage}\\
416 45 & CLDTOT & $0-1$ & Nrphys
417 &\begin{minipage}[t]{3in}
418 {Total cloud fraction used in the Longwave and Shortwave radiation
419 subroutines}
420 \end{minipage}\\
421 46 & RADSWT & $Watts/m^2$ & 1
422 &\begin{minipage}[t]{3in}
423 {Incident Shortwave radiation at the top of the atmosphere}
424 \end{minipage}\\
425 47 & CLROSW & $0-1$ & Nrphys
426 &\begin{minipage}[t]{3in}
427 {Random overlap cloud fraction used in the shortwave radiation
428 subroutine}
429 \end{minipage}\\
430 48 & CLMOSW & $0-1$ & Nrphys
431 &\begin{minipage}[t]{3in}
432 {Maximum overlap cloud fraction used in the shortwave radiation
433 subroutine}
434 \end{minipage}\\
435 49 & EVAP & $mm/day$ & 1
436 &\begin{minipage}[t]{3in}
437 {Surface evaporation}
438 \end{minipage}\\
439 \end{tabular}
440 \vfill
441
442 \newpage
443 \vspace*{\fill}
444 \begin{tabular}{lllll}
445 \hline\hline
446 N & NAME & UNITS & LEVELS & DESCRIPTION \\
447 \hline
448
449 &\\
450 50 & DUDT & $m/sec/day$ & Nrphys
451 &\begin{minipage}[t]{3in}
452 {Total U-Wind tendency}
453 \end{minipage}\\
454 51 & DVDT & $m/sec/day$ & Nrphys
455 &\begin{minipage}[t]{3in}
456 {Total V-Wind tendency}
457 \end{minipage}\\
458 52 & DTDT & $deg/day$ & Nrphys
459 &\begin{minipage}[t]{3in}
460 {Total Temperature tendency}
461 \end{minipage}\\
462 53 & DQDT & $g/kg/day$ & Nrphys
463 &\begin{minipage}[t]{3in}
464 {Total Specific Humidity tendency}
465 \end{minipage}\\
466 54 & USTAR & $m/sec$ & 1
467 &\begin{minipage}[t]{3in}
468 {Surface USTAR wind}
469 \end{minipage}\\
470 55 & Z0 & $m$ & 1
471 &\begin{minipage}[t]{3in}
472 {Surface roughness}
473 \end{minipage}\\
474 56 & FRQTRB & $0-1$ & Nrphys-1
475 &\begin{minipage}[t]{3in}
476 {Frequency of Turbulence}
477 \end{minipage}\\
478 57 & PBL & $mb$ & 1
479 &\begin{minipage}[t]{3in}
480 {Planetary Boundary Layer depth}
481 \end{minipage}\\
482 58 & SWCLR & $deg/day$ & Nrphys
483 &\begin{minipage}[t]{3in}
484 {Net clearsky Shortwave heating rate for each level}
485 \end{minipage}\\
486 59 & OSR & $Watts/m^2$ & 1
487 &\begin{minipage}[t]{3in}
488 {Net downward Shortwave flux at the top of the model}
489 \end{minipage}\\
490 60 & OSRCLR & $Watts/m^2$ & 1
491 &\begin{minipage}[t]{3in}
492 {Net downward clearsky Shortwave flux at the top of the model}
493 \end{minipage}\\
494 61 & CLDMAS & $kg / m^2$ & Nrphys
495 &\begin{minipage}[t]{3in}
496 {Convective cloud mass flux}
497 \end{minipage}\\
498 62 & UAVE & $m/sec$ & Nrphys
499 &\begin{minipage}[t]{3in}
500 {Time-averaged $u-Wind$}
501 \end{minipage}\\
502 63 & VAVE & $m/sec$ & Nrphys
503 &\begin{minipage}[t]{3in}
504 {Time-averaged $v-Wind$}
505 \end{minipage}\\
506 64 & TAVE & $deg$ & Nrphys
507 &\begin{minipage}[t]{3in}
508 {Time-averaged $Temperature$}
509 \end{minipage}\\
510 65 & QAVE & $g/g$ & Nrphys
511 &\begin{minipage}[t]{3in}
512 {Time-averaged $Specific \, \, Humidity$}
513 \end{minipage}\\
514 66 & PAVE & $mb$ & 1
515 &\begin{minipage}[t]{3in}
516 {Time-averaged $p_{surf} - p_{top}$}
517 \end{minipage}\\
518 67 & QQAVE & $(m/sec)^2$ & Nrphys
519 &\begin{minipage}[t]{3in}
520 {Time-averaged $Turbulent Kinetic Energy$}
521 \end{minipage}\\
522 68 & SWGCLR & $Watts/m^2$ & 1
523 &\begin{minipage}[t]{3in}
524 {Net downward clearsky Shortwave flux at the ground}
525 \end{minipage}\\
526 69 & SDIAG1 & & 1
527 &\begin{minipage}[t]{3in}
528 {User-Defined Surface Diagnostic-1}
529 \end{minipage}\\
530 70 & SDIAG2 & & 1
531 &\begin{minipage}[t]{3in}
532 {User-Defined Surface Diagnostic-2}
533 \end{minipage}\\
534 71 & UDIAG1 & & Nrphys
535 &\begin{minipage}[t]{3in}
536 {User-Defined Upper-Air Diagnostic-1}
537 \end{minipage}\\
538 72 & UDIAG2 & & Nrphys
539 &\begin{minipage}[t]{3in}
540 {User-Defined Upper-Air Diagnostic-2}
541 \end{minipage}\\
542 73 & DIABU & $m/sec/day$ & Nrphys
543 &\begin{minipage}[t]{3in}
544 {Total Diabatic forcing on $u-Wind$}
545 \end{minipage}\\
546 74 & DIABV & $m/sec/day$ & Nrphys
547 &\begin{minipage}[t]{3in}
548 {Total Diabatic forcing on $v-Wind$}
549 \end{minipage}\\
550 75 & DIABT & $deg/day$ & Nrphys
551 &\begin{minipage}[t]{3in}
552 {Total Diabatic forcing on $Temperature$}
553 \end{minipage}\\
554 76 & DIABQ & $g/kg/day$ & Nrphys
555 &\begin{minipage}[t]{3in}
556 {Total Diabatic forcing on $Specific \, \, Humidity$}
557 \end{minipage}\\
558
559 \end{tabular}
560 \vfill
561
562 \newpage
563 \vspace*{\fill}
564 \begin{tabular}{lllll}
565 \hline\hline
566 N & NAME & UNITS & LEVELS & DESCRIPTION \\
567 \hline
568
569 77 & VINTUQ & $m/sec \cdot g/kg$ & 1
570 &\begin{minipage}[t]{3in}
571 {Vertically integrated $u \, q$}
572 \end{minipage}\\
573 78 & VINTVQ & $m/sec \cdot g/kg$ & 1
574 &\begin{minipage}[t]{3in}
575 {Vertically integrated $v \, q$}
576 \end{minipage}\\
577 79 & VINTUT & $m/sec \cdot deg$ & 1
578 &\begin{minipage}[t]{3in}
579 {Vertically integrated $u \, T$}
580 \end{minipage}\\
581 80 & VINTVT & $m/sec \cdot deg$ & 1
582 &\begin{minipage}[t]{3in}
583 {Vertically integrated $v \, T$}
584 \end{minipage}\\
585 81 & CLDFRC & $0-1$ & 1
586 &\begin{minipage}[t]{3in}
587 {Total Cloud Fraction}
588 \end{minipage}\\
589 82 & QINT & $gm/cm^2$ & 1
590 &\begin{minipage}[t]{3in}
591 {Precipitable water}
592 \end{minipage}\\
593 83 & U2M & $m/sec$ & 1
594 &\begin{minipage}[t]{3in}
595 {U-Wind at 2 meters}
596 \end{minipage}\\
597 84 & V2M & $m/sec$ & 1
598 &\begin{minipage}[t]{3in}
599 {V-Wind at 2 meters}
600 \end{minipage}\\
601 85 & T2M & $deg$ & 1
602 &\begin{minipage}[t]{3in}
603 {Temperature at 2 meters}
604 \end{minipage}\\
605 86 & Q2M & $g/kg$ & 1
606 &\begin{minipage}[t]{3in}
607 {Specific Humidity at 2 meters}
608 \end{minipage}\\
609 87 & U10M & $m/sec$ & 1
610 &\begin{minipage}[t]{3in}
611 {U-Wind at 10 meters}
612 \end{minipage}\\
613 88 & V10M & $m/sec$ & 1
614 &\begin{minipage}[t]{3in}
615 {V-Wind at 10 meters}
616 \end{minipage}\\
617 89 & T10M & $deg$ & 1
618 &\begin{minipage}[t]{3in}
619 {Temperature at 10 meters}
620 \end{minipage}\\
621 90 & Q10M & $g/kg$ & 1
622 &\begin{minipage}[t]{3in}
623 {Specific Humidity at 10 meters}
624 \end{minipage}\\
625 91 & DTRAIN & $kg/m^2$ & Nrphys
626 &\begin{minipage}[t]{3in}
627 {Detrainment Cloud Mass Flux}
628 \end{minipage}\\
629 92 & QFILL & $g/kg/day$ & Nrphys
630 &\begin{minipage}[t]{3in}
631 {Filling of negative specific humidity}
632 \end{minipage}\\
633
634 \end{tabular}
635 \vspace{1.5in}
636 \vfill
637
638 \newpage
639
640 \subsubsection{Diagnostic Description}
641
642 In this section we list and describe the diagnostic quantities available within the
643 GCM. The diagnostics are listed in the order that they appear in the
644 Diagnostic Menu, Section \ref{sec:diagnostics:menu}.
645 In all cases, each diagnostic as currently archived on the output datasets
646 is time-averaged over its diagnostic output frequency:
647
648 \[
649 {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
650 \]
651 where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
652 output frequency of the diagnositc, and $\Delta t$ is
653 the timestep over which the diagnostic is updated. For further information on how
654 to set the diagnostic output frequency {\bf NQDIAG}, please see Part III, A User's Guide.
655
656 {\bf 1) \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
657
658 The zonal wind stress is the turbulent flux of zonal momentum from
659 the surface. See section 3.3 for a description of the surface layer parameterization.
660 \[
661 {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
662 \]
663 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
664 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
665 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
666 the zonal wind in the lowest model layer.
667 \\
668
669
670 {\bf 2) \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
671
672 The meridional wind stress is the turbulent flux of meridional momentum from
673 the surface. See section 3.3 for a description of the surface layer parameterization.
674 \[
675 {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
676 \]
677 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
678 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
679 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
680 the meridional wind in the lowest model layer.
681 \\
682
683 {\bf 3) \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
684
685 The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
686 gradient of virtual potential temperature and the eddy exchange coefficient:
687 \[
688 {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
689 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
690 \]
691 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
692 heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
693 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
694 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
695 for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
696 at the surface and at the bottom model level.
697 \\
698
699
700 {\bf 4) \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
701
702 The turbulent flux of latent heat from the surface to the atmosphere is a function of the
703 gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
704 \[
705 {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
706 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
707 \]
708 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
709 the potential evapotranspiration actually evaporated, L is the latent
710 heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
711 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
712 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
713 for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
714 humidity at the surface and at the bottom model level, respectively.
715 \\
716
717 {\bf 5) \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
718
719 Over sea ice there is an additional source of energy at the surface due to the heat
720 conduction from the relatively warm ocean through the sea ice. The heat conduction
721 through sea ice represents an additional energy source term for the ground temperature equation.
722
723 \[
724 {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
725 \]
726
727 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
728 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
729 $T_g$ is the temperature of the sea ice.
730
731 NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
732 \\
733
734
735 {\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
736
737 \begin{eqnarray*}
738 {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
739 & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
740 \end{eqnarray*}
741 \\
742 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
743 $F_{LW}^\uparrow$ is
744 the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
745 \\
746
747 {\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
748
749 \begin{eqnarray*}
750 {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
751 & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
752 \end{eqnarray*}
753 \\
754 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
755 $F_{SW}^\downarrow$ is
756 the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
757 \\
758
759
760 \noindent
761 {\bf 8) \underline {RI} Richardson Number} ($dimensionless$)
762
763 \noindent
764 The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
765 \[
766 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
767 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
768 \]
769 \\
770 where we used the hydrostatic equation:
771 \[
772 {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
773 \]
774 Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
775 indicate dominantly unstable shear, and large positive values indicate dominantly stable
776 stratification.
777 \\
778
779 \noindent
780 {\bf 9) \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
781
782 \noindent
783 The surface exchange coefficient is obtained from the similarity functions for the stability
784 dependant flux profile relationships:
785 \[
786 {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
787 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
788 { k \over { (\psi_{h} + \psi_{g}) } }
789 \]
790 where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
791 viscous sublayer non-dimensional temperature or moisture change:
792 \[
793 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
794 \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
795 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
796 \]
797 and:
798 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
799
800 \noindent
801 $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
802 the temperature and moisture gradients, specified differently for stable and unstable
803 layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
804 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
805 viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
806 (see diagnostic number 67), and the subscript ref refers to a reference value.
807 \\
808
809 \noindent
810 {\bf 10) \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
811
812 \noindent
813 The surface exchange coefficient is obtained from the similarity functions for the stability
814 dependant flux profile relationships:
815 \[
816 {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
817 \]
818 where $\psi_m$ is the surface layer non-dimensional wind shear:
819 \[
820 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
821 \]
822 \noindent
823 $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
824 the temperature and moisture gradients, specified differently for stable and unstable layers
825 according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
826 non-dimensional stability parameter, $u_*$ is the surface stress velocity
827 (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
828 \\
829
830 \noindent
831 {\bf 11) \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
832
833 \noindent
834 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
835 moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
836 diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
837 or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
838 takes the form:
839 \[
840 {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
841 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
842 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
843 \]
844 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
845 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
846 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
847 depth,
848 $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
849 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
850 dimensionless buoyancy and wind shear
851 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
852 are functions of the Richardson number.
853
854 \noindent
855 For the detailed equations and derivations of the modified level 2.5 closure scheme,
856 see Helfand and Labraga, 1988.
857
858 \noindent
859 In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
860 in units of $m/sec$, given by:
861 \[
862 {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
863 \]
864 \noindent
865 where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
866 surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
867 friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
868 and $W_s$ is the magnitude of the surface layer wind.
869 \\
870
871 \noindent
872 {\bf 12) \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
873
874 \noindent
875 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
876 momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
877 diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
878 In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
879 takes the form:
880 \[
881 {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
882 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
883 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
884 \]
885 \noindent
886 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
887 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
888 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
889 depth,
890 $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
891 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
892 dimensionless buoyancy and wind shear
893 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
894 are functions of the Richardson number.
895
896 \noindent
897 For the detailed equations and derivations of the modified level 2.5 closure scheme,
898 see Helfand and Labraga, 1988.
899
900 \noindent
901 In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
902 in units of $m/sec$, given by:
903 \[
904 {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
905 \]
906 \noindent
907 where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
908 similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
909 (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
910 magnitude of the surface layer wind.
911 \\
912
913 \noindent
914 {\bf 13) \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
915
916 \noindent
917 The tendency of U-Momentum due to turbulence is written:
918 \[
919 {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
920 = {\pp{}{z} }{(K_m \pp{u}{z})}
921 \]
922
923 \noindent
924 The Helfand and Labraga level 2.5 scheme models the turbulent
925 flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
926 equation.
927
928 \noindent
929 {\bf 14) \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
930
931 \noindent
932 The tendency of V-Momentum due to turbulence is written:
933 \[
934 {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
935 = {\pp{}{z} }{(K_m \pp{v}{z})}
936 \]
937
938 \noindent
939 The Helfand and Labraga level 2.5 scheme models the turbulent
940 flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
941 equation.
942 \\
943
944 \noindent
945 {\bf 15) \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
946
947 \noindent
948 The tendency of temperature due to turbulence is written:
949 \[
950 {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
951 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
952 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
953 \]
954
955 \noindent
956 The Helfand and Labraga level 2.5 scheme models the turbulent
957 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
958 equation.
959 \\
960
961 \noindent
962 {\bf 16) \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
963
964 \noindent
965 The tendency of specific humidity due to turbulence is written:
966 \[
967 {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
968 = {\pp{}{z} }{(K_h \pp{q}{z})}
969 \]
970
971 \noindent
972 The Helfand and Labraga level 2.5 scheme models the turbulent
973 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
974 equation.
975 \\
976
977 \noindent
978 {\bf 17) \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
979
980 \noindent
981 \[
982 {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
983 \]
984 where:
985 \[
986 \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
987 \hspace{.4cm} and
988 \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
989 \]
990 and
991 \[
992 \Gamma_s = g \eta \pp{s}{p}
993 \]
994
995 \noindent
996 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
997 precipitation processes, or supersaturation rain.
998 The summation refers to contributions from each cloud type called by RAS.
999 The dry static energy is given
1000 as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1001 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1002 the description of the convective parameterization. The fractional adjustment, or relaxation
1003 parameter, for each cloud type is given as $\alpha$, while
1004 $R$ is the rain re-evaporation adjustment.
1005 \\
1006
1007 \noindent
1008 {\bf 18) \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1009
1010 \noindent
1011 \[
1012 {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1013 \]
1014 where:
1015 \[
1016 \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1017 \hspace{.4cm} and
1018 \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1019 \]
1020 and
1021 \[
1022 \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1023 \]
1024 \noindent
1025 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1026 precipitation processes, or supersaturation rain.
1027 The summation refers to contributions from each cloud type called by RAS.
1028 The dry static energy is given as $s$,
1029 the moist static energy is given as $h$,
1030 the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1031 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1032 the description of the convective parameterization. The fractional adjustment, or relaxation
1033 parameter, for each cloud type is given as $\alpha$, while
1034 $R$ is the rain re-evaporation adjustment.
1035 \\
1036
1037 \noindent
1038 {\bf 19) \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1039
1040 \noindent
1041 The net longwave heating rate is calculated as the vertical divergence of the
1042 net terrestrial radiative fluxes.
1043 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1044 longwave routine.
1045 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1046 For a given cloud fraction,
1047 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1048 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1049 for the upward and downward radiative fluxes.
1050 (see Section \ref{sec:fizhi:radcloud}).
1051 The cloudy-sky flux is then obtained as:
1052
1053 \noindent
1054 \[
1055 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1056 \]
1057
1058 \noindent
1059 Finally, the net longwave heating rate is calculated as the vertical divergence of the
1060 net terrestrial radiative fluxes:
1061 \[
1062 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1063 \]
1064 or
1065 \[
1066 {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1067 \]
1068
1069 \noindent
1070 where $g$ is the accelation due to gravity,
1071 $c_p$ is the heat capacity of air at constant pressure,
1072 and
1073 \[
1074 F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1075 \]
1076 \\
1077
1078
1079 \noindent
1080 {\bf 20) \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1081
1082 \noindent
1083 The net Shortwave heating rate is calculated as the vertical divergence of the
1084 net solar radiative fluxes.
1085 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1086 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1087 both CLMO (maximum overlap cloud fraction) and
1088 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1089 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1090 true time-averaged cloud fractions CLMO
1091 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1092 input at the top of the atmosphere.
1093
1094 \noindent
1095 The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1096 \[
1097 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1098 \]
1099 or
1100 \[
1101 {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1102 \]
1103
1104 \noindent
1105 where $g$ is the accelation due to gravity,
1106 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1107 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1108 \[
1109 F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1110 \]
1111 \\
1112
1113 \noindent
1114 {\bf 21) \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1115
1116 \noindent
1117 For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1118 the vertical integral or total precipitable amount is given by:
1119 \[
1120 {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1121 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1122 \]
1123 \\
1124
1125 \noindent
1126 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1127 time step, scaled to $mm/day$.
1128 \\
1129
1130 \noindent
1131 {\bf 22) \underline {PRECON} Convective Precipition ($mm/day$) }
1132
1133 \noindent
1134 For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1135 the vertical integral or total precipitable amount is given by:
1136 \[
1137 {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1138 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1139 \]
1140 \\
1141
1142 \noindent
1143 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1144 time step, scaled to $mm/day$.
1145 \\
1146
1147 \noindent
1148 {\bf 23) \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1149
1150 \noindent
1151 The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1152 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1153
1154 \[
1155 {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1156 {\rho } {(- K_m \pp{U}{z})}
1157 \]
1158
1159 \noindent
1160 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1161 \\
1162
1163 \noindent
1164 {\bf 24) \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1165
1166 \noindent
1167 The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1168 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1169
1170 \[
1171 {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1172 {\rho } {(- K_m \pp{V}{z})}
1173 \]
1174
1175 \noindent
1176 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1177 \\
1178
1179
1180 \noindent
1181 {\bf 25) \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1182
1183 \noindent
1184 The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1185 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1186
1187 \noindent
1188 \[
1189 {\bf TTFLUX} = c_p {\rho }
1190 P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1191 = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1192 \]
1193
1194 \noindent
1195 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1196 \\
1197
1198
1199 \noindent
1200 {\bf 26) \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1201
1202 \noindent
1203 The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1204 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1205
1206 \noindent
1207 \[
1208 {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1209 {L {\rho }(- K_h \pp{q}{z})}
1210 \]
1211
1212 \noindent
1213 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1214 \\
1215
1216
1217 \noindent
1218 {\bf 27) \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1219
1220 \noindent
1221 The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1222 \[
1223 {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1224 \]
1225
1226 \noindent
1227 where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1228 $z_0$ is the surface roughness.
1229
1230 \noindent
1231 NOTE: CN is not available through model version 5.3, but is available in subsequent
1232 versions.
1233 \\
1234
1235 \noindent
1236 {\bf 28) \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1237
1238 \noindent
1239 The surface wind speed is calculated for the last internal turbulence time step:
1240 \[
1241 {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1242 \]
1243
1244 \noindent
1245 where the subscript $Nrphys$ refers to the lowest model level.
1246 \\
1247
1248 \noindent
1249 {\bf 29) \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1250
1251 \noindent
1252 The air/surface virtual temperature difference measures the stability of the surface layer:
1253 \[
1254 {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1255 \]
1256 \noindent
1257 where
1258 \[
1259 \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1260 and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1261 \]
1262
1263 \noindent
1264 $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1265 $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1266 and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1267 refers to the surface.
1268 \\
1269
1270
1271 \noindent
1272 {\bf 30) \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
1273
1274 \noindent
1275 The ground temperature equation is solved as part of the turbulence package
1276 using a backward implicit time differencing scheme:
1277 \[
1278 {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
1279 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
1280 \]
1281
1282 \noindent
1283 where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
1284 net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
1285 sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
1286 flux, and $C_g$ is the total heat capacity of the ground.
1287 $C_g$ is obtained by solving a heat diffusion equation
1288 for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
1289 \[
1290 C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
1291 { 86400. \over {2 \pi} } } \, \, .
1292 \]
1293 \noindent
1294 Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
1295 {cm \over {^oK}}$,
1296 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
1297 by $2 \pi$ $radians/
1298 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
1299 is a function of the ground wetness, $W$.
1300 \\
1301
1302 \noindent
1303 {\bf 31) \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
1304
1305 \noindent
1306 The surface temperature estimate is made by assuming that the model's lowest
1307 layer is well-mixed, and therefore that $\theta$ is constant in that layer.
1308 The surface temperature is therefore:
1309 \[
1310 {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
1311 \]
1312 \\
1313
1314 \noindent
1315 {\bf 32) \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
1316
1317 \noindent
1318 The change in surface temperature from one turbulence time step to the next, solved
1319 using the Ground Temperature Equation (see diagnostic number 30) is calculated:
1320 \[
1321 {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
1322 \]
1323
1324 \noindent
1325 where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
1326 refers to the value at the previous turbulence time level.
1327 \\
1328
1329 \noindent
1330 {\bf 33) \underline {QG} Ground Specific Humidity ($g/kg$) }
1331
1332 \noindent
1333 The ground specific humidity is obtained by interpolating between the specific
1334 humidity at the lowest model level and the specific humidity of a saturated ground.
1335 The interpolation is performed using the potential evapotranspiration function:
1336 \[
1337 {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1338 \]
1339
1340 \noindent
1341 where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1342 and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
1343 pressure.
1344 \\
1345
1346 \noindent
1347 {\bf 34) \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
1348
1349 \noindent
1350 The surface saturation specific humidity is the saturation specific humidity at
1351 the ground temprature and surface pressure:
1352 \[
1353 {\bf QS} = q^*(T_g,P_s)
1354 \]
1355 \\
1356
1357 \noindent
1358 {\bf 35) \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
1359 radiation subroutine (deg)}
1360 \[
1361 {\bf TGRLW} = T_g(\lambda , \phi ,n)
1362 \]
1363 \noindent
1364 where $T_g$ is the model ground temperature at the current time step $n$.
1365 \\
1366
1367
1368 \noindent
1369 {\bf 36) \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
1370 \[
1371 {\bf ST4} = \sigma T^4
1372 \]
1373 \noindent
1374 where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
1375 \\
1376
1377 \noindent
1378 {\bf 37) \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1379 \[
1380 {\bf OLR} = F_{LW,top}^{NET}
1381 \]
1382 \noindent
1383 where top indicates the top of the first model layer.
1384 In the GCM, $p_{top}$ = 0.0 mb.
1385 \\
1386
1387
1388 \noindent
1389 {\bf 38) \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1390 \[
1391 {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
1392 \]
1393 \noindent
1394 where top indicates the top of the first model layer.
1395 In the GCM, $p_{top}$ = 0.0 mb.
1396 \\
1397
1398 \noindent
1399 {\bf 39) \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
1400
1401 \noindent
1402 \begin{eqnarray*}
1403 {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
1404 & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
1405 \end{eqnarray*}
1406 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1407 $F(clearsky)_{LW}^\uparrow$ is
1408 the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
1409 \\
1410
1411 \noindent
1412 {\bf 40) \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
1413
1414 \noindent
1415 The net longwave heating rate is calculated as the vertical divergence of the
1416 net terrestrial radiative fluxes.
1417 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1418 longwave routine.
1419 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1420 For a given cloud fraction,
1421 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1422 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1423 for the upward and downward radiative fluxes.
1424 (see Section \ref{sec:fizhi:radcloud}).
1425 The cloudy-sky flux is then obtained as:
1426
1427 \noindent
1428 \[
1429 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1430 \]
1431
1432 \noindent
1433 Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
1434 vertical divergence of the
1435 clear-sky longwave radiative flux:
1436 \[
1437 \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
1438 \]
1439 or
1440 \[
1441 {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
1442 \]
1443
1444 \noindent
1445 where $g$ is the accelation due to gravity,
1446 $c_p$ is the heat capacity of air at constant pressure,
1447 and
1448 \[
1449 F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
1450 \]
1451 \\
1452
1453
1454 \noindent
1455 {\bf 41) \underline {TLW} Instantaneous temperature used as input to the Longwave
1456 radiation subroutine (deg)}
1457 \[
1458 {\bf TLW} = T(\lambda , \phi ,level, n)
1459 \]
1460 \noindent
1461 where $T$ is the model temperature at the current time step $n$.
1462 \\
1463
1464
1465 \noindent
1466 {\bf 42) \underline {SHLW} Instantaneous specific humidity used as input to
1467 the Longwave radiation subroutine (kg/kg)}
1468 \[
1469 {\bf SHLW} = q(\lambda , \phi , level , n)
1470 \]
1471 \noindent
1472 where $q$ is the model specific humidity at the current time step $n$.
1473 \\
1474
1475
1476 \noindent
1477 {\bf 43) \underline {OZLW} Instantaneous ozone used as input to
1478 the Longwave radiation subroutine (kg/kg)}
1479 \[
1480 {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
1481 \]
1482 \noindent
1483 where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
1484 mean zonally averaged ozone data set.
1485 \\
1486
1487
1488 \noindent
1489 {\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
1490
1491 \noindent
1492 {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1493 Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
1494 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1495 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1496 \[
1497 {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
1498 \]
1499 \\
1500
1501
1502 {\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
1503
1504 {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
1505 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
1506 Radiation packages.
1507 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1508 \[
1509 {\bf CLDTOT} = F_{RAS} + F_{LS}
1510 \]
1511 \\
1512 where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
1513 time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
1514 \\
1515
1516
1517 \noindent
1518 {\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
1519
1520 \noindent
1521 {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1522 Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
1523 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1524 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1525 \[
1526 {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
1527 \]
1528 \\
1529
1530 \noindent
1531 {\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
1532
1533 \noindent
1534 {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
1535 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
1536 Radiation algorithm. These are
1537 convective and large-scale clouds whose radiative characteristics are not
1538 assumed to be correlated in the vertical.
1539 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1540 \[
1541 {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
1542 \]
1543 \\
1544
1545 \noindent
1546 {\bf 48) \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
1547 \[
1548 {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
1549 \]
1550 \noindent
1551 where $S_0$, is the extra-terrestial solar contant,
1552 $R_a$ is the earth-sun distance in Astronomical Units,
1553 and $cos \phi_z$ is the cosine of the zenith angle.
1554 It should be noted that {\bf RADSWT}, as well as
1555 {\bf OSR} and {\bf OSRCLR},
1556 are calculated at the top of the atmosphere (p=0 mb). However, the
1557 {\bf OLR} and {\bf OLRCLR} diagnostics are currently
1558 calculated at $p= p_{top}$ (0.0 mb for the GCM).
1559 \\
1560
1561 \noindent
1562 {\bf 49) \underline {EVAP} Surface Evaporation ($mm/day$) }
1563
1564 \noindent
1565 The surface evaporation is a function of the gradient of moisture, the potential
1566 evapotranspiration fraction and the eddy exchange coefficient:
1567 \[
1568 {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
1569 \]
1570 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1571 the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
1572 turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
1573 $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
1574 number 34) and at the bottom model level, respectively.
1575 \\
1576
1577 \noindent
1578 {\bf 50) \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
1579
1580 \noindent
1581 {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
1582 and Analysis forcing.
1583 \[
1584 {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1585 \]
1586 \\
1587
1588 \noindent
1589 {\bf 51) \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
1590
1591 \noindent
1592 {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
1593 and Analysis forcing.
1594 \[
1595 {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1596 \]
1597 \\
1598
1599 \noindent
1600 {\bf 52) \underline {DTDT} Total Temperature Tendency ($deg/day$) }
1601
1602 \noindent
1603 {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
1604 and Analysis forcing.
1605 \begin{eqnarray*}
1606 {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1607 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1608 \end{eqnarray*}
1609 \\
1610
1611 \noindent
1612 {\bf 53) \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
1613
1614 \noindent
1615 {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
1616 and Analysis forcing.
1617 \[
1618 {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
1619 + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
1620 \]
1621 \\
1622
1623 \noindent
1624 {\bf 54) \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
1625
1626 \noindent
1627 The surface stress velocity, or the friction velocity, is the wind speed at
1628 the surface layer top impeded by the surface drag:
1629 \[
1630 {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
1631 C_u = {k \over {\psi_m} }
1632 \]
1633
1634 \noindent
1635 $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
1636 number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
1637
1638 \noindent
1639 {\bf 55) \underline {Z0} Surface Roughness Length ($m$) }
1640
1641 \noindent
1642 Over the land surface, the surface roughness length is interpolated to the local
1643 time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
1644 the roughness length is a function of the surface-stress velocity, $u_*$.
1645 \[
1646 {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
1647 \]
1648
1649 \noindent
1650 where the constants are chosen to interpolate between the reciprocal relation of
1651 Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
1652 for moderate to large winds.
1653 \\
1654
1655 \noindent
1656 {\bf 56) \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
1657
1658 \noindent
1659 The fraction of time when turbulence is present is defined as the fraction of
1660 time when the turbulent kinetic energy exceeds some minimum value, defined here
1661 to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
1662 incremented. The fraction over the averaging interval is reported.
1663 \\
1664
1665 \noindent
1666 {\bf 57) \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
1667
1668 \noindent
1669 The depth of the PBL is defined by the turbulence parameterization to be the
1670 depth at which the turbulent kinetic energy reduces to ten percent of its surface
1671 value.
1672
1673 \[
1674 {\bf PBL} = P_{PBL} - P_{surface}
1675 \]
1676
1677 \noindent
1678 where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
1679 reaches one tenth of its surface value, and $P_s$ is the surface pressure.
1680 \\
1681
1682 \noindent
1683 {\bf 58) \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
1684
1685 \noindent
1686 The net Shortwave heating rate is calculated as the vertical divergence of the
1687 net solar radiative fluxes.
1688 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1689 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1690 both CLMO (maximum overlap cloud fraction) and
1691 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1692 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1693 true time-averaged cloud fractions CLMO
1694 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1695 input at the top of the atmosphere.
1696
1697 \noindent
1698 The heating rate due to Shortwave Radiation under clear skies is defined as:
1699 \[
1700 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
1701 \]
1702 or
1703 \[
1704 {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
1705 \]
1706
1707 \noindent
1708 where $g$ is the accelation due to gravity,
1709 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1710 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1711 \[
1712 F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
1713 \]
1714 \\
1715
1716 \noindent
1717 {\bf 59) \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
1718 \[
1719 {\bf OSR} = F_{SW,top}^{NET}
1720 \]
1721 \noindent
1722 where top indicates the top of the first model layer used in the shortwave radiation
1723 routine.
1724 In the GCM, $p_{SW_{top}}$ = 0 mb.
1725 \\
1726
1727 \noindent
1728 {\bf 60) \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
1729 \[
1730 {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
1731 \]
1732 \noindent
1733 where top indicates the top of the first model layer used in the shortwave radiation
1734 routine.
1735 In the GCM, $p_{SW_{top}}$ = 0 mb.
1736 \\
1737
1738
1739 \noindent
1740 {\bf 61) \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
1741
1742 \noindent
1743 The amount of cloud mass moved per RAS timestep from all convective clouds is written:
1744 \[
1745 {\bf CLDMAS} = \eta m_B
1746 \]
1747 where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
1748 the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
1749 description of the convective parameterization.
1750 \\
1751
1752
1753
1754 \noindent
1755 {\bf 62) \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
1756
1757 \noindent
1758 The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
1759 the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
1760 Zonal U-Wind which is archived on the Prognostic Output data stream.
1761 \[
1762 {\bf UAVE} = u(\lambda, \phi, level , t)
1763 \]
1764 \\
1765 Note, {\bf UAVE} is computed and stored on the staggered C-grid.
1766 \\
1767
1768 \noindent
1769 {\bf 63) \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
1770
1771 \noindent
1772 The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
1773 the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
1774 Meridional V-Wind which is archived on the Prognostic Output data stream.
1775 \[
1776 {\bf VAVE} = v(\lambda, \phi, level , t)
1777 \]
1778 \\
1779 Note, {\bf VAVE} is computed and stored on the staggered C-grid.
1780 \\
1781
1782 \noindent
1783 {\bf 64) \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
1784
1785 \noindent
1786 The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
1787 the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
1788 Temperature which is archived on the Prognostic Output data stream.
1789 \[
1790 {\bf TAVE} = T(\lambda, \phi, level , t)
1791 \]
1792 \\
1793
1794 \noindent
1795 {\bf 65) \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
1796
1797 \noindent
1798 The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
1799 the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
1800 Specific Humidity which is archived on the Prognostic Output data stream.
1801 \[
1802 {\bf QAVE} = q(\lambda, \phi, level , t)
1803 \]
1804 \\
1805
1806 \noindent
1807 {\bf 66) \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
1808
1809 \noindent
1810 The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
1811 the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
1812 Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
1813 \begin{eqnarray*}
1814 {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
1815 & = & p_s(\lambda, \phi, level , t) - p_T
1816 \end{eqnarray*}
1817 \\
1818
1819
1820 \noindent
1821 {\bf 67) \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
1822
1823 \noindent
1824 The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
1825 produced by the GCM Turbulence parameterization over
1826 the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
1827 Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
1828 \[
1829 {\bf QQAVE} = qq(\lambda, \phi, level , t)
1830 \]
1831 \\
1832 Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
1833 \\
1834
1835 \noindent
1836 {\bf 68) \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
1837
1838 \noindent
1839 \begin{eqnarray*}
1840 {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
1841 & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
1842 \end{eqnarray*}
1843 \noindent
1844 \\
1845 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1846 $F(clearsky){SW}^\downarrow$ is
1847 the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
1848 the upward clearsky Shortwave flux.
1849 \\
1850
1851 \noindent
1852 {\bf 69) \underline {SDIAG1} User-Defined Surface Diagnostic-1 }
1853
1854 \noindent
1855 The GCM provides Users with a built-in mechanism for archiving user-defined
1856 diagnostics. The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated
1857 diagnostic counters and pointers located in COMMON /DIAGP/,
1858 must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}).
1859 A convenient method for incorporating all necessary COMMON files is to
1860 include the GCM {\em vstate.com} file in the routine which employs the
1861 user-defined diagnostics.
1862
1863 \noindent
1864 In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill
1865 the QDIAG array with the desired quantity within the User's
1866 application program or within modified GCM subroutines, as well as increment
1867 the diagnostic counter at the time when the diagnostic is updated.
1868 The QDIAG location index for {\bf SDIAG1} and its corresponding counter is
1869 automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the
1870 diagnostic has been enabled.
1871 The syntax for its use is given by
1872 \begin{verbatim}
1873 do j=1,jm
1874 do i=1,im
1875 qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ...
1876 enddo
1877 enddo
1878
1879 NSDIAG1 = NSDIAG1 + 1
1880 \end{verbatim}
1881 The diagnostics defined in this manner will automatically be archived by the output routines.
1882 \\
1883
1884 \noindent
1885 {\bf 70) \underline {SDIAG2} User-Defined Surface Diagnostic-2 }
1886
1887 \noindent
1888 The GCM provides Users with a built-in mechanism for archiving user-defined
1889 diagnostics. For a complete description refer to Diagnostic \#84.
1890 The syntax for using the surface SDIAG2 diagnostic is given by
1891 \begin{verbatim}
1892 do j=1,jm
1893 do i=1,im
1894 qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ...
1895 enddo
1896 enddo
1897
1898 NSDIAG2 = NSDIAG2 + 1
1899 \end{verbatim}
1900 The diagnostics defined in this manner will automatically be archived by the output routines.
1901 \\
1902
1903 \noindent
1904 {\bf 71) \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 }
1905
1906 \noindent
1907 The GCM provides Users with a built-in mechanism for archiving user-defined
1908 diagnostics. For a complete description refer to Diagnostic \#84.
1909 The syntax for using the upper-air UDIAG1 diagnostic is given by
1910 \begin{verbatim}
1911 do L=1,Nrphys
1912 do j=1,jm
1913 do i=1,im
1914 qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ...
1915 enddo
1916 enddo
1917 enddo
1918
1919 NUDIAG1 = NUDIAG1 + 1
1920 \end{verbatim}
1921 The diagnostics defined in this manner will automatically be archived by the
1922 output programs.
1923 \\
1924
1925 \noindent
1926 {\bf 72) \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 }
1927
1928 \noindent
1929 The GCM provides Users with a built-in mechanism for archiving user-defined
1930 diagnostics. For a complete description refer to Diagnostic \#84.
1931 The syntax for using the upper-air UDIAG2 diagnostic is given by
1932 \begin{verbatim}
1933 do L=1,Nrphys
1934 do j=1,jm
1935 do i=1,im
1936 qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ...
1937 enddo
1938 enddo
1939 enddo
1940
1941 NUDIAG2 = NUDIAG2 + 1
1942 \end{verbatim}
1943 The diagnostics defined in this manner will automatically be archived by the
1944 output programs.
1945 \\
1946
1947
1948 \noindent
1949 {\bf 73) \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
1950
1951 \noindent
1952 {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
1953 and the Analysis forcing.
1954 \[
1955 {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1956 \]
1957 \\
1958
1959 \noindent
1960 {\bf 74) \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
1961
1962 \noindent
1963 {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
1964 and the Analysis forcing.
1965 \[
1966 {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1967 \]
1968 \\
1969
1970 \noindent
1971 {\bf 75) \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
1972
1973 \noindent
1974 {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
1975 and the Analysis forcing.
1976 \begin{eqnarray*}
1977 {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1978 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1979 \end{eqnarray*}
1980 \\
1981 If we define the time-tendency of Temperature due to Diabatic processes as
1982 \begin{eqnarray*}
1983 \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1984 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
1985 \end{eqnarray*}
1986 then, since there are no surface pressure changes due to Diabatic processes, we may write
1987 \[
1988 \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
1989 \]
1990 where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
1991 \[
1992 {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
1993 \]
1994 \\
1995
1996 \noindent
1997 {\bf 76) \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
1998
1999 \noindent
2000 {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2001 and the Analysis forcing.
2002 \[
2003 {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2004 \]
2005 If we define the time-tendency of Specific Humidity due to Diabatic processes as
2006 \[
2007 \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2008 \]
2009 then, since there are no surface pressure changes due to Diabatic processes, we may write
2010 \[
2011 \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2012 \]
2013 Thus, {\bf DIABQ} may be written as
2014 \[
2015 {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2016 \]
2017 \\
2018
2019 \noindent
2020 {\bf 77) \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2021
2022 \noindent
2023 The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2024 $u q$ over the depth of the atmosphere at each model timestep,
2025 and dividing by the total mass of the column.
2026 \[
2027 {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2028 \]
2029 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2030 \[
2031 {\bf VINTUQ} = { \int_0^1 u q dp }
2032 \]
2033 \\
2034
2035
2036 \noindent
2037 {\bf 78) \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2038
2039 \noindent
2040 The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2041 $v q$ over the depth of the atmosphere at each model timestep,
2042 and dividing by the total mass of the column.
2043 \[
2044 {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2045 \]
2046 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2047 \[
2048 {\bf VINTVQ} = { \int_0^1 v q dp }
2049 \]
2050 \\
2051
2052
2053 \noindent
2054 {\bf 79) \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2055
2056 \noindent
2057 The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2058 $u T$ over the depth of the atmosphere at each model timestep,
2059 and dividing by the total mass of the column.
2060 \[
2061 {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2062 \]
2063 Or,
2064 \[
2065 {\bf VINTUT} = { \int_0^1 u T dp }
2066 \]
2067 \\
2068
2069 \noindent
2070 {\bf 80) \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2071
2072 \noindent
2073 The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2074 $v T$ over the depth of the atmosphere at each model timestep,
2075 and dividing by the total mass of the column.
2076 \[
2077 {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2078 \]
2079 Using $\rho \delta z = -{\delta p \over g} $, we have
2080 \[
2081 {\bf VINTVT} = { \int_0^1 v T dp }
2082 \]
2083 \\
2084
2085 \noindent
2086 {\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2087
2088 If we define the
2089 time-averaged random and maximum overlapped cloudiness as CLRO and
2090 CLMO respectively, then the probability of clear sky associated
2091 with random overlapped clouds at any level is (1-CLRO) while the probability of
2092 clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2093 The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2094 the total cloud fraction at each level may be obtained by
2095 1-(1-CLRO)*(1-CLMO).
2096
2097 At any given level, we may define the clear line-of-site probability by
2098 appropriately accounting for the maximum and random overlap
2099 cloudiness. The clear line-of-site probability is defined to be
2100 equal to the product of the clear line-of-site probabilities
2101 associated with random and maximum overlap cloudiness. The clear
2102 line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2103 from the current pressure $p$
2104 to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2105 is simply 1.0 minus the largest maximum overlap cloud value along the
2106 line-of-site, ie.
2107
2108 $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2109
2110 Thus, even in the time-averaged sense it is assumed that the
2111 maximum overlap clouds are correlated in the vertical. The clear
2112 line-of-site probability associated with random overlap clouds is
2113 defined to be the product of the clear sky probabilities at each
2114 level along the line-of-site, ie.
2115
2116 $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2117
2118 The total cloud fraction at a given level associated with a line-
2119 of-site calculation is given by
2120
2121 $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2122 \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2123
2124
2125 \noindent
2126 The 2-dimensional net cloud fraction as seen from the top of the
2127 atmosphere is given by
2128 \[
2129 {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2130 \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2131 \]
2132 \\
2133 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2134
2135
2136 \noindent
2137 {\bf 82) \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2138
2139 \noindent
2140 The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2141 given by:
2142 \begin{eqnarray*}
2143 {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2144 & = & {\pi \over g} \int_0^1 q dp
2145 \end{eqnarray*}
2146 where we have used the hydrostatic relation
2147 $\rho \delta z = -{\delta p \over g} $.
2148 \\
2149
2150
2151 \noindent
2152 {\bf 83) \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2153
2154 \noindent
2155 The u-wind at the 2-meter depth is determined from the similarity theory:
2156 \[
2157 {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2158 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2159 \]
2160
2161 \noindent
2162 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2163 $sl$ refers to the height of the top of the surface layer. If the roughness height
2164 is above two meters, ${\bf U2M}$ is undefined.
2165 \\
2166
2167 \noindent
2168 {\bf 84) \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2169
2170 \noindent
2171 The v-wind at the 2-meter depth is a determined from the similarity theory:
2172 \[
2173 {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2174 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2175 \]
2176
2177 \noindent
2178 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2179 $sl$ refers to the height of the top of the surface layer. If the roughness height
2180 is above two meters, ${\bf V2M}$ is undefined.
2181 \\
2182
2183 \noindent
2184 {\bf 85) \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2185
2186 \noindent
2187 The temperature at the 2-meter depth is a determined from the similarity theory:
2188 \[
2189 {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2190 P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2191 (\theta_{sl} - \theta_{surf}))
2192 \]
2193 where:
2194 \[
2195 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2196 \]
2197
2198 \noindent
2199 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2200 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2201 $sl$ refers to the height of the top of the surface layer. If the roughness height
2202 is above two meters, ${\bf T2M}$ is undefined.
2203 \\
2204
2205 \noindent
2206 {\bf 86) \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2207
2208 \noindent
2209 The specific humidity at the 2-meter depth is determined from the similarity theory:
2210 \[
2211 {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2212 P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2213 (q_{sl} - q_{surf}))
2214 \]
2215 where:
2216 \[
2217 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2218 \]
2219
2220 \noindent
2221 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2222 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2223 $sl$ refers to the height of the top of the surface layer. If the roughness height
2224 is above two meters, ${\bf Q2M}$ is undefined.
2225 \\
2226
2227 \noindent
2228 {\bf 87) \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2229
2230 \noindent
2231 The u-wind at the 10-meter depth is an interpolation between the surface wind
2232 and the model lowest level wind using the ratio of the non-dimensional wind shear
2233 at the two levels:
2234 \[
2235 {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2236 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2237 \]
2238
2239 \noindent
2240 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2241 $sl$ refers to the height of the top of the surface layer.
2242 \\
2243
2244 \noindent
2245 {\bf 88) \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2246
2247 \noindent
2248 The v-wind at the 10-meter depth is an interpolation between the surface wind
2249 and the model lowest level wind using the ratio of the non-dimensional wind shear
2250 at the two levels:
2251 \[
2252 {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2253 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2254 \]
2255
2256 \noindent
2257 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2258 $sl$ refers to the height of the top of the surface layer.
2259 \\
2260
2261 \noindent
2262 {\bf 89) \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2263
2264 \noindent
2265 The temperature at the 10-meter depth is an interpolation between the surface potential
2266 temperature and the model lowest level potential temperature using the ratio of the
2267 non-dimensional temperature gradient at the two levels:
2268 \[
2269 {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2270 P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2271 (\theta_{sl} - \theta_{surf}))
2272 \]
2273 where:
2274 \[
2275 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2276 \]
2277
2278 \noindent
2279 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2280 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2281 $sl$ refers to the height of the top of the surface layer.
2282 \\
2283
2284 \noindent
2285 {\bf 90) \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2286
2287 \noindent
2288 The specific humidity at the 10-meter depth is an interpolation between the surface specific
2289 humidity and the model lowest level specific humidity using the ratio of the
2290 non-dimensional temperature gradient at the two levels:
2291 \[
2292 {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2293 P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2294 (q_{sl} - q_{surf}))
2295 \]
2296 where:
2297 \[
2298 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2299 \]
2300
2301 \noindent
2302 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2303 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2304 $sl$ refers to the height of the top of the surface layer.
2305 \\
2306
2307 \noindent
2308 {\bf 91) \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2309
2310 The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2311 \[
2312 {\bf DTRAIN} = \eta_{r_D}m_B
2313 \]
2314 \noindent
2315 where $r_D$ is the detrainment level,
2316 $m_B$ is the cloud base mass flux, and $\eta$
2317 is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2318 \\
2319
2320 \noindent
2321 {\bf 92) \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2322
2323 \noindent
2324 Due to computational errors associated with the numerical scheme used for
2325 the advection of moisture, negative values of specific humidity may be generated. The
2326 specific humidity is checked for negative values after every dynamics timestep. If negative
2327 values have been produced, a filling algorithm is invoked which redistributes moisture from
2328 below. Diagnostic {\bf QFILL} is equal to the net filling needed
2329 to eliminate negative specific humidity, scaled to a per-day rate:
2330 \[
2331 {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2332 \]
2333 where
2334 \[
2335 q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2336 \]
2337
2338 \subsection{Dos and Donts}
2339
2340 \subsection{Diagnostics Reference}
2341

  ViewVC Help
Powered by ViewVC 1.1.22