/[MITgcm]/manual/s_phys_pkgs/diagnostics.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/diagnostics.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (show annotations) (download) (as text)
Tue Oct 12 18:16:03 2004 UTC (20 years, 9 months ago) by edhill
Branch: MAIN
Changes since 1.1: +5 -1 lines
File MIME type: application/x-tex
 o add HTML reference tags so that URLs are more permanent and legible
 o update MNC

1 \section{Diagnostics--A Flexible Infrastructure}
2 \label{sec:pkg:diagnostics}
3 \begin{rawhtml}
4 <!-- CMIREDIR:package_diagnostics: -->
5 \end{rawhtml}
6
7 \subsection{Introduction}
8
9 This section of the documentation describes the Diagnostics Utilities available within the GCM.
10 In addition to
11 a description on how to set and extract diagnostic quantities, this document also provides a
12 comprehensive list of all available diagnostic quantities and a short description of how they are
13 computed. It should be noted that this document is not intended to be a complete documentation
14 of the various packages used in the GCM, and the reader should
15 refer to original publications for further insight.
16
17
18 \subsection{Equations}
19 Not relevant.
20
21 \subsection{Key Subroutines and Parameters}
22 \label{sec:diagnostics:diagover}
23
24 A large selection of model diagnostics is available in the GCM. At the time of
25 this writing there are 92 different diagnostic quantities which can be enabled for an
26 experiment. As a matter of philosophy, no diagnostic is enabled as default, thus each user must
27 specify the exact diagnostic information required for an experiment. This is accomplished by
28 enabling the specific diagnostic of interest cataloged in the
29 Diagnostic Menu (see Section \ref{sec:diagnostics:menu}).
30 The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within the
31 GCM. Diagnostics are internally referred to by their associated number in the Diagnostic
32 Menu. Once a diagnostic is enabled, the GCM will continually increment an array
33 specifically allocated for that diagnostic whenever the associated process for the diagnostic is
34 computed. Separate arrays are used both for the diagnostic quantity and its diagnostic counter
35 which records how many times each diagnostic quantity has been computed. In addition
36 special diagnostics, called
37 ``Counter Diagnostics'', records the frequency of diagnostic updates separately for each
38 model grid location.
39
40 The diagnostics are computed at various times and places within the GCM.
41 Some diagnostics are computed on the geophysical A-grid (such as
42 those within the Physics routines), while others are computed on the C-grid
43 (those computed during the dynamics time-stepping). Some diagnostics are
44 scalars, while others are vectors. Each of these possibilities requires
45 separate tasks for A-grid to C-grid transformations and coordinate transformations. Due
46 to this complexity, and since the specific diagnostics enabled are User determined at the
47 time of the run,
48 a diagnostic parameter has been developed and implemented into the GCM, defined as GDIAG,
49 which contains information concerning various grid attributes of each diagnostic. The GDIAG
50 array is internally defined as a character*8 variable, and is equivalenced to
51 a character*1 "parse" array in output in order to extract the grid-attribute information.
52 The GDIAG array is described in Table \ref{tab:diagnostics:gdiag.tabl}.
53
54 \begin{table}
55 \caption{Diagnostic Parsing Array}
56 \label{tab:diagnostics:gdiag.tabl}
57 \begin{center}
58 \begin{tabular}{ |c|c|l| }
59 \hline
60 \multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\
61 \hline
62 \hline
63 Array & Value & Description \\
64 \hline
65 parse(1) & $\rightarrow$ S & Scalar Diagnostic \\
66 & $\rightarrow$ U & U-vector component Diagnostic \\
67 & $\rightarrow$ V & V-vector component Diagnostic \\ \hline
68 parse(2) & $\rightarrow$ U & C-Grid U-Point \\
69 & $\rightarrow$ V & C-Grid V-Point \\
70 & $\rightarrow$ M & C-Grid Mass Point \\
71 & $\rightarrow$ Z & C-Grid Vorticity Point \\ \hline
72 parse(3) & $\rightarrow$ R & Computed on the Rotated Grid \\
73 & $\rightarrow$ G & Computed on the Geophysical Grid \\ \hline
74 parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline
75 parse(5) & $\rightarrow$ C & Counter Diagnostic \\
76 & $\rightarrow$ D & Disabled Diagnostic for output \\ \hline
77 parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\
78 & & vector or counter component mate \\ \hline
79 \end{tabular}
80 \addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array}
81 \end{center}
82 \end{table}
83
84 As an example, consider a diagnostic whose associated GDIAG parameter is equal
85 to ``UUR 002''. From GDIAG we can determine that this diagnostic is a
86 U-vector component located at the C-grid U-point within the Rotated framework.
87 Its corresponding V-component diagnostic is located in Diagnostic \# 002.
88
89 In this way, each Diagnostic in the model has its attributes (ie. vector or scalar,
90 rotated or geophysical, A-Grid or C-grid, etc.) defined internally. The Output routines
91 use this information in order to determine
92 what type of rotations and/or transformations need to be performed. Thus, all Diagnostic
93 interpolations are done at the time of output rather than during each model dynamic step.
94 In this way the User now has more flexibility
95 in determining the type of gridded data which is output.
96
97 There are several utilities within the GCM available to users to enable, disable,
98 clear, and retrieve model diagnostics, and may be called from any user-supplied application
99 and/or output routine. The available utilities and the CALL sequences are listed below.
100
101
102 {\bf SETDIAG}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning that
103 space is allocated for the diagnostic and the
104 model routines will increment the diagnostic value during execution. This routine is useful when
105 called from either user application routines or user output routines, and is the underlying interface
106 between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic
107 number from the menu, and its calling sequence is given by:
108
109 \begin{tabbing}
110 XXXXXXXXX\=XXXXXX\= \kill
111 \> CALL SETDIAG (NUM) \\
112 \\
113 where \> NUM \>= Diagnostic number from menu \\
114 \end{tabbing}
115
116
117 {\bf GETDIAG}: This subroutine retrieves the value of a model diagnostic. This routine is
118 particulary useful when called from a user output routine, although it can be called from an
119 application routine as well. This routine returns the time-averaged value of the diagnostic by
120 dividing the current accumulated diagnostic value by its corresponding counter. This routine does
121 not change the value of the diagnostic itself, that is, it does not replace the diagnostic with its
122 time-average. The calling sequence for this routine is givin by:
123
124 \begin{tabbing}
125 XXXXXXXXX\=XXXXXX\= \kill
126 \> CALL GETDIAG (LEV,NUM,QTMP,UNDEF) \\
127 \\
128 where \> LEV \>= Model Level at which the diagnostic is desired \\
129 \> NUM \>= Diagnostic number from menu \\
130 \> QTMP \>= Time-Averaged Diagnostic Output \\
131 \> UNDEF \>= Fill value to be used when diagnostic is undefined \\
132 \end{tabbing}
133
134 {\bf CLRDIAG}: This subroutine initializes the values of model diagnostics to zero, and is
135 particularly useful when called from user output routines to re-initialize diagnostics during the
136 run. The calling sequence is:
137
138
139 \begin{tabbing}
140 XXXXXXXXX\=XXXXXX\= \kill
141 \> CALL CLRDIAG (NUM) \\
142 \\
143 where \> NUM \>= Diagnostic number from menu \\
144 \end{tabbing}
145
146
147
148 {\bf ZAPDIAG}: This entry into subroutine SETDIAG disables model diagnostics, meaning that the
149 diagnostic is no longer available to the user. The memory previously allocated to the diagnostic
150 is released when ZAPDIAG is invoked. The calling sequence is given by:
151
152
153 \begin{tabbing}
154 XXXXXXXXX\=XXXXXX\= \kill
155 \> CALL ZAPDIAG (NUM) \\
156 \\
157 where \> NUM \>= Diagnostic number from menu \\
158 \end{tabbing}
159
160 {\bf DIAGSIZE}: We end this section with a discussion on the manner in which computer memory
161 is allocated for diagnostics.
162 All GCM diagnostic quantities are stored in the single
163 diagnostic array QDIAG which is located in the DIAG COMMON, having the form:
164
165 \begin{tabbing}
166 XXXXXXXXX\=XXXXXX\= \kill
167 \> COMMON /DIAG/ NDIAG\_MAX,QDIAG(IM,JM,1) \\
168 \\
169 \end{tabbing}
170
171 where NDIAG\_MAX is an Integer variable which should be
172 set equal to the number of enabled diagnostics, and QDIAG is a three-dimensional
173 array. The first two-dimensions of QDIAG correspond to the horizontal dimension
174 of a given diagnostic, while the third dimension of QDIAG is used to identify
175 specific diagnostic types.
176 In order to minimize the maximum memory requirement used by the model,
177 the default GCM executable is compiled with room for only one horizontal
178 diagnostic array, as shown in the above example.
179 In order for the User to enable more than 1 two-dimensional diagnostic,
180 the size of the DIAG COMMON must be expanded to accomodate the desired diagnostics.
181 This can be accomplished by manually changing the parameter numdiags in the
182 file \filelink{FORWARD\_STEP}{pkg-diagnostics-diagnostics_SIZE.h}, or by allowing the
183 shell script (???????) to make this
184 change based on the choice of diagnostic output made in the namelist.
185
186 \newpage
187
188 \subsubsection{GCM Diagnostic Menu}
189 \label{sec:diagnostics:menu}
190
191 \begin{tabular}{lllll}
192 \hline\hline
193 N & NAME & UNITS & LEVELS & DESCRIPTION \\
194 \hline
195
196 &\\
197 1 & UFLUX & $Newton/m^2$ & 1
198 &\begin{minipage}[t]{3in}
199 {Surface U-Wind Stress on the atmosphere}
200 \end{minipage}\\
201 2 & VFLUX & $Newton/m^2$ & 1
202 &\begin{minipage}[t]{3in}
203 {Surface V-Wind Stress on the atmosphere}
204 \end{minipage}\\
205 3 & HFLUX & $Watts/m^2$ & 1
206 &\begin{minipage}[t]{3in}
207 {Surface Flux of Sensible Heat}
208 \end{minipage}\\
209 4 & EFLUX & $Watts/m^2$ & 1
210 &\begin{minipage}[t]{3in}
211 {Surface Flux of Latent Heat}
212 \end{minipage}\\
213 5 & QICE & $Watts/m^2$ & 1
214 &\begin{minipage}[t]{3in}
215 {Heat Conduction through Sea-Ice}
216 \end{minipage}\\
217 6 & RADLWG & $Watts/m^2$ & 1
218 &\begin{minipage}[t]{3in}
219 {Net upward LW flux at the ground}
220 \end{minipage}\\
221 7 & RADSWG & $Watts/m^2$ & 1
222 &\begin{minipage}[t]{3in}
223 {Net downward SW flux at the ground}
224 \end{minipage}\\
225 8 & RI & $dimensionless$ & Nrphys
226 &\begin{minipage}[t]{3in}
227 {Richardson Number}
228 \end{minipage}\\
229 9 & CT & $dimensionless$ & 1
230 &\begin{minipage}[t]{3in}
231 {Surface Drag coefficient for T and Q}
232 \end{minipage}\\
233 10 & CU & $dimensionless$ & 1
234 &\begin{minipage}[t]{3in}
235 {Surface Drag coefficient for U and V}
236 \end{minipage}\\
237 11 & ET & $m^2/sec$ & Nrphys
238 &\begin{minipage}[t]{3in}
239 {Diffusivity coefficient for T and Q}
240 \end{minipage}\\
241 12 & EU & $m^2/sec$ & Nrphys
242 &\begin{minipage}[t]{3in}
243 {Diffusivity coefficient for U and V}
244 \end{minipage}\\
245 13 & TURBU & $m/sec/day$ & Nrphys
246 &\begin{minipage}[t]{3in}
247 {U-Momentum Changes due to Turbulence}
248 \end{minipage}\\
249 14 & TURBV & $m/sec/day$ & Nrphys
250 &\begin{minipage}[t]{3in}
251 {V-Momentum Changes due to Turbulence}
252 \end{minipage}\\
253 15 & TURBT & $deg/day$ & Nrphys
254 &\begin{minipage}[t]{3in}
255 {Temperature Changes due to Turbulence}
256 \end{minipage}\\
257 16 & TURBQ & $g/kg/day$ & Nrphys
258 &\begin{minipage}[t]{3in}
259 {Specific Humidity Changes due to Turbulence}
260 \end{minipage}\\
261 17 & MOISTT & $deg/day$ & Nrphys
262 &\begin{minipage}[t]{3in}
263 {Temperature Changes due to Moist Processes}
264 \end{minipage}\\
265 18 & MOISTQ & $g/kg/day$ & Nrphys
266 &\begin{minipage}[t]{3in}
267 {Specific Humidity Changes due to Moist Processes}
268 \end{minipage}\\
269 19 & RADLW & $deg/day$ & Nrphys
270 &\begin{minipage}[t]{3in}
271 {Net Longwave heating rate for each level}
272 \end{minipage}\\
273 20 & RADSW & $deg/day$ & Nrphys
274 &\begin{minipage}[t]{3in}
275 {Net Shortwave heating rate for each level}
276 \end{minipage}\\
277 21 & PREACC & $mm/day$ & 1
278 &\begin{minipage}[t]{3in}
279 {Total Precipitation}
280 \end{minipage}\\
281 22 & PRECON & $mm/day$ & 1
282 &\begin{minipage}[t]{3in}
283 {Convective Precipitation}
284 \end{minipage}\\
285 23 & TUFLUX & $Newton/m^2$ & Nrphys
286 &\begin{minipage}[t]{3in}
287 {Turbulent Flux of U-Momentum}
288 \end{minipage}\\
289 24 & TVFLUX & $Newton/m^2$ & Nrphys
290 &\begin{minipage}[t]{3in}
291 {Turbulent Flux of V-Momentum}
292 \end{minipage}\\
293 25 & TTFLUX & $Watts/m^2$ & Nrphys
294 &\begin{minipage}[t]{3in}
295 {Turbulent Flux of Sensible Heat}
296 \end{minipage}\\
297 26 & TQFLUX & $Watts/m^2$ & Nrphys
298 &\begin{minipage}[t]{3in}
299 {Turbulent Flux of Latent Heat}
300 \end{minipage}\\
301 27 & CN & $dimensionless$ & 1
302 &\begin{minipage}[t]{3in}
303 {Neutral Drag Coefficient}
304 \end{minipage}\\
305 28 & WINDS & $m/sec$ & 1
306 &\begin{minipage}[t]{3in}
307 {Surface Wind Speed}
308 \end{minipage}\\
309 29 & DTSRF & $deg$ & 1
310 &\begin{minipage}[t]{3in}
311 {Air/Surface virtual temperature difference}
312 \end{minipage}\\
313 30 & TG & $deg$ & 1
314 &\begin{minipage}[t]{3in}
315 {Ground temperature}
316 \end{minipage}\\
317 31 & TS & $deg$ & 1
318 &\begin{minipage}[t]{3in}
319 {Surface air temperature (Adiabatic from lowest model layer)}
320 \end{minipage}\\
321 32 & DTG & $deg$ & 1
322 &\begin{minipage}[t]{3in}
323 {Ground temperature adjustment}
324 \end{minipage}\\
325
326 \end{tabular}
327
328 \newpage
329 \vspace*{\fill}
330 \begin{tabular}{lllll}
331 \hline\hline
332 N & NAME & UNITS & LEVELS & DESCRIPTION \\
333 \hline
334
335 &\\
336 33 & QG & $g/kg$ & 1
337 &\begin{minipage}[t]{3in}
338 {Ground specific humidity}
339 \end{minipage}\\
340 34 & QS & $g/kg$ & 1
341 &\begin{minipage}[t]{3in}
342 {Saturation surface specific humidity}
343 \end{minipage}\\
344
345 &\\
346 35 & TGRLW & $deg$ & 1
347 &\begin{minipage}[t]{3in}
348 {Instantaneous ground temperature used as input to the
349 Longwave radiation subroutine}
350 \end{minipage}\\
351 36 & ST4 & $Watts/m^2$ & 1
352 &\begin{minipage}[t]{3in}
353 {Upward Longwave flux at the ground ($\sigma T^4$)}
354 \end{minipage}\\
355 37 & OLR & $Watts/m^2$ & 1
356 &\begin{minipage}[t]{3in}
357 {Net upward Longwave flux at the top of the model}
358 \end{minipage}\\
359 38 & OLRCLR & $Watts/m^2$ & 1
360 &\begin{minipage}[t]{3in}
361 {Net upward clearsky Longwave flux at the top of the model}
362 \end{minipage}\\
363 39 & LWGCLR & $Watts/m^2$ & 1
364 &\begin{minipage}[t]{3in}
365 {Net upward clearsky Longwave flux at the ground}
366 \end{minipage}\\
367 40 & LWCLR & $deg/day$ & Nrphys
368 &\begin{minipage}[t]{3in}
369 {Net clearsky Longwave heating rate for each level}
370 \end{minipage}\\
371 41 & TLW & $deg$ & Nrphys
372 &\begin{minipage}[t]{3in}
373 {Instantaneous temperature used as input to the Longwave radiation
374 subroutine}
375 \end{minipage}\\
376 42 & SHLW & $g/g$ & Nrphys
377 &\begin{minipage}[t]{3in}
378 {Instantaneous specific humidity used as input to the Longwave radiation
379 subroutine}
380 \end{minipage}\\
381 43 & OZLW & $g/g$ & Nrphys
382 &\begin{minipage}[t]{3in}
383 {Instantaneous ozone used as input to the Longwave radiation
384 subroutine}
385 \end{minipage}\\
386 44 & CLMOLW & $0-1$ & Nrphys
387 &\begin{minipage}[t]{3in}
388 {Maximum overlap cloud fraction used in the Longwave radiation
389 subroutine}
390 \end{minipage}\\
391 45 & CLDTOT & $0-1$ & Nrphys
392 &\begin{minipage}[t]{3in}
393 {Total cloud fraction used in the Longwave and Shortwave radiation
394 subroutines}
395 \end{minipage}\\
396 46 & RADSWT & $Watts/m^2$ & 1
397 &\begin{minipage}[t]{3in}
398 {Incident Shortwave radiation at the top of the atmosphere}
399 \end{minipage}\\
400 47 & CLROSW & $0-1$ & Nrphys
401 &\begin{minipage}[t]{3in}
402 {Random overlap cloud fraction used in the shortwave radiation
403 subroutine}
404 \end{minipage}\\
405 48 & CLMOSW & $0-1$ & Nrphys
406 &\begin{minipage}[t]{3in}
407 {Maximum overlap cloud fraction used in the shortwave radiation
408 subroutine}
409 \end{minipage}\\
410 49 & EVAP & $mm/day$ & 1
411 &\begin{minipage}[t]{3in}
412 {Surface evaporation}
413 \end{minipage}\\
414 \end{tabular}
415 \vfill
416
417 \newpage
418 \vspace*{\fill}
419 \begin{tabular}{lllll}
420 \hline\hline
421 N & NAME & UNITS & LEVELS & DESCRIPTION \\
422 \hline
423
424 &\\
425 50 & DUDT & $m/sec/day$ & Nrphys
426 &\begin{minipage}[t]{3in}
427 {Total U-Wind tendency}
428 \end{minipage}\\
429 51 & DVDT & $m/sec/day$ & Nrphys
430 &\begin{minipage}[t]{3in}
431 {Total V-Wind tendency}
432 \end{minipage}\\
433 52 & DTDT & $deg/day$ & Nrphys
434 &\begin{minipage}[t]{3in}
435 {Total Temperature tendency}
436 \end{minipage}\\
437 53 & DQDT & $g/kg/day$ & Nrphys
438 &\begin{minipage}[t]{3in}
439 {Total Specific Humidity tendency}
440 \end{minipage}\\
441 54 & USTAR & $m/sec$ & 1
442 &\begin{minipage}[t]{3in}
443 {Surface USTAR wind}
444 \end{minipage}\\
445 55 & Z0 & $m$ & 1
446 &\begin{minipage}[t]{3in}
447 {Surface roughness}
448 \end{minipage}\\
449 56 & FRQTRB & $0-1$ & Nrphys-1
450 &\begin{minipage}[t]{3in}
451 {Frequency of Turbulence}
452 \end{minipage}\\
453 57 & PBL & $mb$ & 1
454 &\begin{minipage}[t]{3in}
455 {Planetary Boundary Layer depth}
456 \end{minipage}\\
457 58 & SWCLR & $deg/day$ & Nrphys
458 &\begin{minipage}[t]{3in}
459 {Net clearsky Shortwave heating rate for each level}
460 \end{minipage}\\
461 59 & OSR & $Watts/m^2$ & 1
462 &\begin{minipage}[t]{3in}
463 {Net downward Shortwave flux at the top of the model}
464 \end{minipage}\\
465 60 & OSRCLR & $Watts/m^2$ & 1
466 &\begin{minipage}[t]{3in}
467 {Net downward clearsky Shortwave flux at the top of the model}
468 \end{minipage}\\
469 61 & CLDMAS & $kg / m^2$ & Nrphys
470 &\begin{minipage}[t]{3in}
471 {Convective cloud mass flux}
472 \end{minipage}\\
473 62 & UAVE & $m/sec$ & Nrphys
474 &\begin{minipage}[t]{3in}
475 {Time-averaged $u-Wind$}
476 \end{minipage}\\
477 63 & VAVE & $m/sec$ & Nrphys
478 &\begin{minipage}[t]{3in}
479 {Time-averaged $v-Wind$}
480 \end{minipage}\\
481 64 & TAVE & $deg$ & Nrphys
482 &\begin{minipage}[t]{3in}
483 {Time-averaged $Temperature$}
484 \end{minipage}\\
485 65 & QAVE & $g/g$ & Nrphys
486 &\begin{minipage}[t]{3in}
487 {Time-averaged $Specific \, \, Humidity$}
488 \end{minipage}\\
489 66 & PAVE & $mb$ & 1
490 &\begin{minipage}[t]{3in}
491 {Time-averaged $p_{surf} - p_{top}$}
492 \end{minipage}\\
493 67 & QQAVE & $(m/sec)^2$ & Nrphys
494 &\begin{minipage}[t]{3in}
495 {Time-averaged $Turbulent Kinetic Energy$}
496 \end{minipage}\\
497 68 & SWGCLR & $Watts/m^2$ & 1
498 &\begin{minipage}[t]{3in}
499 {Net downward clearsky Shortwave flux at the ground}
500 \end{minipage}\\
501 69 & SDIAG1 & & 1
502 &\begin{minipage}[t]{3in}
503 {User-Defined Surface Diagnostic-1}
504 \end{minipage}\\
505 70 & SDIAG2 & & 1
506 &\begin{minipage}[t]{3in}
507 {User-Defined Surface Diagnostic-2}
508 \end{minipage}\\
509 71 & UDIAG1 & & Nrphys
510 &\begin{minipage}[t]{3in}
511 {User-Defined Upper-Air Diagnostic-1}
512 \end{minipage}\\
513 72 & UDIAG2 & & Nrphys
514 &\begin{minipage}[t]{3in}
515 {User-Defined Upper-Air Diagnostic-2}
516 \end{minipage}\\
517 73 & DIABU & $m/sec/day$ & Nrphys
518 &\begin{minipage}[t]{3in}
519 {Total Diabatic forcing on $u-Wind$}
520 \end{minipage}\\
521 74 & DIABV & $m/sec/day$ & Nrphys
522 &\begin{minipage}[t]{3in}
523 {Total Diabatic forcing on $v-Wind$}
524 \end{minipage}\\
525 75 & DIABT & $deg/day$ & Nrphys
526 &\begin{minipage}[t]{3in}
527 {Total Diabatic forcing on $Temperature$}
528 \end{minipage}\\
529 76 & DIABQ & $g/kg/day$ & Nrphys
530 &\begin{minipage}[t]{3in}
531 {Total Diabatic forcing on $Specific \, \, Humidity$}
532 \end{minipage}\\
533
534 \end{tabular}
535 \vfill
536
537 \newpage
538 \vspace*{\fill}
539 \begin{tabular}{lllll}
540 \hline\hline
541 N & NAME & UNITS & LEVELS & DESCRIPTION \\
542 \hline
543
544 77 & VINTUQ & $m/sec \cdot g/kg$ & 1
545 &\begin{minipage}[t]{3in}
546 {Vertically integrated $u \, q$}
547 \end{minipage}\\
548 78 & VINTVQ & $m/sec \cdot g/kg$ & 1
549 &\begin{minipage}[t]{3in}
550 {Vertically integrated $v \, q$}
551 \end{minipage}\\
552 79 & VINTUT & $m/sec \cdot deg$ & 1
553 &\begin{minipage}[t]{3in}
554 {Vertically integrated $u \, T$}
555 \end{minipage}\\
556 80 & VINTVT & $m/sec \cdot deg$ & 1
557 &\begin{minipage}[t]{3in}
558 {Vertically integrated $v \, T$}
559 \end{minipage}\\
560 81 & CLDFRC & $0-1$ & 1
561 &\begin{minipage}[t]{3in}
562 {Total Cloud Fraction}
563 \end{minipage}\\
564 82 & QINT & $gm/cm^2$ & 1
565 &\begin{minipage}[t]{3in}
566 {Precipitable water}
567 \end{minipage}\\
568 83 & U2M & $m/sec$ & 1
569 &\begin{minipage}[t]{3in}
570 {U-Wind at 2 meters}
571 \end{minipage}\\
572 84 & V2M & $m/sec$ & 1
573 &\begin{minipage}[t]{3in}
574 {V-Wind at 2 meters}
575 \end{minipage}\\
576 85 & T2M & $deg$ & 1
577 &\begin{minipage}[t]{3in}
578 {Temperature at 2 meters}
579 \end{minipage}\\
580 86 & Q2M & $g/kg$ & 1
581 &\begin{minipage}[t]{3in}
582 {Specific Humidity at 2 meters}
583 \end{minipage}\\
584 87 & U10M & $m/sec$ & 1
585 &\begin{minipage}[t]{3in}
586 {U-Wind at 10 meters}
587 \end{minipage}\\
588 88 & V10M & $m/sec$ & 1
589 &\begin{minipage}[t]{3in}
590 {V-Wind at 10 meters}
591 \end{minipage}\\
592 89 & T10M & $deg$ & 1
593 &\begin{minipage}[t]{3in}
594 {Temperature at 10 meters}
595 \end{minipage}\\
596 90 & Q10M & $g/kg$ & 1
597 &\begin{minipage}[t]{3in}
598 {Specific Humidity at 10 meters}
599 \end{minipage}\\
600 91 & DTRAIN & $kg/m^2$ & Nrphys
601 &\begin{minipage}[t]{3in}
602 {Detrainment Cloud Mass Flux}
603 \end{minipage}\\
604 92 & QFILL & $g/kg/day$ & Nrphys
605 &\begin{minipage}[t]{3in}
606 {Filling of negative specific humidity}
607 \end{minipage}\\
608
609 \end{tabular}
610 \vspace{1.5in}
611 \vfill
612
613 \newpage
614
615 \subsubsection{Diagnostic Description}
616
617 In this section we list and describe the diagnostic quantities available within the
618 GCM. The diagnostics are listed in the order that they appear in the
619 Diagnostic Menu, Section \ref{sec:diagnostics:menu}.
620 In all cases, each diagnostic as currently archived on the output datasets
621 is time-averaged over its diagnostic output frequency:
622
623 \[
624 {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
625 \]
626 where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
627 output frequency of the diagnositc, and $\Delta t$ is
628 the timestep over which the diagnostic is updated. For further information on how
629 to set the diagnostic output frequency {\bf NQDIAG}, please see Part III, A User's Guide.
630
631 {\bf 1) \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
632
633 The zonal wind stress is the turbulent flux of zonal momentum from
634 the surface. See section 3.3 for a description of the surface layer parameterization.
635 \[
636 {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
637 \]
638 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
639 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
640 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
641 the zonal wind in the lowest model layer.
642 \\
643
644
645 {\bf 2) \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
646
647 The meridional wind stress is the turbulent flux of meridional momentum from
648 the surface. See section 3.3 for a description of the surface layer parameterization.
649 \[
650 {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
651 \]
652 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
653 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
654 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
655 the meridional wind in the lowest model layer.
656 \\
657
658 {\bf 3) \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
659
660 The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
661 gradient of virtual potential temperature and the eddy exchange coefficient:
662 \[
663 {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
664 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
665 \]
666 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
667 heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
668 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
669 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
670 for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
671 at the surface and at the bottom model level.
672 \\
673
674
675 {\bf 4) \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
676
677 The turbulent flux of latent heat from the surface to the atmosphere is a function of the
678 gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
679 \[
680 {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
681 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
682 \]
683 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
684 the potential evapotranspiration actually evaporated, L is the latent
685 heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
686 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
687 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
688 for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
689 humidity at the surface and at the bottom model level, respectively.
690 \\
691
692 {\bf 5) \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
693
694 Over sea ice there is an additional source of energy at the surface due to the heat
695 conduction from the relatively warm ocean through the sea ice. The heat conduction
696 through sea ice represents an additional energy source term for the ground temperature equation.
697
698 \[
699 {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
700 \]
701
702 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
703 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
704 $T_g$ is the temperature of the sea ice.
705
706 NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
707 \\
708
709
710 {\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
711
712 \begin{eqnarray*}
713 {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
714 & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
715 \end{eqnarray*}
716 \\
717 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
718 $F_{LW}^\uparrow$ is
719 the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
720 \\
721
722 {\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
723
724 \begin{eqnarray*}
725 {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
726 & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
727 \end{eqnarray*}
728 \\
729 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
730 $F_{SW}^\downarrow$ is
731 the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
732 \\
733
734
735 \noindent
736 {\bf 8) \underline {RI} Richardson Number} ($dimensionless$)
737
738 \noindent
739 The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
740 \[
741 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
742 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
743 \]
744 \\
745 where we used the hydrostatic equation:
746 \[
747 {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
748 \]
749 Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
750 indicate dominantly unstable shear, and large positive values indicate dominantly stable
751 stratification.
752 \\
753
754 \noindent
755 {\bf 9) \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
756
757 \noindent
758 The surface exchange coefficient is obtained from the similarity functions for the stability
759 dependant flux profile relationships:
760 \[
761 {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
762 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
763 { k \over { (\psi_{h} + \psi_{g}) } }
764 \]
765 where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
766 viscous sublayer non-dimensional temperature or moisture change:
767 \[
768 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
769 \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
770 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
771 \]
772 and:
773 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
774
775 \noindent
776 $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
777 the temperature and moisture gradients, specified differently for stable and unstable
778 layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
779 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
780 viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
781 (see diagnostic number 67), and the subscript ref refers to a reference value.
782 \\
783
784 \noindent
785 {\bf 10) \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
786
787 \noindent
788 The surface exchange coefficient is obtained from the similarity functions for the stability
789 dependant flux profile relationships:
790 \[
791 {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
792 \]
793 where $\psi_m$ is the surface layer non-dimensional wind shear:
794 \[
795 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
796 \]
797 \noindent
798 $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
799 the temperature and moisture gradients, specified differently for stable and unstable layers
800 according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
801 non-dimensional stability parameter, $u_*$ is the surface stress velocity
802 (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
803 \\
804
805 \noindent
806 {\bf 11) \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
807
808 \noindent
809 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
810 moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
811 diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
812 or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
813 takes the form:
814 \[
815 {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
816 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
817 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
818 \]
819 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
820 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
821 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
822 depth,
823 $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
824 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
825 dimensionless buoyancy and wind shear
826 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
827 are functions of the Richardson number.
828
829 \noindent
830 For the detailed equations and derivations of the modified level 2.5 closure scheme,
831 see Helfand and Labraga, 1988.
832
833 \noindent
834 In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
835 in units of $m/sec$, given by:
836 \[
837 {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
838 \]
839 \noindent
840 where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
841 surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
842 friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
843 and $W_s$ is the magnitude of the surface layer wind.
844 \\
845
846 \noindent
847 {\bf 12) \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
848
849 \noindent
850 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
851 momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
852 diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
853 In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
854 takes the form:
855 \[
856 {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
857 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
858 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
859 \]
860 \noindent
861 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
862 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
863 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
864 depth,
865 $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
866 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
867 dimensionless buoyancy and wind shear
868 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
869 are functions of the Richardson number.
870
871 \noindent
872 For the detailed equations and derivations of the modified level 2.5 closure scheme,
873 see Helfand and Labraga, 1988.
874
875 \noindent
876 In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
877 in units of $m/sec$, given by:
878 \[
879 {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
880 \]
881 \noindent
882 where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
883 similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
884 (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
885 magnitude of the surface layer wind.
886 \\
887
888 \noindent
889 {\bf 13) \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
890
891 \noindent
892 The tendency of U-Momentum due to turbulence is written:
893 \[
894 {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
895 = {\pp{}{z} }{(K_m \pp{u}{z})}
896 \]
897
898 \noindent
899 The Helfand and Labraga level 2.5 scheme models the turbulent
900 flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
901 equation.
902
903 \noindent
904 {\bf 14) \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
905
906 \noindent
907 The tendency of V-Momentum due to turbulence is written:
908 \[
909 {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
910 = {\pp{}{z} }{(K_m \pp{v}{z})}
911 \]
912
913 \noindent
914 The Helfand and Labraga level 2.5 scheme models the turbulent
915 flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
916 equation.
917 \\
918
919 \noindent
920 {\bf 15) \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
921
922 \noindent
923 The tendency of temperature due to turbulence is written:
924 \[
925 {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
926 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
927 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
928 \]
929
930 \noindent
931 The Helfand and Labraga level 2.5 scheme models the turbulent
932 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
933 equation.
934 \\
935
936 \noindent
937 {\bf 16) \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
938
939 \noindent
940 The tendency of specific humidity due to turbulence is written:
941 \[
942 {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
943 = {\pp{}{z} }{(K_h \pp{q}{z})}
944 \]
945
946 \noindent
947 The Helfand and Labraga level 2.5 scheme models the turbulent
948 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
949 equation.
950 \\
951
952 \noindent
953 {\bf 17) \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
954
955 \noindent
956 \[
957 {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
958 \]
959 where:
960 \[
961 \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
962 \hspace{.4cm} and
963 \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
964 \]
965 and
966 \[
967 \Gamma_s = g \eta \pp{s}{p}
968 \]
969
970 \noindent
971 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
972 precipitation processes, or supersaturation rain.
973 The summation refers to contributions from each cloud type called by RAS.
974 The dry static energy is given
975 as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
976 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
977 the description of the convective parameterization. The fractional adjustment, or relaxation
978 parameter, for each cloud type is given as $\alpha$, while
979 $R$ is the rain re-evaporation adjustment.
980 \\
981
982 \noindent
983 {\bf 18) \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
984
985 \noindent
986 \[
987 {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
988 \]
989 where:
990 \[
991 \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
992 \hspace{.4cm} and
993 \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
994 \]
995 and
996 \[
997 \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
998 \]
999 \noindent
1000 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1001 precipitation processes, or supersaturation rain.
1002 The summation refers to contributions from each cloud type called by RAS.
1003 The dry static energy is given as $s$,
1004 the moist static energy is given as $h$,
1005 the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1006 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1007 the description of the convective parameterization. The fractional adjustment, or relaxation
1008 parameter, for each cloud type is given as $\alpha$, while
1009 $R$ is the rain re-evaporation adjustment.
1010 \\
1011
1012 \noindent
1013 {\bf 19) \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1014
1015 \noindent
1016 The net longwave heating rate is calculated as the vertical divergence of the
1017 net terrestrial radiative fluxes.
1018 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1019 longwave routine.
1020 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1021 For a given cloud fraction,
1022 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1023 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1024 for the upward and downward radiative fluxes.
1025 (see Section \ref{sec:fizhi:radcloud}).
1026 The cloudy-sky flux is then obtained as:
1027
1028 \noindent
1029 \[
1030 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1031 \]
1032
1033 \noindent
1034 Finally, the net longwave heating rate is calculated as the vertical divergence of the
1035 net terrestrial radiative fluxes:
1036 \[
1037 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1038 \]
1039 or
1040 \[
1041 {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1042 \]
1043
1044 \noindent
1045 where $g$ is the accelation due to gravity,
1046 $c_p$ is the heat capacity of air at constant pressure,
1047 and
1048 \[
1049 F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1050 \]
1051 \\
1052
1053
1054 \noindent
1055 {\bf 20) \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1056
1057 \noindent
1058 The net Shortwave heating rate is calculated as the vertical divergence of the
1059 net solar radiative fluxes.
1060 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1061 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1062 both CLMO (maximum overlap cloud fraction) and
1063 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1064 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1065 true time-averaged cloud fractions CLMO
1066 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1067 input at the top of the atmosphere.
1068
1069 \noindent
1070 The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1071 \[
1072 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1073 \]
1074 or
1075 \[
1076 {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1077 \]
1078
1079 \noindent
1080 where $g$ is the accelation due to gravity,
1081 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1082 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1083 \[
1084 F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1085 \]
1086 \\
1087
1088 \noindent
1089 {\bf 21) \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1090
1091 \noindent
1092 For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1093 the vertical integral or total precipitable amount is given by:
1094 \[
1095 {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1096 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1097 \]
1098 \\
1099
1100 \noindent
1101 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1102 time step, scaled to $mm/day$.
1103 \\
1104
1105 \noindent
1106 {\bf 22) \underline {PRECON} Convective Precipition ($mm/day$) }
1107
1108 \noindent
1109 For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1110 the vertical integral or total precipitable amount is given by:
1111 \[
1112 {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1113 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1114 \]
1115 \\
1116
1117 \noindent
1118 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1119 time step, scaled to $mm/day$.
1120 \\
1121
1122 \noindent
1123 {\bf 23) \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1124
1125 \noindent
1126 The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1127 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1128
1129 \[
1130 {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1131 {\rho } {(- K_m \pp{U}{z})}
1132 \]
1133
1134 \noindent
1135 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1136 \\
1137
1138 \noindent
1139 {\bf 24) \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1140
1141 \noindent
1142 The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1143 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1144
1145 \[
1146 {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1147 {\rho } {(- K_m \pp{V}{z})}
1148 \]
1149
1150 \noindent
1151 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1152 \\
1153
1154
1155 \noindent
1156 {\bf 25) \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1157
1158 \noindent
1159 The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1160 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1161
1162 \noindent
1163 \[
1164 {\bf TTFLUX} = c_p {\rho }
1165 P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1166 = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1167 \]
1168
1169 \noindent
1170 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1171 \\
1172
1173
1174 \noindent
1175 {\bf 26) \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1176
1177 \noindent
1178 The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1179 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1180
1181 \noindent
1182 \[
1183 {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1184 {L {\rho }(- K_h \pp{q}{z})}
1185 \]
1186
1187 \noindent
1188 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1189 \\
1190
1191
1192 \noindent
1193 {\bf 27) \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1194
1195 \noindent
1196 The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1197 \[
1198 {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1199 \]
1200
1201 \noindent
1202 where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1203 $z_0$ is the surface roughness.
1204
1205 \noindent
1206 NOTE: CN is not available through model version 5.3, but is available in subsequent
1207 versions.
1208 \\
1209
1210 \noindent
1211 {\bf 28) \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1212
1213 \noindent
1214 The surface wind speed is calculated for the last internal turbulence time step:
1215 \[
1216 {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1217 \]
1218
1219 \noindent
1220 where the subscript $Nrphys$ refers to the lowest model level.
1221 \\
1222
1223 \noindent
1224 {\bf 29) \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1225
1226 \noindent
1227 The air/surface virtual temperature difference measures the stability of the surface layer:
1228 \[
1229 {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1230 \]
1231 \noindent
1232 where
1233 \[
1234 \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1235 and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1236 \]
1237
1238 \noindent
1239 $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1240 $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1241 and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1242 refers to the surface.
1243 \\
1244
1245
1246 \noindent
1247 {\bf 30) \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
1248
1249 \noindent
1250 The ground temperature equation is solved as part of the turbulence package
1251 using a backward implicit time differencing scheme:
1252 \[
1253 {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
1254 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
1255 \]
1256
1257 \noindent
1258 where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
1259 net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
1260 sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
1261 flux, and $C_g$ is the total heat capacity of the ground.
1262 $C_g$ is obtained by solving a heat diffusion equation
1263 for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
1264 \[
1265 C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
1266 { 86400. \over {2 \pi} } } \, \, .
1267 \]
1268 \noindent
1269 Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
1270 {cm \over {^oK}}$,
1271 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
1272 by $2 \pi$ $radians/
1273 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
1274 is a function of the ground wetness, $W$.
1275 \\
1276
1277 \noindent
1278 {\bf 31) \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
1279
1280 \noindent
1281 The surface temperature estimate is made by assuming that the model's lowest
1282 layer is well-mixed, and therefore that $\theta$ is constant in that layer.
1283 The surface temperature is therefore:
1284 \[
1285 {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
1286 \]
1287 \\
1288
1289 \noindent
1290 {\bf 32) \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
1291
1292 \noindent
1293 The change in surface temperature from one turbulence time step to the next, solved
1294 using the Ground Temperature Equation (see diagnostic number 30) is calculated:
1295 \[
1296 {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
1297 \]
1298
1299 \noindent
1300 where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
1301 refers to the value at the previous turbulence time level.
1302 \\
1303
1304 \noindent
1305 {\bf 33) \underline {QG} Ground Specific Humidity ($g/kg$) }
1306
1307 \noindent
1308 The ground specific humidity is obtained by interpolating between the specific
1309 humidity at the lowest model level and the specific humidity of a saturated ground.
1310 The interpolation is performed using the potential evapotranspiration function:
1311 \[
1312 {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1313 \]
1314
1315 \noindent
1316 where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1317 and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
1318 pressure.
1319 \\
1320
1321 \noindent
1322 {\bf 34) \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
1323
1324 \noindent
1325 The surface saturation specific humidity is the saturation specific humidity at
1326 the ground temprature and surface pressure:
1327 \[
1328 {\bf QS} = q^*(T_g,P_s)
1329 \]
1330 \\
1331
1332 \noindent
1333 {\bf 35) \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
1334 radiation subroutine (deg)}
1335 \[
1336 {\bf TGRLW} = T_g(\lambda , \phi ,n)
1337 \]
1338 \noindent
1339 where $T_g$ is the model ground temperature at the current time step $n$.
1340 \\
1341
1342
1343 \noindent
1344 {\bf 36) \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
1345 \[
1346 {\bf ST4} = \sigma T^4
1347 \]
1348 \noindent
1349 where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
1350 \\
1351
1352 \noindent
1353 {\bf 37) \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1354 \[
1355 {\bf OLR} = F_{LW,top}^{NET}
1356 \]
1357 \noindent
1358 where top indicates the top of the first model layer.
1359 In the GCM, $p_{top}$ = 0.0 mb.
1360 \\
1361
1362
1363 \noindent
1364 {\bf 38) \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1365 \[
1366 {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
1367 \]
1368 \noindent
1369 where top indicates the top of the first model layer.
1370 In the GCM, $p_{top}$ = 0.0 mb.
1371 \\
1372
1373 \noindent
1374 {\bf 39) \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
1375
1376 \noindent
1377 \begin{eqnarray*}
1378 {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
1379 & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
1380 \end{eqnarray*}
1381 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1382 $F(clearsky)_{LW}^\uparrow$ is
1383 the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
1384 \\
1385
1386 \noindent
1387 {\bf 40) \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
1388
1389 \noindent
1390 The net longwave heating rate is calculated as the vertical divergence of the
1391 net terrestrial radiative fluxes.
1392 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1393 longwave routine.
1394 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1395 For a given cloud fraction,
1396 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1397 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1398 for the upward and downward radiative fluxes.
1399 (see Section \ref{sec:fizhi:radcloud}).
1400 The cloudy-sky flux is then obtained as:
1401
1402 \noindent
1403 \[
1404 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1405 \]
1406
1407 \noindent
1408 Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
1409 vertical divergence of the
1410 clear-sky longwave radiative flux:
1411 \[
1412 \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
1413 \]
1414 or
1415 \[
1416 {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
1417 \]
1418
1419 \noindent
1420 where $g$ is the accelation due to gravity,
1421 $c_p$ is the heat capacity of air at constant pressure,
1422 and
1423 \[
1424 F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
1425 \]
1426 \\
1427
1428
1429 \noindent
1430 {\bf 41) \underline {TLW} Instantaneous temperature used as input to the Longwave
1431 radiation subroutine (deg)}
1432 \[
1433 {\bf TLW} = T(\lambda , \phi ,level, n)
1434 \]
1435 \noindent
1436 where $T$ is the model temperature at the current time step $n$.
1437 \\
1438
1439
1440 \noindent
1441 {\bf 42) \underline {SHLW} Instantaneous specific humidity used as input to
1442 the Longwave radiation subroutine (kg/kg)}
1443 \[
1444 {\bf SHLW} = q(\lambda , \phi , level , n)
1445 \]
1446 \noindent
1447 where $q$ is the model specific humidity at the current time step $n$.
1448 \\
1449
1450
1451 \noindent
1452 {\bf 43) \underline {OZLW} Instantaneous ozone used as input to
1453 the Longwave radiation subroutine (kg/kg)}
1454 \[
1455 {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
1456 \]
1457 \noindent
1458 where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
1459 mean zonally averaged ozone data set.
1460 \\
1461
1462
1463 \noindent
1464 {\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
1465
1466 \noindent
1467 {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1468 Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
1469 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1470 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1471 \[
1472 {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
1473 \]
1474 \\
1475
1476
1477 {\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
1478
1479 {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
1480 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
1481 Radiation packages.
1482 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1483 \[
1484 {\bf CLDTOT} = F_{RAS} + F_{LS}
1485 \]
1486 \\
1487 where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
1488 time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
1489 \\
1490
1491
1492 \noindent
1493 {\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
1494
1495 \noindent
1496 {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1497 Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
1498 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1499 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1500 \[
1501 {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
1502 \]
1503 \\
1504
1505 \noindent
1506 {\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
1507
1508 \noindent
1509 {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
1510 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
1511 Radiation algorithm. These are
1512 convective and large-scale clouds whose radiative characteristics are not
1513 assumed to be correlated in the vertical.
1514 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1515 \[
1516 {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
1517 \]
1518 \\
1519
1520 \noindent
1521 {\bf 48) \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
1522 \[
1523 {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
1524 \]
1525 \noindent
1526 where $S_0$, is the extra-terrestial solar contant,
1527 $R_a$ is the earth-sun distance in Astronomical Units,
1528 and $cos \phi_z$ is the cosine of the zenith angle.
1529 It should be noted that {\bf RADSWT}, as well as
1530 {\bf OSR} and {\bf OSRCLR},
1531 are calculated at the top of the atmosphere (p=0 mb). However, the
1532 {\bf OLR} and {\bf OLRCLR} diagnostics are currently
1533 calculated at $p= p_{top}$ (0.0 mb for the GCM).
1534 \\
1535
1536 \noindent
1537 {\bf 49) \underline {EVAP} Surface Evaporation ($mm/day$) }
1538
1539 \noindent
1540 The surface evaporation is a function of the gradient of moisture, the potential
1541 evapotranspiration fraction and the eddy exchange coefficient:
1542 \[
1543 {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
1544 \]
1545 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1546 the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
1547 turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
1548 $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
1549 number 34) and at the bottom model level, respectively.
1550 \\
1551
1552 \noindent
1553 {\bf 50) \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
1554
1555 \noindent
1556 {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
1557 and Analysis forcing.
1558 \[
1559 {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1560 \]
1561 \\
1562
1563 \noindent
1564 {\bf 51) \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
1565
1566 \noindent
1567 {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
1568 and Analysis forcing.
1569 \[
1570 {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1571 \]
1572 \\
1573
1574 \noindent
1575 {\bf 52) \underline {DTDT} Total Temperature Tendency ($deg/day$) }
1576
1577 \noindent
1578 {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
1579 and Analysis forcing.
1580 \begin{eqnarray*}
1581 {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1582 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1583 \end{eqnarray*}
1584 \\
1585
1586 \noindent
1587 {\bf 53) \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
1588
1589 \noindent
1590 {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
1591 and Analysis forcing.
1592 \[
1593 {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
1594 + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
1595 \]
1596 \\
1597
1598 \noindent
1599 {\bf 54) \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
1600
1601 \noindent
1602 The surface stress velocity, or the friction velocity, is the wind speed at
1603 the surface layer top impeded by the surface drag:
1604 \[
1605 {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
1606 C_u = {k \over {\psi_m} }
1607 \]
1608
1609 \noindent
1610 $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
1611 number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
1612
1613 \noindent
1614 {\bf 55) \underline {Z0} Surface Roughness Length ($m$) }
1615
1616 \noindent
1617 Over the land surface, the surface roughness length is interpolated to the local
1618 time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
1619 the roughness length is a function of the surface-stress velocity, $u_*$.
1620 \[
1621 {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
1622 \]
1623
1624 \noindent
1625 where the constants are chosen to interpolate between the reciprocal relation of
1626 Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
1627 for moderate to large winds.
1628 \\
1629
1630 \noindent
1631 {\bf 56) \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
1632
1633 \noindent
1634 The fraction of time when turbulence is present is defined as the fraction of
1635 time when the turbulent kinetic energy exceeds some minimum value, defined here
1636 to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
1637 incremented. The fraction over the averaging interval is reported.
1638 \\
1639
1640 \noindent
1641 {\bf 57) \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
1642
1643 \noindent
1644 The depth of the PBL is defined by the turbulence parameterization to be the
1645 depth at which the turbulent kinetic energy reduces to ten percent of its surface
1646 value.
1647
1648 \[
1649 {\bf PBL} = P_{PBL} - P_{surface}
1650 \]
1651
1652 \noindent
1653 where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
1654 reaches one tenth of its surface value, and $P_s$ is the surface pressure.
1655 \\
1656
1657 \noindent
1658 {\bf 58) \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
1659
1660 \noindent
1661 The net Shortwave heating rate is calculated as the vertical divergence of the
1662 net solar radiative fluxes.
1663 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1664 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1665 both CLMO (maximum overlap cloud fraction) and
1666 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1667 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1668 true time-averaged cloud fractions CLMO
1669 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1670 input at the top of the atmosphere.
1671
1672 \noindent
1673 The heating rate due to Shortwave Radiation under clear skies is defined as:
1674 \[
1675 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
1676 \]
1677 or
1678 \[
1679 {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
1680 \]
1681
1682 \noindent
1683 where $g$ is the accelation due to gravity,
1684 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1685 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1686 \[
1687 F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
1688 \]
1689 \\
1690
1691 \noindent
1692 {\bf 59) \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
1693 \[
1694 {\bf OSR} = F_{SW,top}^{NET}
1695 \]
1696 \noindent
1697 where top indicates the top of the first model layer used in the shortwave radiation
1698 routine.
1699 In the GCM, $p_{SW_{top}}$ = 0 mb.
1700 \\
1701
1702 \noindent
1703 {\bf 60) \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
1704 \[
1705 {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
1706 \]
1707 \noindent
1708 where top indicates the top of the first model layer used in the shortwave radiation
1709 routine.
1710 In the GCM, $p_{SW_{top}}$ = 0 mb.
1711 \\
1712
1713
1714 \noindent
1715 {\bf 61) \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
1716
1717 \noindent
1718 The amount of cloud mass moved per RAS timestep from all convective clouds is written:
1719 \[
1720 {\bf CLDMAS} = \eta m_B
1721 \]
1722 where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
1723 the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
1724 description of the convective parameterization.
1725 \\
1726
1727
1728
1729 \noindent
1730 {\bf 62) \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
1731
1732 \noindent
1733 The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
1734 the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
1735 Zonal U-Wind which is archived on the Prognostic Output data stream.
1736 \[
1737 {\bf UAVE} = u(\lambda, \phi, level , t)
1738 \]
1739 \\
1740 Note, {\bf UAVE} is computed and stored on the staggered C-grid.
1741 \\
1742
1743 \noindent
1744 {\bf 63) \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
1745
1746 \noindent
1747 The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
1748 the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
1749 Meridional V-Wind which is archived on the Prognostic Output data stream.
1750 \[
1751 {\bf VAVE} = v(\lambda, \phi, level , t)
1752 \]
1753 \\
1754 Note, {\bf VAVE} is computed and stored on the staggered C-grid.
1755 \\
1756
1757 \noindent
1758 {\bf 64) \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
1759
1760 \noindent
1761 The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
1762 the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
1763 Temperature which is archived on the Prognostic Output data stream.
1764 \[
1765 {\bf TAVE} = T(\lambda, \phi, level , t)
1766 \]
1767 \\
1768
1769 \noindent
1770 {\bf 65) \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
1771
1772 \noindent
1773 The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
1774 the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
1775 Specific Humidity which is archived on the Prognostic Output data stream.
1776 \[
1777 {\bf QAVE} = q(\lambda, \phi, level , t)
1778 \]
1779 \\
1780
1781 \noindent
1782 {\bf 66) \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
1783
1784 \noindent
1785 The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
1786 the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
1787 Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
1788 \begin{eqnarray*}
1789 {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
1790 & = & p_s(\lambda, \phi, level , t) - p_T
1791 \end{eqnarray*}
1792 \\
1793
1794
1795 \noindent
1796 {\bf 67) \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
1797
1798 \noindent
1799 The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
1800 produced by the GCM Turbulence parameterization over
1801 the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
1802 Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
1803 \[
1804 {\bf QQAVE} = qq(\lambda, \phi, level , t)
1805 \]
1806 \\
1807 Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
1808 \\
1809
1810 \noindent
1811 {\bf 68) \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
1812
1813 \noindent
1814 \begin{eqnarray*}
1815 {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
1816 & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
1817 \end{eqnarray*}
1818 \noindent
1819 \\
1820 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1821 $F(clearsky){SW}^\downarrow$ is
1822 the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
1823 the upward clearsky Shortwave flux.
1824 \\
1825
1826 \noindent
1827 {\bf 69) \underline {SDIAG1} User-Defined Surface Diagnostic-1 }
1828
1829 \noindent
1830 The GCM provides Users with a built-in mechanism for archiving user-defined
1831 diagnostics. The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated
1832 diagnostic counters and pointers located in COMMON /DIAGP/,
1833 must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}).
1834 A convenient method for incorporating all necessary COMMON files is to
1835 include the GCM {\em vstate.com} file in the routine which employs the
1836 user-defined diagnostics.
1837
1838 \noindent
1839 In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill
1840 the QDIAG array with the desired quantity within the User's
1841 application program or within modified GCM subroutines, as well as increment
1842 the diagnostic counter at the time when the diagnostic is updated.
1843 The QDIAG location index for {\bf SDIAG1} and its corresponding counter is
1844 automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the
1845 diagnostic has been enabled.
1846 The syntax for its use is given by
1847 \begin{verbatim}
1848 do j=1,jm
1849 do i=1,im
1850 qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ...
1851 enddo
1852 enddo
1853
1854 NSDIAG1 = NSDIAG1 + 1
1855 \end{verbatim}
1856 The diagnostics defined in this manner will automatically be archived by the output routines.
1857 \\
1858
1859 \noindent
1860 {\bf 70) \underline {SDIAG2} User-Defined Surface Diagnostic-2 }
1861
1862 \noindent
1863 The GCM provides Users with a built-in mechanism for archiving user-defined
1864 diagnostics. For a complete description refer to Diagnostic \#84.
1865 The syntax for using the surface SDIAG2 diagnostic is given by
1866 \begin{verbatim}
1867 do j=1,jm
1868 do i=1,im
1869 qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ...
1870 enddo
1871 enddo
1872
1873 NSDIAG2 = NSDIAG2 + 1
1874 \end{verbatim}
1875 The diagnostics defined in this manner will automatically be archived by the output routines.
1876 \\
1877
1878 \noindent
1879 {\bf 71) \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 }
1880
1881 \noindent
1882 The GCM provides Users with a built-in mechanism for archiving user-defined
1883 diagnostics. For a complete description refer to Diagnostic \#84.
1884 The syntax for using the upper-air UDIAG1 diagnostic is given by
1885 \begin{verbatim}
1886 do L=1,Nrphys
1887 do j=1,jm
1888 do i=1,im
1889 qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ...
1890 enddo
1891 enddo
1892 enddo
1893
1894 NUDIAG1 = NUDIAG1 + 1
1895 \end{verbatim}
1896 The diagnostics defined in this manner will automatically be archived by the
1897 output programs.
1898 \\
1899
1900 \noindent
1901 {\bf 72) \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 }
1902
1903 \noindent
1904 The GCM provides Users with a built-in mechanism for archiving user-defined
1905 diagnostics. For a complete description refer to Diagnostic \#84.
1906 The syntax for using the upper-air UDIAG2 diagnostic is given by
1907 \begin{verbatim}
1908 do L=1,Nrphys
1909 do j=1,jm
1910 do i=1,im
1911 qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ...
1912 enddo
1913 enddo
1914 enddo
1915
1916 NUDIAG2 = NUDIAG2 + 1
1917 \end{verbatim}
1918 The diagnostics defined in this manner will automatically be archived by the
1919 output programs.
1920 \\
1921
1922
1923 \noindent
1924 {\bf 73) \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
1925
1926 \noindent
1927 {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
1928 and the Analysis forcing.
1929 \[
1930 {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1931 \]
1932 \\
1933
1934 \noindent
1935 {\bf 74) \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
1936
1937 \noindent
1938 {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
1939 and the Analysis forcing.
1940 \[
1941 {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1942 \]
1943 \\
1944
1945 \noindent
1946 {\bf 75) \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
1947
1948 \noindent
1949 {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
1950 and the Analysis forcing.
1951 \begin{eqnarray*}
1952 {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1953 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1954 \end{eqnarray*}
1955 \\
1956 If we define the time-tendency of Temperature due to Diabatic processes as
1957 \begin{eqnarray*}
1958 \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1959 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
1960 \end{eqnarray*}
1961 then, since there are no surface pressure changes due to Diabatic processes, we may write
1962 \[
1963 \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
1964 \]
1965 where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
1966 \[
1967 {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
1968 \]
1969 \\
1970
1971 \noindent
1972 {\bf 76) \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
1973
1974 \noindent
1975 {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
1976 and the Analysis forcing.
1977 \[
1978 {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
1979 \]
1980 If we define the time-tendency of Specific Humidity due to Diabatic processes as
1981 \[
1982 \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
1983 \]
1984 then, since there are no surface pressure changes due to Diabatic processes, we may write
1985 \[
1986 \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
1987 \]
1988 Thus, {\bf DIABQ} may be written as
1989 \[
1990 {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
1991 \]
1992 \\
1993
1994 \noindent
1995 {\bf 77) \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
1996
1997 \noindent
1998 The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
1999 $u q$ over the depth of the atmosphere at each model timestep,
2000 and dividing by the total mass of the column.
2001 \[
2002 {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2003 \]
2004 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2005 \[
2006 {\bf VINTUQ} = { \int_0^1 u q dp }
2007 \]
2008 \\
2009
2010
2011 \noindent
2012 {\bf 78) \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2013
2014 \noindent
2015 The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2016 $v q$ over the depth of the atmosphere at each model timestep,
2017 and dividing by the total mass of the column.
2018 \[
2019 {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2020 \]
2021 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2022 \[
2023 {\bf VINTVQ} = { \int_0^1 v q dp }
2024 \]
2025 \\
2026
2027
2028 \noindent
2029 {\bf 79) \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2030
2031 \noindent
2032 The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2033 $u T$ over the depth of the atmosphere at each model timestep,
2034 and dividing by the total mass of the column.
2035 \[
2036 {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2037 \]
2038 Or,
2039 \[
2040 {\bf VINTUT} = { \int_0^1 u T dp }
2041 \]
2042 \\
2043
2044 \noindent
2045 {\bf 80) \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2046
2047 \noindent
2048 The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2049 $v T$ over the depth of the atmosphere at each model timestep,
2050 and dividing by the total mass of the column.
2051 \[
2052 {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2053 \]
2054 Using $\rho \delta z = -{\delta p \over g} $, we have
2055 \[
2056 {\bf VINTVT} = { \int_0^1 v T dp }
2057 \]
2058 \\
2059
2060 \noindent
2061 {\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2062
2063 If we define the
2064 time-averaged random and maximum overlapped cloudiness as CLRO and
2065 CLMO respectively, then the probability of clear sky associated
2066 with random overlapped clouds at any level is (1-CLRO) while the probability of
2067 clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2068 The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2069 the total cloud fraction at each level may be obtained by
2070 1-(1-CLRO)*(1-CLMO).
2071
2072 At any given level, we may define the clear line-of-site probability by
2073 appropriately accounting for the maximum and random overlap
2074 cloudiness. The clear line-of-site probability is defined to be
2075 equal to the product of the clear line-of-site probabilities
2076 associated with random and maximum overlap cloudiness. The clear
2077 line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2078 from the current pressure $p$
2079 to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2080 is simply 1.0 minus the largest maximum overlap cloud value along the
2081 line-of-site, ie.
2082
2083 $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2084
2085 Thus, even in the time-averaged sense it is assumed that the
2086 maximum overlap clouds are correlated in the vertical. The clear
2087 line-of-site probability associated with random overlap clouds is
2088 defined to be the product of the clear sky probabilities at each
2089 level along the line-of-site, ie.
2090
2091 $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2092
2093 The total cloud fraction at a given level associated with a line-
2094 of-site calculation is given by
2095
2096 $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2097 \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2098
2099
2100 \noindent
2101 The 2-dimensional net cloud fraction as seen from the top of the
2102 atmosphere is given by
2103 \[
2104 {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2105 \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2106 \]
2107 \\
2108 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2109
2110
2111 \noindent
2112 {\bf 82) \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2113
2114 \noindent
2115 The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2116 given by:
2117 \begin{eqnarray*}
2118 {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2119 & = & {\pi \over g} \int_0^1 q dp
2120 \end{eqnarray*}
2121 where we have used the hydrostatic relation
2122 $\rho \delta z = -{\delta p \over g} $.
2123 \\
2124
2125
2126 \noindent
2127 {\bf 83) \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2128
2129 \noindent
2130 The u-wind at the 2-meter depth is determined from the similarity theory:
2131 \[
2132 {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2133 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2134 \]
2135
2136 \noindent
2137 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2138 $sl$ refers to the height of the top of the surface layer. If the roughness height
2139 is above two meters, ${\bf U2M}$ is undefined.
2140 \\
2141
2142 \noindent
2143 {\bf 84) \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2144
2145 \noindent
2146 The v-wind at the 2-meter depth is a determined from the similarity theory:
2147 \[
2148 {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2149 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2150 \]
2151
2152 \noindent
2153 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2154 $sl$ refers to the height of the top of the surface layer. If the roughness height
2155 is above two meters, ${\bf V2M}$ is undefined.
2156 \\
2157
2158 \noindent
2159 {\bf 85) \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2160
2161 \noindent
2162 The temperature at the 2-meter depth is a determined from the similarity theory:
2163 \[
2164 {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2165 P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2166 (\theta_{sl} - \theta_{surf}))
2167 \]
2168 where:
2169 \[
2170 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2171 \]
2172
2173 \noindent
2174 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2175 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2176 $sl$ refers to the height of the top of the surface layer. If the roughness height
2177 is above two meters, ${\bf T2M}$ is undefined.
2178 \\
2179
2180 \noindent
2181 {\bf 86) \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2182
2183 \noindent
2184 The specific humidity at the 2-meter depth is determined from the similarity theory:
2185 \[
2186 {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2187 P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2188 (q_{sl} - q_{surf}))
2189 \]
2190 where:
2191 \[
2192 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2193 \]
2194
2195 \noindent
2196 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2197 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2198 $sl$ refers to the height of the top of the surface layer. If the roughness height
2199 is above two meters, ${\bf Q2M}$ is undefined.
2200 \\
2201
2202 \noindent
2203 {\bf 87) \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2204
2205 \noindent
2206 The u-wind at the 10-meter depth is an interpolation between the surface wind
2207 and the model lowest level wind using the ratio of the non-dimensional wind shear
2208 at the two levels:
2209 \[
2210 {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2211 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2212 \]
2213
2214 \noindent
2215 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2216 $sl$ refers to the height of the top of the surface layer.
2217 \\
2218
2219 \noindent
2220 {\bf 88) \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2221
2222 \noindent
2223 The v-wind at the 10-meter depth is an interpolation between the surface wind
2224 and the model lowest level wind using the ratio of the non-dimensional wind shear
2225 at the two levels:
2226 \[
2227 {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2228 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2229 \]
2230
2231 \noindent
2232 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2233 $sl$ refers to the height of the top of the surface layer.
2234 \\
2235
2236 \noindent
2237 {\bf 89) \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2238
2239 \noindent
2240 The temperature at the 10-meter depth is an interpolation between the surface potential
2241 temperature and the model lowest level potential temperature using the ratio of the
2242 non-dimensional temperature gradient at the two levels:
2243 \[
2244 {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2245 P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2246 (\theta_{sl} - \theta_{surf}))
2247 \]
2248 where:
2249 \[
2250 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2251 \]
2252
2253 \noindent
2254 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2255 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2256 $sl$ refers to the height of the top of the surface layer.
2257 \\
2258
2259 \noindent
2260 {\bf 90) \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2261
2262 \noindent
2263 The specific humidity at the 10-meter depth is an interpolation between the surface specific
2264 humidity and the model lowest level specific humidity using the ratio of the
2265 non-dimensional temperature gradient at the two levels:
2266 \[
2267 {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2268 P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2269 (q_{sl} - q_{surf}))
2270 \]
2271 where:
2272 \[
2273 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2274 \]
2275
2276 \noindent
2277 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2278 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2279 $sl$ refers to the height of the top of the surface layer.
2280 \\
2281
2282 \noindent
2283 {\bf 91) \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2284
2285 The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2286 \[
2287 {\bf DTRAIN} = \eta_{r_D}m_B
2288 \]
2289 \noindent
2290 where $r_D$ is the detrainment level,
2291 $m_B$ is the cloud base mass flux, and $\eta$
2292 is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2293 \\
2294
2295 \noindent
2296 {\bf 92) \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2297
2298 \noindent
2299 Due to computational errors associated with the numerical scheme used for
2300 the advection of moisture, negative values of specific humidity may be generated. The
2301 specific humidity is checked for negative values after every dynamics timestep. If negative
2302 values have been produced, a filling algorithm is invoked which redistributes moisture from
2303 below. Diagnostic {\bf QFILL} is equal to the net filling needed
2304 to eliminate negative specific humidity, scaled to a per-day rate:
2305 \[
2306 {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2307 \]
2308 where
2309 \[
2310 q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2311 \]
2312
2313 \subsection{Dos and Donts}
2314
2315 \subsection{Diagnostics Reference}
2316

  ViewVC Help
Powered by ViewVC 1.1.22