6 |
|
|
7 |
\subsection{Introduction} |
\subsection{Introduction} |
8 |
|
|
9 |
|
\noindent |
10 |
This section of the documentation describes the Diagnostics package available within |
This section of the documentation describes the Diagnostics package available within |
11 |
the GCM. In addition to a description of how to set and extract diagnostic quantities, |
the GCM. A large selection of model diagnostics is available for output. |
12 |
this document also provides a comprehensive list of all available diagnostic quantities |
In addition to the diagnostic quantities pre-defined in the GCM, there exists |
13 |
and a short description of how they are computed. It should be noted that this document |
the option, in any experiment, to define a new diagnostic quantity and include it |
14 |
is not intended to be a complete documentation of the various packages used in the GCM, |
as part of the diagnostic output with the addition of a single subroutine call in the |
15 |
and the reader should refer to original publications and the appropriate sections of this |
routine where the field is computed. As a matter of philosophy, no diagnostic is enabled |
16 |
documentation for further insight. |
as default, thus each user must specify the exact diagnostic information required for an |
17 |
|
experiment. This is accomplished by enabling the specific diagnostic of interest cataloged |
18 |
|
in the Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). Instructions for enabling |
19 |
|
diagnostic output and defining new diagnostic quantities are found in Section |
20 |
|
\ref{sec:diagnostics:usersguide} of this document. |
21 |
|
|
22 |
|
\noindent |
23 |
|
The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within |
24 |
|
the GCM. Once a diagnostic is enabled, the GCM will continually increment an array |
25 |
|
specifically allocated for that diagnostic whenever the appropriate quantity is computed. |
26 |
|
A counter is defined which records how many times each diagnostic quantity has been |
27 |
|
incremented. Several special diagnostics are included in the menu. Quantities refered to |
28 |
|
as ``Counter Diagnostics'', are defined for selected diagnostics which record the |
29 |
|
frequency at which a diagnostic is incremented separately for each model grid location. |
30 |
|
Quantitied refered to as ``User Diagnostics'' are included in the menu to facilitate |
31 |
|
defining new diagnostics for a particular experiment. |
32 |
|
|
33 |
\subsection{Equations} |
\subsection{Equations} |
34 |
Not relevant. |
Not relevant. |
36 |
\subsection{Key Subroutines and Parameters} |
\subsection{Key Subroutines and Parameters} |
37 |
\label{sec:diagnostics:diagover} |
\label{sec:diagnostics:diagover} |
38 |
|
|
39 |
A large selection of model diagnostics is available in the GCM. At the time of |
\noindent |
40 |
this writing there are 280 different diagnostic quantities which can be enabled for an |
The diagnostics are computed at various times and places within the GCM. Because the |
41 |
experiment. As a matter of philosophy, no diagnostic is enabled as default, thus each |
MIT GCM may employ a staggered grid, diagnostics may be computed at grid box centers, |
42 |
user must specify the exact diagnostic information required for an experiment. This |
corners, or edges, and at the middle or edge in the vertical. Some diagnostics are scalars, |
43 |
is accomplished by enabling the specific diagnostic of interest cataloged in the |
while others are components of vectors. An internal array is defined which contains |
44 |
Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). |
information concerning various grid attributes of each diagnostic. The GDIAG |
45 |
The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within |
array (in common block \\diagnostics in file diagnostics.h) is internally defined as a |
46 |
the GCM. Diagnostics are internally referred to by their associated number in the Diagnostic |
character*8 variable, and is equivalenced to a character*1 "parse" array in output in |
47 |
Menu. Once a diagnostic is enabled, the GCM will continually increment an array |
order to extract the grid-attribute information. The GDIAG array is described in |
48 |
specifically allocated for that diagnostic whenever the associated process for the |
Table \ref{tab:diagnostics:gdiag.tabl}. |
|
diagnostic is computed. Separate arrays are used both for the diagnostic quantity and |
|
|
its diagnostic counter which records how many times each diagnostic quantity has been |
|
|
computed. In addition special diagnostics, called ``Counter Diagnostics'', records the |
|
|
frequency of diagnostic updates separately for each model grid location. |
|
|
|
|
|
The diagnostics are computed at various times and places within the GCM. |
|
|
Some diagnostics are computed on the A-grid (such as those within the fizhi routines), |
|
|
while others are computed on the C-grid (those computed during the dynamics time-stepping). |
|
|
Some diagnostics are scalars, while others are vectors. Each of these possibilities requires |
|
|
separate tasks for A-grid to C-grid transformations and coordinate transformations. Due |
|
|
to this complexity, and since the specific diagnostics enabled are User determined at the |
|
|
time of the run, |
|
|
a diagnostic parameter has been developed and implemented into the GCM, defined as GDIAG, |
|
|
which contains information concerning various grid attributes of each diagnostic. The GDIAG |
|
|
array is internally defined as a character*8 variable, and is equivalenced to |
|
|
a character*1 "parse" array in output in order to extract the grid-attribute information. |
|
|
The GDIAG array is described in Table \ref{tab:diagnostics:gdiag.tabl}. |
|
49 |
|
|
50 |
\begin{table} |
\begin{table} |
51 |
\caption{Diagnostic Parsing Array} |
\caption{Diagnostic Parsing Array} |
76 |
\end{center} |
\end{center} |
77 |
\end{table} |
\end{table} |
78 |
|
|
79 |
|
|
80 |
|
\noindent |
81 |
As an example, consider a diagnostic whose associated GDIAG parameter is equal |
As an example, consider a diagnostic whose associated GDIAG parameter is equal |
82 |
to ``UU 002''. From GDIAG we can determine that this diagnostic is a |
to ``UU 002''. From GDIAG we can determine that this diagnostic is a |
83 |
U-vector component located at the C-grid U-point. |
U-vector component located at the C-grid U-point. |
84 |
Its corresponding V-component diagnostic is located in Diagnostic \# 002. |
Its corresponding V-component diagnostic is located in Diagnostic \# 002. |
85 |
|
|
86 |
|
|
87 |
|
\noindent |
88 |
In this way, each Diagnostic in the model has its attributes (ie. vector or scalar, |
In this way, each Diagnostic in the model has its attributes (ie. vector or scalar, |
89 |
A-Grid or C-grid, etc.) defined internally. The Output routines |
C-grid location, etc.) defined internally. The Output routines use this information |
90 |
use this information in order to determine |
in order to determine what type of transformations need to be performed. Any |
91 |
what type of transformations need to be performed. Thus, all Diagnostic |
interpolations are done at the time of output rather than during each model step. |
92 |
interpolations are done at the time of output rather than during each model dynamic step. |
In this way the User has flexibility in determining the type of gridded data which |
93 |
In this way the User now has more flexibility |
is output. |
94 |
in determining the type of gridded data which is output. |
|
95 |
|
|
96 |
|
\noindent |
97 |
There are several utilities within the GCM available to users to enable, disable, |
There are several utilities within the GCM available to users to enable, disable, |
98 |
clear, write and retrieve model diagnostics, and may be called from any routine. |
clear, write and retrieve model diagnostics, and may be called from any routine. |
99 |
The available utilities and the CALL sequences are listed below. |
The available utilities and the CALL sequences are listed below. |
100 |
|
|
|
{\bf fill\_diag}: This routine will increment |
|
101 |
|
|
102 |
|
\noindent |
103 |
|
{\bf fill\_diagnostics}: This routine will increment the specified diagnostic |
104 |
|
quantity with a field sent through the argument list. |
105 |
|
|
106 |
|
|
107 |
|
\noindent |
108 |
|
\begin{tabbing} |
109 |
|
XXXXXXXXX\=XXXXXX\= \kill |
110 |
|
\> call fill\_diagnostics (myThid, chardiag, levflg, nlevs, \\ |
111 |
|
bibjflg, bi, bj, arrayin) \\ |
112 |
|
\\ |
113 |
|
where \> myThid \>= Current Process(or) \\ |
114 |
|
\> chardiag \>= Character *8 expression for diag to fill \\ |
115 |
|
\> levflg \>= Integer flag for vertical levels: \\ |
116 |
|
\> \> 0 indicates multiple levels incremented in qdiag \\ |
117 |
|
\> \> non-0 (any integer) - WHICH single level to increment. \\ |
118 |
|
\> \> negative integer - the input data array is single-leveled \\ |
119 |
|
\> \> positive integer - the input data array is multi-leveled \\ |
120 |
|
\> nlevs \>= indicates Number of levels to be filled (1 if levflg <> 0) \\ |
121 |
|
\> \> positive: fill in "nlevs" levels in the same order as \\ |
122 |
|
\> \> the input array \\ |
123 |
|
\> \> negative: fill in -nlevs levels in reverse order. \\ |
124 |
|
\> bibjflg \>= Integer flag to indicate instructions for bi bj loop \\ |
125 |
|
\> \> 0 indicates that the bi-bj loop must be done here \\ |
126 |
|
\> \> 1 indicates that the bi-bj loop is done OUTSIDE \\ |
127 |
|
\> \> 2 indicates that the bi-bj loop is done OUTSIDE \\ |
128 |
|
\> \> AND that we have been sent a local array \\ |
129 |
|
\> \> 3 indicates that the bi-bj loop is done OUTSIDE \\ |
130 |
|
\> \> AND that we have been sent a local array \\ |
131 |
|
\> \> AND that the array has the shadow regions \\ |
132 |
|
\> bi \>= X-direction process(or) number - used for bibjflg=1-3 \\ |
133 |
|
\> bj \>= Y-direction process(or) number - used for bibjflg=1-3 \\ |
134 |
|
\> arrayin \>= Field to increment diagnostics array \\ |
135 |
|
\end{tabbing} |
136 |
|
|
137 |
|
|
138 |
|
\noindent |
139 |
{\bf setdiag}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning |
{\bf setdiag}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning |
140 |
that space is allocated for the diagnostic and the model routines will increment the |
that space is allocated for the diagnostic and the model routines will increment the |
141 |
diagnostic value during execution. This routine is the underlying interface |
diagnostic value during execution. This routine is the underlying interface |
142 |
between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic |
between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic |
143 |
number from the menu, and its calling sequence is given by: |
number from the menu, and its calling sequence is given by: |
144 |
|
|
145 |
|
\noindent |
146 |
\begin{tabbing} |
\begin{tabbing} |
147 |
XXXXXXXXX\=XXXXXX\= \kill |
XXXXXXXXX\=XXXXXX\= \kill |
148 |
\> call setdiag (num) \\ |
\> call setdiag (num) \\ |
150 |
where \> num \>= Diagnostic number from menu \\ |
where \> num \>= Diagnostic number from menu \\ |
151 |
\end{tabbing} |
\end{tabbing} |
152 |
|
|
153 |
|
\noindent |
154 |
{\bf getdiag}: This subroutine retrieves the value of a model diagnostic. This routine |
{\bf getdiag}: This subroutine retrieves the value of a model diagnostic. This routine |
155 |
is particulary useful when called from a user output routine, although it can be called |
is particulary useful when called from a user output routine, although it can be called |
156 |
from any routine. This routine returns the time-averaged value of the diagnostic by |
from any routine. This routine returns the time-averaged value of the diagnostic by |
158 |
routine does not change the value of the diagnostic itself, that is, it does not replace |
routine does not change the value of the diagnostic itself, that is, it does not replace |
159 |
the diagnostic with its time-average. The calling sequence for this routine is givin by: |
the diagnostic with its time-average. The calling sequence for this routine is givin by: |
160 |
|
|
161 |
|
\noindent |
162 |
\begin{tabbing} |
\begin{tabbing} |
163 |
XXXXXXXXX\=XXXXXX\= \kill |
XXXXXXXXX\=XXXXXX\= \kill |
164 |
\> call getdiag (lev,num,qtmp,undef) \\ |
\> call getdiag (lev,num,qtmp,undef) \\ |
169 |
\> undef \>= Fill value to be used when diagnostic is undefined \\ |
\> undef \>= Fill value to be used when diagnostic is undefined \\ |
170 |
\end{tabbing} |
\end{tabbing} |
171 |
|
|
172 |
|
\noindent |
173 |
{\bf clrdiag}: This subroutine initializes the values of model diagnostics to zero, and is |
{\bf clrdiag}: This subroutine initializes the values of model diagnostics to zero, and is |
174 |
particularly useful when called from user output routines to re-initialize diagnostics |
particularly useful when called from user output routines to re-initialize diagnostics |
175 |
during the run. The calling sequence is: |
during the run. The calling sequence is: |
176 |
|
|
177 |
|
\noindent |
178 |
\begin{tabbing} |
\begin{tabbing} |
179 |
XXXXXXXXX\=XXXXXX\= \kill |
XXXXXXXXX\=XXXXXX\= \kill |
180 |
\> call clrdiag (num) \\ |
\> call clrdiag (num) \\ |
182 |
where \> num \>= Diagnostic number from menu \\ |
where \> num \>= Diagnostic number from menu \\ |
183 |
\end{tabbing} |
\end{tabbing} |
184 |
|
|
185 |
|
\noindent |
186 |
{\bf zapdiag}: This entry into subroutine SETDIAG disables model diagnostics, meaning |
{\bf zapdiag}: This entry into subroutine SETDIAG disables model diagnostics, meaning |
187 |
that the diagnostic is no longer available to the user. The memory previously allocated |
that the diagnostic is no longer available to the user. The memory previously allocated |
188 |
to the diagnostic is released when ZAPDIAG is invoked. The calling sequence is given by: |
to the diagnostic is released when ZAPDIAG is invoked. The calling sequence is given by: |
189 |
|
|
190 |
|
\noindent |
191 |
\begin{tabbing} |
\begin{tabbing} |
192 |
XXXXXXXXX\=XXXXXX\= \kill |
XXXXXXXXX\=XXXXXX\= \kill |
193 |
\> call zapdiag (NUM) \\ |
\> call zapdiag (NUM) \\ |
195 |
where \> num \>= Diagnostic number from menu \\ |
where \> num \>= Diagnostic number from menu \\ |
196 |
\end{tabbing} |
\end{tabbing} |
197 |
|
|
198 |
{\bf diagsize}: We end this section with a discussion on the manner in which computer |
|
199 |
memory is allocated for diagnostics. All GCM diagnostic quantities are stored in the |
\subsection{Usage Notes} |
200 |
single diagnostic array QDIAG which is located in diagnostics.h, and has the form: |
\label{sec:diagnostics:usersguide} |
201 |
|
|
202 |
|
\noindent |
203 |
|
We begin this section with a discussion on the manner in which computer |
204 |
|
memory is allocated for diagnostics. All GCM diagnostic quantities are stored in the |
205 |
|
single diagnostic array QDIAG which is located in the file \\ |
206 |
|
\filelink{pkg/diagnostics/diagnostics.h}{pkg-diagnostics-diagnostics.h}. |
207 |
|
and has the form: |
208 |
|
|
209 |
common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy) |
common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy) |
210 |
|
|
211 |
where numdiags is an Integer variable which should be |
\noindent |
212 |
set equal to the number of enabled diagnostics, and qdiag is a three-dimensional |
where numdiags is an Integer variable which should be set equal to the number of |
213 |
array. The first two-dimensions of qdiag correspond to the horizontal dimension |
enabled diagnostics, and qdiag is a three-dimensional array. The first two-dimensions |
214 |
of a given diagnostic, while the third dimension of qdiag is used to identify |
of qdiag correspond to the horizontal dimension of a given diagnostic, while the third |
215 |
specific diagnostic types. |
dimension of qdiag is used to identify diagnostic fields and levels combined. In order |
216 |
In order to minimize the memory requirement of the model for diagnostics, |
to minimize the memory requirement of the model for diagnostics, the default GCM |
217 |
the default GCM executable is compiled with room for only one horizontal |
executable is compiled with room for only one horizontal diagnostic array, or with |
218 |
diagnostic array, as shown in the above example. |
numdiags set to 1. In order for the User to enable more than 1 two-dimensional diagnostic, |
|
In order for the User to enable more than 1 two-dimensional diagnostic, |
|
219 |
the size of the diagnostics common must be expanded to accomodate the desired diagnostics. |
the size of the diagnostics common must be expanded to accomodate the desired diagnostics. |
220 |
This can be accomplished by manually changing the parameter numdiags in the |
This can be accomplished by manually changing the parameter numdiags in the |
221 |
file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}, or by allowing the |
file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}. |
222 |
shell script (???????) to make this |
numdiags should be set greater than or equal to the sum of all the diagnostics activated |
223 |
change based on the choice of diagnostic output made in the namelist. |
for output each multiplied by the number of levels defined for that diagnostic quantity. |
224 |
|
This is illustrated in the example below: |
225 |
|
|
226 |
\subsection{Usage Notes} |
\noindent |
|
\label{sec:diagnostics:usersguide} |
|
227 |
To use the diagnostics package, other than enabling it in packages.conf |
To use the diagnostics package, other than enabling it in packages.conf |
228 |
and turning the usediagnostics flag in data.pkg to .TRUE., a namelist |
and turning the usediagnostics flag in data.pkg to .TRUE., a namelist |
229 |
must be supplied in the run directory called data.diagnostics. The namelist |
must be supplied in the run directory called data.diagnostics. The namelist |
231 |
specify the frequency of output, the number of levels, and the name of |
specify the frequency of output, the number of levels, and the name of |
232 |
up to 10 separate output files. A sample data.diagnostics namelist file: |
up to 10 separate output files. A sample data.diagnostics namelist file: |
233 |
|
|
234 |
$\#$ Diagnostic Package Choices |
\noindent |
235 |
$\&$diagnostics\_list |
$\#$ Diagnostic Package Choices \\ |
236 |
frequency(1) = 10, \ |
$\&$diagnostics\_list \\ |
237 |
levels(1,1) = 1.,2.,3.,4.,5., \ |
frequency(1) = 10, \ \\ |
238 |
fields(1,1) = 'UVEL ','VVEL ', \ |
levels(1,1) = 1.,2.,3.,4.,5., \ \\ |
239 |
filename(1) = 'diagout1', \ |
fields(1,1) = 'UVEL ','VVEL ', \ \\ |
240 |
frequency(2) = 100, \ |
filename(1) = 'diagout1', \ \\ |
241 |
levels(1,2) = 1.,2.,3.,4.,5., \ |
frequency(2) = 100, \ \\ |
242 |
fields(1,2) = 'THETA ','SALT ', \ |
levels(1,2) = 1.,2.,3.,4.,5., \ \\ |
243 |
filename(2) = 'diagout2', \ |
fields(1,2) = 'THETA ','SALT ', \ \\ |
244 |
$\&$end \ |
filename(2) = 'diagout2', \ \\ |
245 |
|
$\&$end \ \\ |
246 |
|
|
247 |
|
\noindent |
248 |
In this example, there are two output files that will be generated |
In this example, there are two output files that will be generated |
249 |
for each tile and for each output time. The first set of output files |
for each tile and for each output time. The first set of output files |
250 |
has the prefix diagout1, does time averaging every 10 time steps, |
has the prefix diagout1, does time averaging every 10 time steps |
251 |
for fields which are multiple-level fields the levels output are 1-5, |
(frequency is 10), they will write fields which are multiple-level |
252 |
and the names of diagnostics quantities are UVEL and VVEL. |
fields and output levels 1-5. The names of diagnostics quantities are |
253 |
The second set of output files |
UVEL and VVEL. The second set of output files |
254 |
has the prefix diagout2, does time averaging every 100 time steps, |
has the prefix diagout2, does time averaging every 100 time steps, |
255 |
for fields which are multiple-level fields the levels output are 1-5, |
they include fields which are multiple-level fields, levels output are 1-5, |
256 |
and the names of diagnostics quantities are THETA and SALT. |
and the names of diagnostics quantities are THETA and SALT. |
257 |
|
|
258 |
|
\noindent |
259 |
|
In order to define and include as part of the diagnostic output any field |
260 |
|
that is desired for a particular experiment, two steps must be taken. The |
261 |
|
first is to enable the ``User Diagnostic'' in data.diagnostics. This is |
262 |
|
accomplished by setting one of the fields slots to either UDIAG1 through |
263 |
|
UDIAG10, for multi-level fields, or SDIAG1 through SDIAG10 for single level |
264 |
|
fields. These are listed in the diagnostics menu. The second step is to |
265 |
|
add a call to fill\_diagnostics from the subroutine in which the quantity |
266 |
|
desired for diagnostic output is computed. |
267 |
|
|
268 |
\newpage |
\newpage |
269 |
|
|
270 |
\subsubsection{GCM Diagnostic Menu} |
\subsubsection{GCM Diagnostic Menu} |
376 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
377 |
{Turbulent Flux of Sensible Heat} |
{Turbulent Flux of Sensible Heat} |
378 |
\end{minipage}\\ |
\end{minipage}\\ |
379 |
|
\end{tabular} |
380 |
|
|
381 |
|
\newpage |
382 |
|
\vspace*{\fill} |
383 |
|
\begin{tabular}{lllll} |
384 |
|
\hline\hline |
385 |
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
386 |
|
\hline |
387 |
|
|
388 |
|
&\\ |
389 |
26 & TQFLUX & $Watts/m^2$ & Nrphys |
26 & TQFLUX & $Watts/m^2$ & Nrphys |
390 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
391 |
{Turbulent Flux of Latent Heat} |
{Turbulent Flux of Latent Heat} |
415 |
{Ground temperature adjustment} |
{Ground temperature adjustment} |
416 |
\end{minipage}\\ |
\end{minipage}\\ |
417 |
|
|
|
\end{tabular} |
|
|
|
|
|
\newpage |
|
|
\vspace*{\fill} |
|
|
\begin{tabular}{lllll} |
|
|
\hline\hline |
|
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
|
|
\hline |
|
|
|
|
|
&\\ |
|
418 |
33 & QG & $g/kg$ & 1 |
33 & QG & $g/kg$ & 1 |
419 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
420 |
{Ground specific humidity} |
{Ground specific humidity} |
423 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
424 |
{Saturation surface specific humidity} |
{Saturation surface specific humidity} |
425 |
\end{minipage}\\ |
\end{minipage}\\ |
|
|
|
|
&\\ |
|
426 |
35 & TGRLW & $deg$ & 1 |
35 & TGRLW & $deg$ & 1 |
427 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
428 |
{Instantaneous ground temperature used as input to the |
{Instantaneous ground temperature used as input to the |
473 |
{Total cloud fraction used in the Longwave and Shortwave radiation |
{Total cloud fraction used in the Longwave and Shortwave radiation |
474 |
subroutines} |
subroutines} |
475 |
\end{minipage}\\ |
\end{minipage}\\ |
476 |
46 & RADSWT & $Watts/m^2$ & 1 |
46 & LWGDOWN & $Watts/m^2$ & 1 |
477 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
478 |
{Incident Shortwave radiation at the top of the atmosphere} |
{Downwelling Longwave radiation at the ground} |
479 |
\end{minipage}\\ |
\end{minipage}\\ |
480 |
47 & CLROSW & $0-1$ & Nrphys |
47 & GWDT & $deg/day$ & Nrphys |
481 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
482 |
{Random overlap cloud fraction used in the shortwave radiation |
{Temperature tendency due to Gravity Wave Drag} |
|
subroutine} |
|
483 |
\end{minipage}\\ |
\end{minipage}\\ |
484 |
48 & CLMOSW & $0-1$ & Nrphys |
48 & RADSWT & $Watts/m^2$ & 1 |
485 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
486 |
{Maximum overlap cloud fraction used in the shortwave radiation |
{Incident Shortwave radiation at the top of the atmosphere} |
|
subroutine} |
|
487 |
\end{minipage}\\ |
\end{minipage}\\ |
488 |
49 & EVAP & $mm/day$ & 1 |
49 & TAUCLD & $per 100 mb$ & Nrphys |
489 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
490 |
{Surface evaporation} |
{Counted Cloud Optical Depth (non-dimensional) per 100 mb} |
491 |
|
\end{minipage}\\ |
492 |
|
50 & TAUCLDC & $Number$ & Nrphys |
493 |
|
&\begin{minipage}[t]{3in} |
494 |
|
{Cloud Optical Depth Counter} |
495 |
\end{minipage}\\ |
\end{minipage}\\ |
496 |
\end{tabular} |
\end{tabular} |
497 |
\vfill |
\vfill |
504 |
\hline |
\hline |
505 |
|
|
506 |
&\\ |
&\\ |
507 |
50 & DUDT & $m/sec/day$ & Nrphys |
51 & CLDLOW & $0-1$ & Nrphys |
508 |
|
&\begin{minipage}[t]{3in} |
509 |
|
{Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)} |
510 |
|
\end{minipage}\\ |
511 |
|
52 & EVAP & $mm/day$ & 1 |
512 |
|
&\begin{minipage}[t]{3in} |
513 |
|
{Surface evaporation} |
514 |
|
\end{minipage}\\ |
515 |
|
53 & DPDT & $hPa/day$ & 1 |
516 |
|
&\begin{minipage}[t]{3in} |
517 |
|
{Surface Pressure tendency} |
518 |
|
\end{minipage}\\ |
519 |
|
54 & UAVE & $m/sec$ & Nrphys |
520 |
|
&\begin{minipage}[t]{3in} |
521 |
|
{Average U-Wind} |
522 |
|
\end{minipage}\\ |
523 |
|
55 & VAVE & $m/sec$ & Nrphys |
524 |
|
&\begin{minipage}[t]{3in} |
525 |
|
{Average V-Wind} |
526 |
|
\end{minipage}\\ |
527 |
|
56 & TAVE & $deg$ & Nrphys |
528 |
|
&\begin{minipage}[t]{3in} |
529 |
|
{Average Temperature} |
530 |
|
\end{minipage}\\ |
531 |
|
57 & QAVE & $g/kg$ & Nrphys |
532 |
|
&\begin{minipage}[t]{3in} |
533 |
|
{Average Specific Humidity} |
534 |
|
\end{minipage}\\ |
535 |
|
58 & OMEGA & $hPa/day$ & Nrphys |
536 |
|
&\begin{minipage}[t]{3in} |
537 |
|
{Vertical Velocity} |
538 |
|
\end{minipage}\\ |
539 |
|
59 & DUDT & $m/sec/day$ & Nrphys |
540 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
541 |
{Total U-Wind tendency} |
{Total U-Wind tendency} |
542 |
\end{minipage}\\ |
\end{minipage}\\ |
543 |
51 & DVDT & $m/sec/day$ & Nrphys |
60 & DVDT & $m/sec/day$ & Nrphys |
544 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
545 |
{Total V-Wind tendency} |
{Total V-Wind tendency} |
546 |
\end{minipage}\\ |
\end{minipage}\\ |
547 |
52 & DTDT & $deg/day$ & Nrphys |
61 & DTDT & $deg/day$ & Nrphys |
548 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
549 |
{Total Temperature tendency} |
{Total Temperature tendency} |
550 |
\end{minipage}\\ |
\end{minipage}\\ |
551 |
53 & DQDT & $g/kg/day$ & Nrphys |
62 & DQDT & $g/kg/day$ & Nrphys |
552 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
553 |
{Total Specific Humidity tendency} |
{Total Specific Humidity tendency} |
554 |
\end{minipage}\\ |
\end{minipage}\\ |
555 |
54 & USTAR & $m/sec$ & 1 |
63 & VORT & $10^{-4}/sec$ & Nrphys |
556 |
|
&\begin{minipage}[t]{3in} |
557 |
|
{Relative Vorticity} |
558 |
|
\end{minipage}\\ |
559 |
|
64 & NOT USED & $$ & |
560 |
|
&\begin{minipage}[t]{3in} |
561 |
|
{} |
562 |
|
\end{minipage}\\ |
563 |
|
65 & DTLS & $deg/day$ & Nrphys |
564 |
|
&\begin{minipage}[t]{3in} |
565 |
|
{Temperature tendency due to Stratiform Cloud Formation} |
566 |
|
\end{minipage}\\ |
567 |
|
66 & DQLS & $g/kg/day$ & Nrphys |
568 |
|
&\begin{minipage}[t]{3in} |
569 |
|
{Specific Humidity tendency due to Stratiform Cloud Formation} |
570 |
|
\end{minipage}\\ |
571 |
|
67 & USTAR & $m/sec$ & 1 |
572 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
573 |
{Surface USTAR wind} |
{Surface USTAR wind} |
574 |
\end{minipage}\\ |
\end{minipage}\\ |
575 |
55 & Z0 & $m$ & 1 |
68 & Z0 & $m$ & 1 |
576 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
577 |
{Surface roughness} |
{Surface roughness} |
578 |
\end{minipage}\\ |
\end{minipage}\\ |
579 |
56 & FRQTRB & $0-1$ & Nrphys-1 |
69 & FRQTRB & $0-1$ & Nrphys-1 |
580 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
581 |
{Frequency of Turbulence} |
{Frequency of Turbulence} |
582 |
\end{minipage}\\ |
\end{minipage}\\ |
583 |
57 & PBL & $mb$ & 1 |
70 & PBL & $mb$ & 1 |
584 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
585 |
{Planetary Boundary Layer depth} |
{Planetary Boundary Layer depth} |
586 |
\end{minipage}\\ |
\end{minipage}\\ |
587 |
58 & SWCLR & $deg/day$ & Nrphys |
71 & SWCLR & $deg/day$ & Nrphys |
588 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
589 |
{Net clearsky Shortwave heating rate for each level} |
{Net clearsky Shortwave heating rate for each level} |
590 |
\end{minipage}\\ |
\end{minipage}\\ |
591 |
59 & OSR & $Watts/m^2$ & 1 |
72 & OSR & $Watts/m^2$ & 1 |
592 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
593 |
{Net downward Shortwave flux at the top of the model} |
{Net downward Shortwave flux at the top of the model} |
594 |
\end{minipage}\\ |
\end{minipage}\\ |
595 |
60 & OSRCLR & $Watts/m^2$ & 1 |
73 & OSRCLR & $Watts/m^2$ & 1 |
596 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
597 |
{Net downward clearsky Shortwave flux at the top of the model} |
{Net downward clearsky Shortwave flux at the top of the model} |
598 |
\end{minipage}\\ |
\end{minipage}\\ |
599 |
61 & CLDMAS & $kg / m^2$ & Nrphys |
74 & CLDMAS & $kg / m^2$ & Nrphys |
600 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
601 |
{Convective cloud mass flux} |
{Convective cloud mass flux} |
602 |
\end{minipage}\\ |
\end{minipage}\\ |
603 |
62 & UAVE & $m/sec$ & Nrphys |
75 & UAVE & $m/sec$ & Nrphys |
604 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
605 |
{Time-averaged $u-Wind$} |
{Time-averaged $u-Wind$} |
606 |
\end{minipage}\\ |
\end{minipage}\\ |
607 |
63 & VAVE & $m/sec$ & Nrphys |
\end{tabular} |
608 |
|
\vfill |
609 |
|
|
610 |
|
\newpage |
611 |
|
\vspace*{\fill} |
612 |
|
\begin{tabular}{lllll} |
613 |
|
\hline\hline |
614 |
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
615 |
|
\hline |
616 |
|
|
617 |
|
&\\ |
618 |
|
76 & VAVE & $m/sec$ & Nrphys |
619 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
620 |
{Time-averaged $v-Wind$} |
{Time-averaged $v-Wind$} |
621 |
\end{minipage}\\ |
\end{minipage}\\ |
622 |
64 & TAVE & $deg$ & Nrphys |
77 & TAVE & $deg$ & Nrphys |
623 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
624 |
{Time-averaged $Temperature$} |
{Time-averaged $Temperature$} |
625 |
\end{minipage}\\ |
\end{minipage}\\ |
626 |
65 & QAVE & $g/g$ & Nrphys |
78 & QAVE & $g/g$ & Nrphys |
627 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
628 |
{Time-averaged $Specific \, \, Humidity$} |
{Time-averaged $Specific \, \, Humidity$} |
629 |
\end{minipage}\\ |
\end{minipage}\\ |
630 |
66 & PAVE & $mb$ & 1 |
79 & RFT & $deg/day$ & Nrphys |
631 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
632 |
{Time-averaged $p_{surf} - p_{top}$} |
{Temperature tendency due Rayleigh Friction} |
633 |
\end{minipage}\\ |
\end{minipage}\\ |
634 |
67 & QQAVE & $(m/sec)^2$ & Nrphys |
80 & PS & $mb$ & 1 |
635 |
|
&\begin{minipage}[t]{3in} |
636 |
|
{Surface Pressure} |
637 |
|
\end{minipage}\\ |
638 |
|
81 & QQAVE & $(m/sec)^2$ & Nrphys |
639 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
640 |
{Time-averaged $Turbulent Kinetic Energy$} |
{Time-averaged $Turbulent Kinetic Energy$} |
641 |
\end{minipage}\\ |
\end{minipage}\\ |
642 |
68 & SWGCLR & $Watts/m^2$ & 1 |
82 & SWGCLR & $Watts/m^2$ & 1 |
643 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
644 |
{Net downward clearsky Shortwave flux at the ground} |
{Net downward clearsky Shortwave flux at the ground} |
645 |
\end{minipage}\\ |
\end{minipage}\\ |
646 |
69 & SDIAG1 & & 1 |
83 & PAVE & $mb$ & 1 |
647 |
|
&\begin{minipage}[t]{3in} |
648 |
|
{Time-averaged Surface Pressure} |
649 |
|
\end{minipage}\\ |
650 |
|
84 & SDIAG1 & & 1 |
651 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
652 |
{User-Defined Surface Diagnostic-1} |
{User-Defined Surface Diagnostic-1} |
653 |
\end{minipage}\\ |
\end{minipage}\\ |
654 |
70 & SDIAG2 & & 1 |
85 & SDIAG2 & & 1 |
655 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
656 |
{User-Defined Surface Diagnostic-2} |
{User-Defined Surface Diagnostic-2} |
657 |
\end{minipage}\\ |
\end{minipage}\\ |
658 |
71 & UDIAG1 & & Nrphys |
86 & UDIAG1 & & Nrphys |
659 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
660 |
{User-Defined Upper-Air Diagnostic-1} |
{User-Defined Upper-Air Diagnostic-1} |
661 |
\end{minipage}\\ |
\end{minipage}\\ |
662 |
72 & UDIAG2 & & Nrphys |
87 & UDIAG2 & & Nrphys |
663 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
664 |
{User-Defined Upper-Air Diagnostic-2} |
{User-Defined Upper-Air Diagnostic-2} |
665 |
\end{minipage}\\ |
\end{minipage}\\ |
666 |
73 & DIABU & $m/sec/day$ & Nrphys |
88 & DIABU & $m/sec/day$ & Nrphys |
667 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
668 |
{Total Diabatic forcing on $u-Wind$} |
{Total Diabatic forcing on $u-Wind$} |
669 |
\end{minipage}\\ |
\end{minipage}\\ |
670 |
74 & DIABV & $m/sec/day$ & Nrphys |
89 & DIABV & $m/sec/day$ & Nrphys |
671 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
672 |
{Total Diabatic forcing on $v-Wind$} |
{Total Diabatic forcing on $v-Wind$} |
673 |
\end{minipage}\\ |
\end{minipage}\\ |
674 |
75 & DIABT & $deg/day$ & Nrphys |
90 & DIABT & $deg/day$ & Nrphys |
675 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
676 |
{Total Diabatic forcing on $Temperature$} |
{Total Diabatic forcing on $Temperature$} |
677 |
\end{minipage}\\ |
\end{minipage}\\ |
678 |
76 & DIABQ & $g/kg/day$ & Nrphys |
91 & DIABQ & $g/kg/day$ & Nrphys |
679 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
680 |
{Total Diabatic forcing on $Specific \, \, Humidity$} |
{Total Diabatic forcing on $Specific \, \, Humidity$} |
681 |
\end{minipage}\\ |
\end{minipage}\\ |
682 |
|
92 & RFU & $m/sec/day$ & Nrphys |
683 |
|
&\begin{minipage}[t]{3in} |
684 |
|
{U-Wind tendency due to Rayleigh Friction} |
685 |
|
\end{minipage}\\ |
686 |
|
93 & RFV & $m/sec/day$ & Nrphys |
687 |
|
&\begin{minipage}[t]{3in} |
688 |
|
{V-Wind tendency due to Rayleigh Friction} |
689 |
|
\end{minipage}\\ |
690 |
|
94 & GWDU & $m/sec/day$ & Nrphys |
691 |
|
&\begin{minipage}[t]{3in} |
692 |
|
{U-Wind tendency due to Gravity Wave Drag} |
693 |
|
\end{minipage}\\ |
694 |
|
95 & GWDU & $m/sec/day$ & Nrphys |
695 |
|
&\begin{minipage}[t]{3in} |
696 |
|
{V-Wind tendency due to Gravity Wave Drag} |
697 |
|
\end{minipage}\\ |
698 |
|
96 & GWDUS & $N/m^2$ & 1 |
699 |
|
&\begin{minipage}[t]{3in} |
700 |
|
{U-Wind Gravity Wave Drag Stress at Surface} |
701 |
|
\end{minipage}\\ |
702 |
|
97 & GWDVS & $N/m^2$ & 1 |
703 |
|
&\begin{minipage}[t]{3in} |
704 |
|
{V-Wind Gravity Wave Drag Stress at Surface} |
705 |
|
\end{minipage}\\ |
706 |
|
98 & GWDUT & $N/m^2$ & 1 |
707 |
|
&\begin{minipage}[t]{3in} |
708 |
|
{U-Wind Gravity Wave Drag Stress at Top} |
709 |
|
\end{minipage}\\ |
710 |
|
99 & GWDVT & $N/m^2$ & 1 |
711 |
|
&\begin{minipage}[t]{3in} |
712 |
|
{V-Wind Gravity Wave Drag Stress at Top} |
713 |
|
\end{minipage}\\ |
714 |
|
100& LZRAD & $mg/kg$ & Nrphys |
715 |
|
&\begin{minipage}[t]{3in} |
716 |
|
{Estimated Cloud Liquid Water used in Radiation} |
717 |
|
\end{minipage}\\ |
718 |
\end{tabular} |
\end{tabular} |
719 |
\vfill |
\vfill |
720 |
|
|
725 |
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
726 |
\hline |
\hline |
727 |
|
|
728 |
77 & VINTUQ & $m/sec \cdot g/kg$ & 1 |
&\\ |
729 |
|
101& SLP & $mb$ & 1 |
730 |
|
&\begin{minipage}[t]{3in} |
731 |
|
{Time-averaged Sea-level Pressure} |
732 |
|
\end{minipage}\\ |
733 |
|
102& NOT USED & $$ & |
734 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
735 |
{Vertically integrated $u \, q$} |
{} |
736 |
\end{minipage}\\ |
\end{minipage}\\ |
737 |
78 & VINTVQ & $m/sec \cdot g/kg$ & 1 |
103& NOT USED & $$ & |
738 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
739 |
{Vertically integrated $v \, q$} |
{} |
740 |
\end{minipage}\\ |
\end{minipage}\\ |
741 |
79 & VINTUT & $m/sec \cdot deg$ & 1 |
104& NOT USED & $$ & |
742 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
743 |
{Vertically integrated $u \, T$} |
{} |
744 |
\end{minipage}\\ |
\end{minipage}\\ |
745 |
80 & VINTVT & $m/sec \cdot deg$ & 1 |
105& NOT USED & $$ & |
746 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
747 |
{Vertically integrated $v \, T$} |
{} |
748 |
\end{minipage}\\ |
\end{minipage}\\ |
749 |
81 & CLDFRC & $0-1$ & 1 |
106& CLDFRC & $0-1$ & 1 |
750 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
751 |
{Total Cloud Fraction} |
{Total Cloud Fraction} |
752 |
\end{minipage}\\ |
\end{minipage}\\ |
753 |
82 & QINT & $gm/cm^2$ & 1 |
107& TPW & $gm/cm^2$ & 1 |
754 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
755 |
{Precipitable water} |
{Precipitable water} |
756 |
\end{minipage}\\ |
\end{minipage}\\ |
757 |
83 & U2M & $m/sec$ & 1 |
108& U2M & $m/sec$ & 1 |
758 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
759 |
{U-Wind at 2 meters} |
{U-Wind at 2 meters} |
760 |
\end{minipage}\\ |
\end{minipage}\\ |
761 |
84 & V2M & $m/sec$ & 1 |
109& V2M & $m/sec$ & 1 |
762 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
763 |
{V-Wind at 2 meters} |
{V-Wind at 2 meters} |
764 |
\end{minipage}\\ |
\end{minipage}\\ |
765 |
85 & T2M & $deg$ & 1 |
110& T2M & $deg$ & 1 |
766 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
767 |
{Temperature at 2 meters} |
{Temperature at 2 meters} |
768 |
\end{minipage}\\ |
\end{minipage}\\ |
769 |
86 & Q2M & $g/kg$ & 1 |
111& Q2M & $g/kg$ & 1 |
770 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
771 |
{Specific Humidity at 2 meters} |
{Specific Humidity at 2 meters} |
772 |
\end{minipage}\\ |
\end{minipage}\\ |
773 |
87 & U10M & $m/sec$ & 1 |
112& U10M & $m/sec$ & 1 |
774 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
775 |
{U-Wind at 10 meters} |
{U-Wind at 10 meters} |
776 |
\end{minipage}\\ |
\end{minipage}\\ |
777 |
88 & V10M & $m/sec$ & 1 |
113& V10M & $m/sec$ & 1 |
778 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
779 |
{V-Wind at 10 meters} |
{V-Wind at 10 meters} |
780 |
\end{minipage}\\ |
\end{minipage}\\ |
781 |
89 & T10M & $deg$ & 1 |
114& T10M & $deg$ & 1 |
782 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
783 |
{Temperature at 10 meters} |
{Temperature at 10 meters} |
784 |
\end{minipage}\\ |
\end{minipage}\\ |
785 |
90 & Q10M & $g/kg$ & 1 |
115& Q10M & $g/kg$ & 1 |
786 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
787 |
{Specific Humidity at 10 meters} |
{Specific Humidity at 10 meters} |
788 |
\end{minipage}\\ |
\end{minipage}\\ |
789 |
91 & DTRAIN & $kg/m^2$ & Nrphys |
116& DTRAIN & $kg/m^2$ & Nrphys |
790 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
791 |
{Detrainment Cloud Mass Flux} |
{Detrainment Cloud Mass Flux} |
792 |
\end{minipage}\\ |
\end{minipage}\\ |
793 |
92 & QFILL & $g/kg/day$ & Nrphys |
117& QFILL & $g/kg/day$ & Nrphys |
794 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
795 |
{Filling of negative specific humidity} |
{Filling of negative specific humidity} |
796 |
\end{minipage}\\ |
\end{minipage}\\ |
797 |
|
118& NOT USED & $$ & |
798 |
|
&\begin{minipage}[t]{3in} |
799 |
|
{} |
800 |
|
\end{minipage}\\ |
801 |
|
119& NOT USED & $$ & |
802 |
|
&\begin{minipage}[t]{3in} |
803 |
|
{} |
804 |
|
\end{minipage}\\ |
805 |
|
120& SHAPU & $m/sec/day$ & Nrphys |
806 |
|
&\begin{minipage}[t]{3in} |
807 |
|
{U-Wind tendency due to Shapiro Filter} |
808 |
|
\end{minipage}\\ |
809 |
|
121& SHAPV & $m/sec/day$ & Nrphys |
810 |
|
&\begin{minipage}[t]{3in} |
811 |
|
{V-Wind tendency due to Shapiro Filter} |
812 |
|
\end{minipage}\\ |
813 |
|
122& SHAPT & $deg/day$ & Nrphys |
814 |
|
&\begin{minipage}[t]{3in} |
815 |
|
{Temperature tendency due Shapiro Filter} |
816 |
|
\end{minipage}\\ |
817 |
|
123& SHAPQ & $g/kg/day$ & Nrphys |
818 |
|
&\begin{minipage}[t]{3in} |
819 |
|
{Specific Humidity tendency due to Shapiro Filter} |
820 |
|
\end{minipage}\\ |
821 |
|
124& SDIAG3 & & 1 |
822 |
|
&\begin{minipage}[t]{3in} |
823 |
|
{User-Defined Surface Diagnostic-3} |
824 |
|
\end{minipage}\\ |
825 |
|
125& SDIAG4 & & 1 |
826 |
|
&\begin{minipage}[t]{3in} |
827 |
|
{User-Defined Surface Diagnostic-4} |
828 |
|
\end{minipage}\\ |
829 |
|
\end{tabular} |
830 |
|
\vspace{1.5in} |
831 |
|
\vfill |
832 |
|
|
833 |
|
\newpage |
834 |
|
\vspace*{\fill} |
835 |
|
\begin{tabular}{lllll} |
836 |
|
\hline\hline |
837 |
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
838 |
|
\hline |
839 |
|
|
840 |
|
&\\ |
841 |
|
126& SDIAG5 & & 1 |
842 |
|
&\begin{minipage}[t]{3in} |
843 |
|
{User-Defined Surface Diagnostic-5} |
844 |
|
\end{minipage}\\ |
845 |
|
127& SDIAG6 & & 1 |
846 |
|
&\begin{minipage}[t]{3in} |
847 |
|
{User-Defined Surface Diagnostic-6} |
848 |
|
\end{minipage}\\ |
849 |
|
128& SDIAG7 & & 1 |
850 |
|
&\begin{minipage}[t]{3in} |
851 |
|
{User-Defined Surface Diagnostic-7} |
852 |
|
\end{minipage}\\ |
853 |
|
129& SDIAG8 & & 1 |
854 |
|
&\begin{minipage}[t]{3in} |
855 |
|
{User-Defined Surface Diagnostic-8} |
856 |
|
\end{minipage}\\ |
857 |
|
130& SDIAG9 & & 1 |
858 |
|
&\begin{minipage}[t]{3in} |
859 |
|
{User-Defined Surface Diagnostic-9} |
860 |
|
\end{minipage}\\ |
861 |
|
131& SDIAG10 & & 1 |
862 |
|
&\begin{minipage}[t]{3in} |
863 |
|
{User-Defined Surface Diagnostic-1-} |
864 |
|
\end{minipage}\\ |
865 |
|
132& UDIAG3 & & Nrphys |
866 |
|
&\begin{minipage}[t]{3in} |
867 |
|
{User-Defined Multi-Level Diagnostic-3} |
868 |
|
\end{minipage}\\ |
869 |
|
133& UDIAG4 & & Nrphys |
870 |
|
&\begin{minipage}[t]{3in} |
871 |
|
{User-Defined Multi-Level Diagnostic-4} |
872 |
|
\end{minipage}\\ |
873 |
|
134& UDIAG5 & & Nrphys |
874 |
|
&\begin{minipage}[t]{3in} |
875 |
|
{User-Defined Multi-Level Diagnostic-5} |
876 |
|
\end{minipage}\\ |
877 |
|
135& UDIAG6 & & Nrphys |
878 |
|
&\begin{minipage}[t]{3in} |
879 |
|
{User-Defined Multi-Level Diagnostic-6} |
880 |
|
\end{minipage}\\ |
881 |
|
136& UDIAG7 & & Nrphys |
882 |
|
&\begin{minipage}[t]{3in} |
883 |
|
{User-Defined Multi-Level Diagnostic-7} |
884 |
|
\end{minipage}\\ |
885 |
|
137& UDIAG8 & & Nrphys |
886 |
|
&\begin{minipage}[t]{3in} |
887 |
|
{User-Defined Multi-Level Diagnostic-8} |
888 |
|
\end{minipage}\\ |
889 |
|
138& UDIAG9 & & Nrphys |
890 |
|
&\begin{minipage}[t]{3in} |
891 |
|
{User-Defined Multi-Level Diagnostic-9} |
892 |
|
\end{minipage}\\ |
893 |
|
139& UDIAG10 & & Nrphys |
894 |
|
&\begin{minipage}[t]{3in} |
895 |
|
{User-Defined Multi-Level Diagnostic-10} |
896 |
|
\end{minipage}\\ |
897 |
|
\end{tabular} |
898 |
|
\vspace{1.5in} |
899 |
|
\vfill |
900 |
|
|
901 |
|
\newpage |
902 |
|
\vspace*{\fill} |
903 |
|
\begin{tabular}{lllll} |
904 |
|
\hline\hline |
905 |
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
906 |
|
\hline |
907 |
|
|
908 |
|
&\\ |
909 |
|
238& ETAN & $(hPa,m)$ & 1 |
910 |
|
&\begin{minipage}[t]{3in} |
911 |
|
{Perturbation of Surface (pressure, height)} |
912 |
|
\end{minipage}\\ |
913 |
|
239& ETANSQ & $(hPa^2,m^2)$ & 1 |
914 |
|
&\begin{minipage}[t]{3in} |
915 |
|
{Square of Perturbation of Surface (pressure, height)} |
916 |
|
\end{minipage}\\ |
917 |
|
240& THETA & $deg K$ & Nr |
918 |
|
&\begin{minipage}[t]{3in} |
919 |
|
{Potential Temperature} |
920 |
|
\end{minipage}\\ |
921 |
|
241& SALT & $g/kg$ & Nr |
922 |
|
&\begin{minipage}[t]{3in} |
923 |
|
{Salt (or Water Vapor Mixing Ratio)} |
924 |
|
\end{minipage}\\ |
925 |
|
242& UVEL & $m/sec$ & Nr |
926 |
|
&\begin{minipage}[t]{3in} |
927 |
|
{U-Velocity} |
928 |
|
\end{minipage}\\ |
929 |
|
243& VVEL & $m/sec$ & Nr |
930 |
|
&\begin{minipage}[t]{3in} |
931 |
|
{V-Velocity} |
932 |
|
\end{minipage}\\ |
933 |
|
244& WVEL & $m/sec$ & Nr |
934 |
|
&\begin{minipage}[t]{3in} |
935 |
|
{Vertical-Velocity} |
936 |
|
\end{minipage}\\ |
937 |
|
245& THETASQ & $deg^2$ & Nr |
938 |
|
&\begin{minipage}[t]{3in} |
939 |
|
{Square of Potential Temperature} |
940 |
|
\end{minipage}\\ |
941 |
|
246& SALTSQ & $g^2/{kg}^2$ & Nr |
942 |
|
&\begin{minipage}[t]{3in} |
943 |
|
{Square of Salt (or Water Vapor Mixing Ratio)} |
944 |
|
\end{minipage}\\ |
945 |
|
247& UVELSQ & $m^2/sec^2$ & Nr |
946 |
|
&\begin{minipage}[t]{3in} |
947 |
|
{Square of U-Velocity} |
948 |
|
\end{minipage}\\ |
949 |
|
248& VVELSQ & $m^2/sec^2$ & Nr |
950 |
|
&\begin{minipage}[t]{3in} |
951 |
|
{Square of V-Velocity} |
952 |
|
\end{minipage}\\ |
953 |
|
249& WVELSQ & $m^2/sec^2$ & Nr |
954 |
|
&\begin{minipage}[t]{3in} |
955 |
|
{Square of Vertical-Velocity} |
956 |
|
\end{minipage}\\ |
957 |
|
250& UVELVVEL & $m^2/sec^2$ & Nr |
958 |
|
&\begin{minipage}[t]{3in} |
959 |
|
{Meridional Transport of Zonal Momentum} |
960 |
|
\end{minipage}\\ |
961 |
|
\end{tabular} |
962 |
|
\vspace{1.5in} |
963 |
|
\vfill |
964 |
|
|
965 |
|
\newpage |
966 |
|
\vspace*{\fill} |
967 |
|
\begin{tabular}{lllll} |
968 |
|
\hline\hline |
969 |
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
970 |
|
\hline |
971 |
|
|
972 |
|
&\\ |
973 |
|
251& UVELMASS & $m/sec$ & Nr |
974 |
|
&\begin{minipage}[t]{3in} |
975 |
|
{Zonal Mass-Weighted Component of Velocity} |
976 |
|
\end{minipage}\\ |
977 |
|
252& VVELMASS & $m/sec$ & Nr |
978 |
|
&\begin{minipage}[t]{3in} |
979 |
|
{Meridional Mass-Weighted Component of Velocity} |
980 |
|
\end{minipage}\\ |
981 |
|
253& WVELMASS & $m/sec$ & Nr |
982 |
|
&\begin{minipage}[t]{3in} |
983 |
|
{Vertical Mass-Weighted Component of Velocity} |
984 |
|
\end{minipage}\\ |
985 |
|
254& UTHMASS & $m-deg/sec$ & Nr |
986 |
|
&\begin{minipage}[t]{3in} |
987 |
|
{Zonal Mass-Weight Transp of Pot Temp} |
988 |
|
\end{minipage}\\ |
989 |
|
255& VTHMASS & $m-deg/sec$ & Nr |
990 |
|
&\begin{minipage}[t]{3in} |
991 |
|
{Meridional Mass-Weight Transp of Pot Temp} |
992 |
|
\end{minipage}\\ |
993 |
|
256& WTHMASS & $m-deg/sec$ & Nr |
994 |
|
&\begin{minipage}[t]{3in} |
995 |
|
{Vertical Mass-Weight Transp of Pot Temp} |
996 |
|
\end{minipage}\\ |
997 |
|
257& USLTMASS & $m-kg/sec-kg$ & Nr |
998 |
|
&\begin{minipage}[t]{3in} |
999 |
|
{Zonal Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
1000 |
|
\end{minipage}\\ |
1001 |
|
258& VSLTMASS & $m-kg/sec-kg$ & Nr |
1002 |
|
&\begin{minipage}[t]{3in} |
1003 |
|
{Meridional Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
1004 |
|
\end{minipage}\\ |
1005 |
|
259& WSLTMASS & $m-kg/sec-kg$ & Nr |
1006 |
|
&\begin{minipage}[t]{3in} |
1007 |
|
{Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
1008 |
|
\end{minipage}\\ |
1009 |
|
260& UVELTH & $m-deg/sec$ & Nr |
1010 |
|
&\begin{minipage}[t]{3in} |
1011 |
|
{Zonal Transp of Pot Temp} |
1012 |
|
\end{minipage}\\ |
1013 |
|
261& VVELTH & $m-deg/sec$ & Nr |
1014 |
|
&\begin{minipage}[t]{3in} |
1015 |
|
{Meridional Transp of Pot Temp} |
1016 |
|
\end{minipage}\\ |
1017 |
|
262& WVELTH & $m-deg/sec$ & Nr |
1018 |
|
&\begin{minipage}[t]{3in} |
1019 |
|
{Vertical Transp of Pot Temp} |
1020 |
|
\end{minipage}\\ |
1021 |
|
263& UVELSLT & $m-kg/sec-kg$ & Nr |
1022 |
|
&\begin{minipage}[t]{3in} |
1023 |
|
{Zonal Transp of Salt (or W.Vap Mix Rat.)} |
1024 |
|
\end{minipage}\\ |
1025 |
|
264& VVELSLT & $m-kg/sec-kg$ & Nr |
1026 |
|
&\begin{minipage}[t]{3in} |
1027 |
|
{Meridional Transp of Salt (or W.Vap Mix Rat.)} |
1028 |
|
\end{minipage}\\ |
1029 |
|
265& WVELSLT & $m-kg/sec-kg$ & Nr |
1030 |
|
&\begin{minipage}[t]{3in} |
1031 |
|
{Vertical Transp of Salt (or W.Vap Mix Rat.)} |
1032 |
|
\end{minipage}\\ |
1033 |
|
266& UTRAC1 & $m-kg/sec-kg$ & Nr |
1034 |
|
&\begin{minipage}[t]{3in} |
1035 |
|
{Zonal Transp of Tracer 1} |
1036 |
|
\end{minipage}\\ |
1037 |
|
267& VTRAC1 & $m-kg/sec-kg$ & Nr |
1038 |
|
&\begin{minipage}[t]{3in} |
1039 |
|
{Meridional Transp of Tracer 1} |
1040 |
|
\end{minipage}\\ |
1041 |
|
268& WTRAC1 & $m-kg/sec-kg$ & Nr |
1042 |
|
&\begin{minipage}[t]{3in} |
1043 |
|
{Vertical Transp of Tracer 1} |
1044 |
|
\end{minipage}\\ |
1045 |
|
269& UTRAC2 & $m-kg/sec-kg$ & Nr |
1046 |
|
&\begin{minipage}[t]{3in} |
1047 |
|
{Zonal Transp of Tracer 2} |
1048 |
|
\end{minipage}\\ |
1049 |
|
270& VTRAC2 & $m-kg/sec-kg$ & Nr |
1050 |
|
&\begin{minipage}[t]{3in} |
1051 |
|
{Meridional Transp of Tracer 2} |
1052 |
|
\end{minipage}\\ |
1053 |
|
271& WTRAC2 & $m-kg/sec-kg$ & Nr |
1054 |
|
&\begin{minipage}[t]{3in} |
1055 |
|
{Vertical Transp of Tracer 2} |
1056 |
|
\end{minipage}\\ |
1057 |
|
272& UTRAC3 & $m-kg/sec-kg$ & Nr |
1058 |
|
&\begin{minipage}[t]{3in} |
1059 |
|
{Zonal Transp of Tracer 3} |
1060 |
|
\end{minipage}\\ |
1061 |
|
273& VTRAC3 & $m-kg/sec-kg$ & Nr |
1062 |
|
&\begin{minipage}[t]{3in} |
1063 |
|
{Meridional Transp of Tracer 3} |
1064 |
|
\end{minipage}\\ |
1065 |
|
274& WTRAC3 & $m-kg/sec-kg$ & Nr |
1066 |
|
&\begin{minipage}[t]{3in} |
1067 |
|
{Vertical Transp of Tracer 3} |
1068 |
|
\end{minipage}\\ |
1069 |
|
275& WSLTMASS & $m-kg/sec-kg$ & Nr |
1070 |
|
&\begin{minipage}[t]{3in} |
1071 |
|
{Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
1072 |
|
\end{minipage}\\ |
1073 |
|
\end{tabular} |
1074 |
|
\vspace{1.5in} |
1075 |
|
\vfill |
1076 |
|
|
1077 |
|
\newpage |
1078 |
|
\vspace*{\fill} |
1079 |
|
\begin{tabular}{lllll} |
1080 |
|
\hline\hline |
1081 |
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
1082 |
|
\hline |
1083 |
|
|
1084 |
|
&\\ |
1085 |
|
275& UTRAC4 & $m-kg/sec-kg$ & Nr |
1086 |
|
&\begin{minipage}[t]{3in} |
1087 |
|
{Zonal Transp of Tracer 4} |
1088 |
|
\end{minipage}\\ |
1089 |
|
276& VTRAC4 & $m-kg/sec-kg$ & Nr |
1090 |
|
&\begin{minipage}[t]{3in} |
1091 |
|
{Meridional Transp of Tracer 4} |
1092 |
|
\end{minipage}\\ |
1093 |
|
277& WTRAC4 & $m-kg/sec-kg$ & Nr |
1094 |
|
&\begin{minipage}[t]{3in} |
1095 |
|
{Vertical Transp of Tracer 4} |
1096 |
|
\end{minipage}\\ |
1097 |
|
278& UTRAC5 & $m-kg/sec-kg$ & Nr |
1098 |
|
&\begin{minipage}[t]{3in} |
1099 |
|
{Zonal Transp of Tracer 5} |
1100 |
|
\end{minipage}\\ |
1101 |
|
279& VTRAC5 & $m-kg/sec-kg$ & Nr |
1102 |
|
&\begin{minipage}[t]{3in} |
1103 |
|
{Meridional Transp of Tracer 5} |
1104 |
|
\end{minipage}\\ |
1105 |
|
280& WTRAC5 & $m-kg/sec-kg$ & Nr |
1106 |
|
&\begin{minipage}[t]{3in} |
1107 |
|
{Vertical Transp of Tracer 5} |
1108 |
|
\end{minipage}\\ |
1109 |
|
281& TRAC1 & $kg/kg$ & Nr |
1110 |
|
&\begin{minipage}[t]{3in} |
1111 |
|
{Mass-Weight Tracer 1} |
1112 |
|
\end{minipage}\\ |
1113 |
|
282& TRAC2 & $kg/kg$ & Nr |
1114 |
|
&\begin{minipage}[t]{3in} |
1115 |
|
{Mass-Weight Tracer 2} |
1116 |
|
\end{minipage}\\ |
1117 |
|
283& TRAC3 & $kg/kg$ & Nr |
1118 |
|
&\begin{minipage}[t]{3in} |
1119 |
|
{Mass-Weight Tracer 3} |
1120 |
|
\end{minipage}\\ |
1121 |
|
284& TRAC4 & $kg/kg$ & Nr |
1122 |
|
&\begin{minipage}[t]{3in} |
1123 |
|
{Mass-Weight Tracer 4} |
1124 |
|
\end{minipage}\\ |
1125 |
|
285& TRAC5 & $kg/kg$ & Nr |
1126 |
|
&\begin{minipage}[t]{3in} |
1127 |
|
{Mass-Weight Tracer 5} |
1128 |
|
\end{minipage}\\ |
1129 |
|
286& DICBIOA & $mol/m3/s$ & Nr |
1130 |
|
&\begin{minipage}[t]{3in} |
1131 |
|
{Biological Productivity} |
1132 |
|
\end{minipage}\\ |
1133 |
|
287& DICCARB & $mol eq/m3/s$ & Nr |
1134 |
|
&\begin{minipage}[t]{3in} |
1135 |
|
{Carbonate chg-biol prod and remin} |
1136 |
|
\end{minipage}\\ |
1137 |
|
288& DICTFLX & $mol/m3/s$ & 1 |
1138 |
|
&\begin{minipage}[t]{3in} |
1139 |
|
{Tendency of DIC due to air-sea exch} |
1140 |
|
\end{minipage}\\ |
1141 |
|
289& DICOFLX & $mol/m3/s$ & 1 |
1142 |
|
&\begin{minipage}[t]{3in} |
1143 |
|
{Tendency of O2 due to air-sea exch} |
1144 |
|
\end{minipage}\\ |
1145 |
|
290& DICCFLX & $mol/m2/s$ & 1 |
1146 |
|
&\begin{minipage}[t]{3in} |
1147 |
|
{Flux of CO2 - air-sea exch} |
1148 |
|
\end{minipage}\\ |
1149 |
|
291& DICPCO2 & $atm$ & 1 |
1150 |
|
&\begin{minipage}[t]{3in} |
1151 |
|
{Partial Pressure of CO2} |
1152 |
|
\end{minipage}\\ |
1153 |
|
292& DICPHAV & $dimensionless$ & 1 |
1154 |
|
&\begin{minipage}[t]{3in} |
1155 |
|
{Average pH} |
1156 |
|
\end{minipage}\\ |
1157 |
|
293& DTCONV & $deg/sec$ & Nr |
1158 |
|
&\begin{minipage}[t]{3in} |
1159 |
|
{Temp Change due to Convection} |
1160 |
|
\end{minipage}\\ |
1161 |
|
294& DQCONV & $g/kg/sec$ & Nr |
1162 |
|
&\begin{minipage}[t]{3in} |
1163 |
|
{Specific Humidity Change due to Convection} |
1164 |
|
\end{minipage}\\ |
1165 |
|
295& RELHUM & $percent$ & Nr |
1166 |
|
&\begin{minipage}[t]{3in} |
1167 |
|
{Relative Humidity} |
1168 |
|
\end{minipage}\\ |
1169 |
|
296& PRECLS & $g/m^2/sec$ & 1 |
1170 |
|
&\begin{minipage}[t]{3in} |
1171 |
|
{Large Scale Precipitation} |
1172 |
|
\end{minipage}\\ |
1173 |
|
297& ENPREC & $J/g$ & 1 |
1174 |
|
&\begin{minipage}[t]{3in} |
1175 |
|
{Energy of Precipitation (snow, rain Temp)} |
1176 |
|
\end{minipage}\\ |
1177 |
|
298& VISCA4 & $m^4/sec$ & 1 |
1178 |
|
&\begin{minipage}[t]{3in} |
1179 |
|
{Biharmonic Viscosity Coefficient} |
1180 |
|
\end{minipage}\\ |
1181 |
|
299& VISCAH & $m^2/sec$ & 1 |
1182 |
|
&\begin{minipage}[t]{3in} |
1183 |
|
{Harmonic Viscosity Coefficient} |
1184 |
|
\end{minipage}\\ |
1185 |
|
300& DRHODR & $kg/m^3/{r-unit}$ & Nr |
1186 |
|
&\begin{minipage}[t]{3in} |
1187 |
|
{Stratification: d.Sigma/dr} |
1188 |
|
\end{minipage}\\ |
1189 |
|
\end{tabular} |
1190 |
|
\vspace{1.5in} |
1191 |
|
\vfill |
1192 |
|
|
1193 |
|
\newpage |
1194 |
|
\vspace*{\fill} |
1195 |
|
\begin{tabular}{lllll} |
1196 |
|
\hline\hline |
1197 |
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
1198 |
|
\hline |
1199 |
|
|
1200 |
|
&\\ |
1201 |
|
301& DETADT2 & ${r-unit}^2/s^2$ & 1 |
1202 |
|
&\begin{minipage}[t]{3in} |
1203 |
|
{Square of Eta (Surf.P,SSH) Tendency} |
1204 |
|
\end{minipage}\\ |
1205 |
\end{tabular} |
\end{tabular} |
1206 |
\vspace{1.5in} |
\vspace{1.5in} |
1207 |
\vfill |
\vfill |