/[MITgcm]/manual/s_phys_pkgs/diagnostics.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/diagnostics.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (show annotations) (download) (as text)
Wed Jan 28 21:00:10 2004 UTC (21 years, 6 months ago) by molod
Branch: MAIN
File MIME type: application/x-tex
Description of diagnostics package

1 \section{Diagnostics-Flexible model infrastructure for diagnostic (instananeous or time averaged) output}
2
3 \subsection{Introduction}
4
5 This section of the documentation describes the Diagnostics Utilities available within the GCM.
6 In addition to
7 a description on how to set and extract diagnostic quantities, this document also provides a
8 comprehensive list of all available diagnostic quantities and a short description of how they are
9 computed. It should be noted that this document is not intended to be a complete documentation
10 of the various packages used in the GCM, and the reader should
11 refer to original publications for further insight.
12
13
14 \subsection{Equations}
15 Not relevant.
16
17 \subsection{Key Subroutines and Parameters}
18 \label{sec:diagnostics:diagover}
19
20 A large selection of model diagnostics is available in the GCM. At the time of
21 this writing there are 92 different diagnostic quantities which can be enabled for an
22 experiment. As a matter of philosophy, no diagnostic is enabled as default, thus each user must
23 specify the exact diagnostic information required for an experiment. This is accomplished by
24 enabling the specific diagnostic of interest cataloged in the
25 Diagnostic Menu (see Section \ref{sec:diagnostics:menu}).
26 The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within the
27 GCM. Diagnostics are internally referred to by their associated number in the Diagnostic
28 Menu. Once a diagnostic is enabled, the GCM will continually increment an array
29 specifically allocated for that diagnostic whenever the associated process for the diagnostic is
30 computed. Separate arrays are used both for the diagnostic quantity and its diagnostic counter
31 which records how many times each diagnostic quantity has been computed. In addition
32 special diagnostics, called
33 ``Counter Diagnostics'', records the frequency of diagnostic updates separately for each
34 model grid location.
35
36 The diagnostics are computed at various times and places within the GCM.
37 Some diagnostics are computed on the geophysical A-grid (such as
38 those within the Physics routines), while others are computed on the C-grid
39 (those computed during the dynamics time-stepping). Some diagnostics are
40 scalars, while others are vectors. Each of these possibilities requires
41 separate tasks for A-grid to C-grid transformations and coordinate transformations. Due
42 to this complexity, and since the specific diagnostics enabled are User determined at the
43 time of the run,
44 a diagnostic parameter has been developed and implemented into the GCM, defined as GDIAG,
45 which contains information concerning various grid attributes of each diagnostic. The GDIAG
46 array is internally defined as a character*8 variable, and is equivalenced to
47 a character*1 "parse" array in output in order to extract the grid-attribute information.
48 The GDIAG array is described in Table \ref{tab:diagnostics:gdiag.tabl}.
49
50 \begin{table}
51 \caption{Diagnostic Parsing Array}
52 \label{tab:diagnostics:gdiag.tabl}
53 \begin{center}
54 \begin{tabular}{ |c|c|l| }
55 \hline
56 \multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\
57 \hline
58 \hline
59 Array & Value & Description \\
60 \hline
61 parse(1) & $\rightarrow$ S & Scalar Diagnostic \\
62 & $\rightarrow$ U & U-vector component Diagnostic \\
63 & $\rightarrow$ V & V-vector component Diagnostic \\ \hline
64 parse(2) & $\rightarrow$ U & C-Grid U-Point \\
65 & $\rightarrow$ V & C-Grid V-Point \\
66 & $\rightarrow$ M & C-Grid Mass Point \\
67 & $\rightarrow$ Z & C-Grid Vorticity Point \\ \hline
68 parse(3) & $\rightarrow$ R & Computed on the Rotated Grid \\
69 & $\rightarrow$ G & Computed on the Geophysical Grid \\ \hline
70 parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline
71 parse(5) & $\rightarrow$ C & Counter Diagnostic \\
72 & $\rightarrow$ D & Disabled Diagnostic for output \\ \hline
73 parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\
74 & & vector or counter component mate \\ \hline
75 \end{tabular}
76 \addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array}
77 \end{center}
78 \end{table}
79
80 As an example, consider a diagnostic whose associated GDIAG parameter is equal
81 to ``UUR 002''. From GDIAG we can determine that this diagnostic is a
82 U-vector component located at the C-grid U-point within the Rotated framework.
83 Its corresponding V-component diagnostic is located in Diagnostic \# 002.
84
85 In this way, each Diagnostic in the model has its attributes (ie. vector or scalar,
86 rotated or geophysical, A-Grid or C-grid, etc.) defined internally. The Output routines
87 use this information in order to determine
88 what type of rotations and/or transformations need to be performed. Thus, all Diagnostic
89 interpolations are done at the time of output rather than during each model dynamic step.
90 In this way the User now has more flexibility
91 in determining the type of gridded data which is output.
92
93 There are several utilities within the GCM available to users to enable, disable,
94 clear, and retrieve model diagnostics, and may be called from any user-supplied application
95 and/or output routine. The available utilities and the CALL sequences are listed below.
96
97
98 {\bf SETDIAG}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning that
99 space is allocated for the diagnostic and the
100 model routines will increment the diagnostic value during execution. This routine is useful when
101 called from either user application routines or user output routines, and is the underlying interface
102 between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic
103 number from the menu, and its calling sequence is given by:
104
105 \begin{tabbing}
106 XXXXXXXXX\=XXXXXX\= \kill
107 \> CALL SETDIAG (NUM) \\
108 \\
109 where \> NUM \>= Diagnostic number from menu \\
110 \end{tabbing}
111
112
113 {\bf GETDIAG}: This subroutine retrieves the value of a model diagnostic. This routine is
114 particulary useful when called from a user output routine, although it can be called from an
115 application routine as well. This routine returns the time-averaged value of the diagnostic by
116 dividing the current accumulated diagnostic value by its corresponding counter. This routine does
117 not change the value of the diagnostic itself, that is, it does not replace the diagnostic with its
118 time-average. The calling sequence for this routine is givin by:
119
120 \begin{tabbing}
121 XXXXXXXXX\=XXXXXX\= \kill
122 \> CALL GETDIAG (LEV,NUM,QTMP,UNDEF) \\
123 \\
124 where \> LEV \>= Model Level at which the diagnostic is desired \\
125 \> NUM \>= Diagnostic number from menu \\
126 \> QTMP \>= Time-Averaged Diagnostic Output \\
127 \> UNDEF \>= Fill value to be used when diagnostic is undefined \\
128 \end{tabbing}
129
130 {\bf CLRDIAG}: This subroutine initializes the values of model diagnostics to zero, and is
131 particularly useful when called from user output routines to re-initialize diagnostics during the
132 run. The calling sequence is:
133
134
135 \begin{tabbing}
136 XXXXXXXXX\=XXXXXX\= \kill
137 \> CALL CLRDIAG (NUM) \\
138 \\
139 where \> NUM \>= Diagnostic number from menu \\
140 \end{tabbing}
141
142
143
144 {\bf ZAPDIAG}: This entry into subroutine SETDIAG disables model diagnostics, meaning that the
145 diagnostic is no longer available to the user. The memory previously allocated to the diagnostic
146 is released when ZAPDIAG is invoked. The calling sequence is given by:
147
148
149 \begin{tabbing}
150 XXXXXXXXX\=XXXXXX\= \kill
151 \> CALL ZAPDIAG (NUM) \\
152 \\
153 where \> NUM \>= Diagnostic number from menu \\
154 \end{tabbing}
155
156 {\bf DIAGSIZE}: We end this section with a discussion on the manner in which computer memory
157 is allocated for diagnostics.
158 All GCM diagnostic quantities are stored in the single
159 diagnostic array QDIAG which is located in the DIAG COMMON, having the form:
160
161 \begin{tabbing}
162 XXXXXXXXX\=XXXXXX\= \kill
163 \> COMMON /DIAG/ NDIAG\_MAX,QDIAG(IM,JM,1) \\
164 \\
165 \end{tabbing}
166
167 where NDIAG\_MAX is an Integer variable which should be
168 set equal to the number of enabled diagnostics, and QDIAG is a three-dimensional
169 array. The first two-dimensions of QDIAG correspond to the horizontal dimension
170 of a given diagnostic, while the third dimension of QDIAG is used to identify
171 specific diagnostic types.
172 In order to minimize the maximum memory requirement used by the model,
173 the default GCM executable is compiled with room for only one horizontal
174 diagnostic array, as shown in the above example.
175 In order for the User to enable more than 1 two-dimensional diagnostic,
176 the size of the DIAG COMMON must be expanded to accomodate the desired diagnostics.
177 This can be accomplished by manually changing the parameter numdiags in the
178 file \filelink{FORWARD\_STEP}{pkg-diagnostics-diagnostics_SIZE.h}, or by allowing the
179 shell script (???????) to make this
180 change based on the choice of diagnostic output made in the namelist.
181
182 \newpage
183
184 \subsubsection{GCM Diagnostic Menu}
185 \label{sec:diagnostics:menu}
186
187 \begin{tabular}{lllll}
188 \hline\hline
189 N & NAME & UNITS & LEVELS & DESCRIPTION \\
190 \hline
191
192 &\\
193 1 & UFLUX & $Newton/m^2$ & 1
194 &\begin{minipage}[t]{3in}
195 {Surface U-Wind Stress on the atmosphere}
196 \end{minipage}\\
197 2 & VFLUX & $Newton/m^2$ & 1
198 &\begin{minipage}[t]{3in}
199 {Surface V-Wind Stress on the atmosphere}
200 \end{minipage}\\
201 3 & HFLUX & $Watts/m^2$ & 1
202 &\begin{minipage}[t]{3in}
203 {Surface Flux of Sensible Heat}
204 \end{minipage}\\
205 4 & EFLUX & $Watts/m^2$ & 1
206 &\begin{minipage}[t]{3in}
207 {Surface Flux of Latent Heat}
208 \end{minipage}\\
209 5 & QICE & $Watts/m^2$ & 1
210 &\begin{minipage}[t]{3in}
211 {Heat Conduction through Sea-Ice}
212 \end{minipage}\\
213 6 & RADLWG & $Watts/m^2$ & 1
214 &\begin{minipage}[t]{3in}
215 {Net upward LW flux at the ground}
216 \end{minipage}\\
217 7 & RADSWG & $Watts/m^2$ & 1
218 &\begin{minipage}[t]{3in}
219 {Net downward SW flux at the ground}
220 \end{minipage}\\
221 8 & RI & $dimensionless$ & Nrphys
222 &\begin{minipage}[t]{3in}
223 {Richardson Number}
224 \end{minipage}\\
225 9 & CT & $dimensionless$ & 1
226 &\begin{minipage}[t]{3in}
227 {Surface Drag coefficient for T and Q}
228 \end{minipage}\\
229 10 & CU & $dimensionless$ & 1
230 &\begin{minipage}[t]{3in}
231 {Surface Drag coefficient for U and V}
232 \end{minipage}\\
233 11 & ET & $m^2/sec$ & Nrphys
234 &\begin{minipage}[t]{3in}
235 {Diffusivity coefficient for T and Q}
236 \end{minipage}\\
237 12 & EU & $m^2/sec$ & Nrphys
238 &\begin{minipage}[t]{3in}
239 {Diffusivity coefficient for U and V}
240 \end{minipage}\\
241 13 & TURBU & $m/sec/day$ & Nrphys
242 &\begin{minipage}[t]{3in}
243 {U-Momentum Changes due to Turbulence}
244 \end{minipage}\\
245 14 & TURBV & $m/sec/day$ & Nrphys
246 &\begin{minipage}[t]{3in}
247 {V-Momentum Changes due to Turbulence}
248 \end{minipage}\\
249 15 & TURBT & $deg/day$ & Nrphys
250 &\begin{minipage}[t]{3in}
251 {Temperature Changes due to Turbulence}
252 \end{minipage}\\
253 16 & TURBQ & $g/kg/day$ & Nrphys
254 &\begin{minipage}[t]{3in}
255 {Specific Humidity Changes due to Turbulence}
256 \end{minipage}\\
257 17 & MOISTT & $deg/day$ & Nrphys
258 &\begin{minipage}[t]{3in}
259 {Temperature Changes due to Moist Processes}
260 \end{minipage}\\
261 18 & MOISTQ & $g/kg/day$ & Nrphys
262 &\begin{minipage}[t]{3in}
263 {Specific Humidity Changes due to Moist Processes}
264 \end{minipage}\\
265 19 & RADLW & $deg/day$ & Nrphys
266 &\begin{minipage}[t]{3in}
267 {Net Longwave heating rate for each level}
268 \end{minipage}\\
269 20 & RADSW & $deg/day$ & Nrphys
270 &\begin{minipage}[t]{3in}
271 {Net Shortwave heating rate for each level}
272 \end{minipage}\\
273 21 & PREACC & $mm/day$ & 1
274 &\begin{minipage}[t]{3in}
275 {Total Precipitation}
276 \end{minipage}\\
277 22 & PRECON & $mm/day$ & 1
278 &\begin{minipage}[t]{3in}
279 {Convective Precipitation}
280 \end{minipage}\\
281 23 & TUFLUX & $Newton/m^2$ & Nrphys
282 &\begin{minipage}[t]{3in}
283 {Turbulent Flux of U-Momentum}
284 \end{minipage}\\
285 24 & TVFLUX & $Newton/m^2$ & Nrphys
286 &\begin{minipage}[t]{3in}
287 {Turbulent Flux of V-Momentum}
288 \end{minipage}\\
289 25 & TTFLUX & $Watts/m^2$ & Nrphys
290 &\begin{minipage}[t]{3in}
291 {Turbulent Flux of Sensible Heat}
292 \end{minipage}\\
293 26 & TQFLUX & $Watts/m^2$ & Nrphys
294 &\begin{minipage}[t]{3in}
295 {Turbulent Flux of Latent Heat}
296 \end{minipage}\\
297 27 & CN & $dimensionless$ & 1
298 &\begin{minipage}[t]{3in}
299 {Neutral Drag Coefficient}
300 \end{minipage}\\
301 28 & WINDS & $m/sec$ & 1
302 &\begin{minipage}[t]{3in}
303 {Surface Wind Speed}
304 \end{minipage}\\
305 29 & DTSRF & $deg$ & 1
306 &\begin{minipage}[t]{3in}
307 {Air/Surface virtual temperature difference}
308 \end{minipage}\\
309 30 & TG & $deg$ & 1
310 &\begin{minipage}[t]{3in}
311 {Ground temperature}
312 \end{minipage}\\
313 31 & TS & $deg$ & 1
314 &\begin{minipage}[t]{3in}
315 {Surface air temperature (Adiabatic from lowest model layer)}
316 \end{minipage}\\
317 32 & DTG & $deg$ & 1
318 &\begin{minipage}[t]{3in}
319 {Ground temperature adjustment}
320 \end{minipage}\\
321
322 \end{tabular}
323
324 \newpage
325 \vspace*{\fill}
326 \begin{tabular}{lllll}
327 \hline\hline
328 N & NAME & UNITS & LEVELS & DESCRIPTION \\
329 \hline
330
331 &\\
332 33 & QG & $g/kg$ & 1
333 &\begin{minipage}[t]{3in}
334 {Ground specific humidity}
335 \end{minipage}\\
336 34 & QS & $g/kg$ & 1
337 &\begin{minipage}[t]{3in}
338 {Saturation surface specific humidity}
339 \end{minipage}\\
340
341 &\\
342 35 & TGRLW & $deg$ & 1
343 &\begin{minipage}[t]{3in}
344 {Instantaneous ground temperature used as input to the
345 Longwave radiation subroutine}
346 \end{minipage}\\
347 36 & ST4 & $Watts/m^2$ & 1
348 &\begin{minipage}[t]{3in}
349 {Upward Longwave flux at the ground ($\sigma T^4$)}
350 \end{minipage}\\
351 37 & OLR & $Watts/m^2$ & 1
352 &\begin{minipage}[t]{3in}
353 {Net upward Longwave flux at the top of the model}
354 \end{minipage}\\
355 38 & OLRCLR & $Watts/m^2$ & 1
356 &\begin{minipage}[t]{3in}
357 {Net upward clearsky Longwave flux at the top of the model}
358 \end{minipage}\\
359 39 & LWGCLR & $Watts/m^2$ & 1
360 &\begin{minipage}[t]{3in}
361 {Net upward clearsky Longwave flux at the ground}
362 \end{minipage}\\
363 40 & LWCLR & $deg/day$ & Nrphys
364 &\begin{minipage}[t]{3in}
365 {Net clearsky Longwave heating rate for each level}
366 \end{minipage}\\
367 41 & TLW & $deg$ & Nrphys
368 &\begin{minipage}[t]{3in}
369 {Instantaneous temperature used as input to the Longwave radiation
370 subroutine}
371 \end{minipage}\\
372 42 & SHLW & $g/g$ & Nrphys
373 &\begin{minipage}[t]{3in}
374 {Instantaneous specific humidity used as input to the Longwave radiation
375 subroutine}
376 \end{minipage}\\
377 43 & OZLW & $g/g$ & Nrphys
378 &\begin{minipage}[t]{3in}
379 {Instantaneous ozone used as input to the Longwave radiation
380 subroutine}
381 \end{minipage}\\
382 44 & CLMOLW & $0-1$ & Nrphys
383 &\begin{minipage}[t]{3in}
384 {Maximum overlap cloud fraction used in the Longwave radiation
385 subroutine}
386 \end{minipage}\\
387 45 & CLDTOT & $0-1$ & Nrphys
388 &\begin{minipage}[t]{3in}
389 {Total cloud fraction used in the Longwave and Shortwave radiation
390 subroutines}
391 \end{minipage}\\
392 46 & RADSWT & $Watts/m^2$ & 1
393 &\begin{minipage}[t]{3in}
394 {Incident Shortwave radiation at the top of the atmosphere}
395 \end{minipage}\\
396 47 & CLROSW & $0-1$ & Nrphys
397 &\begin{minipage}[t]{3in}
398 {Random overlap cloud fraction used in the shortwave radiation
399 subroutine}
400 \end{minipage}\\
401 48 & CLMOSW & $0-1$ & Nrphys
402 &\begin{minipage}[t]{3in}
403 {Maximum overlap cloud fraction used in the shortwave radiation
404 subroutine}
405 \end{minipage}\\
406 49 & EVAP & $mm/day$ & 1
407 &\begin{minipage}[t]{3in}
408 {Surface evaporation}
409 \end{minipage}\\
410 \end{tabular}
411 \vfill
412
413 \newpage
414 \vspace*{\fill}
415 \begin{tabular}{lllll}
416 \hline\hline
417 N & NAME & UNITS & LEVELS & DESCRIPTION \\
418 \hline
419
420 &\\
421 50 & DUDT & $m/sec/day$ & Nrphys
422 &\begin{minipage}[t]{3in}
423 {Total U-Wind tendency}
424 \end{minipage}\\
425 51 & DVDT & $m/sec/day$ & Nrphys
426 &\begin{minipage}[t]{3in}
427 {Total V-Wind tendency}
428 \end{minipage}\\
429 52 & DTDT & $deg/day$ & Nrphys
430 &\begin{minipage}[t]{3in}
431 {Total Temperature tendency}
432 \end{minipage}\\
433 53 & DQDT & $g/kg/day$ & Nrphys
434 &\begin{minipage}[t]{3in}
435 {Total Specific Humidity tendency}
436 \end{minipage}\\
437 54 & USTAR & $m/sec$ & 1
438 &\begin{minipage}[t]{3in}
439 {Surface USTAR wind}
440 \end{minipage}\\
441 55 & Z0 & $m$ & 1
442 &\begin{minipage}[t]{3in}
443 {Surface roughness}
444 \end{minipage}\\
445 56 & FRQTRB & $0-1$ & Nrphys-1
446 &\begin{minipage}[t]{3in}
447 {Frequency of Turbulence}
448 \end{minipage}\\
449 57 & PBL & $mb$ & 1
450 &\begin{minipage}[t]{3in}
451 {Planetary Boundary Layer depth}
452 \end{minipage}\\
453 58 & SWCLR & $deg/day$ & Nrphys
454 &\begin{minipage}[t]{3in}
455 {Net clearsky Shortwave heating rate for each level}
456 \end{minipage}\\
457 59 & OSR & $Watts/m^2$ & 1
458 &\begin{minipage}[t]{3in}
459 {Net downward Shortwave flux at the top of the model}
460 \end{minipage}\\
461 60 & OSRCLR & $Watts/m^2$ & 1
462 &\begin{minipage}[t]{3in}
463 {Net downward clearsky Shortwave flux at the top of the model}
464 \end{minipage}\\
465 61 & CLDMAS & $kg / m^2$ & Nrphys
466 &\begin{minipage}[t]{3in}
467 {Convective cloud mass flux}
468 \end{minipage}\\
469 62 & UAVE & $m/sec$ & Nrphys
470 &\begin{minipage}[t]{3in}
471 {Time-averaged $u-Wind$}
472 \end{minipage}\\
473 63 & VAVE & $m/sec$ & Nrphys
474 &\begin{minipage}[t]{3in}
475 {Time-averaged $v-Wind$}
476 \end{minipage}\\
477 64 & TAVE & $deg$ & Nrphys
478 &\begin{minipage}[t]{3in}
479 {Time-averaged $Temperature$}
480 \end{minipage}\\
481 65 & QAVE & $g/g$ & Nrphys
482 &\begin{minipage}[t]{3in}
483 {Time-averaged $Specific \, \, Humidity$}
484 \end{minipage}\\
485 66 & PAVE & $mb$ & 1
486 &\begin{minipage}[t]{3in}
487 {Time-averaged $p_{surf} - p_{top}$}
488 \end{minipage}\\
489 67 & QQAVE & $(m/sec)^2$ & Nrphys
490 &\begin{minipage}[t]{3in}
491 {Time-averaged $Turbulent Kinetic Energy$}
492 \end{minipage}\\
493 68 & SWGCLR & $Watts/m^2$ & 1
494 &\begin{minipage}[t]{3in}
495 {Net downward clearsky Shortwave flux at the ground}
496 \end{minipage}\\
497 69 & SDIAG1 & & 1
498 &\begin{minipage}[t]{3in}
499 {User-Defined Surface Diagnostic-1}
500 \end{minipage}\\
501 70 & SDIAG2 & & 1
502 &\begin{minipage}[t]{3in}
503 {User-Defined Surface Diagnostic-2}
504 \end{minipage}\\
505 71 & UDIAG1 & & Nrphys
506 &\begin{minipage}[t]{3in}
507 {User-Defined Upper-Air Diagnostic-1}
508 \end{minipage}\\
509 72 & UDIAG2 & & Nrphys
510 &\begin{minipage}[t]{3in}
511 {User-Defined Upper-Air Diagnostic-2}
512 \end{minipage}\\
513 73 & DIABU & $m/sec/day$ & Nrphys
514 &\begin{minipage}[t]{3in}
515 {Total Diabatic forcing on $u-Wind$}
516 \end{minipage}\\
517 74 & DIABV & $m/sec/day$ & Nrphys
518 &\begin{minipage}[t]{3in}
519 {Total Diabatic forcing on $v-Wind$}
520 \end{minipage}\\
521 75 & DIABT & $deg/day$ & Nrphys
522 &\begin{minipage}[t]{3in}
523 {Total Diabatic forcing on $Temperature$}
524 \end{minipage}\\
525 76 & DIABQ & $g/kg/day$ & Nrphys
526 &\begin{minipage}[t]{3in}
527 {Total Diabatic forcing on $Specific \, \, Humidity$}
528 \end{minipage}\\
529
530 \end{tabular}
531 \vfill
532
533 \newpage
534 \vspace*{\fill}
535 \begin{tabular}{lllll}
536 \hline\hline
537 N & NAME & UNITS & LEVELS & DESCRIPTION \\
538 \hline
539
540 77 & VINTUQ & $m/sec \cdot g/kg$ & 1
541 &\begin{minipage}[t]{3in}
542 {Vertically integrated $u \, q$}
543 \end{minipage}\\
544 78 & VINTVQ & $m/sec \cdot g/kg$ & 1
545 &\begin{minipage}[t]{3in}
546 {Vertically integrated $v \, q$}
547 \end{minipage}\\
548 79 & VINTUT & $m/sec \cdot deg$ & 1
549 &\begin{minipage}[t]{3in}
550 {Vertically integrated $u \, T$}
551 \end{minipage}\\
552 80 & VINTVT & $m/sec \cdot deg$ & 1
553 &\begin{minipage}[t]{3in}
554 {Vertically integrated $v \, T$}
555 \end{minipage}\\
556 81 & CLDFRC & $0-1$ & 1
557 &\begin{minipage}[t]{3in}
558 {Total Cloud Fraction}
559 \end{minipage}\\
560 82 & QINT & $gm/cm^2$ & 1
561 &\begin{minipage}[t]{3in}
562 {Precipitable water}
563 \end{minipage}\\
564 83 & U2M & $m/sec$ & 1
565 &\begin{minipage}[t]{3in}
566 {U-Wind at 2 meters}
567 \end{minipage}\\
568 84 & V2M & $m/sec$ & 1
569 &\begin{minipage}[t]{3in}
570 {V-Wind at 2 meters}
571 \end{minipage}\\
572 85 & T2M & $deg$ & 1
573 &\begin{minipage}[t]{3in}
574 {Temperature at 2 meters}
575 \end{minipage}\\
576 86 & Q2M & $g/kg$ & 1
577 &\begin{minipage}[t]{3in}
578 {Specific Humidity at 2 meters}
579 \end{minipage}\\
580 87 & U10M & $m/sec$ & 1
581 &\begin{minipage}[t]{3in}
582 {U-Wind at 10 meters}
583 \end{minipage}\\
584 88 & V10M & $m/sec$ & 1
585 &\begin{minipage}[t]{3in}
586 {V-Wind at 10 meters}
587 \end{minipage}\\
588 89 & T10M & $deg$ & 1
589 &\begin{minipage}[t]{3in}
590 {Temperature at 10 meters}
591 \end{minipage}\\
592 90 & Q10M & $g/kg$ & 1
593 &\begin{minipage}[t]{3in}
594 {Specific Humidity at 10 meters}
595 \end{minipage}\\
596 91 & DTRAIN & $kg/m^2$ & Nrphys
597 &\begin{minipage}[t]{3in}
598 {Detrainment Cloud Mass Flux}
599 \end{minipage}\\
600 92 & QFILL & $g/kg/day$ & Nrphys
601 &\begin{minipage}[t]{3in}
602 {Filling of negative specific humidity}
603 \end{minipage}\\
604
605 \end{tabular}
606 \vspace{1.5in}
607 \vfill
608
609 \newpage
610
611 \subsubsection{Diagnostic Description}
612
613 In this section we list and describe the diagnostic quantities available within the
614 GCM. The diagnostics are listed in the order that they appear in the
615 Diagnostic Menu, Section \ref{sec:diagnostics:menu}.
616 In all cases, each diagnostic as currently archived on the output datasets
617 is time-averaged over its diagnostic output frequency:
618
619 \[
620 {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
621 \]
622 where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
623 output frequency of the diagnositc, and $\Delta t$ is
624 the timestep over which the diagnostic is updated. For further information on how
625 to set the diagnostic output frequency {\bf NQDIAG}, please see Part III, A User's Guide.
626
627 {\bf 1) \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
628
629 The zonal wind stress is the turbulent flux of zonal momentum from
630 the surface. See section 3.3 for a description of the surface layer parameterization.
631 \[
632 {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
633 \]
634 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
635 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
636 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
637 the zonal wind in the lowest model layer.
638 \\
639
640
641 {\bf 2) \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
642
643 The meridional wind stress is the turbulent flux of meridional momentum from
644 the surface. See section 3.3 for a description of the surface layer parameterization.
645 \[
646 {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
647 \]
648 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
649 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
650 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
651 the meridional wind in the lowest model layer.
652 \\
653
654 {\bf 3) \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
655
656 The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
657 gradient of virtual potential temperature and the eddy exchange coefficient:
658 \[
659 {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
660 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
661 \]
662 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
663 heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
664 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
665 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
666 for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
667 at the surface and at the bottom model level.
668 \\
669
670
671 {\bf 4) \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
672
673 The turbulent flux of latent heat from the surface to the atmosphere is a function of the
674 gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
675 \[
676 {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
677 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
678 \]
679 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
680 the potential evapotranspiration actually evaporated, L is the latent
681 heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
682 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
683 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
684 for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
685 humidity at the surface and at the bottom model level, respectively.
686 \\
687
688 {\bf 5) \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
689
690 Over sea ice there is an additional source of energy at the surface due to the heat
691 conduction from the relatively warm ocean through the sea ice. The heat conduction
692 through sea ice represents an additional energy source term for the ground temperature equation.
693
694 \[
695 {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
696 \]
697
698 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
699 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
700 $T_g$ is the temperature of the sea ice.
701
702 NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
703 \\
704
705
706 {\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
707
708 \begin{eqnarray*}
709 {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
710 & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
711 \end{eqnarray*}
712 \\
713 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
714 $F_{LW}^\uparrow$ is
715 the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
716 \\
717
718 {\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
719
720 \begin{eqnarray*}
721 {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
722 & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
723 \end{eqnarray*}
724 \\
725 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
726 $F_{SW}^\downarrow$ is
727 the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
728 \\
729
730
731 \noindent
732 {\bf 8) \underline {RI} Richardson Number} ($dimensionless$)
733
734 \noindent
735 The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
736 \[
737 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
738 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
739 \]
740 \\
741 where we used the hydrostatic equation:
742 \[
743 {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
744 \]
745 Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
746 indicate dominantly unstable shear, and large positive values indicate dominantly stable
747 stratification.
748 \\
749
750 \noindent
751 {\bf 9) \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
752
753 \noindent
754 The surface exchange coefficient is obtained from the similarity functions for the stability
755 dependant flux profile relationships:
756 \[
757 {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
758 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
759 { k \over { (\psi_{h} + \psi_{g}) } }
760 \]
761 where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
762 viscous sublayer non-dimensional temperature or moisture change:
763 \[
764 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
765 \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
766 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
767 \]
768 and:
769 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
770
771 \noindent
772 $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
773 the temperature and moisture gradients, specified differently for stable and unstable
774 layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
775 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
776 viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
777 (see diagnostic number 67), and the subscript ref refers to a reference value.
778 \\
779
780 \noindent
781 {\bf 10) \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
782
783 \noindent
784 The surface exchange coefficient is obtained from the similarity functions for the stability
785 dependant flux profile relationships:
786 \[
787 {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
788 \]
789 where $\psi_m$ is the surface layer non-dimensional wind shear:
790 \[
791 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
792 \]
793 \noindent
794 $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
795 the temperature and moisture gradients, specified differently for stable and unstable layers
796 according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
797 non-dimensional stability parameter, $u_*$ is the surface stress velocity
798 (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
799 \\
800
801 \noindent
802 {\bf 11) \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
803
804 \noindent
805 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
806 moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
807 diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
808 or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
809 takes the form:
810 \[
811 {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
812 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
813 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
814 \]
815 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
816 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
817 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
818 depth,
819 $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
820 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
821 dimensionless buoyancy and wind shear
822 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
823 are functions of the Richardson number.
824
825 \noindent
826 For the detailed equations and derivations of the modified level 2.5 closure scheme,
827 see Helfand and Labraga, 1988.
828
829 \noindent
830 In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
831 in units of $m/sec$, given by:
832 \[
833 {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
834 \]
835 \noindent
836 where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
837 surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
838 friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
839 and $W_s$ is the magnitude of the surface layer wind.
840 \\
841
842 \noindent
843 {\bf 12) \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
844
845 \noindent
846 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
847 momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
848 diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
849 In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
850 takes the form:
851 \[
852 {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
853 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
854 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
855 \]
856 \noindent
857 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
858 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
859 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
860 depth,
861 $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
862 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
863 dimensionless buoyancy and wind shear
864 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
865 are functions of the Richardson number.
866
867 \noindent
868 For the detailed equations and derivations of the modified level 2.5 closure scheme,
869 see Helfand and Labraga, 1988.
870
871 \noindent
872 In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
873 in units of $m/sec$, given by:
874 \[
875 {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
876 \]
877 \noindent
878 where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
879 similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
880 (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
881 magnitude of the surface layer wind.
882 \\
883
884 \noindent
885 {\bf 13) \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
886
887 \noindent
888 The tendency of U-Momentum due to turbulence is written:
889 \[
890 {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
891 = {\pp{}{z} }{(K_m \pp{u}{z})}
892 \]
893
894 \noindent
895 The Helfand and Labraga level 2.5 scheme models the turbulent
896 flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
897 equation.
898
899 \noindent
900 {\bf 14) \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
901
902 \noindent
903 The tendency of V-Momentum due to turbulence is written:
904 \[
905 {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
906 = {\pp{}{z} }{(K_m \pp{v}{z})}
907 \]
908
909 \noindent
910 The Helfand and Labraga level 2.5 scheme models the turbulent
911 flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
912 equation.
913 \\
914
915 \noindent
916 {\bf 15) \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
917
918 \noindent
919 The tendency of temperature due to turbulence is written:
920 \[
921 {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
922 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
923 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
924 \]
925
926 \noindent
927 The Helfand and Labraga level 2.5 scheme models the turbulent
928 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
929 equation.
930 \\
931
932 \noindent
933 {\bf 16) \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
934
935 \noindent
936 The tendency of specific humidity due to turbulence is written:
937 \[
938 {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
939 = {\pp{}{z} }{(K_h \pp{q}{z})}
940 \]
941
942 \noindent
943 The Helfand and Labraga level 2.5 scheme models the turbulent
944 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
945 equation.
946 \\
947
948 \noindent
949 {\bf 17) \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
950
951 \noindent
952 \[
953 {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
954 \]
955 where:
956 \[
957 \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
958 \hspace{.4cm} and
959 \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
960 \]
961 and
962 \[
963 \Gamma_s = g \eta \pp{s}{p}
964 \]
965
966 \noindent
967 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
968 precipitation processes, or supersaturation rain.
969 The summation refers to contributions from each cloud type called by RAS.
970 The dry static energy is given
971 as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
972 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
973 the description of the convective parameterization. The fractional adjustment, or relaxation
974 parameter, for each cloud type is given as $\alpha$, while
975 $R$ is the rain re-evaporation adjustment.
976 \\
977
978 \noindent
979 {\bf 18) \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
980
981 \noindent
982 \[
983 {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
984 \]
985 where:
986 \[
987 \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
988 \hspace{.4cm} and
989 \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
990 \]
991 and
992 \[
993 \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
994 \]
995 \noindent
996 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
997 precipitation processes, or supersaturation rain.
998 The summation refers to contributions from each cloud type called by RAS.
999 The dry static energy is given as $s$,
1000 the moist static energy is given as $h$,
1001 the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1002 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1003 the description of the convective parameterization. The fractional adjustment, or relaxation
1004 parameter, for each cloud type is given as $\alpha$, while
1005 $R$ is the rain re-evaporation adjustment.
1006 \\
1007
1008 \noindent
1009 {\bf 19) \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1010
1011 \noindent
1012 The net longwave heating rate is calculated as the vertical divergence of the
1013 net terrestrial radiative fluxes.
1014 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1015 longwave routine.
1016 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1017 For a given cloud fraction,
1018 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1019 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1020 for the upward and downward radiative fluxes.
1021 (see Section \ref{sec:fizhi:radcloud}).
1022 The cloudy-sky flux is then obtained as:
1023
1024 \noindent
1025 \[
1026 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1027 \]
1028
1029 \noindent
1030 Finally, the net longwave heating rate is calculated as the vertical divergence of the
1031 net terrestrial radiative fluxes:
1032 \[
1033 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1034 \]
1035 or
1036 \[
1037 {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1038 \]
1039
1040 \noindent
1041 where $g$ is the accelation due to gravity,
1042 $c_p$ is the heat capacity of air at constant pressure,
1043 and
1044 \[
1045 F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1046 \]
1047 \\
1048
1049
1050 \noindent
1051 {\bf 20) \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1052
1053 \noindent
1054 The net Shortwave heating rate is calculated as the vertical divergence of the
1055 net solar radiative fluxes.
1056 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1057 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1058 both CLMO (maximum overlap cloud fraction) and
1059 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1060 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1061 true time-averaged cloud fractions CLMO
1062 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1063 input at the top of the atmosphere.
1064
1065 \noindent
1066 The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1067 \[
1068 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1069 \]
1070 or
1071 \[
1072 {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1073 \]
1074
1075 \noindent
1076 where $g$ is the accelation due to gravity,
1077 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1078 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1079 \[
1080 F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1081 \]
1082 \\
1083
1084 \noindent
1085 {\bf 21) \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1086
1087 \noindent
1088 For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1089 the vertical integral or total precipitable amount is given by:
1090 \[
1091 {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1092 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1093 \]
1094 \\
1095
1096 \noindent
1097 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1098 time step, scaled to $mm/day$.
1099 \\
1100
1101 \noindent
1102 {\bf 22) \underline {PRECON} Convective Precipition ($mm/day$) }
1103
1104 \noindent
1105 For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1106 the vertical integral or total precipitable amount is given by:
1107 \[
1108 {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1109 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1110 \]
1111 \\
1112
1113 \noindent
1114 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1115 time step, scaled to $mm/day$.
1116 \\
1117
1118 \noindent
1119 {\bf 23) \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1120
1121 \noindent
1122 The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1123 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1124
1125 \[
1126 {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1127 {\rho } {(- K_m \pp{U}{z})}
1128 \]
1129
1130 \noindent
1131 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1132 \\
1133
1134 \noindent
1135 {\bf 24) \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1136
1137 \noindent
1138 The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1139 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1140
1141 \[
1142 {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1143 {\rho } {(- K_m \pp{V}{z})}
1144 \]
1145
1146 \noindent
1147 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1148 \\
1149
1150
1151 \noindent
1152 {\bf 25) \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1153
1154 \noindent
1155 The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1156 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1157
1158 \noindent
1159 \[
1160 {\bf TTFLUX} = c_p {\rho }
1161 P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1162 = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1163 \]
1164
1165 \noindent
1166 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1167 \\
1168
1169
1170 \noindent
1171 {\bf 26) \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1172
1173 \noindent
1174 The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1175 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1176
1177 \noindent
1178 \[
1179 {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1180 {L {\rho }(- K_h \pp{q}{z})}
1181 \]
1182
1183 \noindent
1184 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1185 \\
1186
1187
1188 \noindent
1189 {\bf 27) \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1190
1191 \noindent
1192 The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1193 \[
1194 {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1195 \]
1196
1197 \noindent
1198 where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1199 $z_0$ is the surface roughness.
1200
1201 \noindent
1202 NOTE: CN is not available through model version 5.3, but is available in subsequent
1203 versions.
1204 \\
1205
1206 \noindent
1207 {\bf 28) \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1208
1209 \noindent
1210 The surface wind speed is calculated for the last internal turbulence time step:
1211 \[
1212 {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1213 \]
1214
1215 \noindent
1216 where the subscript $Nrphys$ refers to the lowest model level.
1217 \\
1218
1219 \noindent
1220 {\bf 29) \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1221
1222 \noindent
1223 The air/surface virtual temperature difference measures the stability of the surface layer:
1224 \[
1225 {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1226 \]
1227 \noindent
1228 where
1229 \[
1230 \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1231 and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1232 \]
1233
1234 \noindent
1235 $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1236 $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1237 and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1238 refers to the surface.
1239 \\
1240
1241
1242 \noindent
1243 {\bf 30) \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
1244
1245 \noindent
1246 The ground temperature equation is solved as part of the turbulence package
1247 using a backward implicit time differencing scheme:
1248 \[
1249 {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
1250 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
1251 \]
1252
1253 \noindent
1254 where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
1255 net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
1256 sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
1257 flux, and $C_g$ is the total heat capacity of the ground.
1258 $C_g$ is obtained by solving a heat diffusion equation
1259 for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
1260 \[
1261 C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
1262 { 86400. \over {2 \pi} } } \, \, .
1263 \]
1264 \noindent
1265 Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
1266 {cm \over {^oK}}$,
1267 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
1268 by $2 \pi$ $radians/
1269 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
1270 is a function of the ground wetness, $W$.
1271 \\
1272
1273 \noindent
1274 {\bf 31) \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
1275
1276 \noindent
1277 The surface temperature estimate is made by assuming that the model's lowest
1278 layer is well-mixed, and therefore that $\theta$ is constant in that layer.
1279 The surface temperature is therefore:
1280 \[
1281 {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
1282 \]
1283 \\
1284
1285 \noindent
1286 {\bf 32) \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
1287
1288 \noindent
1289 The change in surface temperature from one turbulence time step to the next, solved
1290 using the Ground Temperature Equation (see diagnostic number 30) is calculated:
1291 \[
1292 {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
1293 \]
1294
1295 \noindent
1296 where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
1297 refers to the value at the previous turbulence time level.
1298 \\
1299
1300 \noindent
1301 {\bf 33) \underline {QG} Ground Specific Humidity ($g/kg$) }
1302
1303 \noindent
1304 The ground specific humidity is obtained by interpolating between the specific
1305 humidity at the lowest model level and the specific humidity of a saturated ground.
1306 The interpolation is performed using the potential evapotranspiration function:
1307 \[
1308 {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1309 \]
1310
1311 \noindent
1312 where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1313 and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
1314 pressure.
1315 \\
1316
1317 \noindent
1318 {\bf 34) \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
1319
1320 \noindent
1321 The surface saturation specific humidity is the saturation specific humidity at
1322 the ground temprature and surface pressure:
1323 \[
1324 {\bf QS} = q^*(T_g,P_s)
1325 \]
1326 \\
1327
1328 \noindent
1329 {\bf 35) \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
1330 radiation subroutine (deg)}
1331 \[
1332 {\bf TGRLW} = T_g(\lambda , \phi ,n)
1333 \]
1334 \noindent
1335 where $T_g$ is the model ground temperature at the current time step $n$.
1336 \\
1337
1338
1339 \noindent
1340 {\bf 36) \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
1341 \[
1342 {\bf ST4} = \sigma T^4
1343 \]
1344 \noindent
1345 where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
1346 \\
1347
1348 \noindent
1349 {\bf 37) \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1350 \[
1351 {\bf OLR} = F_{LW,top}^{NET}
1352 \]
1353 \noindent
1354 where top indicates the top of the first model layer.
1355 In the GCM, $p_{top}$ = 0.0 mb.
1356 \\
1357
1358
1359 \noindent
1360 {\bf 38) \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1361 \[
1362 {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
1363 \]
1364 \noindent
1365 where top indicates the top of the first model layer.
1366 In the GCM, $p_{top}$ = 0.0 mb.
1367 \\
1368
1369 \noindent
1370 {\bf 39) \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
1371
1372 \noindent
1373 \begin{eqnarray*}
1374 {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
1375 & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
1376 \end{eqnarray*}
1377 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1378 $F(clearsky)_{LW}^\uparrow$ is
1379 the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
1380 \\
1381
1382 \noindent
1383 {\bf 40) \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
1384
1385 \noindent
1386 The net longwave heating rate is calculated as the vertical divergence of the
1387 net terrestrial radiative fluxes.
1388 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1389 longwave routine.
1390 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1391 For a given cloud fraction,
1392 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1393 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1394 for the upward and downward radiative fluxes.
1395 (see Section \ref{sec:fizhi:radcloud}).
1396 The cloudy-sky flux is then obtained as:
1397
1398 \noindent
1399 \[
1400 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1401 \]
1402
1403 \noindent
1404 Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
1405 vertical divergence of the
1406 clear-sky longwave radiative flux:
1407 \[
1408 \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
1409 \]
1410 or
1411 \[
1412 {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
1413 \]
1414
1415 \noindent
1416 where $g$ is the accelation due to gravity,
1417 $c_p$ is the heat capacity of air at constant pressure,
1418 and
1419 \[
1420 F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
1421 \]
1422 \\
1423
1424
1425 \noindent
1426 {\bf 41) \underline {TLW} Instantaneous temperature used as input to the Longwave
1427 radiation subroutine (deg)}
1428 \[
1429 {\bf TLW} = T(\lambda , \phi ,level, n)
1430 \]
1431 \noindent
1432 where $T$ is the model temperature at the current time step $n$.
1433 \\
1434
1435
1436 \noindent
1437 {\bf 42) \underline {SHLW} Instantaneous specific humidity used as input to
1438 the Longwave radiation subroutine (kg/kg)}
1439 \[
1440 {\bf SHLW} = q(\lambda , \phi , level , n)
1441 \]
1442 \noindent
1443 where $q$ is the model specific humidity at the current time step $n$.
1444 \\
1445
1446
1447 \noindent
1448 {\bf 43) \underline {OZLW} Instantaneous ozone used as input to
1449 the Longwave radiation subroutine (kg/kg)}
1450 \[
1451 {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
1452 \]
1453 \noindent
1454 where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
1455 mean zonally averaged ozone data set.
1456 \\
1457
1458
1459 \noindent
1460 {\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
1461
1462 \noindent
1463 {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1464 Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
1465 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1466 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1467 \[
1468 {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
1469 \]
1470 \\
1471
1472
1473 {\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
1474
1475 {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
1476 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
1477 Radiation packages.
1478 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1479 \[
1480 {\bf CLDTOT} = F_{RAS} + F_{LS}
1481 \]
1482 \\
1483 where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
1484 time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
1485 \\
1486
1487
1488 \noindent
1489 {\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
1490
1491 \noindent
1492 {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1493 Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
1494 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1495 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1496 \[
1497 {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
1498 \]
1499 \\
1500
1501 \noindent
1502 {\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
1503
1504 \noindent
1505 {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
1506 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
1507 Radiation algorithm. These are
1508 convective and large-scale clouds whose radiative characteristics are not
1509 assumed to be correlated in the vertical.
1510 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1511 \[
1512 {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
1513 \]
1514 \\
1515
1516 \noindent
1517 {\bf 48) \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
1518 \[
1519 {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
1520 \]
1521 \noindent
1522 where $S_0$, is the extra-terrestial solar contant,
1523 $R_a$ is the earth-sun distance in Astronomical Units,
1524 and $cos \phi_z$ is the cosine of the zenith angle.
1525 It should be noted that {\bf RADSWT}, as well as
1526 {\bf OSR} and {\bf OSRCLR},
1527 are calculated at the top of the atmosphere (p=0 mb). However, the
1528 {\bf OLR} and {\bf OLRCLR} diagnostics are currently
1529 calculated at $p= p_{top}$ (0.0 mb for the GCM).
1530 \\
1531
1532 \noindent
1533 {\bf 49) \underline {EVAP} Surface Evaporation ($mm/day$) }
1534
1535 \noindent
1536 The surface evaporation is a function of the gradient of moisture, the potential
1537 evapotranspiration fraction and the eddy exchange coefficient:
1538 \[
1539 {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
1540 \]
1541 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1542 the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
1543 turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
1544 $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
1545 number 34) and at the bottom model level, respectively.
1546 \\
1547
1548 \noindent
1549 {\bf 50) \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
1550
1551 \noindent
1552 {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
1553 and Analysis forcing.
1554 \[
1555 {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1556 \]
1557 \\
1558
1559 \noindent
1560 {\bf 51) \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
1561
1562 \noindent
1563 {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
1564 and Analysis forcing.
1565 \[
1566 {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1567 \]
1568 \\
1569
1570 \noindent
1571 {\bf 52) \underline {DTDT} Total Temperature Tendency ($deg/day$) }
1572
1573 \noindent
1574 {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
1575 and Analysis forcing.
1576 \begin{eqnarray*}
1577 {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1578 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1579 \end{eqnarray*}
1580 \\
1581
1582 \noindent
1583 {\bf 53) \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
1584
1585 \noindent
1586 {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
1587 and Analysis forcing.
1588 \[
1589 {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
1590 + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
1591 \]
1592 \\
1593
1594 \noindent
1595 {\bf 54) \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
1596
1597 \noindent
1598 The surface stress velocity, or the friction velocity, is the wind speed at
1599 the surface layer top impeded by the surface drag:
1600 \[
1601 {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
1602 C_u = {k \over {\psi_m} }
1603 \]
1604
1605 \noindent
1606 $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
1607 number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
1608
1609 \noindent
1610 {\bf 55) \underline {Z0} Surface Roughness Length ($m$) }
1611
1612 \noindent
1613 Over the land surface, the surface roughness length is interpolated to the local
1614 time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
1615 the roughness length is a function of the surface-stress velocity, $u_*$.
1616 \[
1617 {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
1618 \]
1619
1620 \noindent
1621 where the constants are chosen to interpolate between the reciprocal relation of
1622 Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
1623 for moderate to large winds.
1624 \\
1625
1626 \noindent
1627 {\bf 56) \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
1628
1629 \noindent
1630 The fraction of time when turbulence is present is defined as the fraction of
1631 time when the turbulent kinetic energy exceeds some minimum value, defined here
1632 to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
1633 incremented. The fraction over the averaging interval is reported.
1634 \\
1635
1636 \noindent
1637 {\bf 57) \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
1638
1639 \noindent
1640 The depth of the PBL is defined by the turbulence parameterization to be the
1641 depth at which the turbulent kinetic energy reduces to ten percent of its surface
1642 value.
1643
1644 \[
1645 {\bf PBL} = P_{PBL} - P_{surface}
1646 \]
1647
1648 \noindent
1649 where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
1650 reaches one tenth of its surface value, and $P_s$ is the surface pressure.
1651 \\
1652
1653 \noindent
1654 {\bf 58) \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
1655
1656 \noindent
1657 The net Shortwave heating rate is calculated as the vertical divergence of the
1658 net solar radiative fluxes.
1659 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1660 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1661 both CLMO (maximum overlap cloud fraction) and
1662 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1663 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1664 true time-averaged cloud fractions CLMO
1665 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1666 input at the top of the atmosphere.
1667
1668 \noindent
1669 The heating rate due to Shortwave Radiation under clear skies is defined as:
1670 \[
1671 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
1672 \]
1673 or
1674 \[
1675 {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
1676 \]
1677
1678 \noindent
1679 where $g$ is the accelation due to gravity,
1680 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1681 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1682 \[
1683 F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
1684 \]
1685 \\
1686
1687 \noindent
1688 {\bf 59) \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
1689 \[
1690 {\bf OSR} = F_{SW,top}^{NET}
1691 \]
1692 \noindent
1693 where top indicates the top of the first model layer used in the shortwave radiation
1694 routine.
1695 In the GCM, $p_{SW_{top}}$ = 0 mb.
1696 \\
1697
1698 \noindent
1699 {\bf 60) \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
1700 \[
1701 {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
1702 \]
1703 \noindent
1704 where top indicates the top of the first model layer used in the shortwave radiation
1705 routine.
1706 In the GCM, $p_{SW_{top}}$ = 0 mb.
1707 \\
1708
1709
1710 \noindent
1711 {\bf 61) \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
1712
1713 \noindent
1714 The amount of cloud mass moved per RAS timestep from all convective clouds is written:
1715 \[
1716 {\bf CLDMAS} = \eta m_B
1717 \]
1718 where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
1719 the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
1720 description of the convective parameterization.
1721 \\
1722
1723
1724
1725 \noindent
1726 {\bf 62) \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
1727
1728 \noindent
1729 The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
1730 the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
1731 Zonal U-Wind which is archived on the Prognostic Output data stream.
1732 \[
1733 {\bf UAVE} = u(\lambda, \phi, level , t)
1734 \]
1735 \\
1736 Note, {\bf UAVE} is computed and stored on the staggered C-grid.
1737 \\
1738
1739 \noindent
1740 {\bf 63) \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
1741
1742 \noindent
1743 The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
1744 the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
1745 Meridional V-Wind which is archived on the Prognostic Output data stream.
1746 \[
1747 {\bf VAVE} = v(\lambda, \phi, level , t)
1748 \]
1749 \\
1750 Note, {\bf VAVE} is computed and stored on the staggered C-grid.
1751 \\
1752
1753 \noindent
1754 {\bf 64) \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
1755
1756 \noindent
1757 The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
1758 the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
1759 Temperature which is archived on the Prognostic Output data stream.
1760 \[
1761 {\bf TAVE} = T(\lambda, \phi, level , t)
1762 \]
1763 \\
1764
1765 \noindent
1766 {\bf 65) \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
1767
1768 \noindent
1769 The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
1770 the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
1771 Specific Humidity which is archived on the Prognostic Output data stream.
1772 \[
1773 {\bf QAVE} = q(\lambda, \phi, level , t)
1774 \]
1775 \\
1776
1777 \noindent
1778 {\bf 66) \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
1779
1780 \noindent
1781 The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
1782 the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
1783 Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
1784 \begin{eqnarray*}
1785 {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
1786 & = & p_s(\lambda, \phi, level , t) - p_T
1787 \end{eqnarray*}
1788 \\
1789
1790
1791 \noindent
1792 {\bf 67) \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
1793
1794 \noindent
1795 The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
1796 produced by the GCM Turbulence parameterization over
1797 the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
1798 Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
1799 \[
1800 {\bf QQAVE} = qq(\lambda, \phi, level , t)
1801 \]
1802 \\
1803 Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
1804 \\
1805
1806 \noindent
1807 {\bf 68) \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
1808
1809 \noindent
1810 \begin{eqnarray*}
1811 {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
1812 & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
1813 \end{eqnarray*}
1814 \noindent
1815 \\
1816 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1817 $F(clearsky){SW}^\downarrow$ is
1818 the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
1819 the upward clearsky Shortwave flux.
1820 \\
1821
1822 \noindent
1823 {\bf 69) \underline {SDIAG1} User-Defined Surface Diagnostic-1 }
1824
1825 \noindent
1826 The GCM provides Users with a built-in mechanism for archiving user-defined
1827 diagnostics. The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated
1828 diagnostic counters and pointers located in COMMON /DIAGP/,
1829 must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}).
1830 A convenient method for incorporating all necessary COMMON files is to
1831 include the GCM {\em vstate.com} file in the routine which employs the
1832 user-defined diagnostics.
1833
1834 \noindent
1835 In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill
1836 the QDIAG array with the desired quantity within the User's
1837 application program or within modified GCM subroutines, as well as increment
1838 the diagnostic counter at the time when the diagnostic is updated.
1839 The QDIAG location index for {\bf SDIAG1} and its corresponding counter is
1840 automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the
1841 diagnostic has been enabled.
1842 The syntax for its use is given by
1843 \begin{verbatim}
1844 do j=1,jm
1845 do i=1,im
1846 qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ...
1847 enddo
1848 enddo
1849
1850 NSDIAG1 = NSDIAG1 + 1
1851 \end{verbatim}
1852 The diagnostics defined in this manner will automatically be archived by the output routines.
1853 \\
1854
1855 \noindent
1856 {\bf 70) \underline {SDIAG2} User-Defined Surface Diagnostic-2 }
1857
1858 \noindent
1859 The GCM provides Users with a built-in mechanism for archiving user-defined
1860 diagnostics. For a complete description refer to Diagnostic \#84.
1861 The syntax for using the surface SDIAG2 diagnostic is given by
1862 \begin{verbatim}
1863 do j=1,jm
1864 do i=1,im
1865 qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ...
1866 enddo
1867 enddo
1868
1869 NSDIAG2 = NSDIAG2 + 1
1870 \end{verbatim}
1871 The diagnostics defined in this manner will automatically be archived by the output routines.
1872 \\
1873
1874 \noindent
1875 {\bf 71) \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 }
1876
1877 \noindent
1878 The GCM provides Users with a built-in mechanism for archiving user-defined
1879 diagnostics. For a complete description refer to Diagnostic \#84.
1880 The syntax for using the upper-air UDIAG1 diagnostic is given by
1881 \begin{verbatim}
1882 do L=1,Nrphys
1883 do j=1,jm
1884 do i=1,im
1885 qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ...
1886 enddo
1887 enddo
1888 enddo
1889
1890 NUDIAG1 = NUDIAG1 + 1
1891 \end{verbatim}
1892 The diagnostics defined in this manner will automatically be archived by the
1893 output programs.
1894 \\
1895
1896 \noindent
1897 {\bf 72) \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 }
1898
1899 \noindent
1900 The GCM provides Users with a built-in mechanism for archiving user-defined
1901 diagnostics. For a complete description refer to Diagnostic \#84.
1902 The syntax for using the upper-air UDIAG2 diagnostic is given by
1903 \begin{verbatim}
1904 do L=1,Nrphys
1905 do j=1,jm
1906 do i=1,im
1907 qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ...
1908 enddo
1909 enddo
1910 enddo
1911
1912 NUDIAG2 = NUDIAG2 + 1
1913 \end{verbatim}
1914 The diagnostics defined in this manner will automatically be archived by the
1915 output programs.
1916 \\
1917
1918
1919 \noindent
1920 {\bf 73) \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
1921
1922 \noindent
1923 {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
1924 and the Analysis forcing.
1925 \[
1926 {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1927 \]
1928 \\
1929
1930 \noindent
1931 {\bf 74) \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
1932
1933 \noindent
1934 {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
1935 and the Analysis forcing.
1936 \[
1937 {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1938 \]
1939 \\
1940
1941 \noindent
1942 {\bf 75) \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
1943
1944 \noindent
1945 {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
1946 and the Analysis forcing.
1947 \begin{eqnarray*}
1948 {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1949 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1950 \end{eqnarray*}
1951 \\
1952 If we define the time-tendency of Temperature due to Diabatic processes as
1953 \begin{eqnarray*}
1954 \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1955 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
1956 \end{eqnarray*}
1957 then, since there are no surface pressure changes due to Diabatic processes, we may write
1958 \[
1959 \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
1960 \]
1961 where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
1962 \[
1963 {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
1964 \]
1965 \\
1966
1967 \noindent
1968 {\bf 76) \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
1969
1970 \noindent
1971 {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
1972 and the Analysis forcing.
1973 \[
1974 {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
1975 \]
1976 If we define the time-tendency of Specific Humidity due to Diabatic processes as
1977 \[
1978 \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
1979 \]
1980 then, since there are no surface pressure changes due to Diabatic processes, we may write
1981 \[
1982 \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
1983 \]
1984 Thus, {\bf DIABQ} may be written as
1985 \[
1986 {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
1987 \]
1988 \\
1989
1990 \noindent
1991 {\bf 77) \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
1992
1993 \noindent
1994 The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
1995 $u q$ over the depth of the atmosphere at each model timestep,
1996 and dividing by the total mass of the column.
1997 \[
1998 {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
1999 \]
2000 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2001 \[
2002 {\bf VINTUQ} = { \int_0^1 u q dp }
2003 \]
2004 \\
2005
2006
2007 \noindent
2008 {\bf 78) \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2009
2010 \noindent
2011 The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2012 $v q$ over the depth of the atmosphere at each model timestep,
2013 and dividing by the total mass of the column.
2014 \[
2015 {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2016 \]
2017 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2018 \[
2019 {\bf VINTVQ} = { \int_0^1 v q dp }
2020 \]
2021 \\
2022
2023
2024 \noindent
2025 {\bf 79) \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2026
2027 \noindent
2028 The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2029 $u T$ over the depth of the atmosphere at each model timestep,
2030 and dividing by the total mass of the column.
2031 \[
2032 {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2033 \]
2034 Or,
2035 \[
2036 {\bf VINTUT} = { \int_0^1 u T dp }
2037 \]
2038 \\
2039
2040 \noindent
2041 {\bf 80) \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2042
2043 \noindent
2044 The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2045 $v T$ over the depth of the atmosphere at each model timestep,
2046 and dividing by the total mass of the column.
2047 \[
2048 {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2049 \]
2050 Using $\rho \delta z = -{\delta p \over g} $, we have
2051 \[
2052 {\bf VINTVT} = { \int_0^1 v T dp }
2053 \]
2054 \\
2055
2056 \noindent
2057 {\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2058
2059 If we define the
2060 time-averaged random and maximum overlapped cloudiness as CLRO and
2061 CLMO respectively, then the probability of clear sky associated
2062 with random overlapped clouds at any level is (1-CLRO) while the probability of
2063 clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2064 The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2065 the total cloud fraction at each level may be obtained by
2066 1-(1-CLRO)*(1-CLMO).
2067
2068 At any given level, we may define the clear line-of-site probability by
2069 appropriately accounting for the maximum and random overlap
2070 cloudiness. The clear line-of-site probability is defined to be
2071 equal to the product of the clear line-of-site probabilities
2072 associated with random and maximum overlap cloudiness. The clear
2073 line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2074 from the current pressure $p$
2075 to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2076 is simply 1.0 minus the largest maximum overlap cloud value along the
2077 line-of-site, ie.
2078
2079 $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2080
2081 Thus, even in the time-averaged sense it is assumed that the
2082 maximum overlap clouds are correlated in the vertical. The clear
2083 line-of-site probability associated with random overlap clouds is
2084 defined to be the product of the clear sky probabilities at each
2085 level along the line-of-site, ie.
2086
2087 $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2088
2089 The total cloud fraction at a given level associated with a line-
2090 of-site calculation is given by
2091
2092 $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2093 \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2094
2095
2096 \noindent
2097 The 2-dimensional net cloud fraction as seen from the top of the
2098 atmosphere is given by
2099 \[
2100 {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2101 \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2102 \]
2103 \\
2104 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2105
2106
2107 \noindent
2108 {\bf 82) \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2109
2110 \noindent
2111 The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2112 given by:
2113 \begin{eqnarray*}
2114 {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2115 & = & {\pi \over g} \int_0^1 q dp
2116 \end{eqnarray*}
2117 where we have used the hydrostatic relation
2118 $\rho \delta z = -{\delta p \over g} $.
2119 \\
2120
2121
2122 \noindent
2123 {\bf 83) \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2124
2125 \noindent
2126 The u-wind at the 2-meter depth is determined from the similarity theory:
2127 \[
2128 {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2129 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2130 \]
2131
2132 \noindent
2133 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2134 $sl$ refers to the height of the top of the surface layer. If the roughness height
2135 is above two meters, ${\bf U2M}$ is undefined.
2136 \\
2137
2138 \noindent
2139 {\bf 84) \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2140
2141 \noindent
2142 The v-wind at the 2-meter depth is a determined from the similarity theory:
2143 \[
2144 {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2145 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2146 \]
2147
2148 \noindent
2149 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2150 $sl$ refers to the height of the top of the surface layer. If the roughness height
2151 is above two meters, ${\bf V2M}$ is undefined.
2152 \\
2153
2154 \noindent
2155 {\bf 85) \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2156
2157 \noindent
2158 The temperature at the 2-meter depth is a determined from the similarity theory:
2159 \[
2160 {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2161 P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2162 (\theta_{sl} - \theta_{surf}))
2163 \]
2164 where:
2165 \[
2166 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2167 \]
2168
2169 \noindent
2170 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2171 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2172 $sl$ refers to the height of the top of the surface layer. If the roughness height
2173 is above two meters, ${\bf T2M}$ is undefined.
2174 \\
2175
2176 \noindent
2177 {\bf 86) \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2178
2179 \noindent
2180 The specific humidity at the 2-meter depth is determined from the similarity theory:
2181 \[
2182 {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2183 P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2184 (q_{sl} - q_{surf}))
2185 \]
2186 where:
2187 \[
2188 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2189 \]
2190
2191 \noindent
2192 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2193 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2194 $sl$ refers to the height of the top of the surface layer. If the roughness height
2195 is above two meters, ${\bf Q2M}$ is undefined.
2196 \\
2197
2198 \noindent
2199 {\bf 87) \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2200
2201 \noindent
2202 The u-wind at the 10-meter depth is an interpolation between the surface wind
2203 and the model lowest level wind using the ratio of the non-dimensional wind shear
2204 at the two levels:
2205 \[
2206 {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2207 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2208 \]
2209
2210 \noindent
2211 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2212 $sl$ refers to the height of the top of the surface layer.
2213 \\
2214
2215 \noindent
2216 {\bf 88) \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2217
2218 \noindent
2219 The v-wind at the 10-meter depth is an interpolation between the surface wind
2220 and the model lowest level wind using the ratio of the non-dimensional wind shear
2221 at the two levels:
2222 \[
2223 {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2224 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2225 \]
2226
2227 \noindent
2228 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2229 $sl$ refers to the height of the top of the surface layer.
2230 \\
2231
2232 \noindent
2233 {\bf 89) \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2234
2235 \noindent
2236 The temperature at the 10-meter depth is an interpolation between the surface potential
2237 temperature and the model lowest level potential temperature using the ratio of the
2238 non-dimensional temperature gradient at the two levels:
2239 \[
2240 {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2241 P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2242 (\theta_{sl} - \theta_{surf}))
2243 \]
2244 where:
2245 \[
2246 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2247 \]
2248
2249 \noindent
2250 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2251 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2252 $sl$ refers to the height of the top of the surface layer.
2253 \\
2254
2255 \noindent
2256 {\bf 90) \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2257
2258 \noindent
2259 The specific humidity at the 10-meter depth is an interpolation between the surface specific
2260 humidity and the model lowest level specific humidity using the ratio of the
2261 non-dimensional temperature gradient at the two levels:
2262 \[
2263 {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2264 P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2265 (q_{sl} - q_{surf}))
2266 \]
2267 where:
2268 \[
2269 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2270 \]
2271
2272 \noindent
2273 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2274 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2275 $sl$ refers to the height of the top of the surface layer.
2276 \\
2277
2278 \noindent
2279 {\bf 91) \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2280
2281 The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2282 \[
2283 {\bf DTRAIN} = \eta_{r_D}m_B
2284 \]
2285 \noindent
2286 where $r_D$ is the detrainment level,
2287 $m_B$ is the cloud base mass flux, and $\eta$
2288 is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2289 \\
2290
2291 \noindent
2292 {\bf 92) \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2293
2294 \noindent
2295 Due to computational errors associated with the numerical scheme used for
2296 the advection of moisture, negative values of specific humidity may be generated. The
2297 specific humidity is checked for negative values after every dynamics timestep. If negative
2298 values have been produced, a filling algorithm is invoked which redistributes moisture from
2299 below. Diagnostic {\bf QFILL} is equal to the net filling needed
2300 to eliminate negative specific humidity, scaled to a per-day rate:
2301 \[
2302 {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2303 \]
2304 where
2305 \[
2306 q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2307 \]
2308
2309 \subsection{Dos and Donts}
2310
2311 \subsection{Diagnostics Reference}
2312

  ViewVC Help
Powered by ViewVC 1.1.22