/[MITgcm]/manual/s_phys_pkgs/diagnostics.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/diagnostics.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by molod, Mon Oct 18 19:43:56 2004 UTC revision 1.9 by molod, Thu Jul 14 19:18:01 2005 UTC
# Line 276  N & NAME & UNITS & LEVELS & DESCRIPTION Line 276  N & NAME & UNITS & LEVELS & DESCRIPTION
276  \hline  \hline
277    
278  &\\  &\\
279  1 & UFLUX    &   $Newton/m^2$  &    1    84 & SDIAG1   &             &    1  
280           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
281            {Surface U-Wind Stress on the atmosphere}            {User-Defined Surface Diagnostic-1}
          \end{minipage}\\  
 2 & VFLUX    &   $Newton/m^2$  &    1    
          &\begin{minipage}[t]{3in}  
           {Surface V-Wind Stress on the atmosphere}  
          \end{minipage}\\  
 3 & HFLUX    &   $Watts/m^2$  &    1    
          &\begin{minipage}[t]{3in}  
           {Surface Flux of Sensible Heat}  
          \end{minipage}\\  
 4 & EFLUX    &   $Watts/m^2$  &    1    
          &\begin{minipage}[t]{3in}  
           {Surface Flux of Latent Heat}  
          \end{minipage}\\  
 5 & QICE     &   $Watts/m^2$  &    1    
          &\begin{minipage}[t]{3in}  
           {Heat Conduction through Sea-Ice}  
          \end{minipage}\\  
 6 & RADLWG   &   $Watts/m^2$ &    1    
          &\begin{minipage}[t]{3in}  
           {Net upward LW flux at the ground}  
          \end{minipage}\\  
 7 & RADSWG   &   $Watts/m^2$  &    1  
          &\begin{minipage}[t]{3in}  
           {Net downward SW flux at the ground}  
          \end{minipage}\\  
 8 & RI       &  $dimensionless$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Richardson Number}  
          \end{minipage}\\  
 9 & CT       &  $dimensionless$ &  1  
          &\begin{minipage}[t]{3in}  
           {Surface Drag coefficient for T and Q}  
          \end{minipage}\\  
 10 & CU       & $dimensionless$ &  1  
          &\begin{minipage}[t]{3in}  
           {Surface Drag coefficient for U and V}  
          \end{minipage}\\  
 11 & ET       &  $m^2/sec$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Diffusivity coefficient for T and Q}  
          \end{minipage}\\  
 12 & EU       &  $m^2/sec$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Diffusivity coefficient for U and V}  
          \end{minipage}\\  
 13 & TURBU    &  $m/sec/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {U-Momentum Changes due to Turbulence}  
          \end{minipage}\\  
 14 & TURBV    &  $m/sec/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {V-Momentum Changes due to Turbulence}  
          \end{minipage}\\  
 15 & TURBT    &  $deg/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Temperature Changes due to Turbulence}  
          \end{minipage}\\  
 16 & TURBQ    &  $g/kg/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Specific Humidity Changes due to Turbulence}  
          \end{minipage}\\  
 17 & MOISTT   &   $deg/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Temperature Changes due to Moist Processes}  
          \end{minipage}\\  
 18 & MOISTQ   &  $g/kg/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Specific Humidity Changes due to Moist Processes}  
          \end{minipage}\\  
 19 & RADLW    &  $deg/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Net Longwave heating rate for each level}  
          \end{minipage}\\  
 20 & RADSW    &  $deg/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Net Shortwave heating rate for each level}  
          \end{minipage}\\  
 21 & PREACC   &  $mm/day$ &  1  
          &\begin{minipage}[t]{3in}  
           {Total Precipitation}  
          \end{minipage}\\  
 22 & PRECON   &  $mm/day$ &  1  
          &\begin{minipage}[t]{3in}  
           {Convective Precipitation}  
          \end{minipage}\\  
 23 & TUFLUX   &  $Newton/m^2$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Turbulent Flux of U-Momentum}  
          \end{minipage}\\  
 24 & TVFLUX   &  $Newton/m^2$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Turbulent Flux of V-Momentum}  
          \end{minipage}\\  
 25 & TTFLUX   &  $Watts/m^2$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Turbulent Flux of Sensible Heat}  
          \end{minipage}\\  
 26 & TQFLUX   &  $Watts/m^2$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Turbulent Flux of Latent Heat}  
          \end{minipage}\\  
 27 & CN       &  $dimensionless$ &  1  
          &\begin{minipage}[t]{3in}  
           {Neutral Drag Coefficient}  
          \end{minipage}\\  
 28 & WINDS     &  $m/sec$ &  1  
          &\begin{minipage}[t]{3in}  
           {Surface Wind Speed}  
          \end{minipage}\\  
 29 & DTSRF     &  $deg$ &  1  
          &\begin{minipage}[t]{3in}  
           {Air/Surface virtual temperature difference}  
          \end{minipage}\\  
 30 & TG        &  $deg$ &  1  
          &\begin{minipage}[t]{3in}  
           {Ground temperature}  
282           \end{minipage}\\           \end{minipage}\\
283  31 & TS        &  $deg$ &  1  85 & SDIAG2   &             &    1  
284           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
285            {Surface air temperature (Adiabatic from lowest model layer)}            {User-Defined Surface Diagnostic-2}
286           \end{minipage}\\           \end{minipage}\\
287  32 & DTG       &  $deg$ &  1  86 & UDIAG1   &             &    Nrphys
288           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
289            {Ground temperature adjustment}            {User-Defined Upper-Air Diagnostic-1}
290           \end{minipage}\\           \end{minipage}\\
291    87 & UDIAG2   &             &    Nrphys
 \end{tabular}  
   
 \newpage  
 \vspace*{\fill}  
 \begin{tabular}{lllll}  
 \hline\hline  
 N & NAME & UNITS & LEVELS & DESCRIPTION \\  
 \hline  
   
 &\\  
 33 & QG        &  $g/kg$ &  1  
292           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
293            {Ground specific humidity}            {User-Defined Upper-Air Diagnostic-2}
294           \end{minipage}\\           \end{minipage}\\
295  34 & QS        &  $g/kg$ &  1  124& SDIAG3   &             &    1  
296           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
297            {Saturation surface specific humidity}            {User-Defined Surface Diagnostic-3}
298           \end{minipage}\\           \end{minipage}\\
299    125& SDIAG4   &             &    1  
 &\\  
 35 & TGRLW    &    $deg$   &    1    
300           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
301            {Instantaneous ground temperature used as input to the            {User-Defined Surface Diagnostic-4}
            Longwave radiation subroutine}  
302           \end{minipage}\\           \end{minipage}\\
303  36 & ST4      &   $Watts/m^2$  &    1    126& SDIAG5   &             &    1  
304           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
305            {Upward Longwave flux at the ground ($\sigma T^4$)}            {User-Defined Surface Diagnostic-5}
306           \end{minipage}\\           \end{minipage}\\
307  37 & OLR      &   $Watts/m^2$  &    1    127& SDIAG6   &             &    1  
308           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
309            {Net upward Longwave flux at the top of the model}            {User-Defined Surface Diagnostic-6}
310           \end{minipage}\\           \end{minipage}\\
311  38 & OLRCLR   &   $Watts/m^2$  &    1    128& SDIAG7   &             &    1  
312           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
313            {Net upward clearsky Longwave flux at the top of the model}            {User-Defined Surface Diagnostic-7}
314           \end{minipage}\\           \end{minipage}\\
315  39 & LWGCLR   &   $Watts/m^2$  &    1    129& SDIAG8   &             &    1  
316           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
317            {Net upward clearsky Longwave flux at the ground}            {User-Defined Surface Diagnostic-8}
318           \end{minipage}\\           \end{minipage}\\
319  40 & LWCLR    &  $deg/day$ &  Nrphys  130& SDIAG9   &             &    1  
320           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
321            {Net clearsky Longwave heating rate for each level}            {User-Defined Surface Diagnostic-9}
322           \end{minipage}\\           \end{minipage}\\
323  41 & TLW      &    $deg$   &  Nrphys  131& SDIAG10  &             &    1  
324           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
325            {Instantaneous temperature used as input to the Longwave radiation            {User-Defined Surface Diagnostic-1-}
           subroutine}  
326           \end{minipage}\\           \end{minipage}\\
327  42 & SHLW     &    $g/g$   &  Nrphys  132& UDIAG3   &             &    Nrphys  
328           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
329            {Instantaneous specific humidity used as input to the Longwave radiation            {User-Defined Multi-Level Diagnostic-3}
           subroutine}  
330           \end{minipage}\\           \end{minipage}\\
331  43 & OZLW     &    $g/g$   &  Nrphys  133& UDIAG4   &             &    Nrphys  
332           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
333            {Instantaneous ozone used as input to the Longwave radiation            {User-Defined Multi-Level Diagnostic-4}
           subroutine}  
334           \end{minipage}\\           \end{minipage}\\
335  44 & CLMOLW   &    $0-1$   &  Nrphys  134& UDIAG5   &             &    Nrphys  
336           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
337            {Maximum overlap cloud fraction used in the Longwave radiation            {User-Defined Multi-Level Diagnostic-5}
           subroutine}  
338           \end{minipage}\\           \end{minipage}\\
339  45 & CLDTOT   &    $0-1$   &  Nrphys  135& UDIAG6   &             &    Nrphys  
340           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
341            {Total cloud fraction used in the Longwave and Shortwave radiation            {User-Defined Multi-Level Diagnostic-6}
           subroutines}  
342           \end{minipage}\\           \end{minipage}\\
343  46 & RADSWT   &    $Watts/m^2$   &  1  136& UDIAG7   &             &    Nrphys  
344           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
345            {Incident Shortwave radiation at the top of the atmosphere}            {User-Defined Multi-Level Diagnostic-7}
346           \end{minipage}\\           \end{minipage}\\
347  47 & CLROSW   &    $0-1$   &  Nrphys  137& UDIAG8   &             &    Nrphys  
348           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
349            {Random overlap cloud fraction used in the shortwave radiation            {User-Defined Multi-Level Diagnostic-8}
           subroutine}  
350           \end{minipage}\\           \end{minipage}\\
351  48 & CLMOSW   &    $0-1$   &  Nrphys  138& UDIAG9   &             &    Nrphys  
352           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
353            {Maximum overlap cloud fraction used in the shortwave radiation            {User-Defined Multi-Level Diagnostic-9}
           subroutine}  
354           \end{minipage}\\           \end{minipage}\\
355  49 & EVAP     &    $mm/day$   &  1  139& UDIAG10  &             &    Nrphys  
356           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
357            {Surface evaporation}            {User-Defined Multi-Level Diagnostic-10}
358           \end{minipage}\\           \end{minipage}\\
359  \end{tabular}  \end{tabular}
360    \vspace{1.5in}
361  \vfill  \vfill
362    
363  \newpage  \newpage
# Line 504  N & NAME & UNITS & LEVELS & DESCRIPTION Line 368  N & NAME & UNITS & LEVELS & DESCRIPTION
368  \hline  \hline
369    
370  &\\  &\\
371  50 & DUDT     &    $m/sec/day$ &  Nrphys  238& ETAN     & $(hPa,m)$ &    1
          &\begin{minipage}[t]{3in}  
           {Total U-Wind tendency}  
          \end{minipage}\\  
 51 & DVDT     &    $m/sec/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Total V-Wind tendency}  
          \end{minipage}\\  
 52 & DTDT     &    $deg/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Total Temperature tendency}  
          \end{minipage}\\  
 53 & DQDT     &    $g/kg/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Total Specific Humidity tendency}  
          \end{minipage}\\  
 54 & USTAR    &    $m/sec$ &  1  
          &\begin{minipage}[t]{3in}  
           {Surface USTAR wind}  
          \end{minipage}\\  
 55 & Z0       &    $m$ &  1  
          &\begin{minipage}[t]{3in}  
           {Surface roughness}  
          \end{minipage}\\  
 56 & FRQTRB   &    $0-1$ &  Nrphys-1  
          &\begin{minipage}[t]{3in}  
           {Frequency of Turbulence}  
          \end{minipage}\\  
 57 & PBL      &    $mb$ &  1  
          &\begin{minipage}[t]{3in}  
           {Planetary Boundary Layer depth}  
          \end{minipage}\\  
 58 & SWCLR    &  $deg/day$ &  Nrphys  
          &\begin{minipage}[t]{3in}  
           {Net clearsky Shortwave heating rate for each level}  
          \end{minipage}\\  
 59 & OSR      &   $Watts/m^2$  &    1  
          &\begin{minipage}[t]{3in}  
           {Net downward Shortwave flux at the top of the model}  
          \end{minipage}\\  
 60 & OSRCLR   &   $Watts/m^2$  &    1    
372           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
373            {Net downward clearsky Shortwave flux at the top of the model}            {Perturbation of Surface (pressure, height)}
374           \end{minipage}\\           \end{minipage}\\
375  61 & CLDMAS   &   $kg / m^2$  &    Nrphys  239& ETANSQ   & $(hPa^2,m^2)$ & 1
376           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
377            {Convective cloud mass flux}            {Square of Perturbation of Surface (pressure, height)}
378           \end{minipage}\\           \end{minipage}\\
379  62 & UAVE     &   $m/sec$  &    Nrphys  240& THETA    & $deg K$ & Nr
380           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
381            {Time-averaged $u-Wind$}            {Potential Temperature}
382           \end{minipage}\\           \end{minipage}\\
383  63 & VAVE     &   $m/sec$  &    Nrphys  241& SALT     & $g/kg$ & Nr
384           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
385            {Time-averaged $v-Wind$}            {Salt (or Water Vapor Mixing Ratio)}
386           \end{minipage}\\           \end{minipage}\\
387  64 & TAVE     &   $deg$  &    Nrphys  242& UVEL     & $m/sec$ & Nr
388           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
389            {Time-averaged $Temperature$}            {U-Velocity}
390           \end{minipage}\\           \end{minipage}\\
391  65 & QAVE     &   $g/g$  &    Nrphys  243& VVEL     & $m/sec$ & Nr
392           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
393            {Time-averaged $Specific \, \, Humidity$}            {V-Velocity}
394           \end{minipage}\\           \end{minipage}\\
395  66 & PAVE     &   $mb$  &    1  244& WVEL     & $m/sec$ & Nr
396           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
397            {Time-averaged $p_{surf} - p_{top}$}            {Vertical-Velocity}
398           \end{minipage}\\           \end{minipage}\\
399  67 & QQAVE    &   $(m/sec)^2$  &    Nrphys  245& THETASQ  & $deg^2$ & Nr
400           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
401            {Time-averaged $Turbulent Kinetic Energy$}            {Square of Potential Temperature}
402           \end{minipage}\\           \end{minipage}\\
403  68 & SWGCLR   &   $Watts/m^2$  &    1    246& SALTSQ   & $g^2/{kg}^2$ & Nr
404           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
405            {Net downward clearsky Shortwave flux at the ground}            {Square of Salt (or Water Vapor Mixing Ratio)}
406           \end{minipage}\\           \end{minipage}\\
407  69 & SDIAG1   &             &    1    247& UVELSQ   & $m^2/sec^2$ & Nr
408           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
409            {User-Defined Surface Diagnostic-1}            {Square of U-Velocity}
410           \end{minipage}\\           \end{minipage}\\
411  70 & SDIAG2   &             &    1    248& VVELSQ   & $m^2/sec^2$ & Nr
412           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
413            {User-Defined Surface Diagnostic-2}            {Square of V-Velocity}
414           \end{minipage}\\           \end{minipage}\\
415  71 & UDIAG1   &             &    Nrphys  249& WVELSQ   & $m^2/sec^2$ & Nr
416           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
417            {User-Defined Upper-Air Diagnostic-1}            {Square of Vertical-Velocity}
418           \end{minipage}\\           \end{minipage}\\
419  72 & UDIAG2   &             &    Nrphys  250& UVELVVEL & $m^2/sec^2$ & Nr
420           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
421            {User-Defined Upper-Air Diagnostic-2}            {Meridional Transport of Zonal Momentum}
422           \end{minipage}\\           \end{minipage}\\
423  73 & DIABU    & $m/sec/day$ &    Nrphys  251& UVELMASS & $m/sec$ & Nr
424           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
425            {Total Diabatic forcing on $u-Wind$}            {Zonal Mass-Weighted Component of Velocity}
426           \end{minipage}\\           \end{minipage}\\
427  74 & DIABV    & $m/sec/day$ &    Nrphys  252& VVELMASS & $m/sec$ & Nr
428           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
429            {Total Diabatic forcing on $v-Wind$}            {Meridional Mass-Weighted Component of Velocity}
430           \end{minipage}\\           \end{minipage}\\
431  75 & DIABT    & $deg/day$ &    Nrphys  253& WVELMASS & $m/sec$ & Nr
432           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
433            {Total Diabatic forcing on $Temperature$}            {Vertical Mass-Weighted Component of Velocity}
434           \end{minipage}\\           \end{minipage}\\
435  76 & DIABQ    & $g/kg/day$ &    Nrphys  254& UTHMASS  & $m-deg/sec$ & Nr
436           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
437            {Total Diabatic forcing on $Specific \, \, Humidity$}            {Zonal Mass-Weight Transp of Pot Temp}
438           \end{minipage}\\           \end{minipage}\\
439    255& VTHMASS  & $m-deg/sec$ & Nr
 \end{tabular}  
 \vfill  
   
 \newpage  
 \vspace*{\fill}  
 \begin{tabular}{lllll}  
 \hline\hline  
 N & NAME & UNITS & LEVELS & DESCRIPTION \\  
 \hline  
   
 77 & VINTUQ  & $m/sec \cdot g/kg$ &    1  
440           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
441            {Vertically integrated $u \, q$}            {Meridional Mass-Weight Transp of Pot Temp}
442           \end{minipage}\\           \end{minipage}\\
443  78 & VINTVQ  & $m/sec \cdot g/kg$ &    1  256& WTHMASS  & $m-deg/sec$ & Nr
444           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
445            {Vertically integrated $v \, q$}            {Vertical Mass-Weight Transp of Pot Temp}
446           \end{minipage}\\           \end{minipage}\\
447  79 & VINTUT  & $m/sec \cdot deg$ &    1  257& USLTMASS & $m-kg/sec-kg$ & Nr
448           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
449            {Vertically integrated $u \, T$}            {Zonal Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}
450           \end{minipage}\\           \end{minipage}\\
451  80 & VINTVT  & $m/sec \cdot deg$ &    1  258& VSLTMASS & $m-kg/sec-kg$ & Nr
452           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
453            {Vertically integrated $v \, T$}            {Meridional Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}
454           \end{minipage}\\           \end{minipage}\\
455  81 & CLDFRC  & $0-1$ &    1  259& WSLTMASS & $m-kg/sec-kg$ & Nr
456           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
457            {Total Cloud Fraction}            {Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}
458           \end{minipage}\\           \end{minipage}\\
459  82 & QINT    & $gm/cm^2$ &    1  260& UVELTH   & $m-deg/sec$ & Nr
460           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
461            {Precipitable water}            {Zonal Transp of Pot Temp}
462           \end{minipage}\\           \end{minipage}\\
463  83 & U2M     & $m/sec$ &    1  261& VVELTH   & $m-deg/sec$ & Nr
464           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
465            {U-Wind at 2 meters}            {Meridional Transp of Pot Temp}
466           \end{minipage}\\           \end{minipage}\\
467  84 & V2M     & $m/sec$ &    1  262& WVELTH   & $m-deg/sec$ & Nr
468           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
469            {V-Wind at 2 meters}            {Vertical Transp of Pot Temp}
470           \end{minipage}\\           \end{minipage}\\
471  85 & T2M     & $deg$ &    1  263& UVELSLT  & $m-kg/sec-kg$ & Nr
472           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
473            {Temperature at 2 meters}            {Zonal Transp of Salt (or W.Vap Mix Rat.)}
474           \end{minipage}\\           \end{minipage}\\
475  86 & Q2M     & $g/kg$ &    1  264& VVELSLT  & $m-kg/sec-kg$ & Nr
476           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
477            {Specific Humidity at 2 meters}            {Meridional Transp of Salt (or W.Vap Mix Rat.)}
478           \end{minipage}\\           \end{minipage}\\
479  87 & U10M    & $m/sec$ &    1  265& WVELSLT  & $m-kg/sec-kg$ & Nr
480           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
481            {U-Wind at 10 meters}            {Vertical Transp of Salt (or W.Vap Mix Rat.)}
482           \end{minipage}\\           \end{minipage}\\
483  88 & V10M    & $m/sec$ &    1  275& WSLTMASS & $m-kg/sec-kg$ & Nr
484           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
485            {V-Wind at 10 meters}            {Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}
486           \end{minipage}\\           \end{minipage}\\
487  89 & T10M    & $deg$ &    1  298& VISCA4   & $m^4/sec$ & 1
488           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
489            {Temperature at 10 meters}            {Biharmonic Viscosity Coefficient}
490           \end{minipage}\\           \end{minipage}\\
491  90 & Q10M    & $g/kg$ &    1  299& VISCAH   & $m^2/sec$ & 1
492           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
493            {Specific Humidity at 10 meters}            {Harmonic Viscosity Coefficient}
494           \end{minipage}\\           \end{minipage}\\
495  91 & DTRAIN  & $kg/m^2$ &    Nrphys  300& DRHODR   & $kg/m^3/{r-unit}$ & Nr
496           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
497            {Detrainment Cloud Mass Flux}            {Stratification: d.Sigma/dr}
498           \end{minipage}\\           \end{minipage}\\
499  92 & QFILL   & $g/kg/day$ &    Nrphys  301& DETADT2  & ${r-unit}^2/s^2$ & 1
500           &\begin{minipage}[t]{3in}           &\begin{minipage}[t]{3in}
501            {Filling of negative specific humidity}            {Square of Eta (Surf.P,SSH) Tendency}
502           \end{minipage}\\           \end{minipage}\\
   
503  \end{tabular}  \end{tabular}
504  \vspace{1.5in}  \vspace{1.5in}
505  \vfill  \vfill
# Line 709  where $TTOT = {{\bf NQDIAG} \over \Delta Line 521  where $TTOT = {{\bf NQDIAG} \over \Delta
521  output frequency of the diagnostic, and $\Delta t$ is  output frequency of the diagnostic, and $\Delta t$ is
522  the timestep over which the diagnostic is updated.    the timestep over which the diagnostic is updated.  
523    
 {\bf 1)  \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }  
   
 The zonal wind stress is the turbulent flux of zonal momentum from  
 the surface. See section 3.3 for a description of the surface layer parameterization.  
 \[  
 {\bf UFLUX} =  - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u  
 \]  
 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface  
 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum  
 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is  
 the zonal wind in the lowest model layer.  
 \\  
   
   
 {\bf 2)  \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }  
   
 The meridional wind stress is the turbulent flux of meridional momentum from  
 the surface. See section 3.3 for a description of the surface layer parameterization.  
 \[  
 {\bf VFLUX} =  - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u  
 \]  
 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface  
 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum  
 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is  
 the meridional wind in the lowest model layer.  
 \\  
   
 {\bf 3)  \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }  
   
 The turbulent flux of sensible heat from the surface to the atmosphere is a function of the  
 gradient of virtual potential temperature and the eddy exchange coefficient:  
 \[  
 {\bf HFLUX} =  P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})  
 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t  
 \]  
 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific  
 heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the  
 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient  
 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient  
 for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature  
 at the surface and at the bottom model level.  
 \\  
   
   
 {\bf 4)  \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }  
   
 The turbulent flux of latent heat from the surface to the atmosphere is a function of the  
 gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:  
 \[  
 {\bf EFLUX} =  \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})  
 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t  
 \]  
 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of  
 the potential evapotranspiration actually evaporated, L is the latent  
 heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the  
 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient  
 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient  
 for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific  
 humidity at the surface and at the bottom model level, respectively.  
 \\  
   
 {\bf 5)  \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }  
   
 Over sea ice there is an additional source of energy at the surface due to the heat  
 conduction from the relatively warm ocean through the sea ice. The heat conduction  
 through sea ice represents an additional energy source term for the ground temperature equation.  
   
 \[  
 {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)  
 \]  
   
 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to  
 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and  
 $T_g$ is the temperature of the sea ice.  
   
 NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.  
 \\  
   
   
 {\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}  
   
 \begin{eqnarray*}  
 {\bf RADLWG} & =  & F_{LW,Nrphys+1}^{Net} \\  
              & =  & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow  
 \end{eqnarray*}  
 \\  
 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.  
 $F_{LW}^\uparrow$ is  
 the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.  
 \\  
   
 {\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}  
   
 \begin{eqnarray*}  
 {\bf RADSWG} & =  & F_{SW,Nrphys+1}^{Net} \\  
              & =  & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow  
 \end{eqnarray*}  
 \\  
 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.  
 $F_{SW}^\downarrow$ is  
 the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.  
 \\  
   
   
 \noindent  
 {\bf 8)  \underline {RI} Richardson Number} ($dimensionless$)  
   
 \noindent  
 The non-dimensional stability indicator is the ratio of the buoyancy to the shear:  
 \[  
 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }  
  =  {  {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }  
 \]  
 \\  
 where we used the hydrostatic equation:  
 \[  
 {\pp{\Phi}{P^ \kappa}} = c_p \theta_v  
 \]  
 Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)  
 indicate dominantly unstable shear, and large positive values indicate dominantly stable  
 stratification.  
 \\  
   
 \noindent  
 {\bf 9)  \underline {CT}  Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }  
   
 \noindent  
 The surface exchange coefficient is obtained from the similarity functions for the stability  
  dependant flux profile relationships:  
 \[  
 {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =  
 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =  
 { k \over { (\psi_{h} + \psi_{g}) } }  
 \]  
 where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the  
 viscous sublayer non-dimensional temperature or moisture change:  
 \[  
 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and  
 \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }  
 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}  
 \]  
 and:  
 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01  
   
 \noindent  
 $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of  
 the temperature and moisture gradients, specified differently for stable and unstable  
 layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the  
 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular  
 viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity  
 (see diagnostic number 67), and the subscript ref refers to a reference value.  
 \\  
   
 \noindent  
 {\bf 10)  \underline {CU}  Surface Exchange Coefficient for Momentum ($dimensionless$) }  
   
 \noindent  
 The surface exchange coefficient is obtained from the similarity functions for the stability  
  dependant flux profile relationships:  
 \[  
 {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }  
 \]  
 where $\psi_m$ is the surface layer non-dimensional wind shear:  
 \[  
 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}  
 \]  
 \noindent  
 $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of  
 the temperature and moisture gradients, specified differently for stable and unstable layers  
 according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the  
 non-dimensional stability parameter, $u_*$ is the surface stress velocity  
 (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.  
 \\  
   
 \noindent  
 {\bf 11)  \underline {ET}  Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }  
   
 \noindent  
 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or  
 moisture flux for the atmosphere above the surface layer can be expressed as a turbulent  
 diffusion coefficient $K_h$ times the negative of the gradient of potential temperature  
 or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$  
 takes the form:  
 \[  
 {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }  
  = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}  
 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.  
 \]  
 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}  
 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,  
 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer  
 depth,  
 $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and  
 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium  
 dimensionless buoyancy and wind shear  
 parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,  
 are functions of the Richardson number.  
   
 \noindent  
 For the detailed equations and derivations of the modified level 2.5 closure scheme,  
 see Helfand and Labraga, 1988.  
   
 \noindent  
 In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,  
 in units of $m/sec$, given by:  
 \[  
 {\bf ET_{Nrphys}} =  C_t * u_* = C_H W_s  
 \]  
 \noindent  
 where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the  
 surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface  
 friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,  
 and $W_s$ is the magnitude of the surface layer wind.  
 \\  
   
 \noindent  
 {\bf 12)  \underline {EU}  Diffusivity Coefficient for Momentum ($m^2/sec$) }  
   
 \noindent    
 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat  
 momentum flux for the atmosphere above the surface layer can be expressed as a turbulent  
 diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.  
 In the Helfand and Labraga (1988) adaptation of this closure, $K_m$  
 takes the form:  
 \[  
 {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }  
  = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}  
 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.  
 \]  
 \noindent  
 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}  
 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,  
 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer  
 depth,  
 $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and  
 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium  
 dimensionless buoyancy and wind shear  
 parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,  
 are functions of the Richardson number.  
   
 \noindent  
 For the detailed equations and derivations of the modified level 2.5 closure scheme,  
 see Helfand and Labraga, 1988.  
   
 \noindent  
 In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,  
 in units of $m/sec$, given by:  
 \[  
 {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s  
 \]  
 \noindent  
 where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer  
 similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity  
 (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the  
 magnitude of the surface layer wind.  
 \\  
   
 \noindent  
 {\bf 13)  \underline {TURBU}  Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }  
   
 \noindent  
 The tendency of U-Momentum due to turbulence is written:  
 \[  
 {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}  
  = {\pp{}{z} }{(K_m \pp{u}{z})}  
 \]  
   
 \noindent  
 The Helfand and Labraga level 2.5 scheme models the turbulent  
 flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion  
 equation.  
   
 \noindent  
 {\bf 14)  \underline {TURBV}  Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }  
   
 \noindent  
 The tendency of V-Momentum due to turbulence is written:  
 \[  
 {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}  
  = {\pp{}{z} }{(K_m \pp{v}{z})}  
 \]  
   
 \noindent  
 The Helfand and Labraga level 2.5 scheme models the turbulent  
 flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion  
 equation.  
 \\  
   
 \noindent  
 {\bf 15)  \underline {TURBT}  Temperature changes due to Turbulence ($deg/day$) }  
   
 \noindent  
 The tendency of temperature due to turbulence is written:  
 \[  
 {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =  
 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}  
  = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}  
 \]  
   
 \noindent  
 The Helfand and Labraga level 2.5 scheme models the turbulent  
 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion  
 equation.  
 \\  
   
 \noindent  
 {\bf 16)  \underline {TURBQ}  Specific Humidity changes due to Turbulence ($g/kg/day$) }  
   
 \noindent  
 The tendency of specific humidity due to turbulence is written:  
 \[  
 {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}  
  = {\pp{}{z} }{(K_h \pp{q}{z})}  
 \]  
   
 \noindent  
 The Helfand and Labraga level 2.5 scheme models the turbulent  
 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion  
 equation.  
 \\  
   
 \noindent  
 {\bf 17)  \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }  
   
 \noindent  
 \[  
 {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}  
 \]  
 where:  
 \[  
 \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i  
 \hspace{.4cm} and  
 \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)  
 \]  
 and  
 \[  
 \Gamma_s = g \eta \pp{s}{p}  
 \]  
   
 \noindent  
 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale  
 precipitation processes, or supersaturation rain.  
 The summation refers to contributions from each cloud type called by RAS.    
 The dry static energy is given  
 as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is  
 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},  
 the description of the convective parameterization.  The fractional adjustment, or relaxation  
 parameter, for each cloud type is given as $\alpha$, while  
 $R$ is the rain re-evaporation adjustment.  
 \\  
   
 \noindent  
 {\bf 18)  \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }  
   
 \noindent  
 \[  
 {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}  
 \]  
 where:  
 \[  
 \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i  
 \hspace{.4cm} and  
 \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)  
 \]  
 and  
 \[  
 \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}  
 \]  
 \noindent  
 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale  
 precipitation processes, or supersaturation rain.  
 The summation refers to contributions from each cloud type called by RAS.    
 The dry static energy is given as $s$,  
 the moist static energy is given as $h$,  
 the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is  
 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},  
 the description of the convective parameterization.  The fractional adjustment, or relaxation  
 parameter, for each cloud type is given as $\alpha$, while  
 $R$ is the rain re-evaporation adjustment.  
 \\  
   
 \noindent  
 {\bf 19)  \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }  
   
 \noindent  
 The net longwave heating rate is calculated as the vertical divergence of the  
 net terrestrial radiative fluxes.  
 Both the clear-sky and cloudy-sky longwave fluxes are computed within the  
 longwave routine.  
 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.  
 For a given cloud fraction,  
 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$  
 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,  
 for the upward and downward radiative fluxes.  
 (see Section \ref{sec:fizhi:radcloud}).  
 The cloudy-sky flux is then obtained as:  
     
 \noindent  
 \[  
 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},  
 \]  
   
 \noindent  
 Finally, the net longwave heating rate is calculated as the vertical divergence of the  
 net terrestrial radiative fluxes:  
 \[  
 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,  
 \]  
 or  
 \[  
 {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .  
 \]  
   
 \noindent  
 where $g$ is the accelation due to gravity,  
 $c_p$ is the heat capacity of air at constant pressure,  
 and  
 \[  
 F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow  
 \]  
 \\  
   
   
 \noindent  
 {\bf 20)  \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }  
   
 \noindent  
 The net Shortwave heating rate is calculated as the vertical divergence of the  
 net solar radiative fluxes.  
 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.  
 For the clear-sky case, the shortwave fluxes and heating rates are computed with  
 both CLMO (maximum overlap cloud fraction) and  
 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).  
 The shortwave routine is then called a second time, for the cloudy-sky case, with the  
 true time-averaged cloud fractions CLMO  
 and CLRO being used.  In all cases, a normalized incident shortwave flux is used as  
 input at the top of the atmosphere.  
   
 \noindent  
 The heating rate due to Shortwave Radiation under cloudy skies is defined as:  
 \[  
 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},  
 \]  
 or  
 \[  
 {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .  
 \]  
   
 \noindent  
 where $g$ is the accelation due to gravity,  
 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident  
 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and  
 \[  
 F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow  
 \]  
 \\  
   
 \noindent  
 {\bf 21)  \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }  
   
 \noindent  
 For a change in specific humidity due to moist processes, $\Delta q_{moist}$,  
 the vertical integral or total precipitable amount is given by:    
 \[  
 {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta  q_{moist}  
 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp  
 \]  
 \\  
   
 \noindent  
 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes  
 time step, scaled to $mm/day$.  
 \\  
   
 \noindent  
 {\bf 22)  \underline {PRECON} Convective Precipition ($mm/day$) }  
   
 \noindent  
 For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,  
 the vertical integral or total precipitable amount is given by:    
 \[  
 {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta  q_{cum}  
 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp  
 \]  
 \\  
   
 \noindent  
 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes  
 time step, scaled to $mm/day$.  
 \\  
   
 \noindent  
 {\bf 23)  \underline {TUFLUX}  Turbulent Flux of U-Momentum ($Newton/m^2$) }  
   
 \noindent  
 The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes  
  \hspace{.2cm} only$ from the eddy coefficient for momentum:  
   
 \[  
 {\bf TUFLUX} =  {\rho } {(\overline{u^{\prime}w^{\prime}})} =    
 {\rho } {(- K_m \pp{U}{z})}  
 \]  
   
 \noindent  
 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.  
 \\  
   
 \noindent  
 {\bf 24)  \underline {TVFLUX}  Turbulent Flux of V-Momentum ($Newton/m^2$) }  
   
 \noindent  
 The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes  
 \hspace{.2cm} only$ from the eddy coefficient for momentum:  
   
 \[  
 {\bf TVFLUX} =  {\rho } {(\overline{v^{\prime}w^{\prime}})} =  
  {\rho } {(- K_m \pp{V}{z})}  
 \]  
   
 \noindent  
 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.  
 \\  
   
   
 \noindent  
 {\bf 25)  \underline {TTFLUX}  Turbulent Flux of Sensible Heat ($Watts/m^2$) }  
   
 \noindent  
 The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes  
 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:  
   
 \noindent  
 \[  
 {\bf TTFLUX} = c_p {\rho }    
 P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}  
  = c_p  {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}  
 \]  
   
 \noindent  
 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.  
 \\  
   
   
 \noindent  
 {\bf 26)  \underline {TQFLUX}  Turbulent Flux of Latent Heat ($Watts/m^2$) }  
   
 \noindent  
 The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes  
 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:  
   
 \noindent  
 \[  
 {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =  
 {L {\rho }(- K_h \pp{q}{z})}  
 \]  
   
 \noindent  
 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.  
 \\  
   
   
 \noindent  
 {\bf 27)  \underline {CN}  Neutral Drag Coefficient ($dimensionless$) }  
   
 \noindent  
 The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:  
 \[  
 {\bf CN} = { k \over { \ln({h \over {z_0}})} }  
 \]  
   
 \noindent  
 where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and  
 $z_0$ is the surface roughness.  
   
 \noindent  
 NOTE: CN is not available through model version 5.3, but is available in subsequent  
 versions.  
 \\  
   
 \noindent  
 {\bf 28)  \underline {WINDS}  Surface Wind Speed ($meter/sec$) }  
   
 \noindent  
 The surface wind speed is calculated for the last internal turbulence time step:  
 \[  
 {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}  
 \]  
   
 \noindent  
 where the subscript $Nrphys$ refers to the lowest model level.  
 \\  
   
 \noindent  
 {\bf 29)  \underline {DTSRF}  Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }  
   
 \noindent  
 The air/surface virtual temperature difference measures the stability of the surface layer:  
 \[  
 {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}  
 \]  
 \noindent  
 where  
 \[  
 \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}  
 and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})  
 \]  
   
 \noindent  
 $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),  
 $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature  
 and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$  
 refers to the surface.  
 \\  
   
   
 \noindent  
 {\bf 30)  \underline {TG}  Ground Temperature ($deg \hspace{.1cm} K$) }  
   
 \noindent  
 The ground temperature equation is solved as part of the turbulence package  
 using a backward implicit time differencing scheme:  
 \[  
 {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}  
 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE  
 \]  
   
 \noindent  
 where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the  
 net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through  
 sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat  
 flux, and $C_g$ is the total heat capacity of the ground.  
 $C_g$ is obtained by solving a heat diffusion equation  
 for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:  
 \[  
 C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}  
 { 86400. \over {2 \pi} } } \, \, .  
 \]  
 \noindent  
 Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}  
 {cm \over {^oK}}$,  
 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided  
 by $2 \pi$ $radians/  
 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,  
 is a function of the ground wetness, $W$.  
 \\  
   
 \noindent  
 {\bf 31)  \underline {TS}  Surface Temperature ($deg \hspace{.1cm} K$) }  
   
 \noindent  
 The surface temperature estimate is made by assuming that the model's lowest  
 layer is well-mixed, and therefore that $\theta$ is constant in that layer.  
 The surface temperature is therefore:  
 \[  
 {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}  
 \]  
 \\  
   
 \noindent  
 {\bf 32)  \underline {DTG}  Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }  
   
 \noindent  
 The change in surface temperature from one turbulence time step to the next, solved  
 using the Ground Temperature Equation (see diagnostic number 30) is calculated:  
 \[  
 {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}  
 \]  
   
 \noindent  
 where superscript $n$ refers to the new, updated time level, and the superscript $n-1$  
 refers to the value at the previous turbulence time level.  
 \\  
   
 \noindent  
 {\bf 33)  \underline {QG}  Ground Specific Humidity ($g/kg$) }  
   
 \noindent  
 The ground specific humidity is obtained by interpolating between the specific  
 humidity at the lowest model level and the specific humidity of a saturated ground.  
 The interpolation is performed using the potential evapotranspiration function:  
 \[  
 {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})  
 \]  
   
 \noindent  
 where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),  
 and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface  
 pressure.  
 \\  
   
 \noindent  
 {\bf 34)  \underline {QS}  Saturation Surface Specific Humidity ($g/kg$) }  
   
 \noindent  
 The surface saturation specific humidity is the saturation specific humidity at  
 the ground temprature and surface pressure:  
 \[  
 {\bf QS} = q^*(T_g,P_s)  
 \]  
 \\  
   
 \noindent  
 {\bf 35)  \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave  
  radiation subroutine (deg)}  
 \[  
 {\bf TGRLW}  = T_g(\lambda , \phi ,n)  
 \]  
 \noindent  
 where $T_g$ is the model ground temperature at the current time step $n$.  
 \\  
   
   
 \noindent  
 {\bf 36)  \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }  
 \[  
 {\bf ST4} = \sigma T^4  
 \]  
 \noindent  
 where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.  
 \\  
   
 \noindent  
 {\bf 37)  \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }  
 \[  
 {\bf OLR}  =  F_{LW,top}^{NET}  
 \]  
 \noindent  
 where top indicates the top of the first model layer.  
 In the GCM, $p_{top}$ = 0.0 mb.  
 \\  
   
   
 \noindent  
 {\bf 38)  \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }  
 \[  
 {\bf OLRCLR}  =  F(clearsky)_{LW,top}^{NET}  
 \]  
 \noindent  
 where top indicates the top of the first model layer.  
 In the GCM, $p_{top}$ = 0.0 mb.  
 \\  
   
 \noindent  
 {\bf 39)  \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }  
   
 \noindent  
 \begin{eqnarray*}  
 {\bf LWGCLR} & =  & F(clearsky)_{LW,Nrphys+1}^{Net} \\  
              & =  & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow  
 \end{eqnarray*}  
 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.  
 $F(clearsky)_{LW}^\uparrow$ is  
 the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.  
 \\  
   
 \noindent  
 {\bf 40)  \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }  
   
 \noindent  
 The net longwave heating rate is calculated as the vertical divergence of the  
 net terrestrial radiative fluxes.  
 Both the clear-sky and cloudy-sky longwave fluxes are computed within the  
 longwave routine.  
 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.  
 For a given cloud fraction,  
 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$  
 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,  
 for the upward and downward radiative fluxes.  
 (see Section \ref{sec:fizhi:radcloud}).  
 The cloudy-sky flux is then obtained as:  
     
 \noindent  
 \[  
 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},  
 \]  
   
 \noindent  
 Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the  
 vertical divergence of the  
 clear-sky longwave radiative flux:  
 \[  
 \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,  
 \]  
 or  
 \[  
 {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .  
 \]  
   
 \noindent  
 where $g$ is the accelation due to gravity,  
 $c_p$ is the heat capacity of air at constant pressure,  
 and  
 \[  
 F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow  
 \]  
 \\  
   
   
 \noindent  
 {\bf 41)  \underline {TLW} Instantaneous temperature used as input to the Longwave  
  radiation subroutine (deg)}  
 \[  
 {\bf TLW}  = T(\lambda , \phi ,level, n)  
 \]  
 \noindent  
 where $T$ is the model temperature at the current time step $n$.  
 \\  
   
   
 \noindent  
 {\bf 42)  \underline {SHLW} Instantaneous specific humidity used as input to  
  the Longwave radiation subroutine (kg/kg)}  
 \[  
 {\bf SHLW}  = q(\lambda , \phi , level , n)  
 \]  
 \noindent  
 where $q$ is the model specific humidity at the current time step $n$.  
 \\  
   
   
 \noindent  
 {\bf 43)  \underline {OZLW} Instantaneous ozone used as input to  
  the Longwave radiation subroutine (kg/kg)}  
 \[  
 {\bf OZLW}  = {\rm OZ}(\lambda , \phi , level , n)  
 \]  
 \noindent  
 where $\rm OZ$ is the interpolated ozone data set from the climatological monthly  
 mean zonally averaged ozone data set.  
 \\  
   
   
 \noindent  
 {\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }  
   
 \noindent  
 {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed  
 Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm.  These are  
 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.  
 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.  
 \[  
 {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi,  level )  
 \]  
 \\  
   
   
 {\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }  
   
 {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed  
 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave  
 Radiation packages.  
 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.  
 \[  
 {\bf CLDTOT} = F_{RAS} + F_{LS}  
 \]  
 \\  
 where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the  
 time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.  
 \\  
   
   
 \noindent  
 {\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }  
   
 \noindent  
 {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed  
 Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm.  These are  
 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.  
 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.  
 \[  
 {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi,  level )  
 \]  
 \\  
   
 \noindent  
 {\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }  
   
 \noindent  
 {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed  
 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave  
 Radiation algorithm.  These are  
 convective and large-scale clouds whose radiative characteristics are not  
 assumed to be correlated in the vertical.  
 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.  
 \[  
 {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi,  level )  
 \]  
 \\  
   
 \noindent  
 {\bf 48)  \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }  
 \[  
 {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z  
 \]  
 \noindent  
 where $S_0$, is the extra-terrestial solar contant,  
 $R_a$ is the earth-sun distance in Astronomical Units,  
 and $cos \phi_z$ is the cosine of the zenith angle.  
 It should be noted that {\bf RADSWT}, as well as  
 {\bf OSR} and {\bf OSRCLR},  
 are calculated at the top of the atmosphere (p=0 mb).  However, the  
 {\bf OLR} and {\bf OLRCLR} diagnostics are currently  
 calculated at $p= p_{top}$ (0.0 mb for the GCM).  
 \\  
     
 \noindent  
 {\bf 49)  \underline {EVAP}  Surface Evaporation ($mm/day$) }  
   
 \noindent  
 The surface evaporation is a function of the gradient of moisture, the potential  
 evapotranspiration fraction and the eddy exchange coefficient:  
 \[  
 {\bf EVAP} =  \rho \beta K_{h} (q_{surface} - q_{Nrphys})  
 \]  
 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of  
 the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the  
 turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and  
 $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic  
 number 34) and at the bottom model level, respectively.  
 \\  
   
 \noindent  
 {\bf 50)  \underline {DUDT} Total Zonal U-Wind Tendency  ($m/sec/day$) }  
   
 \noindent  
 {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,  
 and Analysis forcing.  
 \[  
 {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}  
 \]  
 \\  
   
 \noindent  
 {\bf 51)  \underline {DVDT} Total Zonal V-Wind Tendency  ($m/sec/day$) }  
   
 \noindent  
 {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,  
 and Analysis forcing.  
 \[  
 {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}  
 \]  
 \\  
   
 \noindent  
 {\bf 52)  \underline {DTDT} Total Temperature Tendency  ($deg/day$) }  
   
 \noindent  
 {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,  
 and Analysis forcing.  
 \begin{eqnarray*}  
 {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\  
            & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}  
 \end{eqnarray*}  
 \\  
   
 \noindent  
 {\bf 53)  \underline {DQDT} Total Specific Humidity Tendency  ($g/kg/day$) }  
   
 \noindent  
 {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,  
 and Analysis forcing.  
 \[  
 {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}  
 + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}  
 \]  
 \\  
     
 \noindent  
 {\bf 54)  \underline {USTAR}  Surface-Stress Velocity ($m/sec$) }  
   
 \noindent  
 The surface stress velocity, or the friction velocity, is the wind speed at  
 the surface layer top impeded by the surface drag:  
 \[  
 {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}  
 C_u = {k \over {\psi_m} }  
 \]  
   
 \noindent  
 $C_u$ is the non-dimensional surface drag coefficient (see diagnostic  
 number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).  
   
 \noindent  
 {\bf 55)  \underline {Z0}  Surface Roughness Length ($m$) }  
   
 \noindent  
 Over the land surface, the surface roughness length is interpolated to the local  
 time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,  
 the roughness length is a function of the surface-stress velocity, $u_*$.  
 \[  
 {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}  
 \]  
   
 \noindent  
 where the constants are chosen to interpolate between the reciprocal relation of  
 Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)  
 for moderate to large winds.  
 \\  
   
 \noindent  
 {\bf 56)  \underline {FRQTRB}  Frequency of Turbulence ($0-1$) }  
   
 \noindent  
 The fraction of time when turbulence is present is defined as the fraction of  
 time when the turbulent kinetic energy exceeds some minimum value, defined here  
 to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is  
 incremented. The fraction over the averaging interval is reported.  
 \\  
   
 \noindent  
 {\bf 57)  \underline {PBL}  Planetary Boundary Layer Depth ($mb$) }  
   
 \noindent  
 The depth of the PBL is defined by the turbulence parameterization to be the  
 depth at which the turbulent kinetic energy reduces to ten percent of its surface  
 value.  
   
 \[  
 {\bf PBL} = P_{PBL} - P_{surface}  
 \]  
   
 \noindent  
 where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy  
 reaches one tenth of its surface value, and $P_s$ is the surface pressure.  
 \\  
   
 \noindent  
 {\bf 58)  \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }  
   
 \noindent  
 The net Shortwave heating rate is calculated as the vertical divergence of the  
 net solar radiative fluxes.  
 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.  
 For the clear-sky case, the shortwave fluxes and heating rates are computed with  
 both CLMO (maximum overlap cloud fraction) and  
 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).  
 The shortwave routine is then called a second time, for the cloudy-sky case, with the  
 true time-averaged cloud fractions CLMO  
 and CLRO being used.  In all cases, a normalized incident shortwave flux is used as  
 input at the top of the atmosphere.  
   
 \noindent  
 The heating rate due to Shortwave Radiation under clear skies is defined as:  
 \[  
 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},  
 \]  
 or  
 \[  
 {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .  
 \]  
   
 \noindent  
 where $g$ is the accelation due to gravity,  
 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident  
 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and  
 \[  
 F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow  
 \]  
 \\  
   
 \noindent  
 {\bf 59)  \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }  
 \[  
 {\bf OSR}  =  F_{SW,top}^{NET}  
 \]                                                                                        
 \noindent  
 where top indicates the top of the first model layer used in the shortwave radiation  
 routine.  
 In the GCM, $p_{SW_{top}}$ = 0 mb.  
 \\  
   
 \noindent  
 {\bf 60)  \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }  
 \[  
 {\bf OSRCLR}  =  F(clearsky)_{SW,top}^{NET}  
 \]  
 \noindent  
 where top indicates the top of the first model layer used in the shortwave radiation  
 routine.  
 In the GCM, $p_{SW_{top}}$ = 0 mb.  
 \\  
   
   
 \noindent  
 {\bf 61)  \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }  
   
 \noindent  
 The amount of cloud mass moved per RAS timestep from all convective clouds is written:  
 \[  
 {\bf CLDMAS} = \eta m_B  
 \]  
 where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is  
 the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the  
 description of the convective parameterization.  
 \\  
   
   
   
 \noindent  
 {\bf 62)  \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }  
   
 \noindent  
 The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over  
 the {\bf NUAVE} output frequency.  This is contrasted to the instantaneous  
 Zonal U-Wind which is archived on the Prognostic Output data stream.  
 \[  
 {\bf UAVE} = u(\lambda, \phi, level , t)  
 \]  
 \\  
 Note, {\bf UAVE} is computed and stored on the staggered C-grid.  
 \\  
   
 \noindent  
 {\bf 63)  \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }  
   
 \noindent  
 The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over  
 the {\bf NVAVE} output frequency.  This is contrasted to the instantaneous  
 Meridional V-Wind which is archived on the Prognostic Output data stream.  
 \[  
 {\bf VAVE} = v(\lambda, \phi, level , t)  
 \]  
 \\  
 Note, {\bf VAVE} is computed and stored on the staggered C-grid.  
 \\  
   
 \noindent  
 {\bf 64)  \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }  
   
 \noindent  
 The diagnostic {\bf TAVE} is simply the time-averaged Temperature over  
 the {\bf NTAVE} output frequency.  This is contrasted to the instantaneous  
 Temperature which is archived on the Prognostic Output data stream.  
 \[  
 {\bf TAVE} = T(\lambda, \phi, level , t)  
 \]  
 \\  
   
 \noindent  
 {\bf 65)  \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }  
   
 \noindent  
 The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over  
 the {\bf NQAVE} output frequency.  This is contrasted to the instantaneous  
 Specific Humidity which is archived on the Prognostic Output data stream.  
 \[  
 {\bf QAVE} = q(\lambda, \phi, level , t)  
 \]  
 \\  
   
 \noindent  
 {\bf 66)  \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }  
   
 \noindent  
 The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over  
 the {\bf NPAVE} output frequency.  This is contrasted to the instantaneous  
 Surface Pressure - PTOP which is archived on the Prognostic Output data stream.  
 \begin{eqnarray*}  
 {\bf PAVE} & =  & \pi(\lambda, \phi, level , t) \\  
            & =  & p_s(\lambda, \phi, level , t) - p_T  
 \end{eqnarray*}  
 \\  
   
   
 \noindent  
 {\bf 67)  \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }  
   
 \noindent  
 The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy  
 produced by the GCM Turbulence parameterization over  
 the {\bf NQQAVE} output frequency.  This is contrasted to the instantaneous  
 Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.  
 \[  
 {\bf QQAVE} = qq(\lambda, \phi, level , t)  
 \]  
 \\  
 Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.  
 \\  
   
 \noindent  
 {\bf 68)  \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }  
   
 \noindent  
 \begin{eqnarray*}  
 {\bf SWGCLR} & =  & F(clearsky)_{SW,Nrphys+1}^{Net} \\  
              & =  & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow  
 \end{eqnarray*}  
 \noindent  
 \\  
 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.  
 $F(clearsky){SW}^\downarrow$ is  
 the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is  
 the upward clearsky Shortwave flux.  
 \\  
   
 \noindent  
 {\bf 69)  \underline {SDIAG1} User-Defined Surface Diagnostic-1 }  
   
 \noindent  
 The GCM provides Users with a built-in mechanism for archiving user-defined  
 diagnostics.  The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated  
 diagnostic counters and pointers located in COMMON /DIAGP/,  
 must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}).    
 A convenient method for incorporating all necessary COMMON files is to  
 include the GCM {\em vstate.com} file in the routine which employs the  
 user-defined diagnostics.  
   
 \noindent  
 In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill  
 the QDIAG array with the desired quantity within the User's  
 application program or within modified GCM subroutines, as well as increment  
 the diagnostic counter at the time when the diagnostic is updated.    
 The QDIAG location index for {\bf SDIAG1} and its corresponding counter is  
 automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the  
 diagnostic has been enabled.    
 The syntax for its use is given by  
 \begin{verbatim}  
       do j=1,jm  
       do i=1,im  
       qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ...  
       enddo  
       enddo  
   
       NSDIAG1 = NSDIAG1 + 1  
 \end{verbatim}  
 The diagnostics defined in this manner will automatically be archived by the output routines.  
 \\  
   
 \noindent  
 {\bf 70)  \underline {SDIAG2} User-Defined Surface Diagnostic-2 }  
   
 \noindent  
 The GCM provides Users with a built-in mechanism for archiving user-defined  
 diagnostics.  For a complete description refer to Diagnostic \#84.  
 The syntax for using the surface SDIAG2 diagnostic is given by  
 \begin{verbatim}  
       do j=1,jm  
       do i=1,im  
       qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ...  
       enddo  
       enddo  
   
       NSDIAG2 = NSDIAG2 + 1  
 \end{verbatim}  
 The diagnostics defined in this manner will automatically be archived by the output routines.  
 \\  
   
 \noindent  
 {\bf 71)  \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 }  
   
 \noindent  
 The GCM provides Users with a built-in mechanism for archiving user-defined  
 diagnostics.  For a complete description refer to Diagnostic \#84.  
 The syntax for using the upper-air UDIAG1 diagnostic is given by  
 \begin{verbatim}  
       do L=1,Nrphys  
       do j=1,jm  
       do i=1,im  
       qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ...  
       enddo  
       enddo  
       enddo  
   
       NUDIAG1 = NUDIAG1 + 1  
 \end{verbatim}  
 The diagnostics defined in this manner will automatically be archived by the  
 output programs.  
 \\  
   
 \noindent  
 {\bf 72)  \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 }  
   
 \noindent  
 The GCM provides Users with a built-in mechanism for archiving user-defined  
 diagnostics.  For a complete description refer to Diagnostic \#84.  
 The syntax for using the upper-air UDIAG2 diagnostic is given by  
 \begin{verbatim}  
       do L=1,Nrphys  
       do j=1,jm  
       do i=1,im  
       qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ...  
       enddo  
       enddo  
       enddo  
   
       NUDIAG2 = NUDIAG2 + 1  
 \end{verbatim}  
 The diagnostics defined in this manner will automatically be archived by the  
 output programs.  
 \\  
   
   
 \noindent  
 {\bf 73)  \underline {DIABU} Total Diabatic Zonal U-Wind Tendency  ($m/sec/day$) }  
   
 \noindent  
 {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes  
 and the Analysis forcing.  
 \[  
 {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}  
 \]  
 \\  
   
 \noindent  
 {\bf 74)  \underline {DIABV} Total Diabatic Meridional V-Wind Tendency  ($m/sec/day$) }  
   
 \noindent  
 {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes  
 and the Analysis forcing.  
 \[  
 {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}  
 \]  
 \\  
   
 \noindent  
 {\bf 75)  \underline {DIABT} Total Diabatic Temperature Tendency  ($deg/day$) }  
   
 \noindent  
 {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes  
 and the Analysis forcing.  
 \begin{eqnarray*}  
 {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\  
            & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}  
 \end{eqnarray*}  
 \\  
 If we define the time-tendency of Temperature due to Diabatic processes as  
 \begin{eqnarray*}  
 \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\  
                      & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}  
 \end{eqnarray*}  
 then, since there are no surface pressure changes due to Diabatic processes, we may write  
 \[  
 \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}  
 \]  
 where $\theta = T/p^\kappa$.  Thus, {\bf DIABT} may be written as  
 \[  
 {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)  
 \]  
 \\  
   
 \noindent  
 {\bf 76)  \underline {DIABQ} Total Diabatic Specific Humidity Tendency  ($g/kg/day$) }  
   
 \noindent  
 {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes  
 and the Analysis forcing.  
 \[  
 {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}  
 \]  
 If we define the time-tendency of Specific Humidity due to Diabatic processes as  
 \[  
 \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}  
 \]  
 then, since there are no surface pressure changes due to Diabatic processes, we may write  
 \[  
 \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}  
 \]  
 Thus, {\bf DIABQ} may be written as  
 \[  
 {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)  
 \]  
 \\  
   
 \noindent  
 {\bf 77)  \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }  
   
 \noindent  
 The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating  
 $u q$ over the depth of the atmosphere at each model timestep,  
 and dividing by the total mass of the column.  
 \[  
 {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz  } { \int_{surf}^{top} \rho dz  }  
 \]  
 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have  
 \[  
 {\bf VINTUQ} = { \int_0^1 u q dp  }  
 \]  
 \\  
   
   
 \noindent  
 {\bf 78)  \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }  
   
 \noindent  
 The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating  
 $v q$ over the depth of the atmosphere at each model timestep,  
 and dividing by the total mass of the column.  
 \[  
 {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz  } { \int_{surf}^{top} \rho dz  }  
 \]  
 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have  
 \[  
 {\bf VINTVQ} = { \int_0^1 v q dp  }  
 \]  
 \\  
   
   
 \noindent  
 {\bf 79)  \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }  
   
 \noindent  
 The vertically integrated heat flux due to the zonal u-wind is obtained by integrating  
 $u T$ over the depth of the atmosphere at each model timestep,  
 and dividing by the total mass of the column.  
 \[  
 {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz  } { \int_{surf}^{top} \rho dz  }  
 \]  
 Or,  
 \[  
 {\bf VINTUT} = { \int_0^1 u T dp  }  
 \]  
 \\  
   
 \noindent  
 {\bf 80)  \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }  
   
 \noindent  
 The vertically integrated heat flux due to the meridional v-wind is obtained by integrating  
 $v T$ over the depth of the atmosphere at each model timestep,  
 and dividing by the total mass of the column.  
 \[  
 {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz  } { \int_{surf}^{top} \rho dz  }  
 \]  
 Using $\rho \delta z = -{\delta p \over g} $, we have  
 \[  
 {\bf VINTVT} = { \int_0^1 v T dp  }  
 \]  
 \\  
   
 \noindent  
 {\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }  
   
 If we define the  
 time-averaged random and maximum overlapped cloudiness as CLRO and  
 CLMO respectively, then the probability of clear sky associated  
 with random overlapped clouds at any level is (1-CLRO) while the probability of  
 clear sky associated with maximum overlapped clouds at any level is (1-CLMO).  
 The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus  
 the total cloud fraction at each  level may be obtained by  
 1-(1-CLRO)*(1-CLMO).  
   
 At any given level, we may define the clear line-of-site probability by  
 appropriately accounting for the maximum and random overlap  
 cloudiness.  The clear line-of-site probability is defined to be  
 equal to the product of the clear line-of-site probabilities  
 associated with random and maximum overlap cloudiness.  The clear  
 line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,  
 from the current pressure $p$  
 to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,  
 is simply 1.0 minus the largest maximum overlap cloud value along  the  
 line-of-site, ie.  
   
 $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$  
   
 Thus, even in the time-averaged sense it is assumed that the  
 maximum overlap clouds are correlated in the vertical.  The clear  
 line-of-site probability associated with random overlap clouds is  
 defined to be the product of the clear sky probabilities at each  
 level along the line-of-site, ie.  
   
 $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$  
   
 The total cloud fraction at a given level associated with a line-  
 of-site calculation is given by  
   
 $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)  
     \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$  
   
   
 \noindent  
 The 2-dimensional net cloud fraction as seen from the top of the  
 atmosphere is given by  
 \[  
 {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)  
     \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)  
 \]  
 \\  
 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.  
   
   
 \noindent  
 {\bf 82)  \underline {QINT} Total Precipitable Water ($gm/cm^2$) }  
   
 \noindent  
 The Total Precipitable Water is defined as the vertical integral of the specific humidity,  
 given by:  
 \begin{eqnarray*}  
 {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\  
            & = & {\pi \over g} \int_0^1 q dp  
 \end{eqnarray*}  
 where we have used the hydrostatic relation  
 $\rho \delta z = -{\delta p \over g} $.  
 \\  
   
   
 \noindent  
 {\bf 83)  \underline {U2M}  Zonal U-Wind at 2 Meter Depth ($m/sec$) }  
   
 \noindent  
 The u-wind at the 2-meter depth is determined from the similarity theory:  
 \[  
 {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =  
 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}  
 \]  
   
 \noindent  
 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript  
 $sl$ refers to the height of the top of the surface layer. If the roughness height  
 is above two meters, ${\bf U2M}$ is undefined.  
 \\  
   
 \noindent  
 {\bf 84)  \underline {V2M}  Meridional V-Wind at 2 Meter Depth ($m/sec$) }  
   
 \noindent  
 The v-wind at the 2-meter depth is a determined from the similarity theory:  
 \[  
 {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =  
 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}  
 \]  
   
 \noindent  
 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript  
 $sl$ refers to the height of the top of the surface layer. If the roughness height  
 is above two meters, ${\bf V2M}$ is undefined.  
 \\  
   
 \noindent  
 {\bf 85)  \underline {T2M}  Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }  
   
 \noindent  
 The temperature at the 2-meter depth is a determined from the similarity theory:  
 \[  
 {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =  
 P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }  
 (\theta_{sl} - \theta_{surf}))  
 \]  
 where:  
 \[  
 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }  
 \]  
   
 \noindent  
 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is  
 the non-dimensional temperature gradient in the viscous sublayer, and the subscript  
 $sl$ refers to the height of the top of the surface layer. If the roughness height  
 is above two meters, ${\bf T2M}$ is undefined.  
 \\  
   
 \noindent  
 {\bf 86)  \underline {Q2M}  Specific Humidity at 2 Meter Depth ($g/kg$) }  
   
 \noindent  
 The specific humidity at the 2-meter depth is determined from the similarity theory:  
 \[  
 {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =  
 P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }  
 (q_{sl} - q_{surf}))  
 \]  
 where:  
 \[  
 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }  
 \]  
   
 \noindent  
 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is  
 the non-dimensional temperature gradient in the viscous sublayer, and the subscript  
 $sl$ refers to the height of the top of the surface layer. If the roughness height  
 is above two meters, ${\bf Q2M}$ is undefined.  
 \\  
   
 \noindent  
 {\bf 87)  \underline {U10M}  Zonal U-Wind at 10 Meter Depth ($m/sec$) }  
   
 \noindent  
 The u-wind at the 10-meter depth is an interpolation between the surface wind  
 and the model lowest level wind using the ratio of the non-dimensional wind shear  
 at the two levels:  
 \[  
 {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =  
 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}  
 \]  
   
 \noindent  
 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript  
 $sl$ refers to the height of the top of the surface layer.  
 \\  
   
 \noindent  
 {\bf 88)  \underline {V10M}  Meridional V-Wind at 10 Meter Depth ($m/sec$) }  
   
 \noindent  
 The v-wind at the 10-meter depth is an interpolation between the surface wind  
 and the model lowest level wind using the ratio of the non-dimensional wind shear  
 at the two levels:  
 \[  
 {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =  
 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}  
 \]  
   
 \noindent  
 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript  
 $sl$ refers to the height of the top of the surface layer.  
 \\  
   
 \noindent  
 {\bf 89)  \underline {T10M}  Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }  
   
 \noindent  
 The temperature at the 10-meter depth is an interpolation between the surface potential  
 temperature and the model lowest level potential temperature using the ratio of the  
 non-dimensional temperature gradient at the two levels:  
 \[  
 {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =  
 P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }  
 (\theta_{sl} - \theta_{surf}))  
 \]  
 where:  
 \[  
 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }  
 \]  
   
 \noindent  
 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is  
 the non-dimensional temperature gradient in the viscous sublayer, and the subscript  
 $sl$ refers to the height of the top of the surface layer.  
 \\  
   
 \noindent  
 {\bf 90)  \underline {Q10M}  Specific Humidity at 10 Meter Depth ($g/kg$) }  
   
 \noindent  
 The specific humidity at the 10-meter depth is an interpolation between the surface specific  
 humidity and the model lowest level specific humidity using the ratio of the  
 non-dimensional temperature gradient at the two levels:  
 \[  
 {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =  
 P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }  
 (q_{sl} - q_{surf}))  
 \]  
 where:  
 \[  
 q_* =  - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }  
 \]  
   
 \noindent  
 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is  
 the non-dimensional temperature gradient in the viscous sublayer, and the subscript  
 $sl$ refers to the height of the top of the surface layer.  
 \\  
   
 \noindent  
 {\bf 91)  \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }  
   
 The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:  
 \[  
 {\bf DTRAIN} = \eta_{r_D}m_B  
 \]  
 \noindent  
 where $r_D$ is the detrainment level,  
 $m_B$ is the cloud base mass flux, and $\eta$  
 is the entrainment, defined in Section \ref{sec:fizhi:mc}.  
 \\  
   
 \noindent  
 {\bf 92)  \underline {QFILL}  Filling of negative Specific Humidity ($g/kg/day$) }  
   
 \noindent  
 Due to computational errors associated with the numerical scheme used for  
 the advection of moisture, negative values of specific humidity may be generated.  The  
 specific humidity is checked for negative values after every dynamics timestep.  If negative  
 values have been produced, a filling algorithm is invoked which redistributes moisture from  
 below.  Diagnostic {\bf QFILL} is equal to the net filling needed  
 to eliminate negative specific humidity, scaled to a per-day rate:  
 \[  
 {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}  
 \]  
 where  
 \[  
 q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}  
 \]  
   
524  \subsection{Dos and Donts}  \subsection{Dos and Donts}
525    
526  \subsection{Diagnostics Reference}  \subsection{Diagnostics Reference}

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.9

  ViewVC Help
Powered by ViewVC 1.1.22