20 |
\ref{sec:diagnostics:usersguide} of this document. |
\ref{sec:diagnostics:usersguide} of this document. |
21 |
|
|
22 |
\noindent |
\noindent |
23 |
The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within |
The Diagnostic Menu in this section of the manual is a listing of diagnostic quantities available |
24 |
the GCM. Once a diagnostic is enabled, the GCM will continually increment an array |
within the main (dynamics) part of the GCM. Additional diagnostic quantities, defined within the |
25 |
specifically allocated for that diagnostic whenever the appropriate quantity is computed. |
different GCM packages, are available and are listed in the diagnostic menu subsection of |
26 |
A counter is defined which records how many times each diagnostic quantity has been |
the manual section associated with each relevant package. Once a diagnostic is enabled, the |
27 |
incremented. Several special diagnostics are included in the menu. Quantities refered to |
GCM will continually increment an array specifically allocated for that diagnostic whenever the |
28 |
as ``Counter Diagnostics'', are defined for selected diagnostics which record the |
appropriate quantity is computed. A counter is defined which records how many times each diagnostic |
29 |
|
quantity has been incremented. Several special diagnostics are included in the menu. Quantities |
30 |
|
refered to as ``Counter Diagnostics'', are defined for selected diagnostics which record the |
31 |
frequency at which a diagnostic is incremented separately for each model grid location. |
frequency at which a diagnostic is incremented separately for each model grid location. |
32 |
Quantitied refered to as ``User Diagnostics'' are included in the menu to facilitate |
Quantitied refered to as ``User Diagnostics'' are included in the menu to facilitate |
33 |
defining new diagnostics for a particular experiment. |
defining new diagnostics for a particular experiment. |
39 |
\label{sec:diagnostics:diagover} |
\label{sec:diagnostics:diagover} |
40 |
|
|
41 |
\noindent |
\noindent |
|
The diagnostics are computed at various times and places within the GCM. Because the |
|
|
MIT GCM may employ a staggered grid, diagnostics may be computed at grid box centers, |
|
|
corners, or edges, and at the middle or edge in the vertical. Some diagnostics are scalars, |
|
|
while others are components of vectors. An internal array is defined which contains |
|
|
information concerning various grid attributes of each diagnostic. The GDIAG |
|
|
array (in common block \\diagnostics in file diagnostics.h) is internally defined as a |
|
|
character*8 variable, and is equivalenced to a character*1 "parse" array in output in |
|
|
order to extract the grid-attribute information. The GDIAG array is described in |
|
|
Table \ref{tab:diagnostics:gdiag.tabl}. |
|
|
|
|
|
\begin{table} |
|
|
\caption{Diagnostic Parsing Array} |
|
|
\label{tab:diagnostics:gdiag.tabl} |
|
|
\begin{center} |
|
|
\begin{tabular}{ |c|c|l| } |
|
|
\hline |
|
|
\multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\ |
|
|
\hline |
|
|
\hline |
|
|
Array & Value & Description \\ |
|
|
\hline |
|
|
parse(1) & $\rightarrow$ S & Scalar Diagnostic \\ |
|
|
& $\rightarrow$ U & U-vector component Diagnostic \\ |
|
|
& $\rightarrow$ V & V-vector component Diagnostic \\ \hline |
|
|
parse(2) & $\rightarrow$ U & C-Grid U-Point \\ |
|
|
& $\rightarrow$ V & C-Grid V-Point \\ |
|
|
& $\rightarrow$ M & C-Grid Mass Point \\ |
|
|
& $\rightarrow$ Z & C-Grid Vorticity (Corner) Point \\ \hline |
|
|
parse(3) & $\rightarrow$ R & Not Currently in Use \\ \hline |
|
|
parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline |
|
|
parse(5) & $\rightarrow$ C & Counter Diagnostic \\ |
|
|
& $\rightarrow$ D & Disabled Diagnostic for output \\ \hline |
|
|
parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\ |
|
|
& & vector or counter component mate \\ \hline |
|
|
\end{tabular} |
|
|
\addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array} |
|
|
\end{center} |
|
|
\end{table} |
|
|
|
|
|
|
|
|
\noindent |
|
|
As an example, consider a diagnostic whose associated GDIAG parameter is equal |
|
|
to ``UU 002''. From GDIAG we can determine that this diagnostic is a |
|
|
U-vector component located at the C-grid U-point. |
|
|
Its corresponding V-component diagnostic is located in Diagnostic \# 002. |
|
|
|
|
|
|
|
|
\noindent |
|
|
In this way, each Diagnostic in the model has its attributes (ie. vector or scalar, |
|
|
C-grid location, etc.) defined internally. The Output routines use this information |
|
|
in order to determine what type of transformations need to be performed. Any |
|
|
interpolations are done at the time of output rather than during each model step. |
|
|
In this way the User has flexibility in determining the type of gridded data which |
|
|
is output. |
|
|
|
|
|
|
|
|
\noindent |
|
42 |
There are several utilities within the GCM available to users to enable, disable, |
There are several utilities within the GCM available to users to enable, disable, |
43 |
clear, write and retrieve model diagnostics, and may be called from any routine. |
clear, write and retrieve model diagnostics, and may be called from any routine. |
44 |
The available utilities and the CALL sequences are listed below. |
The available utilities and the CALL sequences are listed below. |
45 |
|
|
|
|
|
46 |
\noindent |
\noindent |
47 |
{\bf fill\_diagnostics}: This routine will increment the specified diagnostic |
{\bf diagnostics\_fill}: This is the main user interface routine to the diagnostics |
48 |
quantity with a field sent through the argument list. |
package. This routine will increment the specified diagnostic quantity with a field |
49 |
|
sent through the argument list. |
50 |
|
|
51 |
\noindent |
\noindent |
52 |
\begin{tabbing} |
\begin{tabbing} |
53 |
XXXXXXXXX\=XXXXXX\= \kill |
XXXXXXXXX\=XXXXXX\= \kill |
54 |
\> call fill\_diagnostics (myThid, chardiag, levflg, nlevs, \\ |
\> call diagnostics\_fill (arrayin, chardiag, levflg, nlevs, \\ |
55 |
bibjflg, bi, bj, arrayin) \\ |
\> bibjflg, bi, bj, myThid) \\ |
56 |
\\ |
\\ |
57 |
where \> myThid \>= Current Process(or) \\ |
where \> arrayin \>= Field to increment diagnostics array \\ |
58 |
\> chardiag \>= Character *8 expression for diag to fill \\ |
\> chardiag \>= Character *8 expression for diag to fill \\ |
59 |
\> levflg \>= Integer flag for vertical levels: \\ |
\> levflg \>= Integer flag for vertical levels: \\ |
60 |
\> \> 0 indicates multiple levels incremented in qdiag \\ |
\> \>= 0 indicates multiple (nlevs) levels incremented \\ |
61 |
\> \> non-0 (any integer) - WHICH single level to increment. \\ |
\> \>= -1 indicates multiple (nlevs) levels incremented, \\ |
62 |
\> \> negative integer - the input data array is single-leveled \\ |
\> \> but in reverse vertical order \\ |
63 |
\> \> positive integer - the input data array is multi-leveled \\ |
\> \> positive integer - WHICH single level to increment. \\ |
64 |
\> nlevs \>= indicates Number of levels to be filled (1 if levflg <> 0) \\ |
\> nlevs \>= indicates Number of levels to be filled (1 if levflg gt 0) \\ |
|
\> \> positive: fill in "nlevs" levels in the same order as \\ |
|
|
\> \> the input array \\ |
|
|
\> \> negative: fill in -nlevs levels in reverse order. \\ |
|
65 |
\> bibjflg \>= Integer flag to indicate instructions for bi bj loop \\ |
\> bibjflg \>= Integer flag to indicate instructions for bi bj loop \\ |
66 |
\> \> 0 indicates that the bi-bj loop must be done here \\ |
\> \>= 0 indicates that the bi-bj loop must be done here \\ |
67 |
\> \> 1 indicates that the bi-bj loop is done OUTSIDE \\ |
\> \>= 1 indicates that the bi-bj loop is done OUTSIDE \\ |
68 |
\> \> 2 indicates that the bi-bj loop is done OUTSIDE \\ |
\> \>= 2 indicates that the bi-bj loop is done OUTSIDE \\ |
|
\> \> AND that we have been sent a local array \\ |
|
|
\> \> 3 indicates that the bi-bj loop is done OUTSIDE \\ |
|
69 |
\> \> AND that we have been sent a local array \\ |
\> \> AND that we have been sent a local array \\ |
70 |
\> \> AND that the array has the shadow regions \\ |
\> \> AND that the array has the shadow regions \\ |
71 |
|
\> \>= 3 indicates that the bi-bj loop is done OUTSIDE \\ |
72 |
|
\> \> AND that we have been sent a local array \\ |
73 |
|
\> \> AND that the array has no shadow regions \\ |
74 |
\> bi \>= X-direction process(or) number - used for bibjflg=1-3 \\ |
\> bi \>= X-direction process(or) number - used for bibjflg=1-3 \\ |
75 |
\> bj \>= Y-direction process(or) number - used for bibjflg=1-3 \\ |
\> bj \>= Y-direction process(or) number - used for bibjflg=1-3 \\ |
76 |
\> arrayin \>= Field to increment diagnostics array \\ |
\> myThid \>= Current Thread number \\ |
77 |
\end{tabbing} |
\end{tabbing} |
78 |
|
|
79 |
|
\noindent |
80 |
|
{\bf diagnostics\_scale\_fill}: This is a possible alternative routine to |
81 |
|
diagnostics\_fill which performs the same functions and has an additional option |
82 |
|
to scale the field before filling or raise the field to a power before filling. |
83 |
|
|
84 |
\noindent |
\noindent |
85 |
{\bf setdiag}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning |
\begin{tabbing} |
86 |
that space is allocated for the diagnostic and the model routines will increment the |
XXXXXXXXX\=XXXXXX\= \kill |
87 |
diagnostic value during execution. This routine is the underlying interface |
\> call diagnostics\_scale\_fill (arrayin, scalefactor, power, chardiag, \\ |
88 |
between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic |
\> levflg, nlevs, bibjflg, bi, bj, myThid) \\ |
89 |
number from the menu, and its calling sequence is given by: |
\\ |
90 |
|
where \> All the arguments are the same as for diagnostics\_fill with the addition of: \\ |
91 |
|
\> scalefactor \>= Factor to scale field \\ |
92 |
|
\> power \>= Integer power to which to raise the input field \\ |
93 |
|
\end{tabbing} |
94 |
|
|
95 |
|
\noindent |
96 |
|
{\bf diagnostics\_is\_on}: Function call to inquire whether a diagnostic is active |
97 |
|
and can be incremented. Useful when there is a computation that must be done locally |
98 |
|
before a call to diagnostics\_fill. The call sequence: |
99 |
|
|
100 |
|
\noindent |
101 |
|
\begin{tabbing} |
102 |
|
XXXXXXXXX\=XXXXXX\= \kill |
103 |
|
\> flag = diagnostics\_is\_on( diagName, myThid ) |
104 |
|
\\ |
105 |
|
where \> diagName \>= Character *8 expression for diagnostic \\ |
106 |
|
\> myThid \>= Current Thread number \\ |
107 |
|
\end{tabbing} |
108 |
|
|
109 |
|
\noindent |
110 |
|
{\bf diagnostics\_get\_pointers}: This subroutine retrieves the value of a the diagnostics |
111 |
|
pointers that other routines require as input - can be useful if the diagnostics common |
112 |
|
blocks are not local to a routine. |
113 |
|
|
114 |
\noindent |
\noindent |
115 |
\begin{tabbing} |
\begin{tabbing} |
116 |
XXXXXXXXX\=XXXXXX\= \kill |
XXXXXXXXX\=XXXXXX\= \kill |
117 |
\> call setdiag (num) \\ |
\> call diagnostics\_get\_pointers( diagName, ipoint, jpoint, myThid ) |
118 |
\\ |
\\ |
119 |
where \> num \>= Diagnostic number from menu \\ |
where \> diagName \>= Character *8 expression of diagnostic \\ |
120 |
|
\> ipoint \>= Pointer into qdiag array - from idiag array in common \\ |
121 |
|
\> jpoint \>= Pointer into diagnostics menu - from jdiag array in common \\ |
122 |
|
\> myThid \>= Current Thread number \\ |
123 |
\end{tabbing} |
\end{tabbing} |
124 |
|
|
125 |
\noindent |
\noindent |
133 |
\noindent |
\noindent |
134 |
\begin{tabbing} |
\begin{tabbing} |
135 |
XXXXXXXXX\=XXXXXX\= \kill |
XXXXXXXXX\=XXXXXX\= \kill |
136 |
\> call getdiag (lev,num,qtmp,undef) \\ |
\> call getdiag (lev, undef, qtmp, ipoint, mate, bi, bj, myThid) \\ |
137 |
\\ |
\\ |
138 |
where \> lev \>= Model Level at which the diagnostic is desired \\ |
where \> lev \>= Model Level at which the diagnostic is desired \\ |
139 |
\> num \>= Diagnostic number from menu \\ |
\> undef \>= Fill value to be used when diagnostic is undefined \\ |
140 |
\> qtmp \>= Time-Averaged Diagnostic Output \\ |
\> qtmp \>= Time-Averaged Diagnostic Output \\ |
141 |
\> undef \>= Fill value to be used when diagnostic is undefined \\ |
\> ipoint \>= Pointer into qdiag array - from idiag array in common \\ |
142 |
|
\> mate \>= Diagnostic mate pointer number \\ |
143 |
|
\> bi \>= X-direction process(or) number \\ |
144 |
|
\> bj \>= Y-direction process(or) number \\ |
145 |
|
\> myThid \>= Current Thread number \\ |
146 |
\end{tabbing} |
\end{tabbing} |
147 |
|
|
148 |
\noindent |
\noindent |
149 |
{\bf clrdiag}: This subroutine initializes the values of model diagnostics to zero, and is |
{\bf diagnostics\_add2list}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning |
150 |
particularly useful when called from user output routines to re-initialize diagnostics |
that space is allocated for the diagnostic and the model routines will increment the |
151 |
during the run. The calling sequence is: |
diagnostic value during execution. This routine is the underlying interface routine |
152 |
|
for defining a new permanent diagnostic in the main model or in a package. The calling sequence is: |
153 |
|
|
154 |
\noindent |
\noindent |
155 |
\begin{tabbing} |
\begin{tabbing} |
156 |
XXXXXXXXX\=XXXXXX\= \kill |
XXXXXXXXX\=XXXXXX\= \kill |
157 |
\> call clrdiag (num) \\ |
\> call diagnostics\_add2list( diagNum,diagName, diagCode, \\ |
158 |
|
\> diagUnits, diagTitle, myThid ) \\ |
159 |
\\ |
\\ |
160 |
where \> num \>= Diagnostic number from menu \\ |
where \> diagNum \>=Diagnostic number - Output from routine \\ |
161 |
|
\> diagName \>=character*8 diagnostic name \\ |
162 |
|
\> diagCode \>=character*16 parsing code (see description of gdiag below) \\ |
163 |
|
\> diagUnits \>=Diagnostic units (character*16) \\ |
164 |
|
\> diagTitle \>=Diagnostic title or long name (up to character*80) \\ |
165 |
|
\> myThid \>=Current Thread number \\ |
166 |
\end{tabbing} |
\end{tabbing} |
167 |
|
|
168 |
\noindent |
\noindent |
169 |
{\bf zapdiag}: This entry into subroutine SETDIAG disables model diagnostics, meaning |
{\bf clrdiag}: This subroutine initializes the values of model diagnostics to zero, and is |
170 |
that the diagnostic is no longer available to the user. The memory previously allocated |
particularly useful when called from user output routines to re-initialize diagnostics |
171 |
to the diagnostic is released when ZAPDIAG is invoked. The calling sequence is given by: |
during the run. The calling sequence is: |
172 |
|
|
173 |
\noindent |
\noindent |
174 |
\begin{tabbing} |
\begin{tabbing} |
175 |
XXXXXXXXX\=XXXXXX\= \kill |
XXXXXXXXX\=XXXXXX\= \kill |
176 |
\> call zapdiag (NUM) \\ |
\> call diagnostics\_clrdiag (jpoint, ipoint, myThid) \\ |
177 |
\\ |
\\ |
178 |
where \> num \>= Diagnostic number from menu \\ |
where \> jpoint \>= Diagnostic number from menu - from jdiag array \\ |
179 |
|
ipoint \>= Pointer number into qdiag array - from idiag array \\ |
180 |
|
\> myThid \>=Current Thread number \\ |
181 |
\end{tabbing} |
\end{tabbing} |
182 |
|
|
183 |
|
\noindent |
184 |
|
The diagnostics are computed at various times and places within the GCM. Because the |
185 |
|
MIT GCM may employ a staggered grid, diagnostics may be computed at grid box centers, |
186 |
|
corners, or edges, and at the middle or edge in the vertical. Some diagnostics are scalars, |
187 |
|
while others are components of vectors. An internal array is defined which contains |
188 |
|
information concerning various grid attributes of each diagnostic. The GDIAG |
189 |
|
array (in common block \\diagnostics in file diagnostics.h) is internally defined as a |
190 |
|
character*8 variable, and is equivalenced to a character*1 "parse" array in output in |
191 |
|
order to extract the grid-attribute information. The GDIAG array is described in |
192 |
|
Table \ref{tab:diagnostics:gdiag.tabl}. |
193 |
|
|
194 |
|
\begin{table} |
195 |
|
\caption{Diagnostic Parsing Array} |
196 |
|
\label{tab:diagnostics:gdiag.tabl} |
197 |
|
\begin{center} |
198 |
|
\begin{tabular}{ |c|c|l| } |
199 |
|
\hline |
200 |
|
\multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\ |
201 |
|
\hline |
202 |
|
\hline |
203 |
|
Array & Value & Description \\ |
204 |
|
\hline |
205 |
|
parse(1) & $\rightarrow$ S & Scalar Diagnostic \\ |
206 |
|
& $\rightarrow$ U & U-vector component Diagnostic \\ |
207 |
|
& $\rightarrow$ V & V-vector component Diagnostic \\ \hline |
208 |
|
parse(2) & $\rightarrow$ U & C-Grid U-Point \\ |
209 |
|
& $\rightarrow$ V & C-Grid V-Point \\ |
210 |
|
& $\rightarrow$ M & C-Grid Mass Point \\ |
211 |
|
& $\rightarrow$ Z & C-Grid Vorticity (Corner) Point \\ \hline |
212 |
|
parse(3) & $\rightarrow$ R & Not Currently in Use \\ \hline |
213 |
|
parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline |
214 |
|
parse(5) & $\rightarrow$ C & Counter Diagnostic \\ |
215 |
|
& $\rightarrow$ D & Disabled Diagnostic for output \\ \hline |
216 |
|
parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\ |
217 |
|
& & vector or counter component mate \\ \hline |
218 |
|
\end{tabular} |
219 |
|
\addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array} |
220 |
|
\end{center} |
221 |
|
\end{table} |
222 |
|
|
|
\subsection{Usage Notes} |
|
|
\label{sec:diagnostics:usersguide} |
|
223 |
|
|
224 |
\noindent |
\noindent |
225 |
We begin this section with a discussion on the manner in which computer |
As an example, consider a diagnostic whose associated GDIAG parameter is equal |
226 |
memory is allocated for diagnostics. All GCM diagnostic quantities are stored in the |
to ``UU 002''. From GDIAG we can determine that this diagnostic is a |
227 |
single diagnostic array QDIAG which is located in the file \\ |
U-vector component located at the C-grid U-point. |
228 |
\filelink{pkg/diagnostics/diagnostics.h}{pkg-diagnostics-diagnostics.h}. |
Its corresponding V-component diagnostic is located in Diagnostic \# 002. |
|
and has the form: |
|
|
|
|
|
common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy) |
|
229 |
|
|
230 |
\noindent |
\noindent |
231 |
where numdiags is an Integer variable which should be set equal to the number of |
In this way, each Diagnostic in the model has its attributes (ie. vector or scalar, |
232 |
enabled diagnostics, and qdiag is a three-dimensional array. The first two-dimensions |
C-grid location, etc.) defined internally. The Output routines use this information |
233 |
of qdiag correspond to the horizontal dimension of a given diagnostic, while the third |
in order to determine what type of transformations need to be performed. Any |
234 |
dimension of qdiag is used to identify diagnostic fields and levels combined. In order |
interpolations are done at the time of output rather than during each model step. |
235 |
to minimize the memory requirement of the model for diagnostics, the default GCM |
In this way the User has flexibility in determining the type of gridded data which |
236 |
executable is compiled with room for only one horizontal diagnostic array, or with |
is output. |
237 |
numdiags set to 1. In order for the User to enable more than 1 two-dimensional diagnostic, |
|
238 |
the size of the diagnostics common must be expanded to accomodate the desired diagnostics. |
\subsection{Usage Notes} |
239 |
This can be accomplished by manually changing the parameter numdiags in the |
\label{sec:diagnostics:usersguide} |
|
file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}. |
|
|
numdiags should be set greater than or equal to the sum of all the diagnostics activated |
|
|
for output each multiplied by the number of levels defined for that diagnostic quantity. |
|
|
This is illustrated in the example below: |
|
240 |
|
|
241 |
\noindent |
\noindent |
242 |
To use the diagnostics package, other than enabling it in packages.conf |
To use the diagnostics package, other than enabling it in packages.conf |
243 |
and turning the usediagnostics flag in data.pkg to .TRUE., a namelist |
and turning the usediagnostics flag in data.pkg to .TRUE., there are two |
244 |
must be supplied in the run directory called data.diagnostics. The namelist |
further steps the user must take to enable the diagnostics package for |
245 |
will activate a user-defined list of diagnostics quantities to be computed, |
output of quantities that are already defined in the GCM under an experiment's |
246 |
specify the frequency of output, the number of levels, and the name of |
configuration of packages. A namelist must be supplied in the run directory |
247 |
up to 10 separate output files. A sample data.diagnostics namelist file: |
called data.diagnostics, and the file DIAGNOSTICS\_SIZE.h must be included in the |
248 |
|
code directory. The steps for defining a new (permanent or experiment-specific |
249 |
|
temporary) diagnostic quantity will be outlined later. |
250 |
|
|
251 |
|
\noindent The namelist will activate a user-defined list of diagnostics quantities |
252 |
|
to be computed, specify the frequency and type of output, the number of levels, and |
253 |
|
the name of all the separate output files. A sample data.diagnostics namelist file: |
254 |
|
|
255 |
\noindent |
\noindent |
256 |
$\#$ Diagnostic Package Choices \\ |
$\#$ Diagnostic Package Choices \\ |
257 |
$\&$diagnostics\_list \\ |
$\&$diagnostics\_list \\ |
258 |
frequency(1) = 10, \ \\ |
frequency(1) = 86400., \ \\ |
259 |
levels(1,1) = 1.,2.,3.,4.,5., \ \\ |
levels(1,1) = 1., \ \\ |
260 |
fields(1,1) = 'UVEL ','VVEL ', \ \\ |
fields(1,1) = 'RSURF ', \ \\ |
261 |
filename(1) = 'diagout1', \ \\ |
filename(1) = 'surface', \ \\ |
262 |
frequency(2) = 100, \ \\ |
frequency(2) = 86400., \ \\ |
263 |
levels(1,2) = 1.,2.,3.,4.,5., \ \\ |
levels(1,2) = 1.,2.,3.,4.,5., \ \\ |
264 |
fields(1,2) = 'THETA ','SALT ', \ \\ |
fields(1,2) = 'UVEL ','VVEL ', \ \\ |
265 |
filename(2) = 'diagout2', \ \\ |
filename(2) = 'diagout1', \ \\ |
266 |
|
frequency(3) = 3600., \ \\ |
267 |
|
fields(1,3) = 'UVEL ','VVEL ','PRESSURE', \ \\ |
268 |
|
filename(3) = 'diagout2', \ \\ |
269 |
|
fileflags(3) = ' P1 ', \ \\ |
270 |
$\&$end \ \\ |
$\&$end \ \\ |
271 |
|
|
272 |
\noindent |
\noindent |
273 |
In this example, there are two output files that will be generated |
In this example, there are two output files that will be generated |
274 |
for each tile and for each output time. The first set of output files |
for each tile and for each output time. The first set of output files |
275 |
has the prefix diagout1, does time averaging every 10 time steps |
has the prefix diagout1, does time averaging every 86400. seconds, |
276 |
(frequency is 10), they will write fields which are multiple-level |
(frequency is 86400.), and will write fields which are multiple-level |
277 |
fields and output levels 1-5. The names of diagnostics quantities are |
fields at output levels 1-5. The names of diagnostics quantities are |
278 |
UVEL and VVEL. The second set of output files |
UVEL and VVEL. The second set of output files |
279 |
has the prefix diagout2, does time averaging every 100 time steps, |
has the prefix diagout2, does time averaging every 3600. seconds, |
280 |
they include fields which are multiple-level fields, levels output are 1-5, |
includes fields which are multiple-level fields, levels output are 1-5, |
281 |
and the names of diagnostics quantities are THETA and SALT. |
and the names of diagnostics quantities are THETA and SALT. |
282 |
|
|
283 |
\noindent |
\noindent |
284 |
|
The user must assure that enough computer memory is allocated for the diagnostics |
285 |
|
and the output streams selected for a particular experiment. This is acomplished by |
286 |
|
modifying the file DIAGNOSTICS\_SIZE.h and including it in the experiment code directory. |
287 |
|
The parameters that should be checked are called numdiags, numlists, numperlist, and |
288 |
|
diagSt\_size. |
289 |
|
|
290 |
|
\noindent numdiags (and diagSt\_size): \\ |
291 |
|
\noindent All GCM diagnostic quantities are stored in the single diagnostic array QDIAG |
292 |
|
which is located in the file \\ \filelink{pkg/diagnostics/diagnostics.h}{pkg-diagnostics-diagnostics.h}.\\ |
293 |
|
and has the form:\\ |
294 |
|
common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy) \\ |
295 |
|
\noindent |
296 |
|
The first two-dimensions of qdiag correspond to the horizontal dimension of a given diagnostic, |
297 |
|
and the third dimension of qdiag is used to identify diagnostic fields and levels combined. In |
298 |
|
order to minimize the memory requirement of the model for diagnostics, the default GCM |
299 |
|
executable is compiled with room for only one horizontal diagnostic array, or with |
300 |
|
numdiags set to Nr. In order for the User to enable more than 1 three-dimensional diagnostic, |
301 |
|
the size of the diagnostics common must be expanded to accomodate the desired diagnostics. |
302 |
|
This can be accomplished by manually changing the parameter numdiags in the |
303 |
|
file \filelink{pkg/diagnostics/DIAGNOSTICS\_SIZE.h}{pkg-diagnostics-DIAGNOSTICS\_SIZE.h}. |
304 |
|
numdiags should be set greater than or equal to the sum of all the diagnostics activated |
305 |
|
for output each multiplied by the number of levels defined for that diagnostic quantity. |
306 |
|
For the above example, there are 4 multiple level fields, which the diagnostics menu |
307 |
|
(see below) indicates are defined at the GCM vertical resolution, Nr. The value of |
308 |
|
numdiag in DIAGNOSTICS\_SIZE.h would therefore be equal to 4*Nr, or, say 40 if $Nr=10$. |
309 |
|
|
310 |
|
\noindent numlists and numperlist: \\ |
311 |
|
\noindent The parameter numlists must be set greater than or equal to the number of |
312 |
|
separate output streams that the user specifies in the namelist file data.diagnostics. |
313 |
|
The parameter numperlist corresponds to the number of diagnostics requested in each |
314 |
|
output stream. |
315 |
|
|
316 |
|
\noindent |
317 |
In order to define and include as part of the diagnostic output any field |
In order to define and include as part of the diagnostic output any field |
318 |
that is desired for a particular experiment, two steps must be taken. The |
that is desired for a particular experiment, two steps must be taken. The |
319 |
first is to enable the ``User Diagnostic'' in data.diagnostics. This is |
first is to enable the ``User Diagnostic'' in data.diagnostics. This is |
320 |
accomplished by setting one of the fields slots to either UDIAG1 through |
accomplished by adding one of the ``User Diagnostic'' field names (UDIAG1 through |
321 |
UDIAG10, for multi-level fields, or SDIAG1 through SDIAG10 for single level |
UDIAG10, for multi-level fields, or SDIAG1 through SDIAG10 for single level |
322 |
fields. These are listed in the diagnostics menu. The second step is to |
fields) to the data.diagnostics namelist in one of the output streams. These |
323 |
add a call to fill\_diagnostics from the subroutine in which the quantity |
fields are listed in the diagnostics menu. The second step is to |
324 |
|
add a call to diagnostics\_fill from the subroutine in which the quantity |
325 |
desired for diagnostic output is computed. |
desired for diagnostic output is computed. |
326 |
|
|
327 |
|
\noindent |
328 |
|
In order to add a new diagnostic to the permanent set of diagnostics that the |
329 |
|
main model or any package contains as part of its diagnostics menu, the subroutine |
330 |
|
diagnostics\_add2list should be called during the initialization phase of the |
331 |
|
main model or package. For the main model, the call should be made from |
332 |
|
subroutine diagnostics\_main\_init, and for a package, the call should probably |
333 |
|
be made from somewhere in the packages\_init\_fixed sequence (probaby from inside |
334 |
|
the particular package's init\_fixed routine). A typical code sequence to set the |
335 |
|
input arguments to diagnostics\_add2list would look like: |
336 |
|
|
337 |
|
\noindent |
338 |
|
\begin{tabbing} |
339 |
|
XXXXXXXXX\=XXXXXX\= \kill |
340 |
|
\> diagName = 'THETA ' \\ |
341 |
|
\> diagTitle = 'Potential Temperature (degC,K)' \\ |
342 |
|
\> diagUnits = 'Degrees K ' \\ |
343 |
|
\> diagCode = 'SM MR ' \\ |
344 |
|
\> CALL DIAGNOSTICS\_ADD2LIST( diagNum, \\ |
345 |
|
\> I diagName, diagCode, diagUnits, diagTitle, myThid ) \\ |
346 |
|
\\ |
347 |
|
\end{tabbing} |
348 |
|
|
349 |
|
\noindent If the new diagnostic quantity is associated with either a vector |
350 |
|
pair or a diagnostic counter, the diagCode argument must be filled with the |
351 |
|
proper index for the ``mate''. The output argument from diagnostics\_add2list |
352 |
|
that is called diagNum here contains a running total of the number of diagnostics |
353 |
|
defined in the code up to any point during the run. The sequence number for the |
354 |
|
next two diagnostics defined (the two components of the vector pair, for instance) |
355 |
|
will be diagNum+1 and diagNum+2. The definition of the first component of the vector |
356 |
|
pair must fill the ``mate'' segment of the diagCode as diagnostic number diagNum+2. |
357 |
|
Since the subroutine increments diagNum, the definition of the second component of |
358 |
|
the vector fills the ``mate'' part of diagCode with diagNum. A code sequence for |
359 |
|
this case would look like: |
360 |
|
|
361 |
|
\noindent |
362 |
|
\begin{tabbing} |
363 |
|
XXXXXXXXX\=XXXXXX\= \kill |
364 |
|
\> diagName = 'UVEL ' \\ |
365 |
|
\> diagTitle = 'Zonal Velocity ' \\ |
366 |
|
\> diagUnits = 'm / sec ' \\ |
367 |
|
\> diagCode = 'SM MR ' \\ |
368 |
|
\> write(diagCode,'(A,I3.3,A)') 'VV ', diagNum+2 ,'MR ' \\ |
369 |
|
\> call diagnostics\_add2list( diagNum, \\ |
370 |
|
\> I diagName, diagCode, diagUnits, diagTitle, myThid ) \\ |
371 |
|
\> diagName = 'VVEL ' \\ |
372 |
|
\> diagTitle = 'Meridional Velocity ' \\ |
373 |
|
\> diagUnits = 'm / sec ' \\ |
374 |
|
\> diagCode = 'SM MR ' \\ |
375 |
|
\> write(diagCode,'(A,I3.3,A)') 'VV ', diagNum ,'MR ' \\ |
376 |
|
\> call diagnostics\_add2list( diagNum, \\ |
377 |
|
\> I diagName, diagCode, diagUnits, diagTitle, myThid ) \\ |
378 |
|
\\ |
379 |
|
\end{tabbing} |
380 |
|
|
381 |
|
|
382 |
\newpage |
\newpage |
383 |
|
|
384 |
\subsubsection{GCM Diagnostic Menu} |
\subsubsection{GCM Diagnostic Menu} |
385 |
\label{sec:diagnostics:menu} |
\label{sec:diagnostics:menu} |
386 |
|
|
387 |
\begin{tabular}{lllll} |
\begin{tabular}{llll} |
388 |
\hline\hline |
\hline\hline |
389 |
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
NAME & UNITS & LEVELS & DESCRIPTION \\ |
390 |
\hline |
\hline |
391 |
|
|
392 |
&\\ |
&\\ |
393 |
84 & SDIAG1 & & 1 |
SDIAG1 & & 1 |
394 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
395 |
{User-Defined Surface Diagnostic-1} |
{User-Defined Surface Diagnostic-1} |
396 |
\end{minipage}\\ |
\end{minipage}\\ |
397 |
85 & SDIAG2 & & 1 |
SDIAG2 & & 1 |
398 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
399 |
{User-Defined Surface Diagnostic-2} |
{User-Defined Surface Diagnostic-2} |
400 |
\end{minipage}\\ |
\end{minipage}\\ |
401 |
86 & UDIAG1 & & Nrphys |
UDIAG1 & & Nrphys |
402 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
403 |
{User-Defined Upper-Air Diagnostic-1} |
{User-Defined Upper-Air Diagnostic-1} |
404 |
\end{minipage}\\ |
\end{minipage}\\ |
405 |
87 & UDIAG2 & & Nrphys |
UDIAG2 & & Nrphys |
406 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
407 |
{User-Defined Upper-Air Diagnostic-2} |
{User-Defined Upper-Air Diagnostic-2} |
408 |
\end{minipage}\\ |
\end{minipage}\\ |
409 |
124& SDIAG3 & & 1 |
SDIAG3 & & 1 |
410 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
411 |
{User-Defined Surface Diagnostic-3} |
{User-Defined Surface Diagnostic-3} |
412 |
\end{minipage}\\ |
\end{minipage}\\ |
413 |
125& SDIAG4 & & 1 |
SDIAG4 & & 1 |
414 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
415 |
{User-Defined Surface Diagnostic-4} |
{User-Defined Surface Diagnostic-4} |
416 |
\end{minipage}\\ |
\end{minipage}\\ |
417 |
126& SDIAG5 & & 1 |
SDIAG5 & & 1 |
418 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
419 |
{User-Defined Surface Diagnostic-5} |
{User-Defined Surface Diagnostic-5} |
420 |
\end{minipage}\\ |
\end{minipage}\\ |
421 |
127& SDIAG6 & & 1 |
SDIAG6 & & 1 |
422 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
423 |
{User-Defined Surface Diagnostic-6} |
{User-Defined Surface Diagnostic-6} |
424 |
\end{minipage}\\ |
\end{minipage}\\ |
425 |
128& SDIAG7 & & 1 |
SDIAG7 & & 1 |
426 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
427 |
{User-Defined Surface Diagnostic-7} |
{User-Defined Surface Diagnostic-7} |
428 |
\end{minipage}\\ |
\end{minipage}\\ |
429 |
129& SDIAG8 & & 1 |
SDIAG8 & & 1 |
430 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
431 |
{User-Defined Surface Diagnostic-8} |
{User-Defined Surface Diagnostic-8} |
432 |
\end{minipage}\\ |
\end{minipage}\\ |
433 |
130& SDIAG9 & & 1 |
SDIAG9 & & 1 |
434 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
435 |
{User-Defined Surface Diagnostic-9} |
{User-Defined Surface Diagnostic-9} |
436 |
\end{minipage}\\ |
\end{minipage}\\ |
437 |
131& SDIAG10 & & 1 |
SDIAG10 & & 1 |
438 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
439 |
{User-Defined Surface Diagnostic-1-} |
{User-Defined Surface Diagnostic-1-} |
440 |
\end{minipage}\\ |
\end{minipage}\\ |
441 |
132& UDIAG3 & & Nrphys |
UDIAG3 & & Nrphys |
442 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
443 |
{User-Defined Multi-Level Diagnostic-3} |
{User-Defined Multi-Level Diagnostic-3} |
444 |
\end{minipage}\\ |
\end{minipage}\\ |
445 |
133& UDIAG4 & & Nrphys |
UDIAG4 & & Nrphys |
446 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
447 |
{User-Defined Multi-Level Diagnostic-4} |
{User-Defined Multi-Level Diagnostic-4} |
448 |
\end{minipage}\\ |
\end{minipage}\\ |
449 |
134& UDIAG5 & & Nrphys |
UDIAG5 & & Nrphys |
450 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
451 |
{User-Defined Multi-Level Diagnostic-5} |
{User-Defined Multi-Level Diagnostic-5} |
452 |
\end{minipage}\\ |
\end{minipage}\\ |
453 |
135& UDIAG6 & & Nrphys |
UDIAG6 & & Nrphys |
454 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
455 |
{User-Defined Multi-Level Diagnostic-6} |
{User-Defined Multi-Level Diagnostic-6} |
456 |
\end{minipage}\\ |
\end{minipage}\\ |
457 |
136& UDIAG7 & & Nrphys |
UDIAG7 & & Nrphys |
458 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
459 |
{User-Defined Multi-Level Diagnostic-7} |
{User-Defined Multi-Level Diagnostic-7} |
460 |
\end{minipage}\\ |
\end{minipage}\\ |
461 |
137& UDIAG8 & & Nrphys |
UDIAG8 & & Nrphys |
462 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
463 |
{User-Defined Multi-Level Diagnostic-8} |
{User-Defined Multi-Level Diagnostic-8} |
464 |
\end{minipage}\\ |
\end{minipage}\\ |
465 |
138& UDIAG9 & & Nrphys |
UDIAG9 & & Nrphys |
466 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
467 |
{User-Defined Multi-Level Diagnostic-9} |
{User-Defined Multi-Level Diagnostic-9} |
468 |
\end{minipage}\\ |
\end{minipage}\\ |
469 |
139& UDIAG10 & & Nrphys |
UDIAG10 & & Nrphys |
470 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
471 |
{User-Defined Multi-Level Diagnostic-10} |
{User-Defined Multi-Level Diagnostic-10} |
472 |
\end{minipage}\\ |
\end{minipage}\\ |
473 |
|
SDIAGC & & 1 |
474 |
|
&\begin{minipage}[t]{3in} |
475 |
|
{User-Defined Counted Surface Diagnostic} |
476 |
|
\end{minipage}\\ |
477 |
|
SDIAGCC & & 1 |
478 |
|
&\begin{minipage}[t]{3in} |
479 |
|
{User-Defined Counted Surface Diagnostic Counter} |
480 |
|
\end{minipage}\\ |
481 |
|
ETAN & $(hPa,m)$ & 1 |
482 |
|
&\begin{minipage}[t]{3in} |
483 |
|
{Perturbation of Surface (pressure, height)} |
484 |
|
\end{minipage}\\ |
485 |
|
ETANSQ & $(hPa^2,m^2)$ & 1 |
486 |
|
&\begin{minipage}[t]{3in} |
487 |
|
{Square of Perturbation of Surface (pressure, height)} |
488 |
|
\end{minipage}\\ |
489 |
|
DETADT2 & ${r-unit}^2/s^2$ & 1 |
490 |
|
&\begin{minipage}[t]{3in} |
491 |
|
{Square of Eta (Surf.P,SSH) Tendency} |
492 |
|
\end{minipage}\\ |
493 |
|
THETA & $deg K$ & Nr |
494 |
|
&\begin{minipage}[t]{3in} |
495 |
|
{Potential Temperature} |
496 |
|
\end{minipage}\\ |
497 |
|
SST & $deg K$ & 1 |
498 |
|
&\begin{minipage}[t]{3in} |
499 |
|
{Sea Surface Temperature} |
500 |
|
\end{minipage}\\ |
501 |
|
SALT & $g/kg$ & Nr |
502 |
|
&\begin{minipage}[t]{3in} |
503 |
|
{Salt (or Water Vapor Mixing Ratio)} |
504 |
|
\end{minipage}\\ |
505 |
|
SSS & $g/kg$ & 1 |
506 |
|
&\begin{minipage}[t]{3in} |
507 |
|
{Sea Surface Salinity} |
508 |
|
\end{minipage}\\ |
509 |
|
SALTanom & $g/kg$ & Nr |
510 |
|
&\begin{minipage}[t]{3in} |
511 |
|
{Salt anomaly (=SALT-35)} |
512 |
|
\end{minipage}\\ |
513 |
\end{tabular} |
\end{tabular} |
514 |
\vspace{1.5in} |
\vspace{1.5in} |
515 |
\vfill |
\vfill |
516 |
|
|
517 |
\newpage |
\newpage |
518 |
\vspace*{\fill} |
\vspace*{\fill} |
519 |
\begin{tabular}{lllll} |
\begin{tabular}{llll} |
520 |
\hline\hline |
\hline\hline |
521 |
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
NAME & UNITS & LEVELS & DESCRIPTION \\ |
522 |
\hline |
\hline |
523 |
|
|
524 |
&\\ |
&\\ |
525 |
238& ETAN & $(hPa,m)$ & 1 |
UVEL & $m/sec$ & Nr |
|
&\begin{minipage}[t]{3in} |
|
|
{Perturbation of Surface (pressure, height)} |
|
|
\end{minipage}\\ |
|
|
239& ETANSQ & $(hPa^2,m^2)$ & 1 |
|
|
&\begin{minipage}[t]{3in} |
|
|
{Square of Perturbation of Surface (pressure, height)} |
|
|
\end{minipage}\\ |
|
|
240& THETA & $deg K$ & Nr |
|
526 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
527 |
{Potential Temperature} |
{U-Velocity} |
528 |
\end{minipage}\\ |
\end{minipage}\\ |
529 |
241& SALT & $g/kg$ & Nr |
VVEL & $m/sec$ & Nr |
530 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
531 |
{Salt (or Water Vapor Mixing Ratio)} |
{V-Velocity} |
532 |
\end{minipage}\\ |
\end{minipage}\\ |
533 |
242& UVEL & $m/sec$ & Nr |
UVEL\_k2 & $m/sec$ & 1 |
534 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
535 |
{U-Velocity} |
{U-Velocity} |
536 |
\end{minipage}\\ |
\end{minipage}\\ |
537 |
243& VVEL & $m/sec$ & Nr |
VVEL\_k2 & $m/sec$ & 1 |
538 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
539 |
{V-Velocity} |
{V-Velocity} |
540 |
\end{minipage}\\ |
\end{minipage}\\ |
541 |
244& WVEL & $m/sec$ & Nr |
WVEL & $m/sec$ & Nr |
542 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
543 |
{Vertical-Velocity} |
{Vertical-Velocity} |
544 |
\end{minipage}\\ |
\end{minipage}\\ |
545 |
245& THETASQ & $deg^2$ & Nr |
THETASQ & $deg^2$ & Nr |
546 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
547 |
{Square of Potential Temperature} |
{Square of Potential Temperature} |
548 |
\end{minipage}\\ |
\end{minipage}\\ |
549 |
246& SALTSQ & $g^2/{kg}^2$ & Nr |
SALTSQ & $g^2/{kg}^2$ & Nr |
550 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
551 |
{Square of Salt (or Water Vapor Mixing Ratio)} |
{Square of Salt (or Water Vapor Mixing Ratio)} |
552 |
\end{minipage}\\ |
\end{minipage}\\ |
553 |
247& UVELSQ & $m^2/sec^2$ & Nr |
SALTSQan & $g^2/{kg}^2$ & Nr |
554 |
|
&\begin{minipage}[t]{3in} |
555 |
|
{Square of Salt anomaly (=SALT-35)} |
556 |
|
\end{minipage}\\ |
557 |
|
UVELSQ & $m^2/sec^2$ & Nr |
558 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
559 |
{Square of U-Velocity} |
{Square of U-Velocity} |
560 |
\end{minipage}\\ |
\end{minipage}\\ |
561 |
248& VVELSQ & $m^2/sec^2$ & Nr |
VVELSQ & $m^2/sec^2$ & Nr |
562 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
563 |
{Square of V-Velocity} |
{Square of V-Velocity} |
564 |
\end{minipage}\\ |
\end{minipage}\\ |
565 |
249& WVELSQ & $m^2/sec^2$ & Nr |
WVELSQ & $m^2/sec^2$ & Nr |
566 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
567 |
{Square of Vertical-Velocity} |
{Square of Vertical-Velocity} |
568 |
\end{minipage}\\ |
\end{minipage}\\ |
569 |
250& UVELVVEL & $m^2/sec^2$ & Nr |
UV\_VEL\_C & $m^2/sec^2$ & Nr |
570 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
571 |
{Meridional Transport of Zonal Momentum} |
{Meridional Transport of Zonal Momentum (cell center)} |
572 |
\end{minipage}\\ |
\end{minipage}\\ |
573 |
251& UVELMASS & $m/sec$ & Nr |
UV\_VEL\_Z & $m^2/sec^2$ & Nr |
574 |
|
&\begin{minipage}[t]{3in} |
575 |
|
{Meridional Transport of Zonal Momentum (corner)} |
576 |
|
\end{minipage}\\ |
577 |
|
WU\_VEL & $m^2/sec^2$ & Nr |
578 |
|
&\begin{minipage}[t]{3in} |
579 |
|
{Vertical Transport of Zonal Momentum (cell center)} |
580 |
|
\end{minipage}\\ |
581 |
|
WV\_VEL & $m^2/sec^2$ & Nr |
582 |
|
&\begin{minipage}[t]{3in} |
583 |
|
{Vertical Transport of Meridional Momentum (cell center)} |
584 |
|
\end{minipage}\\ |
585 |
|
UVELMASS & $m/sec$ & Nr |
586 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
587 |
{Zonal Mass-Weighted Component of Velocity} |
{Zonal Mass-Weighted Component of Velocity} |
588 |
\end{minipage}\\ |
\end{minipage}\\ |
589 |
252& VVELMASS & $m/sec$ & Nr |
VVELMASS & $m/sec$ & Nr |
590 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
591 |
{Meridional Mass-Weighted Component of Velocity} |
{Meridional Mass-Weighted Component of Velocity} |
592 |
\end{minipage}\\ |
\end{minipage}\\ |
593 |
253& WVELMASS & $m/sec$ & Nr |
WVELMASS & $m/sec$ & Nr |
594 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
595 |
{Vertical Mass-Weighted Component of Velocity} |
{Vertical Mass-Weighted Component of Velocity} |
596 |
\end{minipage}\\ |
\end{minipage}\\ |
597 |
254& UTHMASS & $m-deg/sec$ & Nr |
UTHMASS & $m-deg/sec$ & Nr |
598 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
599 |
{Zonal Mass-Weight Transp of Pot Temp} |
{Zonal Mass-Weight Transp of Pot Temp} |
600 |
\end{minipage}\\ |
\end{minipage}\\ |
601 |
255& VTHMASS & $m-deg/sec$ & Nr |
VTHMASS & $m-deg/sec$ & Nr |
602 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
603 |
{Meridional Mass-Weight Transp of Pot Temp} |
{Meridional Mass-Weight Transp of Pot Temp} |
604 |
\end{minipage}\\ |
\end{minipage}\\ |
605 |
256& WTHMASS & $m-deg/sec$ & Nr |
WTHMASS & $m-deg/sec$ & Nr |
606 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
607 |
{Vertical Mass-Weight Transp of Pot Temp} |
{Vertical Mass-Weight Transp of Pot Temp} |
608 |
\end{minipage}\\ |
\end{minipage}\\ |
609 |
257& USLTMASS & $m-kg/sec-kg$ & Nr |
USLTMASS & $m-kg/sec-kg$ & Nr |
610 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
611 |
{Zonal Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
{Zonal Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
612 |
\end{minipage}\\ |
\end{minipage}\\ |
613 |
258& VSLTMASS & $m-kg/sec-kg$ & Nr |
VSLTMASS & $m-kg/sec-kg$ & Nr |
614 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
615 |
{Meridional Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
{Meridional Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
616 |
\end{minipage}\\ |
\end{minipage}\\ |
617 |
259& WSLTMASS & $m-kg/sec-kg$ & Nr |
WSLTMASS & $m-kg/sec-kg$ & Nr |
618 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
619 |
{Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
{Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
620 |
\end{minipage}\\ |
\end{minipage}\\ |
621 |
260& UVELTH & $m-deg/sec$ & Nr |
UVELTH & $m-deg/sec$ & Nr |
622 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
623 |
{Zonal Transp of Pot Temp} |
{Zonal Transp of Pot Temp} |
624 |
\end{minipage}\\ |
\end{minipage}\\ |
625 |
261& VVELTH & $m-deg/sec$ & Nr |
VVELTH & $m-deg/sec$ & Nr |
626 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
627 |
{Meridional Transp of Pot Temp} |
{Meridional Transp of Pot Temp} |
628 |
\end{minipage}\\ |
\end{minipage}\\ |
629 |
262& WVELTH & $m-deg/sec$ & Nr |
WVELTH & $m-deg/sec$ & Nr |
630 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
631 |
{Vertical Transp of Pot Temp} |
{Vertical Transp of Pot Temp} |
632 |
\end{minipage}\\ |
\end{minipage}\\ |
633 |
263& UVELSLT & $m-kg/sec-kg$ & Nr |
UVELSLT & $m-kg/sec-kg$ & Nr |
634 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
635 |
{Zonal Transp of Salt (or W.Vap Mix Rat.)} |
{Zonal Transp of Salt (or W.Vap Mix Rat.)} |
636 |
\end{minipage}\\ |
\end{minipage}\\ |
637 |
264& VVELSLT & $m-kg/sec-kg$ & Nr |
VVELSLT & $m-kg/sec-kg$ & Nr |
638 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
639 |
{Meridional Transp of Salt (or W.Vap Mix Rat.)} |
{Meridional Transp of Salt (or W.Vap Mix Rat.)} |
640 |
\end{minipage}\\ |
\end{minipage}\\ |
641 |
265& WVELSLT & $m-kg/sec-kg$ & Nr |
WVELSLT & $m-kg/sec-kg$ & Nr |
642 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
643 |
{Vertical Transp of Salt (or W.Vap Mix Rat.)} |
{Vertical Transp of Salt (or W.Vap Mix Rat.)} |
644 |
\end{minipage}\\ |
\end{minipage}\\ |
645 |
275& WSLTMASS & $m-kg/sec-kg$ & Nr |
\end{tabular} |
646 |
|
\vspace{1.5in} |
647 |
|
\vfill |
648 |
|
|
649 |
|
\newpage |
650 |
|
\vspace*{\fill} |
651 |
|
\begin{tabular}{llll} |
652 |
|
\hline\hline |
653 |
|
NAME & UNITS & LEVELS & DESCRIPTION \\ |
654 |
|
\hline |
655 |
|
|
656 |
|
&\\ |
657 |
|
RHOAnoma & $kg/m^3 $ & Nr |
658 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
659 |
{Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
{Density Anomaly (=Rho-rhoConst)} |
660 |
|
\end{minipage}\\ |
661 |
|
RHOANOSQ & $kg^2/m^6$ & Nr |
662 |
|
&\begin{minipage}[t]{3in} |
663 |
|
{Square of Density Anomaly (=(Rho-rhoConst))} |
664 |
|
\end{minipage}\\ |
665 |
|
URHOMASS & $kg/m^2/s$ & Nr |
666 |
|
&\begin{minipage}[t]{3in} |
667 |
|
{Zonal Transport of Density} |
668 |
|
\end{minipage}\\ |
669 |
|
VRHOMASS & $kg/m^2/s$ & Nr |
670 |
|
&\begin{minipage}[t]{3in} |
671 |
|
{Meridional Transport of Density} |
672 |
|
\end{minipage}\\ |
673 |
|
WRHOMASS & $kg/m^2/s$ & Nr |
674 |
|
&\begin{minipage}[t]{3in} |
675 |
|
{Vertical Transport of Potential Density} |
676 |
|
\end{minipage}\\ |
677 |
|
PHIHYD & $m^2/s^2 $ & Nr |
678 |
|
&\begin{minipage}[t]{3in} |
679 |
|
{Hydrostatic (ocean) pressure / (atmos) geo-Potential} |
680 |
|
\end{minipage}\\ |
681 |
|
PHIHYDSQ & $m^4/s^4 $ & Nr |
682 |
|
&\begin{minipage}[t]{3in} |
683 |
|
{Square of Hyd. (ocean) press / (atmos) geoPotential} |
684 |
|
\end{minipage}\\ |
685 |
|
PHIBOT & $m^2/s^2 $ & Nr |
686 |
|
&\begin{minipage}[t]{3in} |
687 |
|
{ocean bottom pressure / top. atmos geo-Potential} |
688 |
|
\end{minipage}\\ |
689 |
|
PHIBOTSQ & $m^4/s^4 $ & Nr |
690 |
|
&\begin{minipage}[t]{3in} |
691 |
|
{Square of ocean bottom pressure / top. geo-Potential} |
692 |
|
\end{minipage}\\ |
693 |
|
DRHODR & $kg/m^3/{r-unit}$ & Nr |
694 |
|
&\begin{minipage}[t]{3in} |
695 |
|
{Stratification: d.Sigma/dr} |
696 |
\end{minipage}\\ |
\end{minipage}\\ |
697 |
298& VISCA4 & $m^4/sec$ & 1 |
VISCA4 & $m^4/sec$ & 1 |
698 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
699 |
{Biharmonic Viscosity Coefficient} |
{Biharmonic Viscosity Coefficient} |
700 |
\end{minipage}\\ |
\end{minipage}\\ |
701 |
299& VISCAH & $m^2/sec$ & 1 |
VISCAH & $m^2/sec$ & 1 |
702 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
703 |
{Harmonic Viscosity Coefficient} |
{Harmonic Viscosity Coefficient} |
704 |
\end{minipage}\\ |
\end{minipage}\\ |
705 |
300& DRHODR & $kg/m^3/{r-unit}$ & Nr |
TAUX & $N/m^2 $ & 1 |
706 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
707 |
{Stratification: d.Sigma/dr} |
{zonal surface wind stress, >0 increases uVel} |
708 |
\end{minipage}\\ |
\end{minipage}\\ |
709 |
301& DETADT2 & ${r-unit}^2/s^2$ & 1 |
TAUY & $N/m^2 $ & 1 |
710 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
711 |
{Square of Eta (Surf.P,SSH) Tendency} |
{meridional surf. wind stress, >0 increases vVel} |
712 |
|
\end{minipage}\\ |
713 |
|
TFLUX & $W/m^2 $ & 1 |
714 |
|
&\begin{minipage}[t]{3in} |
715 |
|
{net surface heat flux, >0 increases theta} |
716 |
|
\end{minipage}\\ |
717 |
|
TRELAX & $W/m^2 $ & 1 |
718 |
|
&\begin{minipage}[t]{3in} |
719 |
|
{surface temperature relaxation, >0 increases theta} |
720 |
|
\end{minipage}\\ |
721 |
|
TICE & $W/m^2 $ & 1 |
722 |
|
&\begin{minipage}[t]{3in} |
723 |
|
{heat from melt/freeze of sea-ice, >0 increases theta} |
724 |
|
\end{minipage}\\ |
725 |
|
SFLUX & $g/m^2/s $ & 1 |
726 |
|
&\begin{minipage}[t]{3in} |
727 |
|
{net surface salt flux, >0 increases salt} |
728 |
|
\end{minipage}\\ |
729 |
|
SRELAX & $g/m^2/s $ & 1 |
730 |
|
&\begin{minipage}[t]{3in} |
731 |
|
{surface salinity relaxation, >0 increases salt} |
732 |
|
\end{minipage}\\ |
733 |
|
PRESSURE & $Pa $ & Nr |
734 |
|
&\begin{minipage}[t]{3in} |
735 |
|
{Atmospheric Pressure (Pa)} |
736 |
|
\end{minipage}\\ |
737 |
|
ADVr\_TH & $K.Pa.m^2/s $ & Nr |
738 |
|
&\begin{minipage}[t]{3in} |
739 |
|
{Vertical Advective Flux of Pot.Temperature} |
740 |
|
\end{minipage}\\ |
741 |
|
ADVx\_TH & $K.Pa.m^2/s $ & Nr |
742 |
|
&\begin{minipage}[t]{3in} |
743 |
|
{Zonal Advective Flux of Pot.Temperature} |
744 |
|
\end{minipage}\\ |
745 |
|
ADVy\_TH & $K.Pa.m^2/s $ & Nr |
746 |
|
&\begin{minipage}[t]{3in} |
747 |
|
{Meridional Advective Flux of Pot.Temperature} |
748 |
|
\end{minipage}\\ |
749 |
|
DFrE\_TH & $K.Pa.m^2/s $ & Nr |
750 |
|
&\begin{minipage}[t]{3in} |
751 |
|
{Vertical Diffusive Flux of Pot.Temperature (Explicit part)} |
752 |
|
\end{minipage}\\ |
753 |
|
DIFx\_TH & $K.Pa.m^2/s $ & Nr |
754 |
|
&\begin{minipage}[t]{3in} |
755 |
|
{Zonal Diffusive Flux of Pot.Temperature} |
756 |
|
\end{minipage}\\ |
757 |
|
DIFy\_TH & $K.Pa.m^2/s $ & Nr |
758 |
|
&\begin{minipage}[t]{3in} |
759 |
|
{Meridional Diffusive Flux of Pot.Temperature} |
760 |
|
\end{minipage}\\ |
761 |
|
DFrI\_TH & $K.Pa.m^2/s $ & Nr |
762 |
|
&\begin{minipage}[t]{3in} |
763 |
|
{Vertical Diffusive Flux of Pot.Temperature (Implicit part)} |
764 |
|
\end{minipage}\\ |
765 |
|
ADVr\_SLT & $g/kg.Pa.m^2/s$ & Nr |
766 |
|
&\begin{minipage}[t]{3in} |
767 |
|
{Vertical Advective Flux of Water-Vapor} |
768 |
|
\end{minipage}\\ |
769 |
|
ADVx\_SLT & $g/kg.Pa.m^2/s$ & Nr |
770 |
|
&\begin{minipage}[t]{3in} |
771 |
|
{Zonal Advective Flux of Water-Vapor} |
772 |
|
\end{minipage}\\ |
773 |
|
ADVy\_SLT & $g/kg.Pa.m^2/s$ & Nr |
774 |
|
&\begin{minipage}[t]{3in} |
775 |
|
{Meridional Advective Flux of Water-Vapor} |
776 |
|
\end{minipage}\\ |
777 |
|
\end{tabular} |
778 |
|
\vspace{1.5in} |
779 |
|
\vfill |
780 |
|
|
781 |
|
\newpage |
782 |
|
\vspace*{\fill} |
783 |
|
\begin{tabular}{llll} |
784 |
|
\hline\hline |
785 |
|
NAME & UNITS & LEVELS & DESCRIPTION \\ |
786 |
|
\hline |
787 |
|
|
788 |
|
&\\ |
789 |
|
DFrE\_SLT & $g/kg.Pa.m^2/s$ & Nr |
790 |
|
&\begin{minipage}[t]{3in} |
791 |
|
{Vertical Diffusive Flux of Water-Vapor (Explicit part)} |
792 |
|
\end{minipage}\\ |
793 |
|
DIFx\_SLT & $g/kg.Pa.m^2/s$ & Nr |
794 |
|
&\begin{minipage}[t]{3in} |
795 |
|
{Zonal Diffusive Flux of Water-Vapor} |
796 |
|
\end{minipage}\\ |
797 |
|
DIFy\_SLT & $g/kg.Pa.m^2/s$ & Nr |
798 |
|
&\begin{minipage}[t]{3in} |
799 |
|
{Meridional Diffusive Flux of Water-Vapor} |
800 |
|
\end{minipage}\\ |
801 |
|
DFrI\_SLT & $g/kg.Pa.m^2/s$ & Nr |
802 |
|
&\begin{minipage}[t]{3in} |
803 |
|
{Vertical Diffusive Flux of Water-Vapor (Implicit part)} |
804 |
\end{minipage}\\ |
\end{minipage}\\ |
805 |
\end{tabular} |
\end{tabular} |
806 |
\vspace{1.5in} |
\vspace{1.5in} |