/[MITgcm]/manual/s_phys_pkgs/diagnostics.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/diagnostics.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.6 - (show annotations) (download) (as text)
Sat Oct 16 03:40:17 2004 UTC (20 years, 9 months ago) by edhill
Branch: MAIN
Changes since 1.5: +0 -11 lines
File MIME type: application/x-tex
 o add HTML comments as a step towards "URL permanence" which will help
   solve:
   - stale links from the CMI web site
   - rotten indexing by bonniefy.pl
 o also cleanup a merge-mangle in diagnostics.tex

1 \section{Diagnostics--A Flexible Infrastructure}
2 \label{sec:pkg:diagnostics}
3 \begin{rawhtml}
4 <!-- CMIREDIR:package_diagnostics: -->
5 \end{rawhtml}
6
7 \subsection{Introduction}
8
9 This section of the documentation describes the Diagnostics package available within
10 the GCM. In addition to a description of how to set and extract diagnostic quantities,
11 this document also provides a comprehensive list of all available diagnostic quantities
12 and a short description of how they are computed. It should be noted that this document
13 is not intended to be a complete documentation of the various packages used in the GCM,
14 and the reader should refer to original publications and the appropriate sections of this
15 documentation for further insight.
16
17 \subsection{Equations}
18 Not relevant.
19
20 \subsection{Key Subroutines and Parameters}
21 \label{sec:diagnostics:diagover}
22
23 A large selection of model diagnostics is available in the GCM. At the time of
24 this writing there are 280 different diagnostic quantities which can be enabled for an
25 experiment. As a matter of philosophy, no diagnostic is enabled as default, thus each
26 user must specify the exact diagnostic information required for an experiment. This
27 is accomplished by enabling the specific diagnostic of interest cataloged in the
28 Diagnostic Menu (see Section \ref{sec:diagnostics:menu}).
29 The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within
30 the GCM. Diagnostics are internally referred to by their associated number in the Diagnostic
31 Menu. Once a diagnostic is enabled, the GCM will continually increment an array
32 specifically allocated for that diagnostic whenever the associated process for the
33 diagnostic is computed. Separate arrays are used both for the diagnostic quantity and
34 its diagnostic counter which records how many times each diagnostic quantity has been
35 computed. In addition special diagnostics, called ``Counter Diagnostics'', records the
36 frequency of diagnostic updates separately for each model grid location.
37
38 The diagnostics are computed at various times and places within the GCM.
39 Some diagnostics are computed on the A-grid (such as those within the fizhi routines),
40 while others are computed on the C-grid (those computed during the dynamics time-stepping).
41 Some diagnostics are scalars, while others are vectors. Each of these possibilities requires
42 separate tasks for A-grid to C-grid transformations and coordinate transformations. Due
43 to this complexity, and since the specific diagnostics enabled are User determined at the
44 time of the run,
45 a diagnostic parameter has been developed and implemented into the GCM, defined as GDIAG,
46 which contains information concerning various grid attributes of each diagnostic. The GDIAG
47 array is internally defined as a character*8 variable, and is equivalenced to
48 a character*1 "parse" array in output in order to extract the grid-attribute information.
49 The GDIAG array is described in Table \ref{tab:diagnostics:gdiag.tabl}.
50
51 \begin{table}
52 \caption{Diagnostic Parsing Array}
53 \label{tab:diagnostics:gdiag.tabl}
54 \begin{center}
55 \begin{tabular}{ |c|c|l| }
56 \hline
57 \multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\
58 \hline
59 \hline
60 Array & Value & Description \\
61 \hline
62 parse(1) & $\rightarrow$ S & Scalar Diagnostic \\
63 & $\rightarrow$ U & U-vector component Diagnostic \\
64 & $\rightarrow$ V & V-vector component Diagnostic \\ \hline
65 parse(2) & $\rightarrow$ U & C-Grid U-Point \\
66 & $\rightarrow$ V & C-Grid V-Point \\
67 & $\rightarrow$ M & C-Grid Mass Point \\
68 & $\rightarrow$ Z & C-Grid Vorticity (Corner) Point \\ \hline
69 parse(3) & $\rightarrow$ R & Not Currently in Use \\ \hline
70 parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline
71 parse(5) & $\rightarrow$ C & Counter Diagnostic \\
72 & $\rightarrow$ D & Disabled Diagnostic for output \\ \hline
73 parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\
74 & & vector or counter component mate \\ \hline
75 \end{tabular}
76 \addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array}
77 \end{center}
78 \end{table}
79
80 As an example, consider a diagnostic whose associated GDIAG parameter is equal
81 to ``UU 002''. From GDIAG we can determine that this diagnostic is a
82 U-vector component located at the C-grid U-point.
83 Its corresponding V-component diagnostic is located in Diagnostic \# 002.
84
85 In this way, each Diagnostic in the model has its attributes (ie. vector or scalar,
86 A-Grid or C-grid, etc.) defined internally. The Output routines
87 use this information in order to determine
88 what type of transformations need to be performed. Thus, all Diagnostic
89 interpolations are done at the time of output rather than during each model dynamic step.
90 In this way the User now has more flexibility
91 in determining the type of gridded data which is output.
92
93 There are several utilities within the GCM available to users to enable, disable,
94 clear, write and retrieve model diagnostics, and may be called from any routine.
95 The available utilities and the CALL sequences are listed below.
96
97 {\bf fill\_diag}: This routine will increment
98
99 {\bf setdiag}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning
100 that space is allocated for the diagnostic and the model routines will increment the
101 diagnostic value during execution. This routine is the underlying interface
102 between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic
103 number from the menu, and its calling sequence is given by:
104
105 \begin{tabbing}
106 XXXXXXXXX\=XXXXXX\= \kill
107 \> call setdiag (num) \\
108 \\
109 where \> num \>= Diagnostic number from menu \\
110 \end{tabbing}
111
112 {\bf getdiag}: This subroutine retrieves the value of a model diagnostic. This routine
113 is particulary useful when called from a user output routine, although it can be called
114 from any routine. This routine returns the time-averaged value of the diagnostic by
115 dividing the current accumulated diagnostic value by its corresponding counter. This
116 routine does not change the value of the diagnostic itself, that is, it does not replace
117 the diagnostic with its time-average. The calling sequence for this routine is givin by:
118
119 \begin{tabbing}
120 XXXXXXXXX\=XXXXXX\= \kill
121 \> call getdiag (lev,num,qtmp,undef) \\
122 \\
123 where \> lev \>= Model Level at which the diagnostic is desired \\
124 \> num \>= Diagnostic number from menu \\
125 \> qtmp \>= Time-Averaged Diagnostic Output \\
126 \> undef \>= Fill value to be used when diagnostic is undefined \\
127 \end{tabbing}
128
129 {\bf clrdiag}: This subroutine initializes the values of model diagnostics to zero, and is
130 particularly useful when called from user output routines to re-initialize diagnostics
131 during the run. The calling sequence is:
132
133 \begin{tabbing}
134 XXXXXXXXX\=XXXXXX\= \kill
135 \> call clrdiag (num) \\
136 \\
137 where \> num \>= Diagnostic number from menu \\
138 \end{tabbing}
139
140 {\bf zapdiag}: This entry into subroutine SETDIAG disables model diagnostics, meaning
141 that the diagnostic is no longer available to the user. The memory previously allocated
142 to the diagnostic is released when ZAPDIAG is invoked. The calling sequence is given by:
143
144 \begin{tabbing}
145 XXXXXXXXX\=XXXXXX\= \kill
146 \> call zapdiag (NUM) \\
147 \\
148 where \> num \>= Diagnostic number from menu \\
149 \end{tabbing}
150
151 {\bf diagsize}: We end this section with a discussion on the manner in which computer
152 memory is allocated for diagnostics. All GCM diagnostic quantities are stored in the
153 single diagnostic array QDIAG which is located in diagnostics.h, and has the form:
154
155 common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy)
156
157 where numdiags is an Integer variable which should be
158 set equal to the number of enabled diagnostics, and qdiag is a three-dimensional
159 array. The first two-dimensions of qdiag correspond to the horizontal dimension
160 of a given diagnostic, while the third dimension of qdiag is used to identify
161 specific diagnostic types.
162 In order to minimize the memory requirement of the model for diagnostics,
163 the default GCM executable is compiled with room for only one horizontal
164 diagnostic array, as shown in the above example.
165 In order for the User to enable more than 1 two-dimensional diagnostic,
166 the size of the diagnostics common must be expanded to accomodate the desired diagnostics.
167 This can be accomplished by manually changing the parameter numdiags in the
168 file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}, or by allowing the
169 shell script (???????) to make this
170 change based on the choice of diagnostic output made in the namelist.
171
172 \subsection{Usage Notes}
173 \label{sec:diagnostics:usersguide}
174 To use the diagnostics package, other than enabling it in packages.conf
175 and turning the usediagnostics flag in data.pkg to .TRUE., a namelist
176 must be supplied in the run directory called data.diagnostics. The namelist
177 will activate a user-defined list of diagnostics quantities to be computed,
178 specify the frequency of output, the number of levels, and the name of
179 up to 10 separate output files. A sample data.diagnostics namelist file:
180
181 $\#$ Diagnostic Package Choices
182 $\&$diagnostics\_list
183 frequency(1) = 10, \
184 levels(1,1) = 1.,2.,3.,4.,5., \
185 fields(1,1) = 'UVEL ','VVEL ', \
186 filename(1) = 'diagout1', \
187 frequency(2) = 100, \
188 levels(1,2) = 1.,2.,3.,4.,5., \
189 fields(1,2) = 'THETA ','SALT ', \
190 filename(2) = 'diagout2', \
191 $\&$end \
192
193 In this example, there are two output files that will be generated
194 for each tile and for each output time. The first set of output files
195 has the prefix diagout1, does time averaging every 10 time steps,
196 for fields which are multiple-level fields the levels output are 1-5,
197 and the names of diagnostics quantities are UVEL and VVEL.
198 The second set of output files
199 has the prefix diagout2, does time averaging every 100 time steps,
200 for fields which are multiple-level fields the levels output are 1-5,
201 and the names of diagnostics quantities are THETA and SALT.
202
203 \newpage
204
205 \subsubsection{GCM Diagnostic Menu}
206 \label{sec:diagnostics:menu}
207
208 \begin{tabular}{lllll}
209 \hline\hline
210 N & NAME & UNITS & LEVELS & DESCRIPTION \\
211 \hline
212
213 &\\
214 1 & UFLUX & $Newton/m^2$ & 1
215 &\begin{minipage}[t]{3in}
216 {Surface U-Wind Stress on the atmosphere}
217 \end{minipage}\\
218 2 & VFLUX & $Newton/m^2$ & 1
219 &\begin{minipage}[t]{3in}
220 {Surface V-Wind Stress on the atmosphere}
221 \end{minipage}\\
222 3 & HFLUX & $Watts/m^2$ & 1
223 &\begin{minipage}[t]{3in}
224 {Surface Flux of Sensible Heat}
225 \end{minipage}\\
226 4 & EFLUX & $Watts/m^2$ & 1
227 &\begin{minipage}[t]{3in}
228 {Surface Flux of Latent Heat}
229 \end{minipage}\\
230 5 & QICE & $Watts/m^2$ & 1
231 &\begin{minipage}[t]{3in}
232 {Heat Conduction through Sea-Ice}
233 \end{minipage}\\
234 6 & RADLWG & $Watts/m^2$ & 1
235 &\begin{minipage}[t]{3in}
236 {Net upward LW flux at the ground}
237 \end{minipage}\\
238 7 & RADSWG & $Watts/m^2$ & 1
239 &\begin{minipage}[t]{3in}
240 {Net downward SW flux at the ground}
241 \end{minipage}\\
242 8 & RI & $dimensionless$ & Nrphys
243 &\begin{minipage}[t]{3in}
244 {Richardson Number}
245 \end{minipage}\\
246 9 & CT & $dimensionless$ & 1
247 &\begin{minipage}[t]{3in}
248 {Surface Drag coefficient for T and Q}
249 \end{minipage}\\
250 10 & CU & $dimensionless$ & 1
251 &\begin{minipage}[t]{3in}
252 {Surface Drag coefficient for U and V}
253 \end{minipage}\\
254 11 & ET & $m^2/sec$ & Nrphys
255 &\begin{minipage}[t]{3in}
256 {Diffusivity coefficient for T and Q}
257 \end{minipage}\\
258 12 & EU & $m^2/sec$ & Nrphys
259 &\begin{minipage}[t]{3in}
260 {Diffusivity coefficient for U and V}
261 \end{minipage}\\
262 13 & TURBU & $m/sec/day$ & Nrphys
263 &\begin{minipage}[t]{3in}
264 {U-Momentum Changes due to Turbulence}
265 \end{minipage}\\
266 14 & TURBV & $m/sec/day$ & Nrphys
267 &\begin{minipage}[t]{3in}
268 {V-Momentum Changes due to Turbulence}
269 \end{minipage}\\
270 15 & TURBT & $deg/day$ & Nrphys
271 &\begin{minipage}[t]{3in}
272 {Temperature Changes due to Turbulence}
273 \end{minipage}\\
274 16 & TURBQ & $g/kg/day$ & Nrphys
275 &\begin{minipage}[t]{3in}
276 {Specific Humidity Changes due to Turbulence}
277 \end{minipage}\\
278 17 & MOISTT & $deg/day$ & Nrphys
279 &\begin{minipage}[t]{3in}
280 {Temperature Changes due to Moist Processes}
281 \end{minipage}\\
282 18 & MOISTQ & $g/kg/day$ & Nrphys
283 &\begin{minipage}[t]{3in}
284 {Specific Humidity Changes due to Moist Processes}
285 \end{minipage}\\
286 19 & RADLW & $deg/day$ & Nrphys
287 &\begin{minipage}[t]{3in}
288 {Net Longwave heating rate for each level}
289 \end{minipage}\\
290 20 & RADSW & $deg/day$ & Nrphys
291 &\begin{minipage}[t]{3in}
292 {Net Shortwave heating rate for each level}
293 \end{minipage}\\
294 21 & PREACC & $mm/day$ & 1
295 &\begin{minipage}[t]{3in}
296 {Total Precipitation}
297 \end{minipage}\\
298 22 & PRECON & $mm/day$ & 1
299 &\begin{minipage}[t]{3in}
300 {Convective Precipitation}
301 \end{minipage}\\
302 23 & TUFLUX & $Newton/m^2$ & Nrphys
303 &\begin{minipage}[t]{3in}
304 {Turbulent Flux of U-Momentum}
305 \end{minipage}\\
306 24 & TVFLUX & $Newton/m^2$ & Nrphys
307 &\begin{minipage}[t]{3in}
308 {Turbulent Flux of V-Momentum}
309 \end{minipage}\\
310 25 & TTFLUX & $Watts/m^2$ & Nrphys
311 &\begin{minipage}[t]{3in}
312 {Turbulent Flux of Sensible Heat}
313 \end{minipage}\\
314 26 & TQFLUX & $Watts/m^2$ & Nrphys
315 &\begin{minipage}[t]{3in}
316 {Turbulent Flux of Latent Heat}
317 \end{minipage}\\
318 27 & CN & $dimensionless$ & 1
319 &\begin{minipage}[t]{3in}
320 {Neutral Drag Coefficient}
321 \end{minipage}\\
322 28 & WINDS & $m/sec$ & 1
323 &\begin{minipage}[t]{3in}
324 {Surface Wind Speed}
325 \end{minipage}\\
326 29 & DTSRF & $deg$ & 1
327 &\begin{minipage}[t]{3in}
328 {Air/Surface virtual temperature difference}
329 \end{minipage}\\
330 30 & TG & $deg$ & 1
331 &\begin{minipage}[t]{3in}
332 {Ground temperature}
333 \end{minipage}\\
334 31 & TS & $deg$ & 1
335 &\begin{minipage}[t]{3in}
336 {Surface air temperature (Adiabatic from lowest model layer)}
337 \end{minipage}\\
338 32 & DTG & $deg$ & 1
339 &\begin{minipage}[t]{3in}
340 {Ground temperature adjustment}
341 \end{minipage}\\
342
343 \end{tabular}
344
345 \newpage
346 \vspace*{\fill}
347 \begin{tabular}{lllll}
348 \hline\hline
349 N & NAME & UNITS & LEVELS & DESCRIPTION \\
350 \hline
351
352 &\\
353 33 & QG & $g/kg$ & 1
354 &\begin{minipage}[t]{3in}
355 {Ground specific humidity}
356 \end{minipage}\\
357 34 & QS & $g/kg$ & 1
358 &\begin{minipage}[t]{3in}
359 {Saturation surface specific humidity}
360 \end{minipage}\\
361
362 &\\
363 35 & TGRLW & $deg$ & 1
364 &\begin{minipage}[t]{3in}
365 {Instantaneous ground temperature used as input to the
366 Longwave radiation subroutine}
367 \end{minipage}\\
368 36 & ST4 & $Watts/m^2$ & 1
369 &\begin{minipage}[t]{3in}
370 {Upward Longwave flux at the ground ($\sigma T^4$)}
371 \end{minipage}\\
372 37 & OLR & $Watts/m^2$ & 1
373 &\begin{minipage}[t]{3in}
374 {Net upward Longwave flux at the top of the model}
375 \end{minipage}\\
376 38 & OLRCLR & $Watts/m^2$ & 1
377 &\begin{minipage}[t]{3in}
378 {Net upward clearsky Longwave flux at the top of the model}
379 \end{minipage}\\
380 39 & LWGCLR & $Watts/m^2$ & 1
381 &\begin{minipage}[t]{3in}
382 {Net upward clearsky Longwave flux at the ground}
383 \end{minipage}\\
384 40 & LWCLR & $deg/day$ & Nrphys
385 &\begin{minipage}[t]{3in}
386 {Net clearsky Longwave heating rate for each level}
387 \end{minipage}\\
388 41 & TLW & $deg$ & Nrphys
389 &\begin{minipage}[t]{3in}
390 {Instantaneous temperature used as input to the Longwave radiation
391 subroutine}
392 \end{minipage}\\
393 42 & SHLW & $g/g$ & Nrphys
394 &\begin{minipage}[t]{3in}
395 {Instantaneous specific humidity used as input to the Longwave radiation
396 subroutine}
397 \end{minipage}\\
398 43 & OZLW & $g/g$ & Nrphys
399 &\begin{minipage}[t]{3in}
400 {Instantaneous ozone used as input to the Longwave radiation
401 subroutine}
402 \end{minipage}\\
403 44 & CLMOLW & $0-1$ & Nrphys
404 &\begin{minipage}[t]{3in}
405 {Maximum overlap cloud fraction used in the Longwave radiation
406 subroutine}
407 \end{minipage}\\
408 45 & CLDTOT & $0-1$ & Nrphys
409 &\begin{minipage}[t]{3in}
410 {Total cloud fraction used in the Longwave and Shortwave radiation
411 subroutines}
412 \end{minipage}\\
413 46 & RADSWT & $Watts/m^2$ & 1
414 &\begin{minipage}[t]{3in}
415 {Incident Shortwave radiation at the top of the atmosphere}
416 \end{minipage}\\
417 47 & CLROSW & $0-1$ & Nrphys
418 &\begin{minipage}[t]{3in}
419 {Random overlap cloud fraction used in the shortwave radiation
420 subroutine}
421 \end{minipage}\\
422 48 & CLMOSW & $0-1$ & Nrphys
423 &\begin{minipage}[t]{3in}
424 {Maximum overlap cloud fraction used in the shortwave radiation
425 subroutine}
426 \end{minipage}\\
427 49 & EVAP & $mm/day$ & 1
428 &\begin{minipage}[t]{3in}
429 {Surface evaporation}
430 \end{minipage}\\
431 \end{tabular}
432 \vfill
433
434 \newpage
435 \vspace*{\fill}
436 \begin{tabular}{lllll}
437 \hline\hline
438 N & NAME & UNITS & LEVELS & DESCRIPTION \\
439 \hline
440
441 &\\
442 50 & DUDT & $m/sec/day$ & Nrphys
443 &\begin{minipage}[t]{3in}
444 {Total U-Wind tendency}
445 \end{minipage}\\
446 51 & DVDT & $m/sec/day$ & Nrphys
447 &\begin{minipage}[t]{3in}
448 {Total V-Wind tendency}
449 \end{minipage}\\
450 52 & DTDT & $deg/day$ & Nrphys
451 &\begin{minipage}[t]{3in}
452 {Total Temperature tendency}
453 \end{minipage}\\
454 53 & DQDT & $g/kg/day$ & Nrphys
455 &\begin{minipage}[t]{3in}
456 {Total Specific Humidity tendency}
457 \end{minipage}\\
458 54 & USTAR & $m/sec$ & 1
459 &\begin{minipage}[t]{3in}
460 {Surface USTAR wind}
461 \end{minipage}\\
462 55 & Z0 & $m$ & 1
463 &\begin{minipage}[t]{3in}
464 {Surface roughness}
465 \end{minipage}\\
466 56 & FRQTRB & $0-1$ & Nrphys-1
467 &\begin{minipage}[t]{3in}
468 {Frequency of Turbulence}
469 \end{minipage}\\
470 57 & PBL & $mb$ & 1
471 &\begin{minipage}[t]{3in}
472 {Planetary Boundary Layer depth}
473 \end{minipage}\\
474 58 & SWCLR & $deg/day$ & Nrphys
475 &\begin{minipage}[t]{3in}
476 {Net clearsky Shortwave heating rate for each level}
477 \end{minipage}\\
478 59 & OSR & $Watts/m^2$ & 1
479 &\begin{minipage}[t]{3in}
480 {Net downward Shortwave flux at the top of the model}
481 \end{minipage}\\
482 60 & OSRCLR & $Watts/m^2$ & 1
483 &\begin{minipage}[t]{3in}
484 {Net downward clearsky Shortwave flux at the top of the model}
485 \end{minipage}\\
486 61 & CLDMAS & $kg / m^2$ & Nrphys
487 &\begin{minipage}[t]{3in}
488 {Convective cloud mass flux}
489 \end{minipage}\\
490 62 & UAVE & $m/sec$ & Nrphys
491 &\begin{minipage}[t]{3in}
492 {Time-averaged $u-Wind$}
493 \end{minipage}\\
494 63 & VAVE & $m/sec$ & Nrphys
495 &\begin{minipage}[t]{3in}
496 {Time-averaged $v-Wind$}
497 \end{minipage}\\
498 64 & TAVE & $deg$ & Nrphys
499 &\begin{minipage}[t]{3in}
500 {Time-averaged $Temperature$}
501 \end{minipage}\\
502 65 & QAVE & $g/g$ & Nrphys
503 &\begin{minipage}[t]{3in}
504 {Time-averaged $Specific \, \, Humidity$}
505 \end{minipage}\\
506 66 & PAVE & $mb$ & 1
507 &\begin{minipage}[t]{3in}
508 {Time-averaged $p_{surf} - p_{top}$}
509 \end{minipage}\\
510 67 & QQAVE & $(m/sec)^2$ & Nrphys
511 &\begin{minipage}[t]{3in}
512 {Time-averaged $Turbulent Kinetic Energy$}
513 \end{minipage}\\
514 68 & SWGCLR & $Watts/m^2$ & 1
515 &\begin{minipage}[t]{3in}
516 {Net downward clearsky Shortwave flux at the ground}
517 \end{minipage}\\
518 69 & SDIAG1 & & 1
519 &\begin{minipage}[t]{3in}
520 {User-Defined Surface Diagnostic-1}
521 \end{minipage}\\
522 70 & SDIAG2 & & 1
523 &\begin{minipage}[t]{3in}
524 {User-Defined Surface Diagnostic-2}
525 \end{minipage}\\
526 71 & UDIAG1 & & Nrphys
527 &\begin{minipage}[t]{3in}
528 {User-Defined Upper-Air Diagnostic-1}
529 \end{minipage}\\
530 72 & UDIAG2 & & Nrphys
531 &\begin{minipage}[t]{3in}
532 {User-Defined Upper-Air Diagnostic-2}
533 \end{minipage}\\
534 73 & DIABU & $m/sec/day$ & Nrphys
535 &\begin{minipage}[t]{3in}
536 {Total Diabatic forcing on $u-Wind$}
537 \end{minipage}\\
538 74 & DIABV & $m/sec/day$ & Nrphys
539 &\begin{minipage}[t]{3in}
540 {Total Diabatic forcing on $v-Wind$}
541 \end{minipage}\\
542 75 & DIABT & $deg/day$ & Nrphys
543 &\begin{minipage}[t]{3in}
544 {Total Diabatic forcing on $Temperature$}
545 \end{minipage}\\
546 76 & DIABQ & $g/kg/day$ & Nrphys
547 &\begin{minipage}[t]{3in}
548 {Total Diabatic forcing on $Specific \, \, Humidity$}
549 \end{minipage}\\
550
551 \end{tabular}
552 \vfill
553
554 \newpage
555 \vspace*{\fill}
556 \begin{tabular}{lllll}
557 \hline\hline
558 N & NAME & UNITS & LEVELS & DESCRIPTION \\
559 \hline
560
561 77 & VINTUQ & $m/sec \cdot g/kg$ & 1
562 &\begin{minipage}[t]{3in}
563 {Vertically integrated $u \, q$}
564 \end{minipage}\\
565 78 & VINTVQ & $m/sec \cdot g/kg$ & 1
566 &\begin{minipage}[t]{3in}
567 {Vertically integrated $v \, q$}
568 \end{minipage}\\
569 79 & VINTUT & $m/sec \cdot deg$ & 1
570 &\begin{minipage}[t]{3in}
571 {Vertically integrated $u \, T$}
572 \end{minipage}\\
573 80 & VINTVT & $m/sec \cdot deg$ & 1
574 &\begin{minipage}[t]{3in}
575 {Vertically integrated $v \, T$}
576 \end{minipage}\\
577 81 & CLDFRC & $0-1$ & 1
578 &\begin{minipage}[t]{3in}
579 {Total Cloud Fraction}
580 \end{minipage}\\
581 82 & QINT & $gm/cm^2$ & 1
582 &\begin{minipage}[t]{3in}
583 {Precipitable water}
584 \end{minipage}\\
585 83 & U2M & $m/sec$ & 1
586 &\begin{minipage}[t]{3in}
587 {U-Wind at 2 meters}
588 \end{minipage}\\
589 84 & V2M & $m/sec$ & 1
590 &\begin{minipage}[t]{3in}
591 {V-Wind at 2 meters}
592 \end{minipage}\\
593 85 & T2M & $deg$ & 1
594 &\begin{minipage}[t]{3in}
595 {Temperature at 2 meters}
596 \end{minipage}\\
597 86 & Q2M & $g/kg$ & 1
598 &\begin{minipage}[t]{3in}
599 {Specific Humidity at 2 meters}
600 \end{minipage}\\
601 87 & U10M & $m/sec$ & 1
602 &\begin{minipage}[t]{3in}
603 {U-Wind at 10 meters}
604 \end{minipage}\\
605 88 & V10M & $m/sec$ & 1
606 &\begin{minipage}[t]{3in}
607 {V-Wind at 10 meters}
608 \end{minipage}\\
609 89 & T10M & $deg$ & 1
610 &\begin{minipage}[t]{3in}
611 {Temperature at 10 meters}
612 \end{minipage}\\
613 90 & Q10M & $g/kg$ & 1
614 &\begin{minipage}[t]{3in}
615 {Specific Humidity at 10 meters}
616 \end{minipage}\\
617 91 & DTRAIN & $kg/m^2$ & Nrphys
618 &\begin{minipage}[t]{3in}
619 {Detrainment Cloud Mass Flux}
620 \end{minipage}\\
621 92 & QFILL & $g/kg/day$ & Nrphys
622 &\begin{minipage}[t]{3in}
623 {Filling of negative specific humidity}
624 \end{minipage}\\
625
626 \end{tabular}
627 \vspace{1.5in}
628 \vfill
629
630 \newpage
631
632 \subsubsection{Diagnostic Description}
633
634 In this section we list and describe the diagnostic quantities available within the
635 GCM. The diagnostics are listed in the order that they appear in the
636 Diagnostic Menu, Section \ref{sec:diagnostics:menu}.
637 In all cases, each diagnostic as currently archived on the output datasets
638 is time-averaged over its diagnostic output frequency:
639
640 \[
641 {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
642 \]
643 where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
644 output frequency of the diagnostic, and $\Delta t$ is
645 the timestep over which the diagnostic is updated.
646
647 {\bf 1) \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
648
649 The zonal wind stress is the turbulent flux of zonal momentum from
650 the surface. See section 3.3 for a description of the surface layer parameterization.
651 \[
652 {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
653 \]
654 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
655 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
656 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
657 the zonal wind in the lowest model layer.
658 \\
659
660
661 {\bf 2) \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
662
663 The meridional wind stress is the turbulent flux of meridional momentum from
664 the surface. See section 3.3 for a description of the surface layer parameterization.
665 \[
666 {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
667 \]
668 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
669 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
670 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
671 the meridional wind in the lowest model layer.
672 \\
673
674 {\bf 3) \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
675
676 The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
677 gradient of virtual potential temperature and the eddy exchange coefficient:
678 \[
679 {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
680 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
681 \]
682 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
683 heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
684 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
685 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
686 for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
687 at the surface and at the bottom model level.
688 \\
689
690
691 {\bf 4) \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
692
693 The turbulent flux of latent heat from the surface to the atmosphere is a function of the
694 gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
695 \[
696 {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
697 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
698 \]
699 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
700 the potential evapotranspiration actually evaporated, L is the latent
701 heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
702 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
703 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
704 for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
705 humidity at the surface and at the bottom model level, respectively.
706 \\
707
708 {\bf 5) \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
709
710 Over sea ice there is an additional source of energy at the surface due to the heat
711 conduction from the relatively warm ocean through the sea ice. The heat conduction
712 through sea ice represents an additional energy source term for the ground temperature equation.
713
714 \[
715 {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
716 \]
717
718 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
719 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
720 $T_g$ is the temperature of the sea ice.
721
722 NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
723 \\
724
725
726 {\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
727
728 \begin{eqnarray*}
729 {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
730 & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
731 \end{eqnarray*}
732 \\
733 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
734 $F_{LW}^\uparrow$ is
735 the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
736 \\
737
738 {\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
739
740 \begin{eqnarray*}
741 {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
742 & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
743 \end{eqnarray*}
744 \\
745 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
746 $F_{SW}^\downarrow$ is
747 the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
748 \\
749
750
751 \noindent
752 {\bf 8) \underline {RI} Richardson Number} ($dimensionless$)
753
754 \noindent
755 The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
756 \[
757 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
758 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
759 \]
760 \\
761 where we used the hydrostatic equation:
762 \[
763 {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
764 \]
765 Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
766 indicate dominantly unstable shear, and large positive values indicate dominantly stable
767 stratification.
768 \\
769
770 \noindent
771 {\bf 9) \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
772
773 \noindent
774 The surface exchange coefficient is obtained from the similarity functions for the stability
775 dependant flux profile relationships:
776 \[
777 {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
778 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
779 { k \over { (\psi_{h} + \psi_{g}) } }
780 \]
781 where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
782 viscous sublayer non-dimensional temperature or moisture change:
783 \[
784 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
785 \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
786 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
787 \]
788 and:
789 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
790
791 \noindent
792 $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
793 the temperature and moisture gradients, specified differently for stable and unstable
794 layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
795 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
796 viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
797 (see diagnostic number 67), and the subscript ref refers to a reference value.
798 \\
799
800 \noindent
801 {\bf 10) \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
802
803 \noindent
804 The surface exchange coefficient is obtained from the similarity functions for the stability
805 dependant flux profile relationships:
806 \[
807 {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
808 \]
809 where $\psi_m$ is the surface layer non-dimensional wind shear:
810 \[
811 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
812 \]
813 \noindent
814 $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
815 the temperature and moisture gradients, specified differently for stable and unstable layers
816 according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
817 non-dimensional stability parameter, $u_*$ is the surface stress velocity
818 (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
819 \\
820
821 \noindent
822 {\bf 11) \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
823
824 \noindent
825 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
826 moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
827 diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
828 or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
829 takes the form:
830 \[
831 {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
832 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
833 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
834 \]
835 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
836 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
837 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
838 depth,
839 $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
840 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
841 dimensionless buoyancy and wind shear
842 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
843 are functions of the Richardson number.
844
845 \noindent
846 For the detailed equations and derivations of the modified level 2.5 closure scheme,
847 see Helfand and Labraga, 1988.
848
849 \noindent
850 In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
851 in units of $m/sec$, given by:
852 \[
853 {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
854 \]
855 \noindent
856 where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
857 surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
858 friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
859 and $W_s$ is the magnitude of the surface layer wind.
860 \\
861
862 \noindent
863 {\bf 12) \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
864
865 \noindent
866 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
867 momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
868 diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
869 In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
870 takes the form:
871 \[
872 {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
873 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
874 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
875 \]
876 \noindent
877 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
878 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
879 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
880 depth,
881 $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
882 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
883 dimensionless buoyancy and wind shear
884 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
885 are functions of the Richardson number.
886
887 \noindent
888 For the detailed equations and derivations of the modified level 2.5 closure scheme,
889 see Helfand and Labraga, 1988.
890
891 \noindent
892 In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
893 in units of $m/sec$, given by:
894 \[
895 {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
896 \]
897 \noindent
898 where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
899 similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
900 (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
901 magnitude of the surface layer wind.
902 \\
903
904 \noindent
905 {\bf 13) \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
906
907 \noindent
908 The tendency of U-Momentum due to turbulence is written:
909 \[
910 {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
911 = {\pp{}{z} }{(K_m \pp{u}{z})}
912 \]
913
914 \noindent
915 The Helfand and Labraga level 2.5 scheme models the turbulent
916 flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
917 equation.
918
919 \noindent
920 {\bf 14) \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
921
922 \noindent
923 The tendency of V-Momentum due to turbulence is written:
924 \[
925 {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
926 = {\pp{}{z} }{(K_m \pp{v}{z})}
927 \]
928
929 \noindent
930 The Helfand and Labraga level 2.5 scheme models the turbulent
931 flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
932 equation.
933 \\
934
935 \noindent
936 {\bf 15) \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
937
938 \noindent
939 The tendency of temperature due to turbulence is written:
940 \[
941 {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
942 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
943 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
944 \]
945
946 \noindent
947 The Helfand and Labraga level 2.5 scheme models the turbulent
948 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
949 equation.
950 \\
951
952 \noindent
953 {\bf 16) \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
954
955 \noindent
956 The tendency of specific humidity due to turbulence is written:
957 \[
958 {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
959 = {\pp{}{z} }{(K_h \pp{q}{z})}
960 \]
961
962 \noindent
963 The Helfand and Labraga level 2.5 scheme models the turbulent
964 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
965 equation.
966 \\
967
968 \noindent
969 {\bf 17) \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
970
971 \noindent
972 \[
973 {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
974 \]
975 where:
976 \[
977 \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
978 \hspace{.4cm} and
979 \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
980 \]
981 and
982 \[
983 \Gamma_s = g \eta \pp{s}{p}
984 \]
985
986 \noindent
987 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
988 precipitation processes, or supersaturation rain.
989 The summation refers to contributions from each cloud type called by RAS.
990 The dry static energy is given
991 as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
992 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
993 the description of the convective parameterization. The fractional adjustment, or relaxation
994 parameter, for each cloud type is given as $\alpha$, while
995 $R$ is the rain re-evaporation adjustment.
996 \\
997
998 \noindent
999 {\bf 18) \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1000
1001 \noindent
1002 \[
1003 {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1004 \]
1005 where:
1006 \[
1007 \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1008 \hspace{.4cm} and
1009 \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1010 \]
1011 and
1012 \[
1013 \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1014 \]
1015 \noindent
1016 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1017 precipitation processes, or supersaturation rain.
1018 The summation refers to contributions from each cloud type called by RAS.
1019 The dry static energy is given as $s$,
1020 the moist static energy is given as $h$,
1021 the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1022 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1023 the description of the convective parameterization. The fractional adjustment, or relaxation
1024 parameter, for each cloud type is given as $\alpha$, while
1025 $R$ is the rain re-evaporation adjustment.
1026 \\
1027
1028 \noindent
1029 {\bf 19) \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1030
1031 \noindent
1032 The net longwave heating rate is calculated as the vertical divergence of the
1033 net terrestrial radiative fluxes.
1034 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1035 longwave routine.
1036 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1037 For a given cloud fraction,
1038 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1039 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1040 for the upward and downward radiative fluxes.
1041 (see Section \ref{sec:fizhi:radcloud}).
1042 The cloudy-sky flux is then obtained as:
1043
1044 \noindent
1045 \[
1046 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1047 \]
1048
1049 \noindent
1050 Finally, the net longwave heating rate is calculated as the vertical divergence of the
1051 net terrestrial radiative fluxes:
1052 \[
1053 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1054 \]
1055 or
1056 \[
1057 {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1058 \]
1059
1060 \noindent
1061 where $g$ is the accelation due to gravity,
1062 $c_p$ is the heat capacity of air at constant pressure,
1063 and
1064 \[
1065 F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1066 \]
1067 \\
1068
1069
1070 \noindent
1071 {\bf 20) \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1072
1073 \noindent
1074 The net Shortwave heating rate is calculated as the vertical divergence of the
1075 net solar radiative fluxes.
1076 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1077 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1078 both CLMO (maximum overlap cloud fraction) and
1079 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1080 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1081 true time-averaged cloud fractions CLMO
1082 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1083 input at the top of the atmosphere.
1084
1085 \noindent
1086 The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1087 \[
1088 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1089 \]
1090 or
1091 \[
1092 {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1093 \]
1094
1095 \noindent
1096 where $g$ is the accelation due to gravity,
1097 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1098 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1099 \[
1100 F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1101 \]
1102 \\
1103
1104 \noindent
1105 {\bf 21) \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1106
1107 \noindent
1108 For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1109 the vertical integral or total precipitable amount is given by:
1110 \[
1111 {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1112 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1113 \]
1114 \\
1115
1116 \noindent
1117 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1118 time step, scaled to $mm/day$.
1119 \\
1120
1121 \noindent
1122 {\bf 22) \underline {PRECON} Convective Precipition ($mm/day$) }
1123
1124 \noindent
1125 For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1126 the vertical integral or total precipitable amount is given by:
1127 \[
1128 {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1129 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1130 \]
1131 \\
1132
1133 \noindent
1134 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1135 time step, scaled to $mm/day$.
1136 \\
1137
1138 \noindent
1139 {\bf 23) \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1140
1141 \noindent
1142 The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1143 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1144
1145 \[
1146 {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1147 {\rho } {(- K_m \pp{U}{z})}
1148 \]
1149
1150 \noindent
1151 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1152 \\
1153
1154 \noindent
1155 {\bf 24) \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1156
1157 \noindent
1158 The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1159 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1160
1161 \[
1162 {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1163 {\rho } {(- K_m \pp{V}{z})}
1164 \]
1165
1166 \noindent
1167 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1168 \\
1169
1170
1171 \noindent
1172 {\bf 25) \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1173
1174 \noindent
1175 The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1176 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1177
1178 \noindent
1179 \[
1180 {\bf TTFLUX} = c_p {\rho }
1181 P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1182 = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1183 \]
1184
1185 \noindent
1186 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1187 \\
1188
1189
1190 \noindent
1191 {\bf 26) \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1192
1193 \noindent
1194 The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1195 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1196
1197 \noindent
1198 \[
1199 {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1200 {L {\rho }(- K_h \pp{q}{z})}
1201 \]
1202
1203 \noindent
1204 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1205 \\
1206
1207
1208 \noindent
1209 {\bf 27) \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
1210
1211 \noindent
1212 The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
1213 \[
1214 {\bf CN} = { k \over { \ln({h \over {z_0}})} }
1215 \]
1216
1217 \noindent
1218 where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
1219 $z_0$ is the surface roughness.
1220
1221 \noindent
1222 NOTE: CN is not available through model version 5.3, but is available in subsequent
1223 versions.
1224 \\
1225
1226 \noindent
1227 {\bf 28) \underline {WINDS} Surface Wind Speed ($meter/sec$) }
1228
1229 \noindent
1230 The surface wind speed is calculated for the last internal turbulence time step:
1231 \[
1232 {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
1233 \]
1234
1235 \noindent
1236 where the subscript $Nrphys$ refers to the lowest model level.
1237 \\
1238
1239 \noindent
1240 {\bf 29) \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
1241
1242 \noindent
1243 The air/surface virtual temperature difference measures the stability of the surface layer:
1244 \[
1245 {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
1246 \]
1247 \noindent
1248 where
1249 \[
1250 \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
1251 and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1252 \]
1253
1254 \noindent
1255 $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1256 $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
1257 and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
1258 refers to the surface.
1259 \\
1260
1261
1262 \noindent
1263 {\bf 30) \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
1264
1265 \noindent
1266 The ground temperature equation is solved as part of the turbulence package
1267 using a backward implicit time differencing scheme:
1268 \[
1269 {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
1270 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
1271 \]
1272
1273 \noindent
1274 where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
1275 net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
1276 sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
1277 flux, and $C_g$ is the total heat capacity of the ground.
1278 $C_g$ is obtained by solving a heat diffusion equation
1279 for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
1280 \[
1281 C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
1282 { 86400. \over {2 \pi} } } \, \, .
1283 \]
1284 \noindent
1285 Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
1286 {cm \over {^oK}}$,
1287 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
1288 by $2 \pi$ $radians/
1289 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
1290 is a function of the ground wetness, $W$.
1291 \\
1292
1293 \noindent
1294 {\bf 31) \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
1295
1296 \noindent
1297 The surface temperature estimate is made by assuming that the model's lowest
1298 layer is well-mixed, and therefore that $\theta$ is constant in that layer.
1299 The surface temperature is therefore:
1300 \[
1301 {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
1302 \]
1303 \\
1304
1305 \noindent
1306 {\bf 32) \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
1307
1308 \noindent
1309 The change in surface temperature from one turbulence time step to the next, solved
1310 using the Ground Temperature Equation (see diagnostic number 30) is calculated:
1311 \[
1312 {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
1313 \]
1314
1315 \noindent
1316 where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
1317 refers to the value at the previous turbulence time level.
1318 \\
1319
1320 \noindent
1321 {\bf 33) \underline {QG} Ground Specific Humidity ($g/kg$) }
1322
1323 \noindent
1324 The ground specific humidity is obtained by interpolating between the specific
1325 humidity at the lowest model level and the specific humidity of a saturated ground.
1326 The interpolation is performed using the potential evapotranspiration function:
1327 \[
1328 {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
1329 \]
1330
1331 \noindent
1332 where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
1333 and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
1334 pressure.
1335 \\
1336
1337 \noindent
1338 {\bf 34) \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
1339
1340 \noindent
1341 The surface saturation specific humidity is the saturation specific humidity at
1342 the ground temprature and surface pressure:
1343 \[
1344 {\bf QS} = q^*(T_g,P_s)
1345 \]
1346 \\
1347
1348 \noindent
1349 {\bf 35) \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
1350 radiation subroutine (deg)}
1351 \[
1352 {\bf TGRLW} = T_g(\lambda , \phi ,n)
1353 \]
1354 \noindent
1355 where $T_g$ is the model ground temperature at the current time step $n$.
1356 \\
1357
1358
1359 \noindent
1360 {\bf 36) \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
1361 \[
1362 {\bf ST4} = \sigma T^4
1363 \]
1364 \noindent
1365 where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
1366 \\
1367
1368 \noindent
1369 {\bf 37) \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1370 \[
1371 {\bf OLR} = F_{LW,top}^{NET}
1372 \]
1373 \noindent
1374 where top indicates the top of the first model layer.
1375 In the GCM, $p_{top}$ = 0.0 mb.
1376 \\
1377
1378
1379 \noindent
1380 {\bf 38) \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
1381 \[
1382 {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
1383 \]
1384 \noindent
1385 where top indicates the top of the first model layer.
1386 In the GCM, $p_{top}$ = 0.0 mb.
1387 \\
1388
1389 \noindent
1390 {\bf 39) \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
1391
1392 \noindent
1393 \begin{eqnarray*}
1394 {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
1395 & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
1396 \end{eqnarray*}
1397 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1398 $F(clearsky)_{LW}^\uparrow$ is
1399 the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
1400 \\
1401
1402 \noindent
1403 {\bf 40) \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
1404
1405 \noindent
1406 The net longwave heating rate is calculated as the vertical divergence of the
1407 net terrestrial radiative fluxes.
1408 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1409 longwave routine.
1410 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1411 For a given cloud fraction,
1412 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1413 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1414 for the upward and downward radiative fluxes.
1415 (see Section \ref{sec:fizhi:radcloud}).
1416 The cloudy-sky flux is then obtained as:
1417
1418 \noindent
1419 \[
1420 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1421 \]
1422
1423 \noindent
1424 Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
1425 vertical divergence of the
1426 clear-sky longwave radiative flux:
1427 \[
1428 \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
1429 \]
1430 or
1431 \[
1432 {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
1433 \]
1434
1435 \noindent
1436 where $g$ is the accelation due to gravity,
1437 $c_p$ is the heat capacity of air at constant pressure,
1438 and
1439 \[
1440 F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
1441 \]
1442 \\
1443
1444
1445 \noindent
1446 {\bf 41) \underline {TLW} Instantaneous temperature used as input to the Longwave
1447 radiation subroutine (deg)}
1448 \[
1449 {\bf TLW} = T(\lambda , \phi ,level, n)
1450 \]
1451 \noindent
1452 where $T$ is the model temperature at the current time step $n$.
1453 \\
1454
1455
1456 \noindent
1457 {\bf 42) \underline {SHLW} Instantaneous specific humidity used as input to
1458 the Longwave radiation subroutine (kg/kg)}
1459 \[
1460 {\bf SHLW} = q(\lambda , \phi , level , n)
1461 \]
1462 \noindent
1463 where $q$ is the model specific humidity at the current time step $n$.
1464 \\
1465
1466
1467 \noindent
1468 {\bf 43) \underline {OZLW} Instantaneous ozone used as input to
1469 the Longwave radiation subroutine (kg/kg)}
1470 \[
1471 {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
1472 \]
1473 \noindent
1474 where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
1475 mean zonally averaged ozone data set.
1476 \\
1477
1478
1479 \noindent
1480 {\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
1481
1482 \noindent
1483 {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1484 Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
1485 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1486 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1487 \[
1488 {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
1489 \]
1490 \\
1491
1492
1493 {\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
1494
1495 {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
1496 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
1497 Radiation packages.
1498 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1499 \[
1500 {\bf CLDTOT} = F_{RAS} + F_{LS}
1501 \]
1502 \\
1503 where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
1504 time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
1505 \\
1506
1507
1508 \noindent
1509 {\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
1510
1511 \noindent
1512 {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
1513 Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
1514 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
1515 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1516 \[
1517 {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
1518 \]
1519 \\
1520
1521 \noindent
1522 {\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
1523
1524 \noindent
1525 {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
1526 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
1527 Radiation algorithm. These are
1528 convective and large-scale clouds whose radiative characteristics are not
1529 assumed to be correlated in the vertical.
1530 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
1531 \[
1532 {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
1533 \]
1534 \\
1535
1536 \noindent
1537 {\bf 48) \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
1538 \[
1539 {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
1540 \]
1541 \noindent
1542 where $S_0$, is the extra-terrestial solar contant,
1543 $R_a$ is the earth-sun distance in Astronomical Units,
1544 and $cos \phi_z$ is the cosine of the zenith angle.
1545 It should be noted that {\bf RADSWT}, as well as
1546 {\bf OSR} and {\bf OSRCLR},
1547 are calculated at the top of the atmosphere (p=0 mb). However, the
1548 {\bf OLR} and {\bf OLRCLR} diagnostics are currently
1549 calculated at $p= p_{top}$ (0.0 mb for the GCM).
1550 \\
1551
1552 \noindent
1553 {\bf 49) \underline {EVAP} Surface Evaporation ($mm/day$) }
1554
1555 \noindent
1556 The surface evaporation is a function of the gradient of moisture, the potential
1557 evapotranspiration fraction and the eddy exchange coefficient:
1558 \[
1559 {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
1560 \]
1561 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1562 the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
1563 turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
1564 $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
1565 number 34) and at the bottom model level, respectively.
1566 \\
1567
1568 \noindent
1569 {\bf 50) \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
1570
1571 \noindent
1572 {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
1573 and Analysis forcing.
1574 \[
1575 {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1576 \]
1577 \\
1578
1579 \noindent
1580 {\bf 51) \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
1581
1582 \noindent
1583 {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
1584 and Analysis forcing.
1585 \[
1586 {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1587 \]
1588 \\
1589
1590 \noindent
1591 {\bf 52) \underline {DTDT} Total Temperature Tendency ($deg/day$) }
1592
1593 \noindent
1594 {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
1595 and Analysis forcing.
1596 \begin{eqnarray*}
1597 {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1598 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1599 \end{eqnarray*}
1600 \\
1601
1602 \noindent
1603 {\bf 53) \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
1604
1605 \noindent
1606 {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
1607 and Analysis forcing.
1608 \[
1609 {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
1610 + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
1611 \]
1612 \\
1613
1614 \noindent
1615 {\bf 54) \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
1616
1617 \noindent
1618 The surface stress velocity, or the friction velocity, is the wind speed at
1619 the surface layer top impeded by the surface drag:
1620 \[
1621 {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
1622 C_u = {k \over {\psi_m} }
1623 \]
1624
1625 \noindent
1626 $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
1627 number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
1628
1629 \noindent
1630 {\bf 55) \underline {Z0} Surface Roughness Length ($m$) }
1631
1632 \noindent
1633 Over the land surface, the surface roughness length is interpolated to the local
1634 time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
1635 the roughness length is a function of the surface-stress velocity, $u_*$.
1636 \[
1637 {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
1638 \]
1639
1640 \noindent
1641 where the constants are chosen to interpolate between the reciprocal relation of
1642 Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
1643 for moderate to large winds.
1644 \\
1645
1646 \noindent
1647 {\bf 56) \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
1648
1649 \noindent
1650 The fraction of time when turbulence is present is defined as the fraction of
1651 time when the turbulent kinetic energy exceeds some minimum value, defined here
1652 to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
1653 incremented. The fraction over the averaging interval is reported.
1654 \\
1655
1656 \noindent
1657 {\bf 57) \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
1658
1659 \noindent
1660 The depth of the PBL is defined by the turbulence parameterization to be the
1661 depth at which the turbulent kinetic energy reduces to ten percent of its surface
1662 value.
1663
1664 \[
1665 {\bf PBL} = P_{PBL} - P_{surface}
1666 \]
1667
1668 \noindent
1669 where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
1670 reaches one tenth of its surface value, and $P_s$ is the surface pressure.
1671 \\
1672
1673 \noindent
1674 {\bf 58) \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
1675
1676 \noindent
1677 The net Shortwave heating rate is calculated as the vertical divergence of the
1678 net solar radiative fluxes.
1679 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1680 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1681 both CLMO (maximum overlap cloud fraction) and
1682 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1683 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1684 true time-averaged cloud fractions CLMO
1685 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1686 input at the top of the atmosphere.
1687
1688 \noindent
1689 The heating rate due to Shortwave Radiation under clear skies is defined as:
1690 \[
1691 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
1692 \]
1693 or
1694 \[
1695 {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
1696 \]
1697
1698 \noindent
1699 where $g$ is the accelation due to gravity,
1700 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1701 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1702 \[
1703 F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
1704 \]
1705 \\
1706
1707 \noindent
1708 {\bf 59) \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
1709 \[
1710 {\bf OSR} = F_{SW,top}^{NET}
1711 \]
1712 \noindent
1713 where top indicates the top of the first model layer used in the shortwave radiation
1714 routine.
1715 In the GCM, $p_{SW_{top}}$ = 0 mb.
1716 \\
1717
1718 \noindent
1719 {\bf 60) \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
1720 \[
1721 {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
1722 \]
1723 \noindent
1724 where top indicates the top of the first model layer used in the shortwave radiation
1725 routine.
1726 In the GCM, $p_{SW_{top}}$ = 0 mb.
1727 \\
1728
1729
1730 \noindent
1731 {\bf 61) \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
1732
1733 \noindent
1734 The amount of cloud mass moved per RAS timestep from all convective clouds is written:
1735 \[
1736 {\bf CLDMAS} = \eta m_B
1737 \]
1738 where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
1739 the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
1740 description of the convective parameterization.
1741 \\
1742
1743
1744
1745 \noindent
1746 {\bf 62) \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
1747
1748 \noindent
1749 The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
1750 the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
1751 Zonal U-Wind which is archived on the Prognostic Output data stream.
1752 \[
1753 {\bf UAVE} = u(\lambda, \phi, level , t)
1754 \]
1755 \\
1756 Note, {\bf UAVE} is computed and stored on the staggered C-grid.
1757 \\
1758
1759 \noindent
1760 {\bf 63) \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
1761
1762 \noindent
1763 The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
1764 the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
1765 Meridional V-Wind which is archived on the Prognostic Output data stream.
1766 \[
1767 {\bf VAVE} = v(\lambda, \phi, level , t)
1768 \]
1769 \\
1770 Note, {\bf VAVE} is computed and stored on the staggered C-grid.
1771 \\
1772
1773 \noindent
1774 {\bf 64) \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
1775
1776 \noindent
1777 The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
1778 the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
1779 Temperature which is archived on the Prognostic Output data stream.
1780 \[
1781 {\bf TAVE} = T(\lambda, \phi, level , t)
1782 \]
1783 \\
1784
1785 \noindent
1786 {\bf 65) \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
1787
1788 \noindent
1789 The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
1790 the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
1791 Specific Humidity which is archived on the Prognostic Output data stream.
1792 \[
1793 {\bf QAVE} = q(\lambda, \phi, level , t)
1794 \]
1795 \\
1796
1797 \noindent
1798 {\bf 66) \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
1799
1800 \noindent
1801 The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
1802 the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
1803 Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
1804 \begin{eqnarray*}
1805 {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
1806 & = & p_s(\lambda, \phi, level , t) - p_T
1807 \end{eqnarray*}
1808 \\
1809
1810
1811 \noindent
1812 {\bf 67) \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
1813
1814 \noindent
1815 The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
1816 produced by the GCM Turbulence parameterization over
1817 the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
1818 Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
1819 \[
1820 {\bf QQAVE} = qq(\lambda, \phi, level , t)
1821 \]
1822 \\
1823 Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
1824 \\
1825
1826 \noindent
1827 {\bf 68) \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
1828
1829 \noindent
1830 \begin{eqnarray*}
1831 {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
1832 & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
1833 \end{eqnarray*}
1834 \noindent
1835 \\
1836 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1837 $F(clearsky){SW}^\downarrow$ is
1838 the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
1839 the upward clearsky Shortwave flux.
1840 \\
1841
1842 \noindent
1843 {\bf 69) \underline {SDIAG1} User-Defined Surface Diagnostic-1 }
1844
1845 \noindent
1846 The GCM provides Users with a built-in mechanism for archiving user-defined
1847 diagnostics. The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated
1848 diagnostic counters and pointers located in COMMON /DIAGP/,
1849 must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}).
1850 A convenient method for incorporating all necessary COMMON files is to
1851 include the GCM {\em vstate.com} file in the routine which employs the
1852 user-defined diagnostics.
1853
1854 \noindent
1855 In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill
1856 the QDIAG array with the desired quantity within the User's
1857 application program or within modified GCM subroutines, as well as increment
1858 the diagnostic counter at the time when the diagnostic is updated.
1859 The QDIAG location index for {\bf SDIAG1} and its corresponding counter is
1860 automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the
1861 diagnostic has been enabled.
1862 The syntax for its use is given by
1863 \begin{verbatim}
1864 do j=1,jm
1865 do i=1,im
1866 qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ...
1867 enddo
1868 enddo
1869
1870 NSDIAG1 = NSDIAG1 + 1
1871 \end{verbatim}
1872 The diagnostics defined in this manner will automatically be archived by the output routines.
1873 \\
1874
1875 \noindent
1876 {\bf 70) \underline {SDIAG2} User-Defined Surface Diagnostic-2 }
1877
1878 \noindent
1879 The GCM provides Users with a built-in mechanism for archiving user-defined
1880 diagnostics. For a complete description refer to Diagnostic \#84.
1881 The syntax for using the surface SDIAG2 diagnostic is given by
1882 \begin{verbatim}
1883 do j=1,jm
1884 do i=1,im
1885 qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ...
1886 enddo
1887 enddo
1888
1889 NSDIAG2 = NSDIAG2 + 1
1890 \end{verbatim}
1891 The diagnostics defined in this manner will automatically be archived by the output routines.
1892 \\
1893
1894 \noindent
1895 {\bf 71) \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 }
1896
1897 \noindent
1898 The GCM provides Users with a built-in mechanism for archiving user-defined
1899 diagnostics. For a complete description refer to Diagnostic \#84.
1900 The syntax for using the upper-air UDIAG1 diagnostic is given by
1901 \begin{verbatim}
1902 do L=1,Nrphys
1903 do j=1,jm
1904 do i=1,im
1905 qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ...
1906 enddo
1907 enddo
1908 enddo
1909
1910 NUDIAG1 = NUDIAG1 + 1
1911 \end{verbatim}
1912 The diagnostics defined in this manner will automatically be archived by the
1913 output programs.
1914 \\
1915
1916 \noindent
1917 {\bf 72) \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 }
1918
1919 \noindent
1920 The GCM provides Users with a built-in mechanism for archiving user-defined
1921 diagnostics. For a complete description refer to Diagnostic \#84.
1922 The syntax for using the upper-air UDIAG2 diagnostic is given by
1923 \begin{verbatim}
1924 do L=1,Nrphys
1925 do j=1,jm
1926 do i=1,im
1927 qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ...
1928 enddo
1929 enddo
1930 enddo
1931
1932 NUDIAG2 = NUDIAG2 + 1
1933 \end{verbatim}
1934 The diagnostics defined in this manner will automatically be archived by the
1935 output programs.
1936 \\
1937
1938
1939 \noindent
1940 {\bf 73) \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
1941
1942 \noindent
1943 {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
1944 and the Analysis forcing.
1945 \[
1946 {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
1947 \]
1948 \\
1949
1950 \noindent
1951 {\bf 74) \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
1952
1953 \noindent
1954 {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
1955 and the Analysis forcing.
1956 \[
1957 {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
1958 \]
1959 \\
1960
1961 \noindent
1962 {\bf 75) \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
1963
1964 \noindent
1965 {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
1966 and the Analysis forcing.
1967 \begin{eqnarray*}
1968 {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1969 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
1970 \end{eqnarray*}
1971 \\
1972 If we define the time-tendency of Temperature due to Diabatic processes as
1973 \begin{eqnarray*}
1974 \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
1975 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
1976 \end{eqnarray*}
1977 then, since there are no surface pressure changes due to Diabatic processes, we may write
1978 \[
1979 \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
1980 \]
1981 where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
1982 \[
1983 {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
1984 \]
1985 \\
1986
1987 \noindent
1988 {\bf 76) \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
1989
1990 \noindent
1991 {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
1992 and the Analysis forcing.
1993 \[
1994 {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
1995 \]
1996 If we define the time-tendency of Specific Humidity due to Diabatic processes as
1997 \[
1998 \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
1999 \]
2000 then, since there are no surface pressure changes due to Diabatic processes, we may write
2001 \[
2002 \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2003 \]
2004 Thus, {\bf DIABQ} may be written as
2005 \[
2006 {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2007 \]
2008 \\
2009
2010 \noindent
2011 {\bf 77) \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2012
2013 \noindent
2014 The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2015 $u q$ over the depth of the atmosphere at each model timestep,
2016 and dividing by the total mass of the column.
2017 \[
2018 {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2019 \]
2020 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2021 \[
2022 {\bf VINTUQ} = { \int_0^1 u q dp }
2023 \]
2024 \\
2025
2026
2027 \noindent
2028 {\bf 78) \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2029
2030 \noindent
2031 The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2032 $v q$ over the depth of the atmosphere at each model timestep,
2033 and dividing by the total mass of the column.
2034 \[
2035 {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2036 \]
2037 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2038 \[
2039 {\bf VINTVQ} = { \int_0^1 v q dp }
2040 \]
2041 \\
2042
2043
2044 \noindent
2045 {\bf 79) \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2046
2047 \noindent
2048 The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2049 $u T$ over the depth of the atmosphere at each model timestep,
2050 and dividing by the total mass of the column.
2051 \[
2052 {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2053 \]
2054 Or,
2055 \[
2056 {\bf VINTUT} = { \int_0^1 u T dp }
2057 \]
2058 \\
2059
2060 \noindent
2061 {\bf 80) \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2062
2063 \noindent
2064 The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2065 $v T$ over the depth of the atmosphere at each model timestep,
2066 and dividing by the total mass of the column.
2067 \[
2068 {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2069 \]
2070 Using $\rho \delta z = -{\delta p \over g} $, we have
2071 \[
2072 {\bf VINTVT} = { \int_0^1 v T dp }
2073 \]
2074 \\
2075
2076 \noindent
2077 {\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2078
2079 If we define the
2080 time-averaged random and maximum overlapped cloudiness as CLRO and
2081 CLMO respectively, then the probability of clear sky associated
2082 with random overlapped clouds at any level is (1-CLRO) while the probability of
2083 clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2084 The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2085 the total cloud fraction at each level may be obtained by
2086 1-(1-CLRO)*(1-CLMO).
2087
2088 At any given level, we may define the clear line-of-site probability by
2089 appropriately accounting for the maximum and random overlap
2090 cloudiness. The clear line-of-site probability is defined to be
2091 equal to the product of the clear line-of-site probabilities
2092 associated with random and maximum overlap cloudiness. The clear
2093 line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2094 from the current pressure $p$
2095 to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2096 is simply 1.0 minus the largest maximum overlap cloud value along the
2097 line-of-site, ie.
2098
2099 $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2100
2101 Thus, even in the time-averaged sense it is assumed that the
2102 maximum overlap clouds are correlated in the vertical. The clear
2103 line-of-site probability associated with random overlap clouds is
2104 defined to be the product of the clear sky probabilities at each
2105 level along the line-of-site, ie.
2106
2107 $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2108
2109 The total cloud fraction at a given level associated with a line-
2110 of-site calculation is given by
2111
2112 $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2113 \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2114
2115
2116 \noindent
2117 The 2-dimensional net cloud fraction as seen from the top of the
2118 atmosphere is given by
2119 \[
2120 {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2121 \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2122 \]
2123 \\
2124 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2125
2126
2127 \noindent
2128 {\bf 82) \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2129
2130 \noindent
2131 The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2132 given by:
2133 \begin{eqnarray*}
2134 {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2135 & = & {\pi \over g} \int_0^1 q dp
2136 \end{eqnarray*}
2137 where we have used the hydrostatic relation
2138 $\rho \delta z = -{\delta p \over g} $.
2139 \\
2140
2141
2142 \noindent
2143 {\bf 83) \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2144
2145 \noindent
2146 The u-wind at the 2-meter depth is determined from the similarity theory:
2147 \[
2148 {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2149 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2150 \]
2151
2152 \noindent
2153 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2154 $sl$ refers to the height of the top of the surface layer. If the roughness height
2155 is above two meters, ${\bf U2M}$ is undefined.
2156 \\
2157
2158 \noindent
2159 {\bf 84) \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2160
2161 \noindent
2162 The v-wind at the 2-meter depth is a determined from the similarity theory:
2163 \[
2164 {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2165 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2166 \]
2167
2168 \noindent
2169 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2170 $sl$ refers to the height of the top of the surface layer. If the roughness height
2171 is above two meters, ${\bf V2M}$ is undefined.
2172 \\
2173
2174 \noindent
2175 {\bf 85) \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2176
2177 \noindent
2178 The temperature at the 2-meter depth is a determined from the similarity theory:
2179 \[
2180 {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2181 P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2182 (\theta_{sl} - \theta_{surf}))
2183 \]
2184 where:
2185 \[
2186 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2187 \]
2188
2189 \noindent
2190 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2191 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2192 $sl$ refers to the height of the top of the surface layer. If the roughness height
2193 is above two meters, ${\bf T2M}$ is undefined.
2194 \\
2195
2196 \noindent
2197 {\bf 86) \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2198
2199 \noindent
2200 The specific humidity at the 2-meter depth is determined from the similarity theory:
2201 \[
2202 {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2203 P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2204 (q_{sl} - q_{surf}))
2205 \]
2206 where:
2207 \[
2208 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2209 \]
2210
2211 \noindent
2212 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2213 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2214 $sl$ refers to the height of the top of the surface layer. If the roughness height
2215 is above two meters, ${\bf Q2M}$ is undefined.
2216 \\
2217
2218 \noindent
2219 {\bf 87) \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2220
2221 \noindent
2222 The u-wind at the 10-meter depth is an interpolation between the surface wind
2223 and the model lowest level wind using the ratio of the non-dimensional wind shear
2224 at the two levels:
2225 \[
2226 {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2227 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2228 \]
2229
2230 \noindent
2231 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2232 $sl$ refers to the height of the top of the surface layer.
2233 \\
2234
2235 \noindent
2236 {\bf 88) \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2237
2238 \noindent
2239 The v-wind at the 10-meter depth is an interpolation between the surface wind
2240 and the model lowest level wind using the ratio of the non-dimensional wind shear
2241 at the two levels:
2242 \[
2243 {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2244 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2245 \]
2246
2247 \noindent
2248 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2249 $sl$ refers to the height of the top of the surface layer.
2250 \\
2251
2252 \noindent
2253 {\bf 89) \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2254
2255 \noindent
2256 The temperature at the 10-meter depth is an interpolation between the surface potential
2257 temperature and the model lowest level potential temperature using the ratio of the
2258 non-dimensional temperature gradient at the two levels:
2259 \[
2260 {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2261 P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2262 (\theta_{sl} - \theta_{surf}))
2263 \]
2264 where:
2265 \[
2266 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2267 \]
2268
2269 \noindent
2270 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2271 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2272 $sl$ refers to the height of the top of the surface layer.
2273 \\
2274
2275 \noindent
2276 {\bf 90) \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2277
2278 \noindent
2279 The specific humidity at the 10-meter depth is an interpolation between the surface specific
2280 humidity and the model lowest level specific humidity using the ratio of the
2281 non-dimensional temperature gradient at the two levels:
2282 \[
2283 {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2284 P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2285 (q_{sl} - q_{surf}))
2286 \]
2287 where:
2288 \[
2289 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2290 \]
2291
2292 \noindent
2293 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2294 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2295 $sl$ refers to the height of the top of the surface layer.
2296 \\
2297
2298 \noindent
2299 {\bf 91) \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2300
2301 The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
2302 \[
2303 {\bf DTRAIN} = \eta_{r_D}m_B
2304 \]
2305 \noindent
2306 where $r_D$ is the detrainment level,
2307 $m_B$ is the cloud base mass flux, and $\eta$
2308 is the entrainment, defined in Section \ref{sec:fizhi:mc}.
2309 \\
2310
2311 \noindent
2312 {\bf 92) \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
2313
2314 \noindent
2315 Due to computational errors associated with the numerical scheme used for
2316 the advection of moisture, negative values of specific humidity may be generated. The
2317 specific humidity is checked for negative values after every dynamics timestep. If negative
2318 values have been produced, a filling algorithm is invoked which redistributes moisture from
2319 below. Diagnostic {\bf QFILL} is equal to the net filling needed
2320 to eliminate negative specific humidity, scaled to a per-day rate:
2321 \[
2322 {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
2323 \]
2324 where
2325 \[
2326 q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
2327 \]
2328
2329 \subsection{Dos and Donts}
2330
2331 \subsection{Diagnostics Reference}
2332

  ViewVC Help
Powered by ViewVC 1.1.22