| 6 | 
  | 
  | 
| 7 | 
 \subsection{Introduction} | 
 \subsection{Introduction} | 
| 8 | 
  | 
  | 
| 9 | 
  | 
 \noindent | 
| 10 | 
 This section of the documentation describes the Diagnostics package available within  | 
 This section of the documentation describes the Diagnostics package available within  | 
| 11 | 
 the GCM.  In addition to a description of how to set and extract diagnostic quantities,  | 
 the GCM.  A large selection of model diagnostics is available for output.   | 
| 12 | 
 this document also provides a comprehensive list of all available diagnostic quantities  | 
 In addition to the diagnostic quantities pre-defined in the GCM, there exists | 
| 13 | 
 and a short description of how they are computed.  It should be noted that this document  | 
 the option, in any experiment, to define a new diagnostic quantity and include it | 
| 14 | 
 is not intended to be a complete documentation of the various packages used in the GCM,  | 
 as part of the diagnostic output with the addition of a single subroutine call in the | 
| 15 | 
 and the reader should refer to original publications and the appropriate sections of this | 
 routine where the field is computed. As a matter of philosophy, no diagnostic is enabled  | 
| 16 | 
 documentation for further insight. | 
 as default, thus each user must specify the exact diagnostic information required for an  | 
| 17 | 
  | 
 experiment.  This is accomplished by enabling the specific diagnostic of interest cataloged  | 
| 18 | 
  | 
 in the Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). Instructions for enabling | 
| 19 | 
  | 
 diagnostic output and defining new diagnostic quantities are found in Section  | 
| 20 | 
  | 
 \ref{sec:diagnostics:usersguide} of this document. | 
| 21 | 
  | 
  | 
| 22 | 
  | 
 \noindent | 
| 23 | 
  | 
 The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within  | 
| 24 | 
  | 
 the GCM. Once a diagnostic is enabled, the GCM will continually increment an array | 
| 25 | 
  | 
 specifically allocated for that diagnostic whenever the appropriate quantity is computed.   | 
| 26 | 
  | 
 A counter is defined which records how many times each diagnostic quantity has been  | 
| 27 | 
  | 
 incremented.  Several special diagnostics are included in the menu. Quantities refered to  | 
| 28 | 
  | 
 as ``Counter Diagnostics'', are defined for selected diagnostics which record the  | 
| 29 | 
  | 
 frequency at which a diagnostic is incremented separately for each model grid location. | 
| 30 | 
  | 
 Quantitied refered to as ``User Diagnostics'' are included in the menu to facilitate | 
| 31 | 
  | 
 defining new diagnostics for a particular experiment. | 
| 32 | 
  | 
  | 
| 33 | 
 \subsection{Equations} | 
 \subsection{Equations} | 
| 34 | 
 Not relevant. | 
 Not relevant. | 
| 36 | 
 \subsection{Key Subroutines and Parameters} | 
 \subsection{Key Subroutines and Parameters} | 
| 37 | 
 \label{sec:diagnostics:diagover} | 
 \label{sec:diagnostics:diagover} | 
| 38 | 
  | 
  | 
| 39 | 
 A large selection of model diagnostics is available in the GCM.  At the time of | 
 \noindent | 
| 40 | 
 this writing there are 280 different diagnostic quantities which can be enabled for an | 
 The diagnostics are computed at various times and places within the GCM. Because the | 
| 41 | 
 experiment.  As a matter of philosophy, no diagnostic is enabled as default, thus each  | 
 MIT GCM may employ a staggered grid, diagnostics may be computed at grid box centers, | 
| 42 | 
 user must specify the exact diagnostic information required for an experiment.  This  | 
 corners, or edges, and at the middle or edge in the vertical. Some diagnostics are scalars,  | 
| 43 | 
 is accomplished by enabling the specific diagnostic of interest cataloged in the  | 
 while others are components of vectors. An internal array is defined which contains  | 
| 44 | 
 Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). | 
 information concerning various grid attributes of each diagnostic. The GDIAG | 
| 45 | 
 The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within  | 
 array (in common block \\diagnostics in file diagnostics.h) is internally defined as a  | 
| 46 | 
 the GCM. Diagnostics are internally referred to by their associated number in the Diagnostic | 
 character*8 variable, and is equivalenced to a character*1 "parse" array in output in  | 
| 47 | 
 Menu.  Once a diagnostic is enabled, the GCM will continually increment an array | 
 order to extract the grid-attribute information.  The GDIAG array is described in  | 
| 48 | 
 specifically allocated for that diagnostic whenever the associated process for the  | 
 Table \ref{tab:diagnostics:gdiag.tabl}. | 
 | 
 diagnostic is computed.  Separate arrays are used both for the diagnostic quantity and  | 
  | 
 | 
 its diagnostic counter which records how many times each diagnostic quantity has been  | 
  | 
 | 
 computed.  In addition special diagnostics, called ``Counter Diagnostics'', records the  | 
  | 
 | 
 frequency of diagnostic updates separately for each model grid location. | 
  | 
 | 
  | 
  | 
 | 
 The diagnostics are computed at various times and places within the GCM.   | 
  | 
 | 
 Some diagnostics are computed on the A-grid (such as those within the fizhi routines),  | 
  | 
 | 
 while others are computed on the C-grid (those computed during the dynamics time-stepping).   | 
  | 
 | 
 Some diagnostics are scalars, while others are vectors.  Each of these possibilities requires | 
  | 
 | 
 separate tasks for A-grid to C-grid transformations and coordinate transformations.  Due | 
  | 
 | 
 to this complexity, and since the specific diagnostics enabled are User determined at the | 
  | 
 | 
 time of the run,  | 
  | 
 | 
 a diagnostic parameter has been developed and implemented into the GCM, defined as GDIAG, | 
  | 
 | 
 which contains information concerning various grid attributes of each diagnostic.  The GDIAG | 
  | 
 | 
 array is internally defined as a character*8 variable, and is equivalenced to  | 
  | 
 | 
 a character*1 "parse" array in output in order to extract the grid-attribute information. | 
  | 
 | 
 The GDIAG array is described in Table \ref{tab:diagnostics:gdiag.tabl}. | 
  | 
| 49 | 
  | 
  | 
| 50 | 
 \begin{table} | 
 \begin{table} | 
| 51 | 
 \caption{Diagnostic Parsing Array} | 
 \caption{Diagnostic Parsing Array} | 
| 76 | 
 \end{center} | 
 \end{center} | 
| 77 | 
 \end{table} | 
 \end{table} | 
| 78 | 
  | 
  | 
| 79 | 
  | 
  | 
| 80 | 
  | 
 \noindent | 
| 81 | 
 As an example, consider a diagnostic whose associated GDIAG parameter is equal | 
 As an example, consider a diagnostic whose associated GDIAG parameter is equal | 
| 82 | 
 to ``UU  002''.  From GDIAG we can determine that this diagnostic is a  | 
 to ``UU  002''.  From GDIAG we can determine that this diagnostic is a  | 
| 83 | 
 U-vector component located at the C-grid U-point. | 
 U-vector component located at the C-grid U-point. | 
| 84 | 
 Its corresponding V-component diagnostic is located in Diagnostic \# 002. | 
 Its corresponding V-component diagnostic is located in Diagnostic \# 002. | 
| 85 | 
  | 
  | 
| 86 | 
  | 
  | 
| 87 | 
  | 
 \noindent | 
| 88 | 
 In this way, each Diagnostic in the model has its attributes (ie. vector or scalar, | 
 In this way, each Diagnostic in the model has its attributes (ie. vector or scalar, | 
| 89 | 
 A-Grid or C-grid, etc.) defined internally.  The Output routines | 
 C-grid location, etc.) defined internally.  The Output routines use this information  | 
| 90 | 
 use this information in order to determine | 
 in order to determine what type of transformations need to be performed.  Any  | 
| 91 | 
 what type of transformations need to be performed.  Thus, all Diagnostic | 
 interpolations are done at the time of output rather than during each model step. | 
| 92 | 
 interpolations are done at the time of output rather than during each model dynamic step. | 
 In this way the User has flexibility in determining the type of gridded data which  | 
| 93 | 
 In this way the User now has more flexibility | 
 is output. | 
| 94 | 
 in determining the type of gridded data which is output. | 
  | 
| 95 | 
  | 
  | 
| 96 | 
  | 
 \noindent | 
| 97 | 
 There are several utilities within the GCM available to users to enable, disable, | 
 There are several utilities within the GCM available to users to enable, disable, | 
| 98 | 
 clear, write and retrieve model diagnostics, and may be called from any routine.   | 
 clear, write and retrieve model diagnostics, and may be called from any routine.   | 
| 99 | 
 The available utilities and the CALL sequences are listed below. | 
 The available utilities and the CALL sequences are listed below. | 
| 100 | 
  | 
  | 
 | 
 {\bf fill\_diag}:  This routine will increment  | 
  | 
| 101 | 
  | 
  | 
| 102 | 
  | 
 \noindent | 
| 103 | 
  | 
 {\bf fill\_diagnostics}:  This routine will increment the specified diagnostic | 
| 104 | 
  | 
 quantity with a field sent through the argument list. | 
| 105 | 
  | 
  | 
| 106 | 
  | 
  | 
| 107 | 
  | 
 \noindent | 
| 108 | 
  | 
 \begin{tabbing} | 
| 109 | 
  | 
 XXXXXXXXX\=XXXXXX\= \kill | 
| 110 | 
  | 
 \>        call fill\_diagnostics (myThid, chardiag, levflg, nlevs, \\ | 
| 111 | 
  | 
                 bibjflg, bi, bj, arrayin) \\ | 
| 112 | 
  | 
 \\ | 
| 113 | 
  | 
 where \>  myThid   \>= Current Process(or) \\ | 
| 114 | 
  | 
       \>  chardiag \>= Character *8 expression for diag to fill \\ | 
| 115 | 
  | 
       \>  levflg   \>= Integer flag for vertical levels: \\ | 
| 116 | 
  | 
       \>           \> 0 indicates multiple levels incremented in qdiag \\ | 
| 117 | 
  | 
       \>           \> non-0 (any integer) - WHICH single level to increment. \\ | 
| 118 | 
  | 
       \>           \> negative integer - the input data array is single-leveled \\ | 
| 119 | 
  | 
       \>           \> positive integer - the input data array is multi-leveled \\ | 
| 120 | 
  | 
       \>  nlevs    \>= indicates Number of levels to be filled (1 if levflg <> 0) \\ | 
| 121 | 
  | 
       \>           \> positive: fill in "nlevs" levels in the same order as \\ | 
| 122 | 
  | 
       \>           \> the input array \\ | 
| 123 | 
  | 
       \>           \> negative: fill in -nlevs levels in reverse order. \\ | 
| 124 | 
  | 
       \>  bibjflg  \>= Integer flag to indicate instructions for bi bj loop \\ | 
| 125 | 
  | 
       \>           \> 0 indicates that the bi-bj loop must be done here \\ | 
| 126 | 
  | 
       \>           \> 1 indicates that the bi-bj loop is done OUTSIDE \\ | 
| 127 | 
  | 
       \>           \> 2 indicates that the bi-bj loop is done OUTSIDE \\ | 
| 128 | 
  | 
       \>           \>    AND that we have been sent a local array \\ | 
| 129 | 
  | 
       \>           \> 3 indicates that the bi-bj loop is done OUTSIDE \\ | 
| 130 | 
  | 
       \>           \>    AND that we have been sent a local array \\ | 
| 131 | 
  | 
       \>           \>    AND that the array has the shadow regions \\ | 
| 132 | 
  | 
       \>  bi       \>= X-direction process(or) number - used for bibjflg=1-3 \\ | 
| 133 | 
  | 
       \>  bj       \>= Y-direction process(or) number - used for bibjflg=1-3 \\ | 
| 134 | 
  | 
       \>  arrayin  \>= Field to increment diagnostics array \\ | 
| 135 | 
  | 
 \end{tabbing} | 
| 136 | 
  | 
  | 
| 137 | 
  | 
  | 
| 138 | 
  | 
 \noindent | 
| 139 | 
 {\bf setdiag}:  This subroutine enables a diagnostic from the Diagnostic Menu, meaning  | 
 {\bf setdiag}:  This subroutine enables a diagnostic from the Diagnostic Menu, meaning  | 
| 140 | 
 that space is allocated for the diagnostic and the model routines will increment the  | 
 that space is allocated for the diagnostic and the model routines will increment the  | 
| 141 | 
 diagnostic value during execution.  This routine is the underlying interface | 
 diagnostic value during execution.  This routine is the underlying interface | 
| 142 | 
 between the user and the desired diagnostic.  The diagnostic is referenced by its diagnostic | 
 between the user and the desired diagnostic.  The diagnostic is referenced by its diagnostic | 
| 143 | 
 number from the menu, and its calling sequence is given by: | 
 number from the menu, and its calling sequence is given by: | 
| 144 | 
  | 
  | 
| 145 | 
  | 
 \noindent | 
| 146 | 
 \begin{tabbing} | 
 \begin{tabbing} | 
| 147 | 
 XXXXXXXXX\=XXXXXX\= \kill | 
 XXXXXXXXX\=XXXXXX\= \kill | 
| 148 | 
 \>        call setdiag (num) \\ | 
 \>        call setdiag (num) \\ | 
| 150 | 
 where \>  num   \>= Diagnostic number from menu \\ | 
 where \>  num   \>= Diagnostic number from menu \\ | 
| 151 | 
 \end{tabbing} | 
 \end{tabbing} | 
| 152 | 
  | 
  | 
| 153 | 
  | 
 \noindent | 
| 154 | 
 {\bf getdiag}:  This subroutine retrieves the value of a model diagnostic.  This routine  | 
 {\bf getdiag}:  This subroutine retrieves the value of a model diagnostic.  This routine  | 
| 155 | 
 is particulary useful when called from a user output routine, although it can be called  | 
 is particulary useful when called from a user output routine, although it can be called  | 
| 156 | 
 from any routine.  This routine returns the time-averaged value of the diagnostic by | 
 from any routine.  This routine returns the time-averaged value of the diagnostic by | 
| 158 | 
 routine does not change the value of the diagnostic itself, that is, it does not replace  | 
 routine does not change the value of the diagnostic itself, that is, it does not replace  | 
| 159 | 
 the diagnostic with its time-average.  The calling sequence for this routine is givin by: | 
 the diagnostic with its time-average.  The calling sequence for this routine is givin by: | 
| 160 | 
  | 
  | 
| 161 | 
  | 
 \noindent | 
| 162 | 
 \begin{tabbing} | 
 \begin{tabbing} | 
| 163 | 
 XXXXXXXXX\=XXXXXX\= \kill | 
 XXXXXXXXX\=XXXXXX\= \kill | 
| 164 | 
 \>        call getdiag (lev,num,qtmp,undef) \\ | 
 \>        call getdiag (lev,num,qtmp,undef) \\ | 
| 169 | 
       \>  undef \>= Fill value to be used when diagnostic is undefined \\ | 
       \>  undef \>= Fill value to be used when diagnostic is undefined \\ | 
| 170 | 
 \end{tabbing} | 
 \end{tabbing} | 
| 171 | 
  | 
  | 
| 172 | 
  | 
 \noindent | 
| 173 | 
 {\bf clrdiag}:  This subroutine initializes the values of model diagnostics to zero, and is | 
 {\bf clrdiag}:  This subroutine initializes the values of model diagnostics to zero, and is | 
| 174 | 
 particularly useful when called from user output routines to re-initialize diagnostics  | 
 particularly useful when called from user output routines to re-initialize diagnostics  | 
| 175 | 
 during the run.  The calling sequence is: | 
 during the run.  The calling sequence is: | 
| 176 | 
  | 
  | 
| 177 | 
  | 
 \noindent | 
| 178 | 
 \begin{tabbing} | 
 \begin{tabbing} | 
| 179 | 
 XXXXXXXXX\=XXXXXX\= \kill | 
 XXXXXXXXX\=XXXXXX\= \kill | 
| 180 | 
 \>        call clrdiag (num) \\ | 
 \>        call clrdiag (num) \\ | 
| 182 | 
 where \>  num   \>= Diagnostic number from menu \\ | 
 where \>  num   \>= Diagnostic number from menu \\ | 
| 183 | 
 \end{tabbing} | 
 \end{tabbing} | 
| 184 | 
  | 
  | 
| 185 | 
  | 
 \noindent | 
| 186 | 
 {\bf zapdiag}:  This entry into subroutine SETDIAG disables model diagnostics, meaning  | 
 {\bf zapdiag}:  This entry into subroutine SETDIAG disables model diagnostics, meaning  | 
| 187 | 
 that the diagnostic is no longer available to the user.  The memory previously allocated  | 
 that the diagnostic is no longer available to the user.  The memory previously allocated  | 
| 188 | 
 to the diagnostic is released when ZAPDIAG is invoked.  The calling sequence is given by: | 
 to the diagnostic is released when ZAPDIAG is invoked.  The calling sequence is given by: | 
| 189 | 
  | 
  | 
| 190 | 
  | 
 \noindent | 
| 191 | 
 \begin{tabbing} | 
 \begin{tabbing} | 
| 192 | 
 XXXXXXXXX\=XXXXXX\= \kill | 
 XXXXXXXXX\=XXXXXX\= \kill | 
| 193 | 
 \>        call zapdiag (NUM) \\ | 
 \>        call zapdiag (NUM) \\ | 
| 195 | 
 where \>  num   \>= Diagnostic number from menu \\ | 
 where \>  num   \>= Diagnostic number from menu \\ | 
| 196 | 
 \end{tabbing} | 
 \end{tabbing} | 
| 197 | 
  | 
  | 
| 198 | 
 {\bf diagsize}:  We end this section with a discussion on the manner in which computer  | 
  | 
| 199 | 
 memory   is allocated for diagnostics.   All GCM diagnostic quantities are stored in the  | 
 \subsection{Usage Notes} | 
| 200 | 
 single diagnostic array QDIAG which is located in diagnostics.h, and has the form: | 
 \label{sec:diagnostics:usersguide} | 
| 201 | 
  | 
  | 
| 202 | 
  | 
 \noindent | 
| 203 | 
  | 
 We begin this section with a discussion on the manner in which computer  | 
| 204 | 
  | 
 memory is allocated for diagnostics. All GCM diagnostic quantities are stored in the  | 
| 205 | 
  | 
 single diagnostic array QDIAG which is located in the file \\ | 
| 206 | 
  | 
 \filelink{pkg/diagnostics/diagnostics.h}{pkg-diagnostics-diagnostics.h}. | 
| 207 | 
  | 
 and has the form: | 
| 208 | 
  | 
  | 
| 209 | 
 common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy) | 
 common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy) | 
| 210 | 
  | 
  | 
| 211 | 
 where numdiags is an Integer variable which should be | 
 \noindent | 
| 212 | 
 set equal to the number of enabled diagnostics, and qdiag is a three-dimensional | 
 where numdiags is an Integer variable which should be set equal to the number of  | 
| 213 | 
 array.  The first two-dimensions of qdiag correspond to the horizontal dimension | 
 enabled diagnostics, and qdiag is a three-dimensional array.  The first two-dimensions  | 
| 214 | 
 of a given diagnostic, while the third dimension of qdiag is used to identify | 
 of qdiag correspond to the horizontal dimension of a given diagnostic, while the third  | 
| 215 | 
 specific diagnostic types. | 
 dimension of qdiag is used to identify diagnostic fields and levels combined. In order  | 
| 216 | 
 In order to minimize the memory requirement of the model for diagnostics, | 
 to minimize the memory requirement of the model for diagnostics, the default GCM  | 
| 217 | 
 the default GCM executable is compiled with room for only one horizontal | 
 executable is compiled with room for only one horizontal diagnostic array, or with | 
| 218 | 
 diagnostic array, as shown in the above example.   | 
 numdiags set to 1. In order for the User to enable more than 1 two-dimensional diagnostic, | 
 | 
 In order for the User to enable more than 1 two-dimensional diagnostic, | 
  | 
| 219 | 
 the size of the diagnostics common must be expanded to accomodate the desired diagnostics. | 
 the size of the diagnostics common must be expanded to accomodate the desired diagnostics. | 
| 220 | 
 This can be accomplished by manually changing the parameter numdiags in the | 
 This can be accomplished by manually changing the parameter numdiags in the | 
| 221 | 
 file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}, or by allowing the  | 
 file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}. | 
| 222 | 
 shell script (???????) to make this | 
 numdiags should be set greater than or equal to the sum of all the diagnostics activated | 
| 223 | 
 change based on the choice of diagnostic output made in the namelist. | 
 for output each multiplied by the number of levels defined for that diagnostic quantity. | 
| 224 | 
  | 
 This is illustrated in the example below: | 
| 225 | 
  | 
  | 
| 226 | 
 \subsection{Usage Notes} | 
 \noindent | 
 | 
 \label{sec:diagnostics:usersguide} | 
  | 
| 227 | 
 To use the diagnostics package, other than enabling it in packages.conf | 
 To use the diagnostics package, other than enabling it in packages.conf | 
| 228 | 
 and turning the usediagnostics flag in data.pkg to .TRUE., a namelist | 
 and turning the usediagnostics flag in data.pkg to .TRUE., a namelist | 
| 229 | 
 must be supplied in the run directory called data.diagnostics. The namelist | 
 must be supplied in the run directory called data.diagnostics. The namelist | 
| 231 | 
 specify the frequency of output, the number of levels, and the name of | 
 specify the frequency of output, the number of levels, and the name of | 
| 232 | 
 up to 10 separate output files. A sample data.diagnostics namelist file: | 
 up to 10 separate output files. A sample data.diagnostics namelist file: | 
| 233 | 
  | 
  | 
| 234 | 
 <<<<<<< diagnostics.tex | 
 \noindent | 
| 235 | 
 $\#$ Diagnostic Package Choices | 
 $\#$ Diagnostic Package Choices \\ | 
| 236 | 
  $\&$diagnostics\_list | 
  $\&$diagnostics\_list \\ | 
| 237 | 
 ======= | 
   frequency(1) = 10, \ \\ | 
| 238 | 
 \begin{verbatim} | 
    levels(1,1) = 1.,2.,3.,4.,5., \ \\ | 
| 239 | 
 \# Diagnostic Package Choices | 
    fields(1,1) = 'UVEL    ','VVEL    ', \ \\ | 
| 240 | 
  \&diagnostics_list | 
    filename(1) = 'diagout1', \ \\ | 
| 241 | 
 >>>>>>> 1.4 | 
   frequency(2) = 100, \ \\ | 
| 242 | 
   frequency(1) = 10, \ | 
    levels(1,2) = 1.,2.,3.,4.,5., \ \\ | 
| 243 | 
    levels(1,1) = 1.,2.,3.,4.,5., \ | 
    fields(1,2) = 'THETA   ','SALT    ', \ \\ | 
| 244 | 
    fields(1,1) = 'UVEL    ','VVEL    ', \ | 
    filename(2) = 'diagout2', \ \\ | 
| 245 | 
    filename(1) = 'diagout1', \ | 
  $\&$end \ \\ | 
 | 
   frequency(2) = 100, \ | 
  | 
 | 
    levels(1,2) = 1.,2.,3.,4.,5., \ | 
  | 
 | 
    fields(1,2) = 'THETA   ','SALT    ', \ | 
  | 
 | 
    filename(2) = 'diagout2', \ | 
  | 
 | 
 <<<<<<< diagnostics.tex | 
  | 
 | 
  $\&$end \ | 
  | 
 | 
 ======= | 
  | 
 | 
  \&end \ | 
  | 
 | 
 \end{verbatim} | 
  | 
 | 
 >>>>>>> 1.4 | 
  | 
| 246 | 
  | 
  | 
| 247 | 
  | 
 \noindent | 
| 248 | 
 In this example, there are two output files that will be generated | 
 In this example, there are two output files that will be generated | 
| 249 | 
 for each tile and for each output time. The first set of output files | 
 for each tile and for each output time. The first set of output files | 
| 250 | 
 has the prefix diagout1, does time averaging every 10 time steps, | 
 has the prefix diagout1, does time averaging every 10 time steps | 
| 251 | 
 for fields which are multiple-level fields the levels output are 1-5, | 
 (frequency is 10), they will write fields which are multiple-level  | 
| 252 | 
 and the names of diagnostics quantities are UVEL and VVEL. | 
 fields and output levels 1-5. The names of diagnostics quantities are  | 
| 253 | 
 The second set of output files | 
 UVEL and VVEL.  The second set of output files | 
| 254 | 
 has the prefix diagout2, does time averaging every 100 time steps, | 
 has the prefix diagout2, does time averaging every 100 time steps, | 
| 255 | 
 for fields which are multiple-level fields the levels output are 1-5, | 
 they include fields which are multiple-level fields, levels output are 1-5, | 
| 256 | 
 and the names of diagnostics quantities are THETA and SALT. | 
 and the names of diagnostics quantities are THETA and SALT. | 
| 257 | 
  | 
  | 
| 258 | 
  | 
 \noindent | 
| 259 | 
  | 
 In order to define and include as part of the diagnostic output any field | 
| 260 | 
  | 
 that is desired for a particular experiment, two steps must be taken. The | 
| 261 | 
  | 
 first is to enable the ``User Diagnostic'' in data.diagnostics. This is | 
| 262 | 
  | 
 accomplished by setting one of the fields slots to either UDIAG1 through  | 
| 263 | 
  | 
 UDIAG10, for multi-level fields, or SDIAG1 through SDIAG10 for single level | 
| 264 | 
  | 
 fields. These are listed in the diagnostics menu. The second step is to | 
| 265 | 
  | 
 add a call to fill\_diagnostics from the subroutine in which the quantity | 
| 266 | 
  | 
 desired for diagnostic output is computed.  | 
| 267 | 
  | 
  | 
| 268 | 
 \newpage | 
 \newpage | 
| 269 | 
  | 
  | 
| 270 | 
 \subsubsection{GCM Diagnostic Menu} | 
 \subsubsection{GCM Diagnostic Menu} | 
| 376 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 377 | 
           {Turbulent Flux of Sensible Heat} | 
           {Turbulent Flux of Sensible Heat} | 
| 378 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 379 | 
  | 
 \end{tabular} | 
| 380 | 
  | 
  | 
| 381 | 
  | 
 \newpage | 
| 382 | 
  | 
 \vspace*{\fill} | 
| 383 | 
  | 
 \begin{tabular}{lllll} | 
| 384 | 
  | 
 \hline\hline | 
| 385 | 
  | 
 N & NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 386 | 
  | 
 \hline | 
| 387 | 
  | 
  | 
| 388 | 
  | 
 &\\ | 
| 389 | 
 26 & TQFLUX   &  $Watts/m^2$ &  Nrphys | 
 26 & TQFLUX   &  $Watts/m^2$ &  Nrphys | 
| 390 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 391 | 
           {Turbulent Flux of Latent Heat} | 
           {Turbulent Flux of Latent Heat} | 
| 415 | 
           {Ground temperature adjustment} | 
           {Ground temperature adjustment} | 
| 416 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 417 | 
  | 
  | 
 | 
 \end{tabular} | 
  | 
 | 
  | 
  | 
 | 
 \newpage | 
  | 
 | 
 \vspace*{\fill} | 
  | 
 | 
 \begin{tabular}{lllll} | 
  | 
 | 
 \hline\hline | 
  | 
 | 
 N & NAME & UNITS & LEVELS & DESCRIPTION \\ | 
  | 
 | 
 \hline | 
  | 
 | 
  | 
  | 
 | 
 &\\ | 
  | 
| 418 | 
 33 & QG        &  $g/kg$ &  1 | 
 33 & QG        &  $g/kg$ &  1 | 
| 419 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 420 | 
           {Ground specific humidity} | 
           {Ground specific humidity} | 
| 423 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 424 | 
           {Saturation surface specific humidity} | 
           {Saturation surface specific humidity} | 
| 425 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
 | 
  | 
  | 
 | 
 &\\ | 
  | 
| 426 | 
 35 & TGRLW    &    $deg$   &    1   | 
 35 & TGRLW    &    $deg$   &    1   | 
| 427 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 428 | 
           {Instantaneous ground temperature used as input to the | 
           {Instantaneous ground temperature used as input to the | 
| 473 | 
           {Total cloud fraction used in the Longwave and Shortwave radiation | 
           {Total cloud fraction used in the Longwave and Shortwave radiation | 
| 474 | 
           subroutines}  | 
           subroutines}  | 
| 475 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 476 | 
 46 & RADSWT   &    $Watts/m^2$   &  1  | 
 46 & LWGDOWN  &    $Watts/m^2$   &  1  | 
| 477 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 478 | 
           {Incident Shortwave radiation at the top of the atmosphere} | 
           {Downwelling Longwave radiation at the ground} | 
| 479 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 480 | 
 47 & CLROSW   &    $0-1$   &  Nrphys  | 
 47 & GWDT     &    $deg/day$ &  Nrphys | 
| 481 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 482 | 
           {Random overlap cloud fraction used in the shortwave radiation | 
           {Temperature tendency due to Gravity Wave Drag} | 
 | 
           subroutine}  | 
  | 
| 483 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 484 | 
 48 & CLMOSW   &    $0-1$   &  Nrphys  | 
 48 & RADSWT   &    $Watts/m^2$   &  1  | 
| 485 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 486 | 
           {Maximum overlap cloud fraction used in the shortwave radiation | 
           {Incident Shortwave radiation at the top of the atmosphere} | 
 | 
           subroutine}  | 
  | 
| 487 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 488 | 
 49 & EVAP     &    $mm/day$   &  1  | 
 49 & TAUCLD   &    $per 100 mb$   &  Nrphys  | 
| 489 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 490 | 
           {Surface evaporation} | 
           {Counted Cloud Optical Depth (non-dimensional) per 100 mb} | 
| 491 | 
  | 
          \end{minipage}\\ | 
| 492 | 
  | 
 50 & TAUCLDC  &    $Number$   &  Nrphys  | 
| 493 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 494 | 
  | 
           {Cloud Optical Depth Counter} | 
| 495 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 496 | 
 \end{tabular} | 
 \end{tabular} | 
| 497 | 
 \vfill | 
 \vfill | 
| 504 | 
 \hline | 
 \hline | 
| 505 | 
  | 
  | 
| 506 | 
 &\\ | 
 &\\ | 
| 507 | 
 50 & DUDT     &    $m/sec/day$ &  Nrphys | 
 51 & CLDLOW   &    $0-1$   &  Nrphys  | 
| 508 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 509 | 
  | 
           {Low-Level ( 1000-700 hPa) Cloud Fraction  (0-1)} | 
| 510 | 
  | 
          \end{minipage}\\ | 
| 511 | 
  | 
 52 & EVAP     &    $mm/day$   &  1  | 
| 512 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 513 | 
  | 
           {Surface evaporation} | 
| 514 | 
  | 
          \end{minipage}\\ | 
| 515 | 
  | 
 53 & DPDT     &    $hPa/day$ &  1 | 
| 516 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 517 | 
  | 
           {Surface Pressure tendency} | 
| 518 | 
  | 
          \end{minipage}\\ | 
| 519 | 
  | 
 54 & UAVE     &    $m/sec$ &  Nrphys | 
| 520 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 521 | 
  | 
           {Average U-Wind} | 
| 522 | 
  | 
          \end{minipage}\\ | 
| 523 | 
  | 
 55 & VAVE     &    $m/sec$ &  Nrphys | 
| 524 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 525 | 
  | 
           {Average V-Wind} | 
| 526 | 
  | 
          \end{minipage}\\ | 
| 527 | 
  | 
 56 & TAVE     &    $deg$ &  Nrphys | 
| 528 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 529 | 
  | 
           {Average Temperature} | 
| 530 | 
  | 
          \end{minipage}\\ | 
| 531 | 
  | 
 57 & QAVE     &    $g/kg$ &  Nrphys | 
| 532 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 533 | 
  | 
           {Average Specific Humidity} | 
| 534 | 
  | 
          \end{minipage}\\ | 
| 535 | 
  | 
 58 & OMEGA    &    $hPa/day$ &  Nrphys | 
| 536 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 537 | 
  | 
           {Vertical Velocity} | 
| 538 | 
  | 
          \end{minipage}\\ | 
| 539 | 
  | 
 59 & DUDT     &    $m/sec/day$ &  Nrphys | 
| 540 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 541 | 
           {Total U-Wind tendency} | 
           {Total U-Wind tendency} | 
| 542 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 543 | 
 51 & DVDT     &    $m/sec/day$ &  Nrphys | 
 60 & DVDT     &    $m/sec/day$ &  Nrphys | 
| 544 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 545 | 
           {Total V-Wind tendency} | 
           {Total V-Wind tendency} | 
| 546 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 547 | 
 52 & DTDT     &    $deg/day$ &  Nrphys | 
 61 & DTDT     &    $deg/day$ &  Nrphys | 
| 548 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 549 | 
           {Total Temperature tendency} | 
           {Total Temperature tendency} | 
| 550 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 551 | 
 53 & DQDT     &    $g/kg/day$ &  Nrphys | 
 62 & DQDT     &    $g/kg/day$ &  Nrphys | 
| 552 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 553 | 
           {Total Specific Humidity tendency} | 
           {Total Specific Humidity tendency} | 
| 554 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 555 | 
 54 & USTAR    &    $m/sec$ &  1 | 
 63 & VORT     &    $10^{-4}/sec$ &  Nrphys | 
| 556 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 557 | 
  | 
           {Relative Vorticity} | 
| 558 | 
  | 
          \end{minipage}\\ | 
| 559 | 
  | 
 64 & NOT USED &    $$ &   | 
| 560 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 561 | 
  | 
           {} | 
| 562 | 
  | 
          \end{minipage}\\ | 
| 563 | 
  | 
 65 & DTLS     &    $deg/day$ &  Nrphys | 
| 564 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 565 | 
  | 
           {Temperature tendency due to Stratiform Cloud Formation} | 
| 566 | 
  | 
          \end{minipage}\\ | 
| 567 | 
  | 
 66 & DQLS     &    $g/kg/day$ &  Nrphys | 
| 568 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 569 | 
  | 
           {Specific Humidity tendency due to Stratiform Cloud Formation} | 
| 570 | 
  | 
          \end{minipage}\\ | 
| 571 | 
  | 
 67 & USTAR    &    $m/sec$ &  1 | 
| 572 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 573 | 
           {Surface USTAR wind} | 
           {Surface USTAR wind} | 
| 574 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 575 | 
 55 & Z0       &    $m$ &  1 | 
 68 & Z0       &    $m$ &  1 | 
| 576 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 577 | 
           {Surface roughness} | 
           {Surface roughness} | 
| 578 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 579 | 
 56 & FRQTRB   &    $0-1$ &  Nrphys-1 | 
 69 & FRQTRB   &    $0-1$ &  Nrphys-1 | 
| 580 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 581 | 
           {Frequency of Turbulence} | 
           {Frequency of Turbulence} | 
| 582 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 583 | 
 57 & PBL      &    $mb$ &  1 | 
 70 & PBL      &    $mb$ &  1 | 
| 584 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 585 | 
           {Planetary Boundary Layer depth} | 
           {Planetary Boundary Layer depth} | 
| 586 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 587 | 
 58 & SWCLR    &  $deg/day$ &  Nrphys  | 
 71 & SWCLR    &  $deg/day$ &  Nrphys  | 
| 588 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 589 | 
           {Net clearsky Shortwave heating rate for each level} | 
           {Net clearsky Shortwave heating rate for each level} | 
| 590 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 591 | 
 59 & OSR      &   $Watts/m^2$  &    1  | 
 72 & OSR      &   $Watts/m^2$  &    1  | 
| 592 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 593 | 
           {Net downward Shortwave flux at the top of the model} | 
           {Net downward Shortwave flux at the top of the model} | 
| 594 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 595 | 
 60 & OSRCLR   &   $Watts/m^2$  &    1   | 
 73 & OSRCLR   &   $Watts/m^2$  &    1   | 
| 596 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 597 | 
           {Net downward clearsky Shortwave flux at the top of the model} | 
           {Net downward clearsky Shortwave flux at the top of the model} | 
| 598 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 599 | 
 61 & CLDMAS   &   $kg / m^2$  &    Nrphys | 
 74 & CLDMAS   &   $kg / m^2$  &    Nrphys | 
| 600 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 601 | 
           {Convective cloud mass flux} | 
           {Convective cloud mass flux} | 
| 602 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 603 | 
 62 & UAVE     &   $m/sec$  &    Nrphys | 
 75 & UAVE     &   $m/sec$  &    Nrphys | 
| 604 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 605 | 
           {Time-averaged $u-Wind$} | 
           {Time-averaged $u-Wind$} | 
| 606 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 607 | 
 63 & VAVE     &   $m/sec$  &    Nrphys | 
 \end{tabular} | 
| 608 | 
  | 
 \vfill | 
| 609 | 
  | 
  | 
| 610 | 
  | 
 \newpage | 
| 611 | 
  | 
 \vspace*{\fill} | 
| 612 | 
  | 
 \begin{tabular}{lllll} | 
| 613 | 
  | 
 \hline\hline | 
| 614 | 
  | 
 N & NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 615 | 
  | 
 \hline | 
| 616 | 
  | 
  | 
| 617 | 
  | 
 &\\ | 
| 618 | 
  | 
 76 & VAVE     &   $m/sec$  &    Nrphys | 
| 619 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 620 | 
           {Time-averaged $v-Wind$} | 
           {Time-averaged $v-Wind$} | 
| 621 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 622 | 
 64 & TAVE     &   $deg$  &    Nrphys | 
 77 & TAVE     &   $deg$  &    Nrphys | 
| 623 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 624 | 
           {Time-averaged $Temperature$} | 
           {Time-averaged $Temperature$} | 
| 625 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 626 | 
 65 & QAVE     &   $g/g$  &    Nrphys | 
 78 & QAVE     &   $g/g$  &    Nrphys | 
| 627 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 628 | 
           {Time-averaged $Specific \, \, Humidity$} | 
           {Time-averaged $Specific \, \, Humidity$} | 
| 629 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 630 | 
 66 & PAVE     &   $mb$  &    1 | 
 79 & RFT      &    $deg/day$ &  Nrphys | 
| 631 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 632 | 
           {Time-averaged $p_{surf} - p_{top}$} | 
           {Temperature tendency due Rayleigh Friction} | 
| 633 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 634 | 
 67 & QQAVE    &   $(m/sec)^2$  &    Nrphys | 
 80 & PS       &   $mb$  &    1 | 
| 635 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 636 | 
  | 
           {Surface Pressure} | 
| 637 | 
  | 
          \end{minipage}\\ | 
| 638 | 
  | 
 81 & QQAVE    &   $(m/sec)^2$  &    Nrphys | 
| 639 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 640 | 
           {Time-averaged $Turbulent Kinetic Energy$} | 
           {Time-averaged $Turbulent Kinetic Energy$} | 
| 641 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 642 | 
 68 & SWGCLR   &   $Watts/m^2$  &    1   | 
 82 & SWGCLR   &   $Watts/m^2$  &    1   | 
| 643 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 644 | 
           {Net downward clearsky Shortwave flux at the ground}  | 
           {Net downward clearsky Shortwave flux at the ground}  | 
| 645 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 646 | 
 69 & SDIAG1   &             &    1   | 
 83 & PAVE     &   $mb$  &    1 | 
| 647 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 648 | 
  | 
           {Time-averaged Surface Pressure} | 
| 649 | 
  | 
          \end{minipage}\\ | 
| 650 | 
  | 
 84 & SDIAG1   &             &    1   | 
| 651 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 652 | 
           {User-Defined Surface Diagnostic-1}  | 
           {User-Defined Surface Diagnostic-1}  | 
| 653 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 654 | 
 70 & SDIAG2   &             &    1   | 
 85 & SDIAG2   &             &    1   | 
| 655 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 656 | 
           {User-Defined Surface Diagnostic-2}  | 
           {User-Defined Surface Diagnostic-2}  | 
| 657 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 658 | 
 71 & UDIAG1   &             &    Nrphys | 
 86 & UDIAG1   &             &    Nrphys | 
| 659 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 660 | 
           {User-Defined Upper-Air Diagnostic-1}  | 
           {User-Defined Upper-Air Diagnostic-1}  | 
| 661 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 662 | 
 72 & UDIAG2   &             &    Nrphys | 
 87 & UDIAG2   &             &    Nrphys | 
| 663 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 664 | 
           {User-Defined Upper-Air Diagnostic-2}  | 
           {User-Defined Upper-Air Diagnostic-2}  | 
| 665 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 666 | 
 73 & DIABU    & $m/sec/day$ &    Nrphys | 
 88 & DIABU    & $m/sec/day$ &    Nrphys | 
| 667 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 668 | 
           {Total Diabatic forcing on $u-Wind$}  | 
           {Total Diabatic forcing on $u-Wind$}  | 
| 669 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 670 | 
 74 & DIABV    & $m/sec/day$ &    Nrphys | 
 89 & DIABV    & $m/sec/day$ &    Nrphys | 
| 671 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 672 | 
           {Total Diabatic forcing on $v-Wind$}  | 
           {Total Diabatic forcing on $v-Wind$}  | 
| 673 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 674 | 
 75 & DIABT    & $deg/day$ &    Nrphys | 
 90 & DIABT    & $deg/day$ &    Nrphys | 
| 675 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 676 | 
           {Total Diabatic forcing on $Temperature$}  | 
           {Total Diabatic forcing on $Temperature$}  | 
| 677 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 678 | 
 76 & DIABQ    & $g/kg/day$ &    Nrphys | 
 91 & DIABQ    & $g/kg/day$ &    Nrphys | 
| 679 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 680 | 
           {Total Diabatic forcing on $Specific \, \, Humidity$}  | 
           {Total Diabatic forcing on $Specific \, \, Humidity$}  | 
| 681 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 682 | 
  | 
 92 & RFU      &    $m/sec/day$ &  Nrphys | 
| 683 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 684 | 
  | 
           {U-Wind tendency due to Rayleigh Friction} | 
| 685 | 
  | 
          \end{minipage}\\ | 
| 686 | 
  | 
 93 & RFV      &    $m/sec/day$ &  Nrphys | 
| 687 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 688 | 
  | 
           {V-Wind tendency due to Rayleigh Friction} | 
| 689 | 
  | 
          \end{minipage}\\ | 
| 690 | 
  | 
 94 & GWDU     &    $m/sec/day$ &  Nrphys | 
| 691 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 692 | 
  | 
           {U-Wind tendency due to Gravity Wave Drag} | 
| 693 | 
  | 
          \end{minipage}\\ | 
| 694 | 
  | 
 95 & GWDU     &    $m/sec/day$ &  Nrphys | 
| 695 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 696 | 
  | 
           {V-Wind tendency due to Gravity Wave Drag} | 
| 697 | 
  | 
          \end{minipage}\\ | 
| 698 | 
  | 
 96 & GWDUS    &    $N/m^2$ &  1 | 
| 699 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 700 | 
  | 
           {U-Wind Gravity Wave Drag Stress at Surface} | 
| 701 | 
  | 
          \end{minipage}\\ | 
| 702 | 
  | 
 97 & GWDVS    &    $N/m^2$ &  1 | 
| 703 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 704 | 
  | 
           {V-Wind Gravity Wave Drag Stress at Surface} | 
| 705 | 
  | 
          \end{minipage}\\ | 
| 706 | 
  | 
 98 & GWDUT    &    $N/m^2$ &  1 | 
| 707 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 708 | 
  | 
           {U-Wind Gravity Wave Drag Stress at Top} | 
| 709 | 
  | 
          \end{minipage}\\ | 
| 710 | 
  | 
 99 & GWDVT    &    $N/m^2$ &  1 | 
| 711 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 712 | 
  | 
           {V-Wind Gravity Wave Drag Stress at Top} | 
| 713 | 
  | 
          \end{minipage}\\ | 
| 714 | 
  | 
 100& LZRAD    &    $mg/kg$ &  Nrphys | 
| 715 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 716 | 
  | 
           {Estimated Cloud Liquid Water used in Radiation} | 
| 717 | 
  | 
          \end{minipage}\\ | 
| 718 | 
 \end{tabular} | 
 \end{tabular} | 
| 719 | 
 \vfill | 
 \vfill | 
| 720 | 
  | 
  | 
| 725 | 
 N & NAME & UNITS & LEVELS & DESCRIPTION \\ | 
 N & NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 726 | 
 \hline | 
 \hline | 
| 727 | 
  | 
  | 
| 728 | 
 77 & VINTUQ  & $m/sec \cdot g/kg$ &    1 | 
 &\\ | 
| 729 | 
  | 
 101& SLP      &   $mb$  &    1 | 
| 730 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 731 | 
  | 
           {Time-averaged Sea-level Pressure} | 
| 732 | 
  | 
          \end{minipage}\\ | 
| 733 | 
  | 
 102& NOT USED &    $$ &   | 
| 734 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 735 | 
           {Vertically integrated $u \, q$}  | 
           {} | 
| 736 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 737 | 
 78 & VINTVQ  & $m/sec \cdot g/kg$ &    1 | 
 103& NOT USED &    $$ &   | 
| 738 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 739 | 
           {Vertically integrated $v \, q$}  | 
           {} | 
| 740 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 741 | 
 79 & VINTUT  & $m/sec \cdot deg$ &    1 | 
 104& NOT USED &    $$ &   | 
| 742 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 743 | 
           {Vertically integrated $u \, T$}  | 
           {} | 
| 744 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 745 | 
 80 & VINTVT  & $m/sec \cdot deg$ &    1 | 
 105& NOT USED &    $$ &   | 
| 746 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 747 | 
           {Vertically integrated $v \, T$}  | 
           {} | 
| 748 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 749 | 
 81 & CLDFRC  & $0-1$ &    1 | 
 106& CLDFRC  & $0-1$ &    1 | 
| 750 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 751 | 
           {Total Cloud Fraction}  | 
           {Total Cloud Fraction}  | 
| 752 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 753 | 
 82 & QINT    & $gm/cm^2$ &    1 | 
 107& TPW     & $gm/cm^2$ &    1 | 
| 754 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 755 | 
           {Precipitable water}  | 
           {Precipitable water}  | 
| 756 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 757 | 
 83 & U2M     & $m/sec$ &    1 | 
 108& U2M     & $m/sec$ &    1 | 
| 758 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 759 | 
           {U-Wind at 2 meters} | 
           {U-Wind at 2 meters} | 
| 760 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 761 | 
 84 & V2M     & $m/sec$ &    1 | 
 109& V2M     & $m/sec$ &    1 | 
| 762 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 763 | 
           {V-Wind at 2 meters} | 
           {V-Wind at 2 meters} | 
| 764 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 765 | 
 85 & T2M     & $deg$ &    1 | 
 110& T2M     & $deg$ &    1 | 
| 766 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 767 | 
           {Temperature at 2 meters} | 
           {Temperature at 2 meters} | 
| 768 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 769 | 
 86 & Q2M     & $g/kg$ &    1 | 
 111& Q2M     & $g/kg$ &    1 | 
| 770 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 771 | 
           {Specific Humidity at 2 meters} | 
           {Specific Humidity at 2 meters} | 
| 772 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 773 | 
 87 & U10M    & $m/sec$ &    1 | 
 112& U10M    & $m/sec$ &    1 | 
| 774 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 775 | 
           {U-Wind at 10 meters} | 
           {U-Wind at 10 meters} | 
| 776 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 777 | 
 88 & V10M    & $m/sec$ &    1 | 
 113& V10M    & $m/sec$ &    1 | 
| 778 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 779 | 
           {V-Wind at 10 meters} | 
           {V-Wind at 10 meters} | 
| 780 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 781 | 
 89 & T10M    & $deg$ &    1 | 
 114& T10M    & $deg$ &    1 | 
| 782 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 783 | 
           {Temperature at 10 meters} | 
           {Temperature at 10 meters} | 
| 784 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 785 | 
 90 & Q10M    & $g/kg$ &    1 | 
 115& Q10M    & $g/kg$ &    1 | 
| 786 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 787 | 
           {Specific Humidity at 10 meters} | 
           {Specific Humidity at 10 meters} | 
| 788 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 789 | 
 91 & DTRAIN  & $kg/m^2$ &    Nrphys | 
 116& DTRAIN  & $kg/m^2$ &    Nrphys | 
| 790 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 791 | 
           {Detrainment Cloud Mass Flux} | 
           {Detrainment Cloud Mass Flux} | 
| 792 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 793 | 
 92 & QFILL   & $g/kg/day$ &    Nrphys | 
 117& QFILL   & $g/kg/day$ &    Nrphys | 
| 794 | 
          &\begin{minipage}[t]{3in} | 
          &\begin{minipage}[t]{3in} | 
| 795 | 
           {Filling of negative specific humidity} | 
           {Filling of negative specific humidity} | 
| 796 | 
          \end{minipage}\\ | 
          \end{minipage}\\ | 
| 797 | 
  | 
 118& NOT USED &    $$ &   | 
| 798 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 799 | 
  | 
           {} | 
| 800 | 
  | 
          \end{minipage}\\ | 
| 801 | 
  | 
 119& NOT USED &    $$ &   | 
| 802 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 803 | 
  | 
           {} | 
| 804 | 
  | 
          \end{minipage}\\ | 
| 805 | 
  | 
 120& SHAPU    &    $m/sec/day$ &  Nrphys | 
| 806 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 807 | 
  | 
           {U-Wind tendency due to Shapiro Filter} | 
| 808 | 
  | 
          \end{minipage}\\ | 
| 809 | 
  | 
 121& SHAPV    &    $m/sec/day$ &  Nrphys | 
| 810 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 811 | 
  | 
           {V-Wind tendency due to Shapiro Filter} | 
| 812 | 
  | 
          \end{minipage}\\ | 
| 813 | 
  | 
 122& SHAPT    &    $deg/day$ &  Nrphys | 
| 814 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 815 | 
  | 
           {Temperature tendency due Shapiro Filter} | 
| 816 | 
  | 
          \end{minipage}\\ | 
| 817 | 
  | 
 123& SHAPQ    &    $g/kg/day$ &  Nrphys | 
| 818 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 819 | 
  | 
           {Specific Humidity tendency due to Shapiro Filter} | 
| 820 | 
  | 
          \end{minipage}\\ | 
| 821 | 
  | 
 124& SDIAG3   &             &    1   | 
| 822 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 823 | 
  | 
           {User-Defined Surface Diagnostic-3}  | 
| 824 | 
  | 
          \end{minipage}\\ | 
| 825 | 
  | 
 125& SDIAG4   &             &    1   | 
| 826 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 827 | 
  | 
           {User-Defined Surface Diagnostic-4}  | 
| 828 | 
  | 
          \end{minipage}\\ | 
| 829 | 
  | 
 \end{tabular} | 
| 830 | 
  | 
 \vspace{1.5in} | 
| 831 | 
  | 
 \vfill | 
| 832 | 
  | 
  | 
| 833 | 
  | 
 \newpage | 
| 834 | 
  | 
 \vspace*{\fill} | 
| 835 | 
  | 
 \begin{tabular}{lllll} | 
| 836 | 
  | 
 \hline\hline | 
| 837 | 
  | 
 N & NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 838 | 
  | 
 \hline | 
| 839 | 
  | 
  | 
| 840 | 
  | 
 &\\ | 
| 841 | 
  | 
 126& SDIAG5   &             &    1   | 
| 842 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 843 | 
  | 
           {User-Defined Surface Diagnostic-5}  | 
| 844 | 
  | 
          \end{minipage}\\ | 
| 845 | 
  | 
 127& SDIAG6   &             &    1   | 
| 846 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 847 | 
  | 
           {User-Defined Surface Diagnostic-6}  | 
| 848 | 
  | 
          \end{minipage}\\ | 
| 849 | 
  | 
 128& SDIAG7   &             &    1   | 
| 850 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 851 | 
  | 
           {User-Defined Surface Diagnostic-7}  | 
| 852 | 
  | 
          \end{minipage}\\ | 
| 853 | 
  | 
 129& SDIAG8   &             &    1   | 
| 854 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 855 | 
  | 
           {User-Defined Surface Diagnostic-8}  | 
| 856 | 
  | 
          \end{minipage}\\ | 
| 857 | 
  | 
 130& SDIAG9   &             &    1   | 
| 858 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 859 | 
  | 
           {User-Defined Surface Diagnostic-9}  | 
| 860 | 
  | 
          \end{minipage}\\ | 
| 861 | 
  | 
 131& SDIAG10  &             &    1   | 
| 862 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 863 | 
  | 
           {User-Defined Surface Diagnostic-1-}  | 
| 864 | 
  | 
          \end{minipage}\\ | 
| 865 | 
  | 
 132& UDIAG3   &             &    Nrphys   | 
| 866 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 867 | 
  | 
           {User-Defined Multi-Level Diagnostic-3}  | 
| 868 | 
  | 
          \end{minipage}\\ | 
| 869 | 
  | 
 133& UDIAG4   &             &    Nrphys   | 
| 870 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 871 | 
  | 
           {User-Defined Multi-Level Diagnostic-4}  | 
| 872 | 
  | 
          \end{minipage}\\ | 
| 873 | 
  | 
 134& UDIAG5   &             &    Nrphys   | 
| 874 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 875 | 
  | 
           {User-Defined Multi-Level Diagnostic-5}  | 
| 876 | 
  | 
          \end{minipage}\\ | 
| 877 | 
  | 
 135& UDIAG6   &             &    Nrphys   | 
| 878 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 879 | 
  | 
           {User-Defined Multi-Level Diagnostic-6}  | 
| 880 | 
  | 
          \end{minipage}\\ | 
| 881 | 
  | 
 136& UDIAG7   &             &    Nrphys   | 
| 882 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 883 | 
  | 
           {User-Defined Multi-Level Diagnostic-7}  | 
| 884 | 
  | 
          \end{minipage}\\ | 
| 885 | 
  | 
 137& UDIAG8   &             &    Nrphys   | 
| 886 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 887 | 
  | 
           {User-Defined Multi-Level Diagnostic-8}  | 
| 888 | 
  | 
          \end{minipage}\\ | 
| 889 | 
  | 
 138& UDIAG9   &             &    Nrphys   | 
| 890 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 891 | 
  | 
           {User-Defined Multi-Level Diagnostic-9}  | 
| 892 | 
  | 
          \end{minipage}\\ | 
| 893 | 
  | 
 139& UDIAG10  &             &    Nrphys   | 
| 894 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 895 | 
  | 
           {User-Defined Multi-Level Diagnostic-10}  | 
| 896 | 
  | 
          \end{minipage}\\ | 
| 897 | 
  | 
 \end{tabular} | 
| 898 | 
  | 
 \vspace{1.5in} | 
| 899 | 
  | 
 \vfill | 
| 900 | 
  | 
  | 
| 901 | 
  | 
 \newpage | 
| 902 | 
  | 
 \vspace*{\fill} | 
| 903 | 
  | 
 \begin{tabular}{lllll} | 
| 904 | 
  | 
 \hline\hline | 
| 905 | 
  | 
 N & NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 906 | 
  | 
 \hline | 
| 907 | 
  | 
  | 
| 908 | 
  | 
 &\\ | 
| 909 | 
  | 
 238& ETAN     & $(hPa,m)$ &    1 | 
| 910 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 911 | 
  | 
           {Perturbation of Surface (pressure, height)}  | 
| 912 | 
  | 
          \end{minipage}\\ | 
| 913 | 
  | 
 239& ETANSQ   & $(hPa^2,m^2)$ & 1 | 
| 914 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 915 | 
  | 
           {Square of Perturbation of Surface (pressure, height)}  | 
| 916 | 
  | 
          \end{minipage}\\ | 
| 917 | 
  | 
 240& THETA    & $deg K$ & Nr | 
| 918 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 919 | 
  | 
           {Potential Temperature}  | 
| 920 | 
  | 
          \end{minipage}\\ | 
| 921 | 
  | 
 241& SALT     & $g/kg$ & Nr | 
| 922 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 923 | 
  | 
           {Salt (or Water Vapor Mixing Ratio)}  | 
| 924 | 
  | 
          \end{minipage}\\ | 
| 925 | 
  | 
 242& UVEL     & $m/sec$ & Nr | 
| 926 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 927 | 
  | 
           {U-Velocity}  | 
| 928 | 
  | 
          \end{minipage}\\ | 
| 929 | 
  | 
 243& VVEL     & $m/sec$ & Nr | 
| 930 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 931 | 
  | 
           {V-Velocity}  | 
| 932 | 
  | 
          \end{minipage}\\ | 
| 933 | 
  | 
 244& WVEL     & $m/sec$ & Nr | 
| 934 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 935 | 
  | 
           {Vertical-Velocity}  | 
| 936 | 
  | 
          \end{minipage}\\ | 
| 937 | 
  | 
 245& THETASQ  & $deg^2$ & Nr | 
| 938 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 939 | 
  | 
           {Square of Potential Temperature}  | 
| 940 | 
  | 
          \end{minipage}\\ | 
| 941 | 
  | 
 246& SALTSQ   & $g^2/{kg}^2$ & Nr | 
| 942 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 943 | 
  | 
           {Square of Salt (or Water Vapor Mixing Ratio)}  | 
| 944 | 
  | 
          \end{minipage}\\ | 
| 945 | 
  | 
 247& UVELSQ   & $m^2/sec^2$ & Nr | 
| 946 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 947 | 
  | 
           {Square of U-Velocity}  | 
| 948 | 
  | 
          \end{minipage}\\ | 
| 949 | 
  | 
 248& VVELSQ   & $m^2/sec^2$ & Nr | 
| 950 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 951 | 
  | 
           {Square of V-Velocity}  | 
| 952 | 
  | 
          \end{minipage}\\ | 
| 953 | 
  | 
 249& WVELSQ   & $m^2/sec^2$ & Nr | 
| 954 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 955 | 
  | 
           {Square of Vertical-Velocity}  | 
| 956 | 
  | 
          \end{minipage}\\ | 
| 957 | 
  | 
 250& UVELVVEL & $m^2/sec^2$ & Nr | 
| 958 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 959 | 
  | 
           {Meridional Transport of Zonal Momentum}  | 
| 960 | 
  | 
          \end{minipage}\\ | 
| 961 | 
  | 
 \end{tabular} | 
| 962 | 
  | 
 \vspace{1.5in} | 
| 963 | 
  | 
 \vfill | 
| 964 | 
  | 
  | 
| 965 | 
  | 
 \newpage | 
| 966 | 
  | 
 \vspace*{\fill} | 
| 967 | 
  | 
 \begin{tabular}{lllll} | 
| 968 | 
  | 
 \hline\hline | 
| 969 | 
  | 
 N & NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 970 | 
  | 
 \hline | 
| 971 | 
  | 
  | 
| 972 | 
  | 
 &\\ | 
| 973 | 
  | 
 251& UVELMASS & $m/sec$ & Nr | 
| 974 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 975 | 
  | 
           {Zonal Mass-Weighted Component of Velocity}  | 
| 976 | 
  | 
          \end{minipage}\\ | 
| 977 | 
  | 
 252& VVELMASS & $m/sec$ & Nr | 
| 978 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 979 | 
  | 
           {Meridional Mass-Weighted Component of Velocity}  | 
| 980 | 
  | 
          \end{minipage}\\ | 
| 981 | 
  | 
 253& WVELMASS & $m/sec$ & Nr | 
| 982 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 983 | 
  | 
           {Vertical Mass-Weighted Component of Velocity}  | 
| 984 | 
  | 
          \end{minipage}\\ | 
| 985 | 
  | 
 254& UTHMASS  & $m-deg/sec$ & Nr | 
| 986 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 987 | 
  | 
           {Zonal Mass-Weight Transp of Pot Temp}  | 
| 988 | 
  | 
          \end{minipage}\\ | 
| 989 | 
  | 
 255& VTHMASS  & $m-deg/sec$ & Nr | 
| 990 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 991 | 
  | 
           {Meridional Mass-Weight Transp of Pot Temp}  | 
| 992 | 
  | 
          \end{minipage}\\ | 
| 993 | 
  | 
 256& WTHMASS  & $m-deg/sec$ & Nr | 
| 994 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 995 | 
  | 
           {Vertical Mass-Weight Transp of Pot Temp}  | 
| 996 | 
  | 
          \end{minipage}\\ | 
| 997 | 
  | 
 257& USLTMASS & $m-kg/sec-kg$ & Nr | 
| 998 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 999 | 
  | 
           {Zonal Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}  | 
| 1000 | 
  | 
          \end{minipage}\\ | 
| 1001 | 
  | 
 258& VSLTMASS & $m-kg/sec-kg$ & Nr | 
| 1002 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1003 | 
  | 
           {Meridional Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}  | 
| 1004 | 
  | 
          \end{minipage}\\ | 
| 1005 | 
  | 
 259& WSLTMASS & $m-kg/sec-kg$ & Nr | 
| 1006 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1007 | 
  | 
           {Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}  | 
| 1008 | 
  | 
          \end{minipage}\\ | 
| 1009 | 
  | 
 260& UVELTH   & $m-deg/sec$ & Nr | 
| 1010 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1011 | 
  | 
           {Zonal Transp of Pot Temp}  | 
| 1012 | 
  | 
          \end{minipage}\\ | 
| 1013 | 
  | 
 261& VVELTH   & $m-deg/sec$ & Nr | 
| 1014 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1015 | 
  | 
           {Meridional Transp of Pot Temp}  | 
| 1016 | 
  | 
          \end{minipage}\\ | 
| 1017 | 
  | 
 262& WVELTH   & $m-deg/sec$ & Nr | 
| 1018 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1019 | 
  | 
           {Vertical Transp of Pot Temp}  | 
| 1020 | 
  | 
          \end{minipage}\\ | 
| 1021 | 
  | 
 263& UVELSLT  & $m-kg/sec-kg$ & Nr | 
| 1022 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1023 | 
  | 
           {Zonal Transp of Salt (or W.Vap Mix Rat.)}  | 
| 1024 | 
  | 
          \end{minipage}\\ | 
| 1025 | 
  | 
 264& VVELSLT  & $m-kg/sec-kg$ & Nr | 
| 1026 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1027 | 
  | 
           {Meridional Transp of Salt (or W.Vap Mix Rat.)}  | 
| 1028 | 
  | 
          \end{minipage}\\ | 
| 1029 | 
  | 
 265& WVELSLT  & $m-kg/sec-kg$ & Nr | 
| 1030 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1031 | 
  | 
           {Vertical Transp of Salt (or W.Vap Mix Rat.)}  | 
| 1032 | 
  | 
          \end{minipage}\\ | 
| 1033 | 
  | 
 266& UTRAC1   & $m-kg/sec-kg$ & Nr | 
| 1034 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1035 | 
  | 
           {Zonal Transp of Tracer 1}  | 
| 1036 | 
  | 
          \end{minipage}\\ | 
| 1037 | 
  | 
 267& VTRAC1   & $m-kg/sec-kg$ & Nr | 
| 1038 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1039 | 
  | 
           {Meridional Transp of Tracer 1}  | 
| 1040 | 
  | 
          \end{minipage}\\ | 
| 1041 | 
  | 
 268& WTRAC1   & $m-kg/sec-kg$ & Nr | 
| 1042 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1043 | 
  | 
           {Vertical Transp of Tracer 1}  | 
| 1044 | 
  | 
          \end{minipage}\\ | 
| 1045 | 
  | 
 269& UTRAC2   & $m-kg/sec-kg$ & Nr | 
| 1046 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1047 | 
  | 
           {Zonal Transp of Tracer 2}  | 
| 1048 | 
  | 
          \end{minipage}\\ | 
| 1049 | 
  | 
 270& VTRAC2   & $m-kg/sec-kg$ & Nr | 
| 1050 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1051 | 
  | 
           {Meridional Transp of Tracer 2}  | 
| 1052 | 
  | 
          \end{minipage}\\ | 
| 1053 | 
  | 
 271& WTRAC2   & $m-kg/sec-kg$ & Nr | 
| 1054 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1055 | 
  | 
           {Vertical Transp of Tracer 2}  | 
| 1056 | 
  | 
          \end{minipage}\\ | 
| 1057 | 
  | 
 272& UTRAC3   & $m-kg/sec-kg$ & Nr | 
| 1058 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1059 | 
  | 
           {Zonal Transp of Tracer 3}  | 
| 1060 | 
  | 
          \end{minipage}\\ | 
| 1061 | 
  | 
 273& VTRAC3   & $m-kg/sec-kg$ & Nr | 
| 1062 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1063 | 
  | 
           {Meridional Transp of Tracer 3}  | 
| 1064 | 
  | 
          \end{minipage}\\ | 
| 1065 | 
  | 
 274& WTRAC3   & $m-kg/sec-kg$ & Nr | 
| 1066 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1067 | 
  | 
           {Vertical Transp of Tracer 3}  | 
| 1068 | 
  | 
          \end{minipage}\\ | 
| 1069 | 
  | 
 275& WSLTMASS & $m-kg/sec-kg$ & Nr | 
| 1070 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1071 | 
  | 
           {Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}  | 
| 1072 | 
  | 
          \end{minipage}\\ | 
| 1073 | 
  | 
 \end{tabular} | 
| 1074 | 
  | 
 \vspace{1.5in} | 
| 1075 | 
  | 
 \vfill | 
| 1076 | 
  | 
  | 
| 1077 | 
  | 
 \newpage | 
| 1078 | 
  | 
 \vspace*{\fill} | 
| 1079 | 
  | 
 \begin{tabular}{lllll} | 
| 1080 | 
  | 
 \hline\hline | 
| 1081 | 
  | 
 N & NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 1082 | 
  | 
 \hline | 
| 1083 | 
  | 
  | 
| 1084 | 
  | 
 &\\ | 
| 1085 | 
  | 
 275& UTRAC4   & $m-kg/sec-kg$ & Nr | 
| 1086 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1087 | 
  | 
           {Zonal Transp of Tracer 4}  | 
| 1088 | 
  | 
          \end{minipage}\\ | 
| 1089 | 
  | 
 276& VTRAC4   & $m-kg/sec-kg$ & Nr | 
| 1090 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1091 | 
  | 
           {Meridional Transp of Tracer 4}  | 
| 1092 | 
  | 
          \end{minipage}\\ | 
| 1093 | 
  | 
 277& WTRAC4   & $m-kg/sec-kg$ & Nr | 
| 1094 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1095 | 
  | 
           {Vertical Transp of Tracer 4}  | 
| 1096 | 
  | 
          \end{minipage}\\ | 
| 1097 | 
  | 
 278& UTRAC5   & $m-kg/sec-kg$ & Nr | 
| 1098 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1099 | 
  | 
           {Zonal Transp of Tracer 5}  | 
| 1100 | 
  | 
          \end{minipage}\\ | 
| 1101 | 
  | 
 279& VTRAC5   & $m-kg/sec-kg$ & Nr | 
| 1102 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1103 | 
  | 
           {Meridional Transp of Tracer 5}  | 
| 1104 | 
  | 
          \end{minipage}\\ | 
| 1105 | 
  | 
 280& WTRAC5   & $m-kg/sec-kg$ & Nr | 
| 1106 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1107 | 
  | 
           {Vertical Transp of Tracer 5}  | 
| 1108 | 
  | 
          \end{minipage}\\ | 
| 1109 | 
  | 
 281& TRAC1    & $kg/kg$ & Nr | 
| 1110 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1111 | 
  | 
           {Mass-Weight Tracer 1}  | 
| 1112 | 
  | 
          \end{minipage}\\ | 
| 1113 | 
  | 
 282& TRAC2    & $kg/kg$ & Nr | 
| 1114 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1115 | 
  | 
           {Mass-Weight Tracer 2}  | 
| 1116 | 
  | 
          \end{minipage}\\ | 
| 1117 | 
  | 
 283& TRAC3    & $kg/kg$ & Nr | 
| 1118 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1119 | 
  | 
           {Mass-Weight Tracer 3}  | 
| 1120 | 
  | 
          \end{minipage}\\ | 
| 1121 | 
  | 
 284& TRAC4    & $kg/kg$ & Nr | 
| 1122 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1123 | 
  | 
           {Mass-Weight Tracer 4}  | 
| 1124 | 
  | 
          \end{minipage}\\ | 
| 1125 | 
  | 
 285& TRAC5    & $kg/kg$ & Nr | 
| 1126 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1127 | 
  | 
           {Mass-Weight Tracer 5}  | 
| 1128 | 
  | 
          \end{minipage}\\ | 
| 1129 | 
  | 
 286& DICBIOA  & $mol/m3/s$ & Nr | 
| 1130 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1131 | 
  | 
           {Biological Productivity}  | 
| 1132 | 
  | 
          \end{minipage}\\ | 
| 1133 | 
  | 
 287& DICCARB  & $mol eq/m3/s$ & Nr | 
| 1134 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1135 | 
  | 
           {Carbonate chg-biol prod and remin}  | 
| 1136 | 
  | 
          \end{minipage}\\ | 
| 1137 | 
  | 
 288& DICTFLX  & $mol/m3/s$ & 1 | 
| 1138 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1139 | 
  | 
           {Tendency of DIC due to air-sea exch}  | 
| 1140 | 
  | 
          \end{minipage}\\ | 
| 1141 | 
  | 
 289& DICOFLX  & $mol/m3/s$ & 1 | 
| 1142 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1143 | 
  | 
           {Tendency of O2 due to air-sea exch}  | 
| 1144 | 
  | 
          \end{minipage}\\ | 
| 1145 | 
  | 
 290& DICCFLX  & $mol/m2/s$ & 1 | 
| 1146 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1147 | 
  | 
           {Flux of CO2 - air-sea exch}  | 
| 1148 | 
  | 
          \end{minipage}\\ | 
| 1149 | 
  | 
 291& DICPCO2  & $atm$ & 1 | 
| 1150 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1151 | 
  | 
           {Partial Pressure of CO2}  | 
| 1152 | 
  | 
          \end{minipage}\\ | 
| 1153 | 
  | 
 292& DICPHAV  & $dimensionless$ & 1 | 
| 1154 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1155 | 
  | 
           {Average pH}  | 
| 1156 | 
  | 
          \end{minipage}\\ | 
| 1157 | 
  | 
 293& DTCONV   & $deg/sec$ & Nr | 
| 1158 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1159 | 
  | 
           {Temp Change due to Convection}  | 
| 1160 | 
  | 
          \end{minipage}\\ | 
| 1161 | 
  | 
 294& DQCONV   & $g/kg/sec$ & Nr | 
| 1162 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1163 | 
  | 
           {Specific Humidity Change due to Convection}  | 
| 1164 | 
  | 
          \end{minipage}\\ | 
| 1165 | 
  | 
 295& RELHUM   & $percent$ & Nr | 
| 1166 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1167 | 
  | 
           {Relative Humidity}  | 
| 1168 | 
  | 
          \end{minipage}\\ | 
| 1169 | 
  | 
 296& PRECLS   & $g/m^2/sec$ & 1 | 
| 1170 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1171 | 
  | 
           {Large Scale Precipitation}  | 
| 1172 | 
  | 
          \end{minipage}\\ | 
| 1173 | 
  | 
 297& ENPREC   & $J/g$ & 1 | 
| 1174 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1175 | 
  | 
           {Energy of Precipitation (snow, rain Temp)}  | 
| 1176 | 
  | 
          \end{minipage}\\ | 
| 1177 | 
  | 
 298& VISCA4   & $m^4/sec$ & 1 | 
| 1178 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1179 | 
  | 
           {Biharmonic Viscosity Coefficient}  | 
| 1180 | 
  | 
          \end{minipage}\\ | 
| 1181 | 
  | 
 299& VISCAH   & $m^2/sec$ & 1 | 
| 1182 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1183 | 
  | 
           {Harmonic Viscosity Coefficient}  | 
| 1184 | 
  | 
          \end{minipage}\\ | 
| 1185 | 
  | 
 300& DRHODR   & $kg/m^3/{r-unit}$ & Nr | 
| 1186 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1187 | 
  | 
           {Stratification: d.Sigma/dr}  | 
| 1188 | 
  | 
          \end{minipage}\\ | 
| 1189 | 
  | 
 \end{tabular} | 
| 1190 | 
  | 
 \vspace{1.5in} | 
| 1191 | 
  | 
 \vfill | 
| 1192 | 
  | 
  | 
| 1193 | 
  | 
 \newpage | 
| 1194 | 
  | 
 \vspace*{\fill} | 
| 1195 | 
  | 
 \begin{tabular}{lllll} | 
| 1196 | 
  | 
 \hline\hline | 
| 1197 | 
  | 
 N & NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 1198 | 
  | 
 \hline | 
| 1199 | 
  | 
  | 
| 1200 | 
  | 
 &\\ | 
| 1201 | 
  | 
 301& DETADT2  & ${r-unit}^2/s^2$ & 1 | 
| 1202 | 
  | 
          &\begin{minipage}[t]{3in} | 
| 1203 | 
  | 
           {Square of Eta (Surf.P,SSH) Tendency}  | 
| 1204 | 
  | 
          \end{minipage}\\ | 
| 1205 | 
 \end{tabular} | 
 \end{tabular} | 
| 1206 | 
 \vspace{1.5in} | 
 \vspace{1.5in} | 
| 1207 | 
 \vfill | 
 \vfill |