| 6 |
|
|
| 7 |
\subsection{Introduction} |
\subsection{Introduction} |
| 8 |
|
|
| 9 |
This section of the documentation describes the Diagnostics Utilities available within the GCM. |
\noindent |
| 10 |
In addition to |
This section of the documentation describes the Diagnostics package available within |
| 11 |
a description on how to set and extract diagnostic quantities, this document also provides a |
the GCM. A large selection of model diagnostics is available for output. |
| 12 |
comprehensive list of all available diagnostic quantities and a short description of how they are |
In addition to the diagnostic quantities pre-defined in the GCM, there exists |
| 13 |
computed. It should be noted that this document is not intended to be a complete documentation |
the option, in any experiment, to define a new diagnostic quantity and include it |
| 14 |
of the various packages used in the GCM, and the reader should |
as part of the diagnostic output with the addition of a single subroutine call in the |
| 15 |
refer to original publications for further insight. |
routine where the field is computed. As a matter of philosophy, no diagnostic is enabled |
| 16 |
|
as default, thus each user must specify the exact diagnostic information required for an |
| 17 |
|
experiment. This is accomplished by enabling the specific diagnostic of interest cataloged |
| 18 |
|
in the Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). Instructions for enabling |
| 19 |
|
diagnostic output and defining new diagnostic quantities are found in Section |
| 20 |
|
\ref{sec:diagnostics:usersguide} of this document. |
| 21 |
|
|
| 22 |
|
\noindent |
| 23 |
|
The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within |
| 24 |
|
the GCM. Once a diagnostic is enabled, the GCM will continually increment an array |
| 25 |
|
specifically allocated for that diagnostic whenever the appropriate quantity is computed. |
| 26 |
|
A counter is defined which records how many times each diagnostic quantity has been |
| 27 |
|
incremented. Several special diagnostics are included in the menu. Quantities refered to |
| 28 |
|
as ``Counter Diagnostics'', are defined for selected diagnostics which record the |
| 29 |
|
frequency at which a diagnostic is incremented separately for each model grid location. |
| 30 |
|
Quantitied refered to as ``User Diagnostics'' are included in the menu to facilitate |
| 31 |
|
defining new diagnostics for a particular experiment. |
| 32 |
|
|
| 33 |
\subsection{Equations} |
\subsection{Equations} |
| 34 |
Not relevant. |
Not relevant. |
| 36 |
\subsection{Key Subroutines and Parameters} |
\subsection{Key Subroutines and Parameters} |
| 37 |
\label{sec:diagnostics:diagover} |
\label{sec:diagnostics:diagover} |
| 38 |
|
|
| 39 |
A large selection of model diagnostics is available in the GCM. At the time of |
\noindent |
| 40 |
this writing there are 92 different diagnostic quantities which can be enabled for an |
The diagnostics are computed at various times and places within the GCM. Because the |
| 41 |
experiment. As a matter of philosophy, no diagnostic is enabled as default, thus each user must |
MIT GCM may employ a staggered grid, diagnostics may be computed at grid box centers, |
| 42 |
specify the exact diagnostic information required for an experiment. This is accomplished by |
corners, or edges, and at the middle or edge in the vertical. Some diagnostics are scalars, |
| 43 |
enabling the specific diagnostic of interest cataloged in the |
while others are components of vectors. An internal array is defined which contains |
| 44 |
Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). |
information concerning various grid attributes of each diagnostic. The GDIAG |
| 45 |
The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within the |
array (in common block \\diagnostics in file diagnostics.h) is internally defined as a |
| 46 |
GCM. Diagnostics are internally referred to by their associated number in the Diagnostic |
character*8 variable, and is equivalenced to a character*1 "parse" array in output in |
| 47 |
Menu. Once a diagnostic is enabled, the GCM will continually increment an array |
order to extract the grid-attribute information. The GDIAG array is described in |
| 48 |
specifically allocated for that diagnostic whenever the associated process for the diagnostic is |
Table \ref{tab:diagnostics:gdiag.tabl}. |
|
computed. Separate arrays are used both for the diagnostic quantity and its diagnostic counter |
|
|
which records how many times each diagnostic quantity has been computed. In addition |
|
|
special diagnostics, called |
|
|
``Counter Diagnostics'', records the frequency of diagnostic updates separately for each |
|
|
model grid location. |
|
|
|
|
|
The diagnostics are computed at various times and places within the GCM. |
|
|
Some diagnostics are computed on the geophysical A-grid (such as |
|
|
those within the Physics routines), while others are computed on the C-grid |
|
|
(those computed during the dynamics time-stepping). Some diagnostics are |
|
|
scalars, while others are vectors. Each of these possibilities requires |
|
|
separate tasks for A-grid to C-grid transformations and coordinate transformations. Due |
|
|
to this complexity, and since the specific diagnostics enabled are User determined at the |
|
|
time of the run, |
|
|
a diagnostic parameter has been developed and implemented into the GCM, defined as GDIAG, |
|
|
which contains information concerning various grid attributes of each diagnostic. The GDIAG |
|
|
array is internally defined as a character*8 variable, and is equivalenced to |
|
|
a character*1 "parse" array in output in order to extract the grid-attribute information. |
|
|
The GDIAG array is described in Table \ref{tab:diagnostics:gdiag.tabl}. |
|
| 49 |
|
|
| 50 |
\begin{table} |
\begin{table} |
| 51 |
\caption{Diagnostic Parsing Array} |
\caption{Diagnostic Parsing Array} |
| 64 |
parse(2) & $\rightarrow$ U & C-Grid U-Point \\ |
parse(2) & $\rightarrow$ U & C-Grid U-Point \\ |
| 65 |
& $\rightarrow$ V & C-Grid V-Point \\ |
& $\rightarrow$ V & C-Grid V-Point \\ |
| 66 |
& $\rightarrow$ M & C-Grid Mass Point \\ |
& $\rightarrow$ M & C-Grid Mass Point \\ |
| 67 |
& $\rightarrow$ Z & C-Grid Vorticity Point \\ \hline |
& $\rightarrow$ Z & C-Grid Vorticity (Corner) Point \\ \hline |
| 68 |
parse(3) & $\rightarrow$ R & Computed on the Rotated Grid \\ |
parse(3) & $\rightarrow$ R & Not Currently in Use \\ \hline |
|
& $\rightarrow$ G & Computed on the Geophysical Grid \\ \hline |
|
| 69 |
parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline |
parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline |
| 70 |
parse(5) & $\rightarrow$ C & Counter Diagnostic \\ |
parse(5) & $\rightarrow$ C & Counter Diagnostic \\ |
| 71 |
& $\rightarrow$ D & Disabled Diagnostic for output \\ \hline |
& $\rightarrow$ D & Disabled Diagnostic for output \\ \hline |
| 76 |
\end{center} |
\end{center} |
| 77 |
\end{table} |
\end{table} |
| 78 |
|
|
| 79 |
|
|
| 80 |
|
\noindent |
| 81 |
As an example, consider a diagnostic whose associated GDIAG parameter is equal |
As an example, consider a diagnostic whose associated GDIAG parameter is equal |
| 82 |
to ``UUR 002''. From GDIAG we can determine that this diagnostic is a |
to ``UU 002''. From GDIAG we can determine that this diagnostic is a |
| 83 |
U-vector component located at the C-grid U-point within the Rotated framework. |
U-vector component located at the C-grid U-point. |
| 84 |
Its corresponding V-component diagnostic is located in Diagnostic \# 002. |
Its corresponding V-component diagnostic is located in Diagnostic \# 002. |
| 85 |
|
|
| 86 |
|
|
| 87 |
|
\noindent |
| 88 |
In this way, each Diagnostic in the model has its attributes (ie. vector or scalar, |
In this way, each Diagnostic in the model has its attributes (ie. vector or scalar, |
| 89 |
rotated or geophysical, A-Grid or C-grid, etc.) defined internally. The Output routines |
C-grid location, etc.) defined internally. The Output routines use this information |
| 90 |
use this information in order to determine |
in order to determine what type of transformations need to be performed. Any |
| 91 |
what type of rotations and/or transformations need to be performed. Thus, all Diagnostic |
interpolations are done at the time of output rather than during each model step. |
| 92 |
interpolations are done at the time of output rather than during each model dynamic step. |
In this way the User has flexibility in determining the type of gridded data which |
| 93 |
In this way the User now has more flexibility |
is output. |
|
in determining the type of gridded data which is output. |
|
| 94 |
|
|
| 95 |
|
|
| 96 |
|
\noindent |
| 97 |
There are several utilities within the GCM available to users to enable, disable, |
There are several utilities within the GCM available to users to enable, disable, |
| 98 |
clear, and retrieve model diagnostics, and may be called from any user-supplied application |
clear, write and retrieve model diagnostics, and may be called from any routine. |
| 99 |
and/or output routine. The available utilities and the CALL sequences are listed below. |
The available utilities and the CALL sequences are listed below. |
| 100 |
|
|
| 101 |
|
|
| 102 |
{\bf SETDIAG}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning that |
\noindent |
| 103 |
space is allocated for the diagnostic and the |
{\bf fill\_diagnostics}: This routine will increment the specified diagnostic |
| 104 |
model routines will increment the diagnostic value during execution. This routine is useful when |
quantity with a field sent through the argument list. |
|
called from either user application routines or user output routines, and is the underlying interface |
|
|
between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic |
|
|
number from the menu, and its calling sequence is given by: |
|
| 105 |
|
|
| 106 |
|
|
| 107 |
|
\noindent |
| 108 |
\begin{tabbing} |
\begin{tabbing} |
| 109 |
XXXXXXXXX\=XXXXXX\= \kill |
XXXXXXXXX\=XXXXXX\= \kill |
| 110 |
\> CALL SETDIAG (NUM) \\ |
\> call fill\_diagnostics (myThid, chardiag, levflg, nlevs, \\ |
| 111 |
|
bibjflg, bi, bj, arrayin) \\ |
| 112 |
\\ |
\\ |
| 113 |
where \> NUM \>= Diagnostic number from menu \\ |
where \> myThid \>= Current Process(or) \\ |
| 114 |
|
\> chardiag \>= Character *8 expression for diag to fill \\ |
| 115 |
|
\> levflg \>= Integer flag for vertical levels: \\ |
| 116 |
|
\> \> 0 indicates multiple levels incremented in qdiag \\ |
| 117 |
|
\> \> non-0 (any integer) - WHICH single level to increment. \\ |
| 118 |
|
\> \> negative integer - the input data array is single-leveled \\ |
| 119 |
|
\> \> positive integer - the input data array is multi-leveled \\ |
| 120 |
|
\> nlevs \>= indicates Number of levels to be filled (1 if levflg <> 0) \\ |
| 121 |
|
\> \> positive: fill in "nlevs" levels in the same order as \\ |
| 122 |
|
\> \> the input array \\ |
| 123 |
|
\> \> negative: fill in -nlevs levels in reverse order. \\ |
| 124 |
|
\> bibjflg \>= Integer flag to indicate instructions for bi bj loop \\ |
| 125 |
|
\> \> 0 indicates that the bi-bj loop must be done here \\ |
| 126 |
|
\> \> 1 indicates that the bi-bj loop is done OUTSIDE \\ |
| 127 |
|
\> \> 2 indicates that the bi-bj loop is done OUTSIDE \\ |
| 128 |
|
\> \> AND that we have been sent a local array \\ |
| 129 |
|
\> \> 3 indicates that the bi-bj loop is done OUTSIDE \\ |
| 130 |
|
\> \> AND that we have been sent a local array \\ |
| 131 |
|
\> \> AND that the array has the shadow regions \\ |
| 132 |
|
\> bi \>= X-direction process(or) number - used for bibjflg=1-3 \\ |
| 133 |
|
\> bj \>= Y-direction process(or) number - used for bibjflg=1-3 \\ |
| 134 |
|
\> arrayin \>= Field to increment diagnostics array \\ |
| 135 |
\end{tabbing} |
\end{tabbing} |
| 136 |
|
|
| 137 |
|
|
| 138 |
{\bf GETDIAG}: This subroutine retrieves the value of a model diagnostic. This routine is |
\noindent |
| 139 |
particulary useful when called from a user output routine, although it can be called from an |
{\bf setdiag}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning |
| 140 |
application routine as well. This routine returns the time-averaged value of the diagnostic by |
that space is allocated for the diagnostic and the model routines will increment the |
| 141 |
dividing the current accumulated diagnostic value by its corresponding counter. This routine does |
diagnostic value during execution. This routine is the underlying interface |
| 142 |
not change the value of the diagnostic itself, that is, it does not replace the diagnostic with its |
between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic |
| 143 |
time-average. The calling sequence for this routine is givin by: |
number from the menu, and its calling sequence is given by: |
| 144 |
|
|
| 145 |
|
\noindent |
| 146 |
\begin{tabbing} |
\begin{tabbing} |
| 147 |
XXXXXXXXX\=XXXXXX\= \kill |
XXXXXXXXX\=XXXXXX\= \kill |
| 148 |
\> CALL GETDIAG (LEV,NUM,QTMP,UNDEF) \\ |
\> call setdiag (num) \\ |
| 149 |
\\ |
\\ |
| 150 |
where \> LEV \>= Model Level at which the diagnostic is desired \\ |
where \> num \>= Diagnostic number from menu \\ |
|
\> NUM \>= Diagnostic number from menu \\ |
|
|
\> QTMP \>= Time-Averaged Diagnostic Output \\ |
|
|
\> UNDEF \>= Fill value to be used when diagnostic is undefined \\ |
|
| 151 |
\end{tabbing} |
\end{tabbing} |
| 152 |
|
|
| 153 |
{\bf CLRDIAG}: This subroutine initializes the values of model diagnostics to zero, and is |
\noindent |
| 154 |
particularly useful when called from user output routines to re-initialize diagnostics during the |
{\bf getdiag}: This subroutine retrieves the value of a model diagnostic. This routine |
| 155 |
run. The calling sequence is: |
is particulary useful when called from a user output routine, although it can be called |
| 156 |
|
from any routine. This routine returns the time-averaged value of the diagnostic by |
| 157 |
|
dividing the current accumulated diagnostic value by its corresponding counter. This |
| 158 |
|
routine does not change the value of the diagnostic itself, that is, it does not replace |
| 159 |
|
the diagnostic with its time-average. The calling sequence for this routine is givin by: |
| 160 |
|
|
| 161 |
|
\noindent |
| 162 |
\begin{tabbing} |
\begin{tabbing} |
| 163 |
XXXXXXXXX\=XXXXXX\= \kill |
XXXXXXXXX\=XXXXXX\= \kill |
| 164 |
\> CALL CLRDIAG (NUM) \\ |
\> call getdiag (lev,num,qtmp,undef) \\ |
| 165 |
\\ |
\\ |
| 166 |
where \> NUM \>= Diagnostic number from menu \\ |
where \> lev \>= Model Level at which the diagnostic is desired \\ |
| 167 |
|
\> num \>= Diagnostic number from menu \\ |
| 168 |
|
\> qtmp \>= Time-Averaged Diagnostic Output \\ |
| 169 |
|
\> undef \>= Fill value to be used when diagnostic is undefined \\ |
| 170 |
\end{tabbing} |
\end{tabbing} |
| 171 |
|
|
| 172 |
|
\noindent |
| 173 |
|
{\bf clrdiag}: This subroutine initializes the values of model diagnostics to zero, and is |
| 174 |
|
particularly useful when called from user output routines to re-initialize diagnostics |
| 175 |
|
during the run. The calling sequence is: |
| 176 |
|
|
| 177 |
|
\noindent |
|
{\bf ZAPDIAG}: This entry into subroutine SETDIAG disables model diagnostics, meaning that the |
|
|
diagnostic is no longer available to the user. The memory previously allocated to the diagnostic |
|
|
is released when ZAPDIAG is invoked. The calling sequence is given by: |
|
|
|
|
|
|
|
| 178 |
\begin{tabbing} |
\begin{tabbing} |
| 179 |
XXXXXXXXX\=XXXXXX\= \kill |
XXXXXXXXX\=XXXXXX\= \kill |
| 180 |
\> CALL ZAPDIAG (NUM) \\ |
\> call clrdiag (num) \\ |
| 181 |
\\ |
\\ |
| 182 |
where \> NUM \>= Diagnostic number from menu \\ |
where \> num \>= Diagnostic number from menu \\ |
| 183 |
\end{tabbing} |
\end{tabbing} |
| 184 |
|
|
| 185 |
{\bf DIAGSIZE}: We end this section with a discussion on the manner in which computer memory |
\noindent |
| 186 |
is allocated for diagnostics. |
{\bf zapdiag}: This entry into subroutine SETDIAG disables model diagnostics, meaning |
| 187 |
All GCM diagnostic quantities are stored in the single |
that the diagnostic is no longer available to the user. The memory previously allocated |
| 188 |
diagnostic array QDIAG which is located in the DIAG COMMON, having the form: |
to the diagnostic is released when ZAPDIAG is invoked. The calling sequence is given by: |
| 189 |
|
|
| 190 |
|
\noindent |
| 191 |
\begin{tabbing} |
\begin{tabbing} |
| 192 |
XXXXXXXXX\=XXXXXX\= \kill |
XXXXXXXXX\=XXXXXX\= \kill |
| 193 |
\> COMMON /DIAG/ NDIAG\_MAX,QDIAG(IM,JM,1) \\ |
\> call zapdiag (NUM) \\ |
| 194 |
\\ |
\\ |
| 195 |
|
where \> num \>= Diagnostic number from menu \\ |
| 196 |
\end{tabbing} |
\end{tabbing} |
| 197 |
|
|
| 198 |
where NDIAG\_MAX is an Integer variable which should be |
|
| 199 |
set equal to the number of enabled diagnostics, and QDIAG is a three-dimensional |
\subsection{Usage Notes} |
| 200 |
array. The first two-dimensions of QDIAG correspond to the horizontal dimension |
\label{sec:diagnostics:usersguide} |
| 201 |
of a given diagnostic, while the third dimension of QDIAG is used to identify |
|
| 202 |
specific diagnostic types. |
\noindent |
| 203 |
In order to minimize the maximum memory requirement used by the model, |
We begin this section with a discussion on the manner in which computer |
| 204 |
the default GCM executable is compiled with room for only one horizontal |
memory is allocated for diagnostics. All GCM diagnostic quantities are stored in the |
| 205 |
diagnostic array, as shown in the above example. |
single diagnostic array QDIAG which is located in the file \\ |
| 206 |
In order for the User to enable more than 1 two-dimensional diagnostic, |
\filelink{pkg/diagnostics/diagnostics.h}{pkg-diagnostics-diagnostics.h}. |
| 207 |
the size of the DIAG COMMON must be expanded to accomodate the desired diagnostics. |
and has the form: |
| 208 |
|
|
| 209 |
|
common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy) |
| 210 |
|
|
| 211 |
|
\noindent |
| 212 |
|
where numdiags is an Integer variable which should be set equal to the number of |
| 213 |
|
enabled diagnostics, and qdiag is a three-dimensional array. The first two-dimensions |
| 214 |
|
of qdiag correspond to the horizontal dimension of a given diagnostic, while the third |
| 215 |
|
dimension of qdiag is used to identify diagnostic fields and levels combined. In order |
| 216 |
|
to minimize the memory requirement of the model for diagnostics, the default GCM |
| 217 |
|
executable is compiled with room for only one horizontal diagnostic array, or with |
| 218 |
|
numdiags set to 1. In order for the User to enable more than 1 two-dimensional diagnostic, |
| 219 |
|
the size of the diagnostics common must be expanded to accomodate the desired diagnostics. |
| 220 |
This can be accomplished by manually changing the parameter numdiags in the |
This can be accomplished by manually changing the parameter numdiags in the |
| 221 |
file \filelink{FORWARD\_STEP}{pkg-diagnostics-diagnostics_SIZE.h}, or by allowing the |
file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}. |
| 222 |
shell script (???????) to make this |
numdiags should be set greater than or equal to the sum of all the diagnostics activated |
| 223 |
change based on the choice of diagnostic output made in the namelist. |
for output each multiplied by the number of levels defined for that diagnostic quantity. |
| 224 |
|
This is illustrated in the example below: |
| 225 |
|
|
| 226 |
|
\noindent |
| 227 |
|
To use the diagnostics package, other than enabling it in packages.conf |
| 228 |
|
and turning the usediagnostics flag in data.pkg to .TRUE., a namelist |
| 229 |
|
must be supplied in the run directory called data.diagnostics. The namelist |
| 230 |
|
will activate a user-defined list of diagnostics quantities to be computed, |
| 231 |
|
specify the frequency of output, the number of levels, and the name of |
| 232 |
|
up to 10 separate output files. A sample data.diagnostics namelist file: |
| 233 |
|
|
| 234 |
|
\noindent |
| 235 |
|
$\#$ Diagnostic Package Choices \\ |
| 236 |
|
$\&$diagnostics\_list \\ |
| 237 |
|
frequency(1) = 10, \ \\ |
| 238 |
|
levels(1,1) = 1.,2.,3.,4.,5., \ \\ |
| 239 |
|
fields(1,1) = 'UVEL ','VVEL ', \ \\ |
| 240 |
|
filename(1) = 'diagout1', \ \\ |
| 241 |
|
frequency(2) = 100, \ \\ |
| 242 |
|
levels(1,2) = 1.,2.,3.,4.,5., \ \\ |
| 243 |
|
fields(1,2) = 'THETA ','SALT ', \ \\ |
| 244 |
|
filename(2) = 'diagout2', \ \\ |
| 245 |
|
$\&$end \ \\ |
| 246 |
|
|
| 247 |
|
\noindent |
| 248 |
|
In this example, there are two output files that will be generated |
| 249 |
|
for each tile and for each output time. The first set of output files |
| 250 |
|
has the prefix diagout1, does time averaging every 10 time steps |
| 251 |
|
(frequency is 10), they will write fields which are multiple-level |
| 252 |
|
fields and output levels 1-5. The names of diagnostics quantities are |
| 253 |
|
UVEL and VVEL. The second set of output files |
| 254 |
|
has the prefix diagout2, does time averaging every 100 time steps, |
| 255 |
|
they include fields which are multiple-level fields, levels output are 1-5, |
| 256 |
|
and the names of diagnostics quantities are THETA and SALT. |
| 257 |
|
|
| 258 |
|
\noindent |
| 259 |
|
In order to define and include as part of the diagnostic output any field |
| 260 |
|
that is desired for a particular experiment, two steps must be taken. The |
| 261 |
|
first is to enable the ``User Diagnostic'' in data.diagnostics. This is |
| 262 |
|
accomplished by setting one of the fields slots to either UDIAG1 through |
| 263 |
|
UDIAG10, for multi-level fields, or SDIAG1 through SDIAG10 for single level |
| 264 |
|
fields. These are listed in the diagnostics menu. The second step is to |
| 265 |
|
add a call to fill\_diagnostics from the subroutine in which the quantity |
| 266 |
|
desired for diagnostic output is computed. |
| 267 |
|
|
| 268 |
\newpage |
\newpage |
| 269 |
|
|
| 376 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 377 |
{Turbulent Flux of Sensible Heat} |
{Turbulent Flux of Sensible Heat} |
| 378 |
\end{minipage}\\ |
\end{minipage}\\ |
| 379 |
|
\end{tabular} |
| 380 |
|
|
| 381 |
|
\newpage |
| 382 |
|
\vspace*{\fill} |
| 383 |
|
\begin{tabular}{lllll} |
| 384 |
|
\hline\hline |
| 385 |
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
| 386 |
|
\hline |
| 387 |
|
|
| 388 |
|
&\\ |
| 389 |
26 & TQFLUX & $Watts/m^2$ & Nrphys |
26 & TQFLUX & $Watts/m^2$ & Nrphys |
| 390 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 391 |
{Turbulent Flux of Latent Heat} |
{Turbulent Flux of Latent Heat} |
| 415 |
{Ground temperature adjustment} |
{Ground temperature adjustment} |
| 416 |
\end{minipage}\\ |
\end{minipage}\\ |
| 417 |
|
|
|
\end{tabular} |
|
|
|
|
|
\newpage |
|
|
\vspace*{\fill} |
|
|
\begin{tabular}{lllll} |
|
|
\hline\hline |
|
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
|
|
\hline |
|
|
|
|
|
&\\ |
|
| 418 |
33 & QG & $g/kg$ & 1 |
33 & QG & $g/kg$ & 1 |
| 419 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 420 |
{Ground specific humidity} |
{Ground specific humidity} |
| 423 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 424 |
{Saturation surface specific humidity} |
{Saturation surface specific humidity} |
| 425 |
\end{minipage}\\ |
\end{minipage}\\ |
|
|
|
|
&\\ |
|
| 426 |
35 & TGRLW & $deg$ & 1 |
35 & TGRLW & $deg$ & 1 |
| 427 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 428 |
{Instantaneous ground temperature used as input to the |
{Instantaneous ground temperature used as input to the |
| 473 |
{Total cloud fraction used in the Longwave and Shortwave radiation |
{Total cloud fraction used in the Longwave and Shortwave radiation |
| 474 |
subroutines} |
subroutines} |
| 475 |
\end{minipage}\\ |
\end{minipage}\\ |
| 476 |
46 & RADSWT & $Watts/m^2$ & 1 |
46 & LWGDOWN & $Watts/m^2$ & 1 |
| 477 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 478 |
{Incident Shortwave radiation at the top of the atmosphere} |
{Downwelling Longwave radiation at the ground} |
| 479 |
\end{minipage}\\ |
\end{minipage}\\ |
| 480 |
47 & CLROSW & $0-1$ & Nrphys |
47 & GWDT & $deg/day$ & Nrphys |
| 481 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 482 |
{Random overlap cloud fraction used in the shortwave radiation |
{Temperature tendency due to Gravity Wave Drag} |
|
subroutine} |
|
| 483 |
\end{minipage}\\ |
\end{minipage}\\ |
| 484 |
48 & CLMOSW & $0-1$ & Nrphys |
48 & RADSWT & $Watts/m^2$ & 1 |
| 485 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 486 |
{Maximum overlap cloud fraction used in the shortwave radiation |
{Incident Shortwave radiation at the top of the atmosphere} |
|
subroutine} |
|
| 487 |
\end{minipage}\\ |
\end{minipage}\\ |
| 488 |
49 & EVAP & $mm/day$ & 1 |
49 & TAUCLD & $per 100 mb$ & Nrphys |
| 489 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 490 |
{Surface evaporation} |
{Counted Cloud Optical Depth (non-dimensional) per 100 mb} |
| 491 |
|
\end{minipage}\\ |
| 492 |
|
50 & TAUCLDC & $Number$ & Nrphys |
| 493 |
|
&\begin{minipage}[t]{3in} |
| 494 |
|
{Cloud Optical Depth Counter} |
| 495 |
\end{minipage}\\ |
\end{minipage}\\ |
| 496 |
\end{tabular} |
\end{tabular} |
| 497 |
\vfill |
\vfill |
| 504 |
\hline |
\hline |
| 505 |
|
|
| 506 |
&\\ |
&\\ |
| 507 |
50 & DUDT & $m/sec/day$ & Nrphys |
51 & CLDLOW & $0-1$ & Nrphys |
| 508 |
|
&\begin{minipage}[t]{3in} |
| 509 |
|
{Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)} |
| 510 |
|
\end{minipage}\\ |
| 511 |
|
52 & EVAP & $mm/day$ & 1 |
| 512 |
|
&\begin{minipage}[t]{3in} |
| 513 |
|
{Surface evaporation} |
| 514 |
|
\end{minipage}\\ |
| 515 |
|
53 & DPDT & $hPa/day$ & 1 |
| 516 |
|
&\begin{minipage}[t]{3in} |
| 517 |
|
{Surface Pressure tendency} |
| 518 |
|
\end{minipage}\\ |
| 519 |
|
54 & UAVE & $m/sec$ & Nrphys |
| 520 |
|
&\begin{minipage}[t]{3in} |
| 521 |
|
{Average U-Wind} |
| 522 |
|
\end{minipage}\\ |
| 523 |
|
55 & VAVE & $m/sec$ & Nrphys |
| 524 |
|
&\begin{minipage}[t]{3in} |
| 525 |
|
{Average V-Wind} |
| 526 |
|
\end{minipage}\\ |
| 527 |
|
56 & TAVE & $deg$ & Nrphys |
| 528 |
|
&\begin{minipage}[t]{3in} |
| 529 |
|
{Average Temperature} |
| 530 |
|
\end{minipage}\\ |
| 531 |
|
57 & QAVE & $g/kg$ & Nrphys |
| 532 |
|
&\begin{minipage}[t]{3in} |
| 533 |
|
{Average Specific Humidity} |
| 534 |
|
\end{minipage}\\ |
| 535 |
|
58 & OMEGA & $hPa/day$ & Nrphys |
| 536 |
|
&\begin{minipage}[t]{3in} |
| 537 |
|
{Vertical Velocity} |
| 538 |
|
\end{minipage}\\ |
| 539 |
|
59 & DUDT & $m/sec/day$ & Nrphys |
| 540 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 541 |
{Total U-Wind tendency} |
{Total U-Wind tendency} |
| 542 |
\end{minipage}\\ |
\end{minipage}\\ |
| 543 |
51 & DVDT & $m/sec/day$ & Nrphys |
60 & DVDT & $m/sec/day$ & Nrphys |
| 544 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 545 |
{Total V-Wind tendency} |
{Total V-Wind tendency} |
| 546 |
\end{minipage}\\ |
\end{minipage}\\ |
| 547 |
52 & DTDT & $deg/day$ & Nrphys |
61 & DTDT & $deg/day$ & Nrphys |
| 548 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 549 |
{Total Temperature tendency} |
{Total Temperature tendency} |
| 550 |
\end{minipage}\\ |
\end{minipage}\\ |
| 551 |
53 & DQDT & $g/kg/day$ & Nrphys |
62 & DQDT & $g/kg/day$ & Nrphys |
| 552 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 553 |
{Total Specific Humidity tendency} |
{Total Specific Humidity tendency} |
| 554 |
\end{minipage}\\ |
\end{minipage}\\ |
| 555 |
54 & USTAR & $m/sec$ & 1 |
63 & VORT & $10^{-4}/sec$ & Nrphys |
| 556 |
|
&\begin{minipage}[t]{3in} |
| 557 |
|
{Relative Vorticity} |
| 558 |
|
\end{minipage}\\ |
| 559 |
|
64 & NOT USED & $$ & |
| 560 |
|
&\begin{minipage}[t]{3in} |
| 561 |
|
{} |
| 562 |
|
\end{minipage}\\ |
| 563 |
|
65 & DTLS & $deg/day$ & Nrphys |
| 564 |
|
&\begin{minipage}[t]{3in} |
| 565 |
|
{Temperature tendency due to Stratiform Cloud Formation} |
| 566 |
|
\end{minipage}\\ |
| 567 |
|
66 & DQLS & $g/kg/day$ & Nrphys |
| 568 |
|
&\begin{minipage}[t]{3in} |
| 569 |
|
{Specific Humidity tendency due to Stratiform Cloud Formation} |
| 570 |
|
\end{minipage}\\ |
| 571 |
|
67 & USTAR & $m/sec$ & 1 |
| 572 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 573 |
{Surface USTAR wind} |
{Surface USTAR wind} |
| 574 |
\end{minipage}\\ |
\end{minipage}\\ |
| 575 |
55 & Z0 & $m$ & 1 |
68 & Z0 & $m$ & 1 |
| 576 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 577 |
{Surface roughness} |
{Surface roughness} |
| 578 |
\end{minipage}\\ |
\end{minipage}\\ |
| 579 |
56 & FRQTRB & $0-1$ & Nrphys-1 |
69 & FRQTRB & $0-1$ & Nrphys-1 |
| 580 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 581 |
{Frequency of Turbulence} |
{Frequency of Turbulence} |
| 582 |
\end{minipage}\\ |
\end{minipage}\\ |
| 583 |
57 & PBL & $mb$ & 1 |
70 & PBL & $mb$ & 1 |
| 584 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 585 |
{Planetary Boundary Layer depth} |
{Planetary Boundary Layer depth} |
| 586 |
\end{minipage}\\ |
\end{minipage}\\ |
| 587 |
58 & SWCLR & $deg/day$ & Nrphys |
71 & SWCLR & $deg/day$ & Nrphys |
| 588 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 589 |
{Net clearsky Shortwave heating rate for each level} |
{Net clearsky Shortwave heating rate for each level} |
| 590 |
\end{minipage}\\ |
\end{minipage}\\ |
| 591 |
59 & OSR & $Watts/m^2$ & 1 |
72 & OSR & $Watts/m^2$ & 1 |
| 592 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 593 |
{Net downward Shortwave flux at the top of the model} |
{Net downward Shortwave flux at the top of the model} |
| 594 |
\end{minipage}\\ |
\end{minipage}\\ |
| 595 |
60 & OSRCLR & $Watts/m^2$ & 1 |
73 & OSRCLR & $Watts/m^2$ & 1 |
| 596 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 597 |
{Net downward clearsky Shortwave flux at the top of the model} |
{Net downward clearsky Shortwave flux at the top of the model} |
| 598 |
\end{minipage}\\ |
\end{minipage}\\ |
| 599 |
61 & CLDMAS & $kg / m^2$ & Nrphys |
74 & CLDMAS & $kg / m^2$ & Nrphys |
| 600 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 601 |
{Convective cloud mass flux} |
{Convective cloud mass flux} |
| 602 |
\end{minipage}\\ |
\end{minipage}\\ |
| 603 |
62 & UAVE & $m/sec$ & Nrphys |
75 & UAVE & $m/sec$ & Nrphys |
| 604 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 605 |
{Time-averaged $u-Wind$} |
{Time-averaged $u-Wind$} |
| 606 |
\end{minipage}\\ |
\end{minipage}\\ |
| 607 |
63 & VAVE & $m/sec$ & Nrphys |
\end{tabular} |
| 608 |
|
\vfill |
| 609 |
|
|
| 610 |
|
\newpage |
| 611 |
|
\vspace*{\fill} |
| 612 |
|
\begin{tabular}{lllll} |
| 613 |
|
\hline\hline |
| 614 |
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
| 615 |
|
\hline |
| 616 |
|
|
| 617 |
|
&\\ |
| 618 |
|
76 & VAVE & $m/sec$ & Nrphys |
| 619 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 620 |
{Time-averaged $v-Wind$} |
{Time-averaged $v-Wind$} |
| 621 |
\end{minipage}\\ |
\end{minipage}\\ |
| 622 |
64 & TAVE & $deg$ & Nrphys |
77 & TAVE & $deg$ & Nrphys |
| 623 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 624 |
{Time-averaged $Temperature$} |
{Time-averaged $Temperature$} |
| 625 |
\end{minipage}\\ |
\end{minipage}\\ |
| 626 |
65 & QAVE & $g/g$ & Nrphys |
78 & QAVE & $g/g$ & Nrphys |
| 627 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 628 |
{Time-averaged $Specific \, \, Humidity$} |
{Time-averaged $Specific \, \, Humidity$} |
| 629 |
\end{minipage}\\ |
\end{minipage}\\ |
| 630 |
66 & PAVE & $mb$ & 1 |
79 & RFT & $deg/day$ & Nrphys |
| 631 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 632 |
{Time-averaged $p_{surf} - p_{top}$} |
{Temperature tendency due Rayleigh Friction} |
| 633 |
\end{minipage}\\ |
\end{minipage}\\ |
| 634 |
67 & QQAVE & $(m/sec)^2$ & Nrphys |
80 & PS & $mb$ & 1 |
| 635 |
|
&\begin{minipage}[t]{3in} |
| 636 |
|
{Surface Pressure} |
| 637 |
|
\end{minipage}\\ |
| 638 |
|
81 & QQAVE & $(m/sec)^2$ & Nrphys |
| 639 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 640 |
{Time-averaged $Turbulent Kinetic Energy$} |
{Time-averaged $Turbulent Kinetic Energy$} |
| 641 |
\end{minipage}\\ |
\end{minipage}\\ |
| 642 |
68 & SWGCLR & $Watts/m^2$ & 1 |
82 & SWGCLR & $Watts/m^2$ & 1 |
| 643 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 644 |
{Net downward clearsky Shortwave flux at the ground} |
{Net downward clearsky Shortwave flux at the ground} |
| 645 |
\end{minipage}\\ |
\end{minipage}\\ |
| 646 |
69 & SDIAG1 & & 1 |
83 & PAVE & $mb$ & 1 |
| 647 |
|
&\begin{minipage}[t]{3in} |
| 648 |
|
{Time-averaged Surface Pressure} |
| 649 |
|
\end{minipage}\\ |
| 650 |
|
84 & SDIAG1 & & 1 |
| 651 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 652 |
{User-Defined Surface Diagnostic-1} |
{User-Defined Surface Diagnostic-1} |
| 653 |
\end{minipage}\\ |
\end{minipage}\\ |
| 654 |
70 & SDIAG2 & & 1 |
85 & SDIAG2 & & 1 |
| 655 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 656 |
{User-Defined Surface Diagnostic-2} |
{User-Defined Surface Diagnostic-2} |
| 657 |
\end{minipage}\\ |
\end{minipage}\\ |
| 658 |
71 & UDIAG1 & & Nrphys |
86 & UDIAG1 & & Nrphys |
| 659 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 660 |
{User-Defined Upper-Air Diagnostic-1} |
{User-Defined Upper-Air Diagnostic-1} |
| 661 |
\end{minipage}\\ |
\end{minipage}\\ |
| 662 |
72 & UDIAG2 & & Nrphys |
87 & UDIAG2 & & Nrphys |
| 663 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 664 |
{User-Defined Upper-Air Diagnostic-2} |
{User-Defined Upper-Air Diagnostic-2} |
| 665 |
\end{minipage}\\ |
\end{minipage}\\ |
| 666 |
73 & DIABU & $m/sec/day$ & Nrphys |
88 & DIABU & $m/sec/day$ & Nrphys |
| 667 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 668 |
{Total Diabatic forcing on $u-Wind$} |
{Total Diabatic forcing on $u-Wind$} |
| 669 |
\end{minipage}\\ |
\end{minipage}\\ |
| 670 |
74 & DIABV & $m/sec/day$ & Nrphys |
89 & DIABV & $m/sec/day$ & Nrphys |
| 671 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 672 |
{Total Diabatic forcing on $v-Wind$} |
{Total Diabatic forcing on $v-Wind$} |
| 673 |
\end{minipage}\\ |
\end{minipage}\\ |
| 674 |
75 & DIABT & $deg/day$ & Nrphys |
90 & DIABT & $deg/day$ & Nrphys |
| 675 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 676 |
{Total Diabatic forcing on $Temperature$} |
{Total Diabatic forcing on $Temperature$} |
| 677 |
\end{minipage}\\ |
\end{minipage}\\ |
| 678 |
76 & DIABQ & $g/kg/day$ & Nrphys |
91 & DIABQ & $g/kg/day$ & Nrphys |
| 679 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 680 |
{Total Diabatic forcing on $Specific \, \, Humidity$} |
{Total Diabatic forcing on $Specific \, \, Humidity$} |
| 681 |
\end{minipage}\\ |
\end{minipage}\\ |
| 682 |
|
92 & RFU & $m/sec/day$ & Nrphys |
| 683 |
|
&\begin{minipage}[t]{3in} |
| 684 |
|
{U-Wind tendency due to Rayleigh Friction} |
| 685 |
|
\end{minipage}\\ |
| 686 |
|
93 & RFV & $m/sec/day$ & Nrphys |
| 687 |
|
&\begin{minipage}[t]{3in} |
| 688 |
|
{V-Wind tendency due to Rayleigh Friction} |
| 689 |
|
\end{minipage}\\ |
| 690 |
|
94 & GWDU & $m/sec/day$ & Nrphys |
| 691 |
|
&\begin{minipage}[t]{3in} |
| 692 |
|
{U-Wind tendency due to Gravity Wave Drag} |
| 693 |
|
\end{minipage}\\ |
| 694 |
|
95 & GWDU & $m/sec/day$ & Nrphys |
| 695 |
|
&\begin{minipage}[t]{3in} |
| 696 |
|
{V-Wind tendency due to Gravity Wave Drag} |
| 697 |
|
\end{minipage}\\ |
| 698 |
|
96 & GWDUS & $N/m^2$ & 1 |
| 699 |
|
&\begin{minipage}[t]{3in} |
| 700 |
|
{U-Wind Gravity Wave Drag Stress at Surface} |
| 701 |
|
\end{minipage}\\ |
| 702 |
|
97 & GWDVS & $N/m^2$ & 1 |
| 703 |
|
&\begin{minipage}[t]{3in} |
| 704 |
|
{V-Wind Gravity Wave Drag Stress at Surface} |
| 705 |
|
\end{minipage}\\ |
| 706 |
|
98 & GWDUT & $N/m^2$ & 1 |
| 707 |
|
&\begin{minipage}[t]{3in} |
| 708 |
|
{U-Wind Gravity Wave Drag Stress at Top} |
| 709 |
|
\end{minipage}\\ |
| 710 |
|
99 & GWDVT & $N/m^2$ & 1 |
| 711 |
|
&\begin{minipage}[t]{3in} |
| 712 |
|
{V-Wind Gravity Wave Drag Stress at Top} |
| 713 |
|
\end{minipage}\\ |
| 714 |
|
100& LZRAD & $mg/kg$ & Nrphys |
| 715 |
|
&\begin{minipage}[t]{3in} |
| 716 |
|
{Estimated Cloud Liquid Water used in Radiation} |
| 717 |
|
\end{minipage}\\ |
| 718 |
\end{tabular} |
\end{tabular} |
| 719 |
\vfill |
\vfill |
| 720 |
|
|
| 725 |
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
| 726 |
\hline |
\hline |
| 727 |
|
|
| 728 |
77 & VINTUQ & $m/sec \cdot g/kg$ & 1 |
&\\ |
| 729 |
|
101& SLP & $mb$ & 1 |
| 730 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 731 |
{Vertically integrated $u \, q$} |
{Time-averaged Sea-level Pressure} |
| 732 |
\end{minipage}\\ |
\end{minipage}\\ |
| 733 |
78 & VINTVQ & $m/sec \cdot g/kg$ & 1 |
102& NOT USED & $$ & |
| 734 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 735 |
{Vertically integrated $v \, q$} |
{} |
| 736 |
\end{minipage}\\ |
\end{minipage}\\ |
| 737 |
79 & VINTUT & $m/sec \cdot deg$ & 1 |
103& NOT USED & $$ & |
| 738 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 739 |
{Vertically integrated $u \, T$} |
{} |
| 740 |
\end{minipage}\\ |
\end{minipage}\\ |
| 741 |
80 & VINTVT & $m/sec \cdot deg$ & 1 |
104& NOT USED & $$ & |
| 742 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 743 |
{Vertically integrated $v \, T$} |
{} |
| 744 |
\end{minipage}\\ |
\end{minipage}\\ |
| 745 |
81 & CLDFRC & $0-1$ & 1 |
105& NOT USED & $$ & |
| 746 |
|
&\begin{minipage}[t]{3in} |
| 747 |
|
{} |
| 748 |
|
\end{minipage}\\ |
| 749 |
|
106& CLDFRC & $0-1$ & 1 |
| 750 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 751 |
{Total Cloud Fraction} |
{Total Cloud Fraction} |
| 752 |
\end{minipage}\\ |
\end{minipage}\\ |
| 753 |
82 & QINT & $gm/cm^2$ & 1 |
107& TPW & $gm/cm^2$ & 1 |
| 754 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 755 |
{Precipitable water} |
{Precipitable water} |
| 756 |
\end{minipage}\\ |
\end{minipage}\\ |
| 757 |
83 & U2M & $m/sec$ & 1 |
108& U2M & $m/sec$ & 1 |
| 758 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 759 |
{U-Wind at 2 meters} |
{U-Wind at 2 meters} |
| 760 |
\end{minipage}\\ |
\end{minipage}\\ |
| 761 |
84 & V2M & $m/sec$ & 1 |
109& V2M & $m/sec$ & 1 |
| 762 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 763 |
{V-Wind at 2 meters} |
{V-Wind at 2 meters} |
| 764 |
\end{minipage}\\ |
\end{minipage}\\ |
| 765 |
85 & T2M & $deg$ & 1 |
110& T2M & $deg$ & 1 |
| 766 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 767 |
{Temperature at 2 meters} |
{Temperature at 2 meters} |
| 768 |
\end{minipage}\\ |
\end{minipage}\\ |
| 769 |
86 & Q2M & $g/kg$ & 1 |
111& Q2M & $g/kg$ & 1 |
| 770 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 771 |
{Specific Humidity at 2 meters} |
{Specific Humidity at 2 meters} |
| 772 |
\end{minipage}\\ |
\end{minipage}\\ |
| 773 |
87 & U10M & $m/sec$ & 1 |
112& U10M & $m/sec$ & 1 |
| 774 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 775 |
{U-Wind at 10 meters} |
{U-Wind at 10 meters} |
| 776 |
\end{minipage}\\ |
\end{minipage}\\ |
| 777 |
88 & V10M & $m/sec$ & 1 |
113& V10M & $m/sec$ & 1 |
| 778 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 779 |
{V-Wind at 10 meters} |
{V-Wind at 10 meters} |
| 780 |
\end{minipage}\\ |
\end{minipage}\\ |
| 781 |
89 & T10M & $deg$ & 1 |
114& T10M & $deg$ & 1 |
| 782 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 783 |
{Temperature at 10 meters} |
{Temperature at 10 meters} |
| 784 |
\end{minipage}\\ |
\end{minipage}\\ |
| 785 |
90 & Q10M & $g/kg$ & 1 |
115& Q10M & $g/kg$ & 1 |
| 786 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 787 |
{Specific Humidity at 10 meters} |
{Specific Humidity at 10 meters} |
| 788 |
\end{minipage}\\ |
\end{minipage}\\ |
| 789 |
91 & DTRAIN & $kg/m^2$ & Nrphys |
116& DTRAIN & $kg/m^2$ & Nrphys |
| 790 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 791 |
{Detrainment Cloud Mass Flux} |
{Detrainment Cloud Mass Flux} |
| 792 |
\end{minipage}\\ |
\end{minipage}\\ |
| 793 |
92 & QFILL & $g/kg/day$ & Nrphys |
117& QFILL & $g/kg/day$ & Nrphys |
| 794 |
&\begin{minipage}[t]{3in} |
&\begin{minipage}[t]{3in} |
| 795 |
{Filling of negative specific humidity} |
{Filling of negative specific humidity} |
| 796 |
\end{minipage}\\ |
\end{minipage}\\ |
| 797 |
|
118& NOT USED & $$ & |
| 798 |
|
&\begin{minipage}[t]{3in} |
| 799 |
|
{} |
| 800 |
|
\end{minipage}\\ |
| 801 |
|
119& NOT USED & $$ & |
| 802 |
|
&\begin{minipage}[t]{3in} |
| 803 |
|
{} |
| 804 |
|
\end{minipage}\\ |
| 805 |
|
120& SHAPU & $m/sec/day$ & Nrphys |
| 806 |
|
&\begin{minipage}[t]{3in} |
| 807 |
|
{U-Wind tendency due to Shapiro Filter} |
| 808 |
|
\end{minipage}\\ |
| 809 |
|
121& SHAPV & $m/sec/day$ & Nrphys |
| 810 |
|
&\begin{minipage}[t]{3in} |
| 811 |
|
{V-Wind tendency due to Shapiro Filter} |
| 812 |
|
\end{minipage}\\ |
| 813 |
|
122& SHAPT & $deg/day$ & Nrphys |
| 814 |
|
&\begin{minipage}[t]{3in} |
| 815 |
|
{Temperature tendency due Shapiro Filter} |
| 816 |
|
\end{minipage}\\ |
| 817 |
|
123& SHAPQ & $g/kg/day$ & Nrphys |
| 818 |
|
&\begin{minipage}[t]{3in} |
| 819 |
|
{Specific Humidity tendency due to Shapiro Filter} |
| 820 |
|
\end{minipage}\\ |
| 821 |
|
124& SDIAG3 & & 1 |
| 822 |
|
&\begin{minipage}[t]{3in} |
| 823 |
|
{User-Defined Surface Diagnostic-3} |
| 824 |
|
\end{minipage}\\ |
| 825 |
|
125& SDIAG4 & & 1 |
| 826 |
|
&\begin{minipage}[t]{3in} |
| 827 |
|
{User-Defined Surface Diagnostic-4} |
| 828 |
|
\end{minipage}\\ |
| 829 |
|
\end{tabular} |
| 830 |
|
\vspace{1.5in} |
| 831 |
|
\vfill |
| 832 |
|
|
| 833 |
|
\newpage |
| 834 |
|
\vspace*{\fill} |
| 835 |
|
\begin{tabular}{lllll} |
| 836 |
|
\hline\hline |
| 837 |
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
| 838 |
|
\hline |
| 839 |
|
|
| 840 |
|
&\\ |
| 841 |
|
126& SDIAG5 & & 1 |
| 842 |
|
&\begin{minipage}[t]{3in} |
| 843 |
|
{User-Defined Surface Diagnostic-5} |
| 844 |
|
\end{minipage}\\ |
| 845 |
|
127& SDIAG6 & & 1 |
| 846 |
|
&\begin{minipage}[t]{3in} |
| 847 |
|
{User-Defined Surface Diagnostic-6} |
| 848 |
|
\end{minipage}\\ |
| 849 |
|
128& SDIAG7 & & 1 |
| 850 |
|
&\begin{minipage}[t]{3in} |
| 851 |
|
{User-Defined Surface Diagnostic-7} |
| 852 |
|
\end{minipage}\\ |
| 853 |
|
129& SDIAG8 & & 1 |
| 854 |
|
&\begin{minipage}[t]{3in} |
| 855 |
|
{User-Defined Surface Diagnostic-8} |
| 856 |
|
\end{minipage}\\ |
| 857 |
|
130& SDIAG9 & & 1 |
| 858 |
|
&\begin{minipage}[t]{3in} |
| 859 |
|
{User-Defined Surface Diagnostic-9} |
| 860 |
|
\end{minipage}\\ |
| 861 |
|
131& SDIAG10 & & 1 |
| 862 |
|
&\begin{minipage}[t]{3in} |
| 863 |
|
{User-Defined Surface Diagnostic-1-} |
| 864 |
|
\end{minipage}\\ |
| 865 |
|
132& UDIAG3 & & Nrphys |
| 866 |
|
&\begin{minipage}[t]{3in} |
| 867 |
|
{User-Defined Multi-Level Diagnostic-3} |
| 868 |
|
\end{minipage}\\ |
| 869 |
|
133& UDIAG4 & & Nrphys |
| 870 |
|
&\begin{minipage}[t]{3in} |
| 871 |
|
{User-Defined Multi-Level Diagnostic-4} |
| 872 |
|
\end{minipage}\\ |
| 873 |
|
134& UDIAG5 & & Nrphys |
| 874 |
|
&\begin{minipage}[t]{3in} |
| 875 |
|
{User-Defined Multi-Level Diagnostic-5} |
| 876 |
|
\end{minipage}\\ |
| 877 |
|
135& UDIAG6 & & Nrphys |
| 878 |
|
&\begin{minipage}[t]{3in} |
| 879 |
|
{User-Defined Multi-Level Diagnostic-6} |
| 880 |
|
\end{minipage}\\ |
| 881 |
|
136& UDIAG7 & & Nrphys |
| 882 |
|
&\begin{minipage}[t]{3in} |
| 883 |
|
{User-Defined Multi-Level Diagnostic-7} |
| 884 |
|
\end{minipage}\\ |
| 885 |
|
137& UDIAG8 & & Nrphys |
| 886 |
|
&\begin{minipage}[t]{3in} |
| 887 |
|
{User-Defined Multi-Level Diagnostic-8} |
| 888 |
|
\end{minipage}\\ |
| 889 |
|
138& UDIAG9 & & Nrphys |
| 890 |
|
&\begin{minipage}[t]{3in} |
| 891 |
|
{User-Defined Multi-Level Diagnostic-9} |
| 892 |
|
\end{minipage}\\ |
| 893 |
|
139& UDIAG10 & & Nrphys |
| 894 |
|
&\begin{minipage}[t]{3in} |
| 895 |
|
{User-Defined Multi-Level Diagnostic-10} |
| 896 |
|
\end{minipage}\\ |
| 897 |
|
\end{tabular} |
| 898 |
|
\vspace{1.5in} |
| 899 |
|
\vfill |
| 900 |
|
|
| 901 |
|
\newpage |
| 902 |
|
\vspace*{\fill} |
| 903 |
|
\begin{tabular}{lllll} |
| 904 |
|
\hline\hline |
| 905 |
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
| 906 |
|
\hline |
| 907 |
|
|
| 908 |
|
&\\ |
| 909 |
|
238& ETAN & $(hPa,m)$ & 1 |
| 910 |
|
&\begin{minipage}[t]{3in} |
| 911 |
|
{Perturbation of Surface (pressure, height)} |
| 912 |
|
\end{minipage}\\ |
| 913 |
|
239& ETANSQ & $(hPa^2,m^2)$ & 1 |
| 914 |
|
&\begin{minipage}[t]{3in} |
| 915 |
|
{Square of Perturbation of Surface (pressure, height)} |
| 916 |
|
\end{minipage}\\ |
| 917 |
|
240& THETA & $deg K$ & Nr |
| 918 |
|
&\begin{minipage}[t]{3in} |
| 919 |
|
{Potential Temperature} |
| 920 |
|
\end{minipage}\\ |
| 921 |
|
241& SALT & $g/kg$ & Nr |
| 922 |
|
&\begin{minipage}[t]{3in} |
| 923 |
|
{Salt (or Water Vapor Mixing Ratio)} |
| 924 |
|
\end{minipage}\\ |
| 925 |
|
242& UVEL & $m/sec$ & Nr |
| 926 |
|
&\begin{minipage}[t]{3in} |
| 927 |
|
{U-Velocity} |
| 928 |
|
\end{minipage}\\ |
| 929 |
|
243& VVEL & $m/sec$ & Nr |
| 930 |
|
&\begin{minipage}[t]{3in} |
| 931 |
|
{V-Velocity} |
| 932 |
|
\end{minipage}\\ |
| 933 |
|
244& WVEL & $m/sec$ & Nr |
| 934 |
|
&\begin{minipage}[t]{3in} |
| 935 |
|
{Vertical-Velocity} |
| 936 |
|
\end{minipage}\\ |
| 937 |
|
245& THETASQ & $deg^2$ & Nr |
| 938 |
|
&\begin{minipage}[t]{3in} |
| 939 |
|
{Square of Potential Temperature} |
| 940 |
|
\end{minipage}\\ |
| 941 |
|
246& SALTSQ & $g^2/{kg}^2$ & Nr |
| 942 |
|
&\begin{minipage}[t]{3in} |
| 943 |
|
{Square of Salt (or Water Vapor Mixing Ratio)} |
| 944 |
|
\end{minipage}\\ |
| 945 |
|
247& UVELSQ & $m^2/sec^2$ & Nr |
| 946 |
|
&\begin{minipage}[t]{3in} |
| 947 |
|
{Square of U-Velocity} |
| 948 |
|
\end{minipage}\\ |
| 949 |
|
248& VVELSQ & $m^2/sec^2$ & Nr |
| 950 |
|
&\begin{minipage}[t]{3in} |
| 951 |
|
{Square of V-Velocity} |
| 952 |
|
\end{minipage}\\ |
| 953 |
|
249& WVELSQ & $m^2/sec^2$ & Nr |
| 954 |
|
&\begin{minipage}[t]{3in} |
| 955 |
|
{Square of Vertical-Velocity} |
| 956 |
|
\end{minipage}\\ |
| 957 |
|
250& UVELVVEL & $m^2/sec^2$ & Nr |
| 958 |
|
&\begin{minipage}[t]{3in} |
| 959 |
|
{Meridional Transport of Zonal Momentum} |
| 960 |
|
\end{minipage}\\ |
| 961 |
|
\end{tabular} |
| 962 |
|
\vspace{1.5in} |
| 963 |
|
\vfill |
| 964 |
|
|
| 965 |
|
\newpage |
| 966 |
|
\vspace*{\fill} |
| 967 |
|
\begin{tabular}{lllll} |
| 968 |
|
\hline\hline |
| 969 |
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
| 970 |
|
\hline |
| 971 |
|
|
| 972 |
|
&\\ |
| 973 |
|
251& UVELMASS & $m/sec$ & Nr |
| 974 |
|
&\begin{minipage}[t]{3in} |
| 975 |
|
{Zonal Mass-Weighted Component of Velocity} |
| 976 |
|
\end{minipage}\\ |
| 977 |
|
252& VVELMASS & $m/sec$ & Nr |
| 978 |
|
&\begin{minipage}[t]{3in} |
| 979 |
|
{Meridional Mass-Weighted Component of Velocity} |
| 980 |
|
\end{minipage}\\ |
| 981 |
|
253& WVELMASS & $m/sec$ & Nr |
| 982 |
|
&\begin{minipage}[t]{3in} |
| 983 |
|
{Vertical Mass-Weighted Component of Velocity} |
| 984 |
|
\end{minipage}\\ |
| 985 |
|
254& UTHMASS & $m-deg/sec$ & Nr |
| 986 |
|
&\begin{minipage}[t]{3in} |
| 987 |
|
{Zonal Mass-Weight Transp of Pot Temp} |
| 988 |
|
\end{minipage}\\ |
| 989 |
|
255& VTHMASS & $m-deg/sec$ & Nr |
| 990 |
|
&\begin{minipage}[t]{3in} |
| 991 |
|
{Meridional Mass-Weight Transp of Pot Temp} |
| 992 |
|
\end{minipage}\\ |
| 993 |
|
256& WTHMASS & $m-deg/sec$ & Nr |
| 994 |
|
&\begin{minipage}[t]{3in} |
| 995 |
|
{Vertical Mass-Weight Transp of Pot Temp} |
| 996 |
|
\end{minipage}\\ |
| 997 |
|
257& USLTMASS & $m-kg/sec-kg$ & Nr |
| 998 |
|
&\begin{minipage}[t]{3in} |
| 999 |
|
{Zonal Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
| 1000 |
|
\end{minipage}\\ |
| 1001 |
|
258& VSLTMASS & $m-kg/sec-kg$ & Nr |
| 1002 |
|
&\begin{minipage}[t]{3in} |
| 1003 |
|
{Meridional Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
| 1004 |
|
\end{minipage}\\ |
| 1005 |
|
259& WSLTMASS & $m-kg/sec-kg$ & Nr |
| 1006 |
|
&\begin{minipage}[t]{3in} |
| 1007 |
|
{Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
| 1008 |
|
\end{minipage}\\ |
| 1009 |
|
260& UVELTH & $m-deg/sec$ & Nr |
| 1010 |
|
&\begin{minipage}[t]{3in} |
| 1011 |
|
{Zonal Transp of Pot Temp} |
| 1012 |
|
\end{minipage}\\ |
| 1013 |
|
261& VVELTH & $m-deg/sec$ & Nr |
| 1014 |
|
&\begin{minipage}[t]{3in} |
| 1015 |
|
{Meridional Transp of Pot Temp} |
| 1016 |
|
\end{minipage}\\ |
| 1017 |
|
262& WVELTH & $m-deg/sec$ & Nr |
| 1018 |
|
&\begin{minipage}[t]{3in} |
| 1019 |
|
{Vertical Transp of Pot Temp} |
| 1020 |
|
\end{minipage}\\ |
| 1021 |
|
263& UVELSLT & $m-kg/sec-kg$ & Nr |
| 1022 |
|
&\begin{minipage}[t]{3in} |
| 1023 |
|
{Zonal Transp of Salt (or W.Vap Mix Rat.)} |
| 1024 |
|
\end{minipage}\\ |
| 1025 |
|
264& VVELSLT & $m-kg/sec-kg$ & Nr |
| 1026 |
|
&\begin{minipage}[t]{3in} |
| 1027 |
|
{Meridional Transp of Salt (or W.Vap Mix Rat.)} |
| 1028 |
|
\end{minipage}\\ |
| 1029 |
|
265& WVELSLT & $m-kg/sec-kg$ & Nr |
| 1030 |
|
&\begin{minipage}[t]{3in} |
| 1031 |
|
{Vertical Transp of Salt (or W.Vap Mix Rat.)} |
| 1032 |
|
\end{minipage}\\ |
| 1033 |
|
266& UTRAC1 & $m-kg/sec-kg$ & Nr |
| 1034 |
|
&\begin{minipage}[t]{3in} |
| 1035 |
|
{Zonal Transp of Tracer 1} |
| 1036 |
|
\end{minipage}\\ |
| 1037 |
|
267& VTRAC1 & $m-kg/sec-kg$ & Nr |
| 1038 |
|
&\begin{minipage}[t]{3in} |
| 1039 |
|
{Meridional Transp of Tracer 1} |
| 1040 |
|
\end{minipage}\\ |
| 1041 |
|
268& WTRAC1 & $m-kg/sec-kg$ & Nr |
| 1042 |
|
&\begin{minipage}[t]{3in} |
| 1043 |
|
{Vertical Transp of Tracer 1} |
| 1044 |
|
\end{minipage}\\ |
| 1045 |
|
269& UTRAC2 & $m-kg/sec-kg$ & Nr |
| 1046 |
|
&\begin{minipage}[t]{3in} |
| 1047 |
|
{Zonal Transp of Tracer 2} |
| 1048 |
|
\end{minipage}\\ |
| 1049 |
|
270& VTRAC2 & $m-kg/sec-kg$ & Nr |
| 1050 |
|
&\begin{minipage}[t]{3in} |
| 1051 |
|
{Meridional Transp of Tracer 2} |
| 1052 |
|
\end{minipage}\\ |
| 1053 |
|
271& WTRAC2 & $m-kg/sec-kg$ & Nr |
| 1054 |
|
&\begin{minipage}[t]{3in} |
| 1055 |
|
{Vertical Transp of Tracer 2} |
| 1056 |
|
\end{minipage}\\ |
| 1057 |
|
272& UTRAC3 & $m-kg/sec-kg$ & Nr |
| 1058 |
|
&\begin{minipage}[t]{3in} |
| 1059 |
|
{Zonal Transp of Tracer 3} |
| 1060 |
|
\end{minipage}\\ |
| 1061 |
|
273& VTRAC3 & $m-kg/sec-kg$ & Nr |
| 1062 |
|
&\begin{minipage}[t]{3in} |
| 1063 |
|
{Meridional Transp of Tracer 3} |
| 1064 |
|
\end{minipage}\\ |
| 1065 |
|
274& WTRAC3 & $m-kg/sec-kg$ & Nr |
| 1066 |
|
&\begin{minipage}[t]{3in} |
| 1067 |
|
{Vertical Transp of Tracer 3} |
| 1068 |
|
\end{minipage}\\ |
| 1069 |
|
275& WSLTMASS & $m-kg/sec-kg$ & Nr |
| 1070 |
|
&\begin{minipage}[t]{3in} |
| 1071 |
|
{Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
| 1072 |
|
\end{minipage}\\ |
| 1073 |
|
\end{tabular} |
| 1074 |
|
\vspace{1.5in} |
| 1075 |
|
\vfill |
| 1076 |
|
|
| 1077 |
|
\newpage |
| 1078 |
|
\vspace*{\fill} |
| 1079 |
|
\begin{tabular}{lllll} |
| 1080 |
|
\hline\hline |
| 1081 |
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
| 1082 |
|
\hline |
| 1083 |
|
|
| 1084 |
|
&\\ |
| 1085 |
|
275& UTRAC4 & $m-kg/sec-kg$ & Nr |
| 1086 |
|
&\begin{minipage}[t]{3in} |
| 1087 |
|
{Zonal Transp of Tracer 4} |
| 1088 |
|
\end{minipage}\\ |
| 1089 |
|
276& VTRAC4 & $m-kg/sec-kg$ & Nr |
| 1090 |
|
&\begin{minipage}[t]{3in} |
| 1091 |
|
{Meridional Transp of Tracer 4} |
| 1092 |
|
\end{minipage}\\ |
| 1093 |
|
277& WTRAC4 & $m-kg/sec-kg$ & Nr |
| 1094 |
|
&\begin{minipage}[t]{3in} |
| 1095 |
|
{Vertical Transp of Tracer 4} |
| 1096 |
|
\end{minipage}\\ |
| 1097 |
|
278& UTRAC5 & $m-kg/sec-kg$ & Nr |
| 1098 |
|
&\begin{minipage}[t]{3in} |
| 1099 |
|
{Zonal Transp of Tracer 5} |
| 1100 |
|
\end{minipage}\\ |
| 1101 |
|
279& VTRAC5 & $m-kg/sec-kg$ & Nr |
| 1102 |
|
&\begin{minipage}[t]{3in} |
| 1103 |
|
{Meridional Transp of Tracer 5} |
| 1104 |
|
\end{minipage}\\ |
| 1105 |
|
280& WTRAC5 & $m-kg/sec-kg$ & Nr |
| 1106 |
|
&\begin{minipage}[t]{3in} |
| 1107 |
|
{Vertical Transp of Tracer 5} |
| 1108 |
|
\end{minipage}\\ |
| 1109 |
|
281& TRAC1 & $kg/kg$ & Nr |
| 1110 |
|
&\begin{minipage}[t]{3in} |
| 1111 |
|
{Mass-Weight Tracer 1} |
| 1112 |
|
\end{minipage}\\ |
| 1113 |
|
282& TRAC2 & $kg/kg$ & Nr |
| 1114 |
|
&\begin{minipage}[t]{3in} |
| 1115 |
|
{Mass-Weight Tracer 2} |
| 1116 |
|
\end{minipage}\\ |
| 1117 |
|
283& TRAC3 & $kg/kg$ & Nr |
| 1118 |
|
&\begin{minipage}[t]{3in} |
| 1119 |
|
{Mass-Weight Tracer 3} |
| 1120 |
|
\end{minipage}\\ |
| 1121 |
|
284& TRAC4 & $kg/kg$ & Nr |
| 1122 |
|
&\begin{minipage}[t]{3in} |
| 1123 |
|
{Mass-Weight Tracer 4} |
| 1124 |
|
\end{minipage}\\ |
| 1125 |
|
285& TRAC5 & $kg/kg$ & Nr |
| 1126 |
|
&\begin{minipage}[t]{3in} |
| 1127 |
|
{Mass-Weight Tracer 5} |
| 1128 |
|
\end{minipage}\\ |
| 1129 |
|
286& DICBIOA & $mol/m3/s$ & Nr |
| 1130 |
|
&\begin{minipage}[t]{3in} |
| 1131 |
|
{Biological Productivity} |
| 1132 |
|
\end{minipage}\\ |
| 1133 |
|
287& DICCARB & $mol eq/m3/s$ & Nr |
| 1134 |
|
&\begin{minipage}[t]{3in} |
| 1135 |
|
{Carbonate chg-biol prod and remin} |
| 1136 |
|
\end{minipage}\\ |
| 1137 |
|
288& DICTFLX & $mol/m3/s$ & 1 |
| 1138 |
|
&\begin{minipage}[t]{3in} |
| 1139 |
|
{Tendency of DIC due to air-sea exch} |
| 1140 |
|
\end{minipage}\\ |
| 1141 |
|
289& DICOFLX & $mol/m3/s$ & 1 |
| 1142 |
|
&\begin{minipage}[t]{3in} |
| 1143 |
|
{Tendency of O2 due to air-sea exch} |
| 1144 |
|
\end{minipage}\\ |
| 1145 |
|
290& DICCFLX & $mol/m2/s$ & 1 |
| 1146 |
|
&\begin{minipage}[t]{3in} |
| 1147 |
|
{Flux of CO2 - air-sea exch} |
| 1148 |
|
\end{minipage}\\ |
| 1149 |
|
291& DICPCO2 & $atm$ & 1 |
| 1150 |
|
&\begin{minipage}[t]{3in} |
| 1151 |
|
{Partial Pressure of CO2} |
| 1152 |
|
\end{minipage}\\ |
| 1153 |
|
292& DICPHAV & $dimensionless$ & 1 |
| 1154 |
|
&\begin{minipage}[t]{3in} |
| 1155 |
|
{Average pH} |
| 1156 |
|
\end{minipage}\\ |
| 1157 |
|
293& DTCONV & $deg/sec$ & Nr |
| 1158 |
|
&\begin{minipage}[t]{3in} |
| 1159 |
|
{Temp Change due to Convection} |
| 1160 |
|
\end{minipage}\\ |
| 1161 |
|
294& DQCONV & $g/kg/sec$ & Nr |
| 1162 |
|
&\begin{minipage}[t]{3in} |
| 1163 |
|
{Specific Humidity Change due to Convection} |
| 1164 |
|
\end{minipage}\\ |
| 1165 |
|
295& RELHUM & $percent$ & Nr |
| 1166 |
|
&\begin{minipage}[t]{3in} |
| 1167 |
|
{Relative Humidity} |
| 1168 |
|
\end{minipage}\\ |
| 1169 |
|
296& PRECLS & $g/m^2/sec$ & 1 |
| 1170 |
|
&\begin{minipage}[t]{3in} |
| 1171 |
|
{Large Scale Precipitation} |
| 1172 |
|
\end{minipage}\\ |
| 1173 |
|
297& ENPREC & $J/g$ & 1 |
| 1174 |
|
&\begin{minipage}[t]{3in} |
| 1175 |
|
{Energy of Precipitation (snow, rain Temp)} |
| 1176 |
|
\end{minipage}\\ |
| 1177 |
|
298& VISCA4 & $m^4/sec$ & 1 |
| 1178 |
|
&\begin{minipage}[t]{3in} |
| 1179 |
|
{Biharmonic Viscosity Coefficient} |
| 1180 |
|
\end{minipage}\\ |
| 1181 |
|
299& VISCAH & $m^2/sec$ & 1 |
| 1182 |
|
&\begin{minipage}[t]{3in} |
| 1183 |
|
{Harmonic Viscosity Coefficient} |
| 1184 |
|
\end{minipage}\\ |
| 1185 |
|
300& DRHODR & $kg/m^3/{r-unit}$ & Nr |
| 1186 |
|
&\begin{minipage}[t]{3in} |
| 1187 |
|
{Stratification: d.Sigma/dr} |
| 1188 |
|
\end{minipage}\\ |
| 1189 |
|
\end{tabular} |
| 1190 |
|
\vspace{1.5in} |
| 1191 |
|
\vfill |
| 1192 |
|
|
| 1193 |
|
\newpage |
| 1194 |
|
\vspace*{\fill} |
| 1195 |
|
\begin{tabular}{lllll} |
| 1196 |
|
\hline\hline |
| 1197 |
|
N & NAME & UNITS & LEVELS & DESCRIPTION \\ |
| 1198 |
|
\hline |
| 1199 |
|
|
| 1200 |
|
&\\ |
| 1201 |
|
301& DETADT2 & ${r-unit}^2/s^2$ & 1 |
| 1202 |
|
&\begin{minipage}[t]{3in} |
| 1203 |
|
{Square of Eta (Surf.P,SSH) Tendency} |
| 1204 |
|
\end{minipage}\\ |
| 1205 |
\end{tabular} |
\end{tabular} |
| 1206 |
\vspace{1.5in} |
\vspace{1.5in} |
| 1207 |
\vfill |
\vfill |
| 1220 |
{\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t) |
{\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t) |
| 1221 |
\] |
\] |
| 1222 |
where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the |
where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the |
| 1223 |
output frequency of the diagnositc, and $\Delta t$ is |
output frequency of the diagnostic, and $\Delta t$ is |
| 1224 |
the timestep over which the diagnostic is updated. For further information on how |
the timestep over which the diagnostic is updated. |
|
to set the diagnostic output frequency {\bf NQDIAG}, please see Part III, A User's Guide. |
|
| 1225 |
|
|
| 1226 |
{\bf 1) \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) } |
{\bf 1) \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) } |
| 1227 |
|
|