| 1 | edhill | 1.2 | \section{Diagnostics--A Flexible Infrastructure} | 
| 2 |  |  | \label{sec:pkg:diagnostics} | 
| 3 |  |  | \begin{rawhtml} | 
| 4 |  |  | <!-- CMIREDIR:package_diagnostics: --> | 
| 5 |  |  | \end{rawhtml} | 
| 6 | molod | 1.1 |  | 
| 7 |  |  | \subsection{Introduction} | 
| 8 |  |  |  | 
| 9 | molod | 1.3 | This section of the documentation describes the Diagnostics Utilities available within | 
| 10 |  |  | the GCM.  In addition to a description on how to set and extract diagnostic quantities, | 
| 11 |  |  | this document also provides a comprehensive list of all available diagnostic quantities | 
| 12 |  |  | and a short description of how they are computed.  It should be noted that this document | 
| 13 |  |  | is not intended to be a complete documentation of the various packages used in the GCM, | 
| 14 |  |  | and the reader should refer to original publications and the appropriate sections of this | 
| 15 |  |  | documentation for further insight. | 
| 16 | molod | 1.1 |  | 
| 17 |  |  | \subsection{Equations} | 
| 18 |  |  | Not relevant. | 
| 19 |  |  |  | 
| 20 |  |  | \subsection{Key Subroutines and Parameters} | 
| 21 |  |  | \label{sec:diagnostics:diagover} | 
| 22 |  |  |  | 
| 23 |  |  | A large selection of model diagnostics is available in the GCM.  At the time of | 
| 24 | molod | 1.3 | this writing there are 280 different diagnostic quantities which can be enabled for an | 
| 25 | molod | 1.1 | experiment.  As a matter of philosophy, no diagnostic is enabled as default, thus each user must | 
| 26 |  |  | specify the exact diagnostic information required for an experiment.  This is accomplished by | 
| 27 |  |  | enabling the specific diagnostic of interest cataloged in the | 
| 28 |  |  | Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). | 
| 29 |  |  | The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within the | 
| 30 |  |  | GCM.  Diagnostics are internally referred to by their associated number in the Diagnostic | 
| 31 |  |  | Menu.  Once a diagnostic is enabled, the GCM will continually increment an array | 
| 32 |  |  | specifically allocated for that diagnostic whenever the associated process for the diagnostic is | 
| 33 |  |  | computed.  Separate arrays are used both for the diagnostic quantity and its diagnostic counter | 
| 34 |  |  | which records how many times each diagnostic quantity has been computed.  In addition | 
| 35 |  |  | special diagnostics, called | 
| 36 |  |  | ``Counter Diagnostics'', records the frequency of diagnostic updates separately for each | 
| 37 |  |  | model grid location. | 
| 38 |  |  |  | 
| 39 |  |  | The diagnostics are computed at various times and places within the GCM. | 
| 40 |  |  | Some diagnostics are computed on the geophysical A-grid (such as | 
| 41 |  |  | those within the Physics routines), while others are computed on the C-grid | 
| 42 |  |  | (those computed during the dynamics time-stepping).  Some diagnostics are | 
| 43 |  |  | scalars, while others are vectors.  Each of these possibilities requires | 
| 44 |  |  | separate tasks for A-grid to C-grid transformations and coordinate transformations.  Due | 
| 45 |  |  | to this complexity, and since the specific diagnostics enabled are User determined at the | 
| 46 |  |  | time of the run, | 
| 47 |  |  | a diagnostic parameter has been developed and implemented into the GCM, defined as GDIAG, | 
| 48 |  |  | which contains information concerning various grid attributes of each diagnostic.  The GDIAG | 
| 49 |  |  | array is internally defined as a character*8 variable, and is equivalenced to | 
| 50 |  |  | a character*1 "parse" array in output in order to extract the grid-attribute information. | 
| 51 |  |  | The GDIAG array is described in Table \ref{tab:diagnostics:gdiag.tabl}. | 
| 52 |  |  |  | 
| 53 |  |  | \begin{table} | 
| 54 |  |  | \caption{Diagnostic Parsing Array} | 
| 55 |  |  | \label{tab:diagnostics:gdiag.tabl} | 
| 56 |  |  | \begin{center} | 
| 57 |  |  | \begin{tabular}{ |c|c|l| } | 
| 58 |  |  | \hline | 
| 59 |  |  | \multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\ | 
| 60 |  |  | \hline | 
| 61 |  |  | \hline | 
| 62 |  |  | Array & Value & Description \\ | 
| 63 |  |  | \hline | 
| 64 |  |  | parse(1)   & $\rightarrow$ S &  Scalar Diagnostic                 \\ | 
| 65 |  |  | & $\rightarrow$ U &  U-vector component Diagnostic     \\ | 
| 66 |  |  | & $\rightarrow$ V &  V-vector component Diagnostic     \\ \hline | 
| 67 |  |  | parse(2)   & $\rightarrow$ U &  C-Grid U-Point                    \\ | 
| 68 |  |  | & $\rightarrow$ V &  C-Grid V-Point                    \\ | 
| 69 |  |  | & $\rightarrow$ M &  C-Grid Mass Point                 \\ | 
| 70 | molod | 1.3 | & $\rightarrow$ Z &  C-Grid Vorticity (Corner) Point   \\ \hline | 
| 71 |  |  | parse(3)   & $\rightarrow$ R &  Not Currently in Use              \\ \hline | 
| 72 | molod | 1.1 | parse(4)   & $\rightarrow$ P &  Positive Definite Diagnostic      \\ \hline | 
| 73 |  |  | parse(5)   & $\rightarrow$ C &  Counter Diagnostic                \\ | 
| 74 |  |  | & $\rightarrow$ D &  Disabled Diagnostic for output    \\ \hline | 
| 75 |  |  | parse(6-8) & $\rightarrow$ C &  3-digit integer corresponding to  \\ | 
| 76 |  |  | &                 &  vector or counter component mate  \\ \hline | 
| 77 |  |  | \end{tabular} | 
| 78 |  |  | \addcontentsline{lot}{section}{Table 3:  Diagnostic Parsing Array} | 
| 79 |  |  | \end{center} | 
| 80 |  |  | \end{table} | 
| 81 |  |  |  | 
| 82 |  |  | As an example, consider a diagnostic whose associated GDIAG parameter is equal | 
| 83 | molod | 1.3 | to ``UU  002''.  From GDIAG we can determine that this diagnostic is a | 
| 84 |  |  | U-vector component located at the C-grid U-point. | 
| 85 | molod | 1.1 | Its corresponding V-component diagnostic is located in Diagnostic \# 002. | 
| 86 |  |  |  | 
| 87 |  |  | In this way, each Diagnostic in the model has its attributes (ie. vector or scalar, | 
| 88 | molod | 1.3 | A-Grid or C-grid, etc.) defined internally.  The Output routines | 
| 89 | molod | 1.1 | use this information in order to determine | 
| 90 | molod | 1.3 | what type of transformations need to be performed.  Thus, all Diagnostic | 
| 91 | molod | 1.1 | interpolations are done at the time of output rather than during each model dynamic step. | 
| 92 |  |  | In this way the User now has more flexibility | 
| 93 |  |  | in determining the type of gridded data which is output. | 
| 94 |  |  |  | 
| 95 |  |  | There are several utilities within the GCM available to users to enable, disable, | 
| 96 |  |  | clear, and retrieve model diagnostics, and may be called from any user-supplied application | 
| 97 |  |  | and/or output routine.  The available utilities and the CALL sequences are listed below. | 
| 98 |  |  |  | 
| 99 |  |  |  | 
| 100 |  |  | {\bf SETDIAG}:  This subroutine enables a diagnostic from the Diagnostic Menu, meaning that | 
| 101 |  |  | space is allocated for the diagnostic and the | 
| 102 |  |  | model routines will increment the diagnostic value during execution.  This routine is useful when | 
| 103 |  |  | called from either user application routines or user output routines, and is the underlying interface | 
| 104 |  |  | between the user and the desired diagnostic.  The diagnostic is referenced by its diagnostic | 
| 105 |  |  | number from the menu, and its calling sequence is given by: | 
| 106 |  |  |  | 
| 107 |  |  | \begin{tabbing} | 
| 108 |  |  | XXXXXXXXX\=XXXXXX\= \kill | 
| 109 |  |  | \>        CALL SETDIAG (NUM) \\ | 
| 110 |  |  | \\ | 
| 111 |  |  | where \>  NUM   \>= Diagnostic number from menu \\ | 
| 112 |  |  | \end{tabbing} | 
| 113 |  |  |  | 
| 114 |  |  |  | 
| 115 |  |  | {\bf GETDIAG}:  This subroutine retrieves the value of a model diagnostic.  This routine is | 
| 116 |  |  | particulary useful when called from a user output routine, although it can be called from an | 
| 117 |  |  | application routine as well.  This routine returns the time-averaged value of the diagnostic by | 
| 118 |  |  | dividing the current accumulated diagnostic value by its corresponding counter.  This routine does | 
| 119 |  |  | not change the value of the diagnostic itself, that is, it does not replace the diagnostic with its | 
| 120 |  |  | time-average.  The calling sequence for this routine is givin by: | 
| 121 |  |  |  | 
| 122 |  |  | \begin{tabbing} | 
| 123 |  |  | XXXXXXXXX\=XXXXXX\= \kill | 
| 124 |  |  | \>        CALL GETDIAG (LEV,NUM,QTMP,UNDEF) \\ | 
| 125 |  |  | \\ | 
| 126 |  |  | where \>  LEV   \>= Model Level at which the diagnostic is desired \\ | 
| 127 |  |  | \>  NUM   \>= Diagnostic number from menu \\ | 
| 128 |  |  | \>  QTMP  \>= Time-Averaged Diagnostic Output \\ | 
| 129 |  |  | \>  UNDEF \>= Fill value to be used when diagnostic is undefined \\ | 
| 130 |  |  | \end{tabbing} | 
| 131 |  |  |  | 
| 132 |  |  | {\bf CLRDIAG}:  This subroutine initializes the values of model diagnostics to zero, and is | 
| 133 |  |  | particularly useful when called from user output routines to re-initialize diagnostics during the | 
| 134 |  |  | run.  The calling sequence is: | 
| 135 |  |  |  | 
| 136 |  |  |  | 
| 137 |  |  | \begin{tabbing} | 
| 138 |  |  | XXXXXXXXX\=XXXXXX\= \kill | 
| 139 |  |  | \>        CALL CLRDIAG (NUM) \\ | 
| 140 |  |  | \\ | 
| 141 |  |  | where \>  NUM   \>= Diagnostic number from menu \\ | 
| 142 |  |  | \end{tabbing} | 
| 143 |  |  |  | 
| 144 |  |  |  | 
| 145 |  |  |  | 
| 146 |  |  | {\bf ZAPDIAG}:  This entry into subroutine SETDIAG disables model diagnostics, meaning that the | 
| 147 |  |  | diagnostic is no longer available to the user.  The memory previously allocated to the diagnostic | 
| 148 |  |  | is released when ZAPDIAG is invoked.  The calling sequence is given by: | 
| 149 |  |  |  | 
| 150 |  |  |  | 
| 151 |  |  | \begin{tabbing} | 
| 152 |  |  | XXXXXXXXX\=XXXXXX\= \kill | 
| 153 |  |  | \>        CALL ZAPDIAG (NUM) \\ | 
| 154 |  |  | \\ | 
| 155 |  |  | where \>  NUM   \>= Diagnostic number from menu \\ | 
| 156 |  |  | \end{tabbing} | 
| 157 |  |  |  | 
| 158 |  |  | {\bf DIAGSIZE}:  We end this section with a discussion on the manner in which computer memory | 
| 159 |  |  | is allocated for diagnostics. | 
| 160 |  |  | All GCM diagnostic quantities are stored in the single | 
| 161 | molod | 1.3 | diagnostic array QDIAG which is located in diagnostics.h, and has the form: | 
| 162 | molod | 1.1 |  | 
| 163 | molod | 1.3 | common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy) | 
| 164 | molod | 1.1 |  | 
| 165 | molod | 1.3 | where numdiags is an Integer variable which should be | 
| 166 | molod | 1.1 | set equal to the number of enabled diagnostics, and QDIAG is a three-dimensional | 
| 167 |  |  | array.  The first two-dimensions of QDIAG correspond to the horizontal dimension | 
| 168 |  |  | of a given diagnostic, while the third dimension of QDIAG is used to identify | 
| 169 |  |  | specific diagnostic types. | 
| 170 | molod | 1.3 | In order to minimize the memory requirement of the model for diagnostics, | 
| 171 | molod | 1.1 | the default GCM executable is compiled with room for only one horizontal | 
| 172 |  |  | diagnostic array, as shown in the above example. | 
| 173 |  |  | In order for the User to enable more than 1 two-dimensional diagnostic, | 
| 174 | molod | 1.3 | the size of the diagnostics common must be expanded to accomodate the desired diagnostics. | 
| 175 | molod | 1.1 | This can be accomplished by manually changing the parameter numdiags in the | 
| 176 | molod | 1.3 | file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics_SIZE.h}, or by allowing the | 
| 177 | molod | 1.1 | shell script (???????) to make this | 
| 178 |  |  | change based on the choice of diagnostic output made in the namelist. | 
| 179 |  |  |  | 
| 180 | molod | 1.3 | \subsection{Usage Notes} | 
| 181 |  |  | \label{sec:diagnostics:usersguide} | 
| 182 |  |  | To use the diagnostics package, other than enabling it in packages.conf | 
| 183 |  |  | and turning the usediagnostics flag in data.pkg to .TRUE., a namelist | 
| 184 |  |  | must be supplied in the run directory called data.diagnostics. The namelist | 
| 185 |  |  | will activate a user-defined list of diagnostics quantities to be computed, | 
| 186 |  |  | specify the frequency of output, the number of levels, and the name of | 
| 187 |  |  | up to 10 separate output files. A sample data.diagnostics namelist file: | 
| 188 |  |  |  | 
| 189 |  |  | \# Diagnostic Package Choices | 
| 190 |  |  | \&diagnostics_list | 
| 191 |  |  | frequency(1) = 10, \ | 
| 192 |  |  | levels(1,1) = 1.,2.,3.,4.,5., \ | 
| 193 |  |  | fields(1,1) = 'UVEL    ','VVEL    ', \ | 
| 194 |  |  | filename(1) = 'diagout1', \ | 
| 195 |  |  | frequency(2) = 100, \ | 
| 196 |  |  | levels(1,2) = 1.,2.,3.,4.,5., \ | 
| 197 |  |  | fields(1,2) = 'THETA   ','SALT    ', \ | 
| 198 |  |  | filename(2) = 'diagout2', \ | 
| 199 |  |  | \&end \ | 
| 200 |  |  |  | 
| 201 |  |  | In this example, there are two output files that will be generated | 
| 202 |  |  | for each tile and for each output time. The first set of output files | 
| 203 |  |  | has the prefix diagout1, does time averaging every 10 time steps, | 
| 204 |  |  | for fields which are multiple-level fields the levels output are 1-5, | 
| 205 |  |  | and the names of diagnostics quantities are UVEL and VVEL. | 
| 206 |  |  | The second set of output files | 
| 207 |  |  | has the prefix diagout2, does time averaging every 100 time steps, | 
| 208 |  |  | for fields which are multiple-level fields the levels output are 1-5, | 
| 209 |  |  | and the names of diagnostics quantities are THETA and SALT. | 
| 210 |  |  |  | 
| 211 | molod | 1.1 | \newpage | 
| 212 |  |  |  | 
| 213 |  |  | \subsubsection{GCM Diagnostic Menu} | 
| 214 |  |  | \label{sec:diagnostics:menu} | 
| 215 |  |  |  | 
| 216 |  |  | \begin{tabular}{lllll} | 
| 217 |  |  | \hline\hline | 
| 218 |  |  | N & NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 219 |  |  | \hline | 
| 220 |  |  |  | 
| 221 |  |  | &\\ | 
| 222 |  |  | 1 & UFLUX    &   $Newton/m^2$  &    1 | 
| 223 |  |  | &\begin{minipage}[t]{3in} | 
| 224 |  |  | {Surface U-Wind Stress on the atmosphere} | 
| 225 |  |  | \end{minipage}\\ | 
| 226 |  |  | 2 & VFLUX    &   $Newton/m^2$  &    1 | 
| 227 |  |  | &\begin{minipage}[t]{3in} | 
| 228 |  |  | {Surface V-Wind Stress on the atmosphere} | 
| 229 |  |  | \end{minipage}\\ | 
| 230 |  |  | 3 & HFLUX    &   $Watts/m^2$  &    1 | 
| 231 |  |  | &\begin{minipage}[t]{3in} | 
| 232 |  |  | {Surface Flux of Sensible Heat} | 
| 233 |  |  | \end{minipage}\\ | 
| 234 |  |  | 4 & EFLUX    &   $Watts/m^2$  &    1 | 
| 235 |  |  | &\begin{minipage}[t]{3in} | 
| 236 |  |  | {Surface Flux of Latent Heat} | 
| 237 |  |  | \end{minipage}\\ | 
| 238 |  |  | 5 & QICE     &   $Watts/m^2$  &    1 | 
| 239 |  |  | &\begin{minipage}[t]{3in} | 
| 240 |  |  | {Heat Conduction through Sea-Ice} | 
| 241 |  |  | \end{minipage}\\ | 
| 242 |  |  | 6 & RADLWG   &   $Watts/m^2$ &    1 | 
| 243 |  |  | &\begin{minipage}[t]{3in} | 
| 244 |  |  | {Net upward LW flux at the ground} | 
| 245 |  |  | \end{minipage}\\ | 
| 246 |  |  | 7 & RADSWG   &   $Watts/m^2$  &    1 | 
| 247 |  |  | &\begin{minipage}[t]{3in} | 
| 248 |  |  | {Net downward SW flux at the ground} | 
| 249 |  |  | \end{minipage}\\ | 
| 250 |  |  | 8 & RI       &  $dimensionless$ &  Nrphys | 
| 251 |  |  | &\begin{minipage}[t]{3in} | 
| 252 |  |  | {Richardson Number} | 
| 253 |  |  | \end{minipage}\\ | 
| 254 |  |  | 9 & CT       &  $dimensionless$ &  1 | 
| 255 |  |  | &\begin{minipage}[t]{3in} | 
| 256 |  |  | {Surface Drag coefficient for T and Q} | 
| 257 |  |  | \end{minipage}\\ | 
| 258 |  |  | 10 & CU       & $dimensionless$ &  1 | 
| 259 |  |  | &\begin{minipage}[t]{3in} | 
| 260 |  |  | {Surface Drag coefficient for U and V} | 
| 261 |  |  | \end{minipage}\\ | 
| 262 |  |  | 11 & ET       &  $m^2/sec$ &  Nrphys | 
| 263 |  |  | &\begin{minipage}[t]{3in} | 
| 264 |  |  | {Diffusivity coefficient for T and Q} | 
| 265 |  |  | \end{minipage}\\ | 
| 266 |  |  | 12 & EU       &  $m^2/sec$ &  Nrphys | 
| 267 |  |  | &\begin{minipage}[t]{3in} | 
| 268 |  |  | {Diffusivity coefficient for U and V} | 
| 269 |  |  | \end{minipage}\\ | 
| 270 |  |  | 13 & TURBU    &  $m/sec/day$ &  Nrphys | 
| 271 |  |  | &\begin{minipage}[t]{3in} | 
| 272 |  |  | {U-Momentum Changes due to Turbulence} | 
| 273 |  |  | \end{minipage}\\ | 
| 274 |  |  | 14 & TURBV    &  $m/sec/day$ &  Nrphys | 
| 275 |  |  | &\begin{minipage}[t]{3in} | 
| 276 |  |  | {V-Momentum Changes due to Turbulence} | 
| 277 |  |  | \end{minipage}\\ | 
| 278 |  |  | 15 & TURBT    &  $deg/day$ &  Nrphys | 
| 279 |  |  | &\begin{minipage}[t]{3in} | 
| 280 |  |  | {Temperature Changes due to Turbulence} | 
| 281 |  |  | \end{minipage}\\ | 
| 282 |  |  | 16 & TURBQ    &  $g/kg/day$ &  Nrphys | 
| 283 |  |  | &\begin{minipage}[t]{3in} | 
| 284 |  |  | {Specific Humidity Changes due to Turbulence} | 
| 285 |  |  | \end{minipage}\\ | 
| 286 |  |  | 17 & MOISTT   &   $deg/day$ &  Nrphys | 
| 287 |  |  | &\begin{minipage}[t]{3in} | 
| 288 |  |  | {Temperature Changes due to Moist Processes} | 
| 289 |  |  | \end{minipage}\\ | 
| 290 |  |  | 18 & MOISTQ   &  $g/kg/day$ &  Nrphys | 
| 291 |  |  | &\begin{minipage}[t]{3in} | 
| 292 |  |  | {Specific Humidity Changes due to Moist Processes} | 
| 293 |  |  | \end{minipage}\\ | 
| 294 |  |  | 19 & RADLW    &  $deg/day$ &  Nrphys | 
| 295 |  |  | &\begin{minipage}[t]{3in} | 
| 296 |  |  | {Net Longwave heating rate for each level} | 
| 297 |  |  | \end{minipage}\\ | 
| 298 |  |  | 20 & RADSW    &  $deg/day$ &  Nrphys | 
| 299 |  |  | &\begin{minipage}[t]{3in} | 
| 300 |  |  | {Net Shortwave heating rate for each level} | 
| 301 |  |  | \end{minipage}\\ | 
| 302 |  |  | 21 & PREACC   &  $mm/day$ &  1 | 
| 303 |  |  | &\begin{minipage}[t]{3in} | 
| 304 |  |  | {Total Precipitation} | 
| 305 |  |  | \end{minipage}\\ | 
| 306 |  |  | 22 & PRECON   &  $mm/day$ &  1 | 
| 307 |  |  | &\begin{minipage}[t]{3in} | 
| 308 |  |  | {Convective Precipitation} | 
| 309 |  |  | \end{minipage}\\ | 
| 310 |  |  | 23 & TUFLUX   &  $Newton/m^2$ &  Nrphys | 
| 311 |  |  | &\begin{minipage}[t]{3in} | 
| 312 |  |  | {Turbulent Flux of U-Momentum} | 
| 313 |  |  | \end{minipage}\\ | 
| 314 |  |  | 24 & TVFLUX   &  $Newton/m^2$ &  Nrphys | 
| 315 |  |  | &\begin{minipage}[t]{3in} | 
| 316 |  |  | {Turbulent Flux of V-Momentum} | 
| 317 |  |  | \end{minipage}\\ | 
| 318 |  |  | 25 & TTFLUX   &  $Watts/m^2$ &  Nrphys | 
| 319 |  |  | &\begin{minipage}[t]{3in} | 
| 320 |  |  | {Turbulent Flux of Sensible Heat} | 
| 321 |  |  | \end{minipage}\\ | 
| 322 |  |  | 26 & TQFLUX   &  $Watts/m^2$ &  Nrphys | 
| 323 |  |  | &\begin{minipage}[t]{3in} | 
| 324 |  |  | {Turbulent Flux of Latent Heat} | 
| 325 |  |  | \end{minipage}\\ | 
| 326 |  |  | 27 & CN       &  $dimensionless$ &  1 | 
| 327 |  |  | &\begin{minipage}[t]{3in} | 
| 328 |  |  | {Neutral Drag Coefficient} | 
| 329 |  |  | \end{minipage}\\ | 
| 330 |  |  | 28 & WINDS     &  $m/sec$ &  1 | 
| 331 |  |  | &\begin{minipage}[t]{3in} | 
| 332 |  |  | {Surface Wind Speed} | 
| 333 |  |  | \end{minipage}\\ | 
| 334 |  |  | 29 & DTSRF     &  $deg$ &  1 | 
| 335 |  |  | &\begin{minipage}[t]{3in} | 
| 336 |  |  | {Air/Surface virtual temperature difference} | 
| 337 |  |  | \end{minipage}\\ | 
| 338 |  |  | 30 & TG        &  $deg$ &  1 | 
| 339 |  |  | &\begin{minipage}[t]{3in} | 
| 340 |  |  | {Ground temperature} | 
| 341 |  |  | \end{minipage}\\ | 
| 342 |  |  | 31 & TS        &  $deg$ &  1 | 
| 343 |  |  | &\begin{minipage}[t]{3in} | 
| 344 |  |  | {Surface air temperature (Adiabatic from lowest model layer)} | 
| 345 |  |  | \end{minipage}\\ | 
| 346 |  |  | 32 & DTG       &  $deg$ &  1 | 
| 347 |  |  | &\begin{minipage}[t]{3in} | 
| 348 |  |  | {Ground temperature adjustment} | 
| 349 |  |  | \end{minipage}\\ | 
| 350 |  |  |  | 
| 351 |  |  | \end{tabular} | 
| 352 |  |  |  | 
| 353 |  |  | \newpage | 
| 354 |  |  | \vspace*{\fill} | 
| 355 |  |  | \begin{tabular}{lllll} | 
| 356 |  |  | \hline\hline | 
| 357 |  |  | N & NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 358 |  |  | \hline | 
| 359 |  |  |  | 
| 360 |  |  | &\\ | 
| 361 |  |  | 33 & QG        &  $g/kg$ &  1 | 
| 362 |  |  | &\begin{minipage}[t]{3in} | 
| 363 |  |  | {Ground specific humidity} | 
| 364 |  |  | \end{minipage}\\ | 
| 365 |  |  | 34 & QS        &  $g/kg$ &  1 | 
| 366 |  |  | &\begin{minipage}[t]{3in} | 
| 367 |  |  | {Saturation surface specific humidity} | 
| 368 |  |  | \end{minipage}\\ | 
| 369 |  |  |  | 
| 370 |  |  | &\\ | 
| 371 |  |  | 35 & TGRLW    &    $deg$   &    1 | 
| 372 |  |  | &\begin{minipage}[t]{3in} | 
| 373 |  |  | {Instantaneous ground temperature used as input to the | 
| 374 |  |  | Longwave radiation subroutine} | 
| 375 |  |  | \end{minipage}\\ | 
| 376 |  |  | 36 & ST4      &   $Watts/m^2$  &    1 | 
| 377 |  |  | &\begin{minipage}[t]{3in} | 
| 378 |  |  | {Upward Longwave flux at the ground ($\sigma T^4$)} | 
| 379 |  |  | \end{minipage}\\ | 
| 380 |  |  | 37 & OLR      &   $Watts/m^2$  &    1 | 
| 381 |  |  | &\begin{minipage}[t]{3in} | 
| 382 |  |  | {Net upward Longwave flux at the top of the model} | 
| 383 |  |  | \end{minipage}\\ | 
| 384 |  |  | 38 & OLRCLR   &   $Watts/m^2$  &    1 | 
| 385 |  |  | &\begin{minipage}[t]{3in} | 
| 386 |  |  | {Net upward clearsky Longwave flux at the top of the model} | 
| 387 |  |  | \end{minipage}\\ | 
| 388 |  |  | 39 & LWGCLR   &   $Watts/m^2$  &    1 | 
| 389 |  |  | &\begin{minipage}[t]{3in} | 
| 390 |  |  | {Net upward clearsky Longwave flux at the ground} | 
| 391 |  |  | \end{minipage}\\ | 
| 392 |  |  | 40 & LWCLR    &  $deg/day$ &  Nrphys | 
| 393 |  |  | &\begin{minipage}[t]{3in} | 
| 394 |  |  | {Net clearsky Longwave heating rate for each level} | 
| 395 |  |  | \end{minipage}\\ | 
| 396 |  |  | 41 & TLW      &    $deg$   &  Nrphys | 
| 397 |  |  | &\begin{minipage}[t]{3in} | 
| 398 |  |  | {Instantaneous temperature used as input to the Longwave radiation | 
| 399 |  |  | subroutine} | 
| 400 |  |  | \end{minipage}\\ | 
| 401 |  |  | 42 & SHLW     &    $g/g$   &  Nrphys | 
| 402 |  |  | &\begin{minipage}[t]{3in} | 
| 403 |  |  | {Instantaneous specific humidity used as input to the Longwave radiation | 
| 404 |  |  | subroutine} | 
| 405 |  |  | \end{minipage}\\ | 
| 406 |  |  | 43 & OZLW     &    $g/g$   &  Nrphys | 
| 407 |  |  | &\begin{minipage}[t]{3in} | 
| 408 |  |  | {Instantaneous ozone used as input to the Longwave radiation | 
| 409 |  |  | subroutine} | 
| 410 |  |  | \end{minipage}\\ | 
| 411 |  |  | 44 & CLMOLW   &    $0-1$   &  Nrphys | 
| 412 |  |  | &\begin{minipage}[t]{3in} | 
| 413 |  |  | {Maximum overlap cloud fraction used in the Longwave radiation | 
| 414 |  |  | subroutine} | 
| 415 |  |  | \end{minipage}\\ | 
| 416 |  |  | 45 & CLDTOT   &    $0-1$   &  Nrphys | 
| 417 |  |  | &\begin{minipage}[t]{3in} | 
| 418 |  |  | {Total cloud fraction used in the Longwave and Shortwave radiation | 
| 419 |  |  | subroutines} | 
| 420 |  |  | \end{minipage}\\ | 
| 421 |  |  | 46 & RADSWT   &    $Watts/m^2$   &  1 | 
| 422 |  |  | &\begin{minipage}[t]{3in} | 
| 423 |  |  | {Incident Shortwave radiation at the top of the atmosphere} | 
| 424 |  |  | \end{minipage}\\ | 
| 425 |  |  | 47 & CLROSW   &    $0-1$   &  Nrphys | 
| 426 |  |  | &\begin{minipage}[t]{3in} | 
| 427 |  |  | {Random overlap cloud fraction used in the shortwave radiation | 
| 428 |  |  | subroutine} | 
| 429 |  |  | \end{minipage}\\ | 
| 430 |  |  | 48 & CLMOSW   &    $0-1$   &  Nrphys | 
| 431 |  |  | &\begin{minipage}[t]{3in} | 
| 432 |  |  | {Maximum overlap cloud fraction used in the shortwave radiation | 
| 433 |  |  | subroutine} | 
| 434 |  |  | \end{minipage}\\ | 
| 435 |  |  | 49 & EVAP     &    $mm/day$   &  1 | 
| 436 |  |  | &\begin{minipage}[t]{3in} | 
| 437 |  |  | {Surface evaporation} | 
| 438 |  |  | \end{minipage}\\ | 
| 439 |  |  | \end{tabular} | 
| 440 |  |  | \vfill | 
| 441 |  |  |  | 
| 442 |  |  | \newpage | 
| 443 |  |  | \vspace*{\fill} | 
| 444 |  |  | \begin{tabular}{lllll} | 
| 445 |  |  | \hline\hline | 
| 446 |  |  | N & NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 447 |  |  | \hline | 
| 448 |  |  |  | 
| 449 |  |  | &\\ | 
| 450 |  |  | 50 & DUDT     &    $m/sec/day$ &  Nrphys | 
| 451 |  |  | &\begin{minipage}[t]{3in} | 
| 452 |  |  | {Total U-Wind tendency} | 
| 453 |  |  | \end{minipage}\\ | 
| 454 |  |  | 51 & DVDT     &    $m/sec/day$ &  Nrphys | 
| 455 |  |  | &\begin{minipage}[t]{3in} | 
| 456 |  |  | {Total V-Wind tendency} | 
| 457 |  |  | \end{minipage}\\ | 
| 458 |  |  | 52 & DTDT     &    $deg/day$ &  Nrphys | 
| 459 |  |  | &\begin{minipage}[t]{3in} | 
| 460 |  |  | {Total Temperature tendency} | 
| 461 |  |  | \end{minipage}\\ | 
| 462 |  |  | 53 & DQDT     &    $g/kg/day$ &  Nrphys | 
| 463 |  |  | &\begin{minipage}[t]{3in} | 
| 464 |  |  | {Total Specific Humidity tendency} | 
| 465 |  |  | \end{minipage}\\ | 
| 466 |  |  | 54 & USTAR    &    $m/sec$ &  1 | 
| 467 |  |  | &\begin{minipage}[t]{3in} | 
| 468 |  |  | {Surface USTAR wind} | 
| 469 |  |  | \end{minipage}\\ | 
| 470 |  |  | 55 & Z0       &    $m$ &  1 | 
| 471 |  |  | &\begin{minipage}[t]{3in} | 
| 472 |  |  | {Surface roughness} | 
| 473 |  |  | \end{minipage}\\ | 
| 474 |  |  | 56 & FRQTRB   &    $0-1$ &  Nrphys-1 | 
| 475 |  |  | &\begin{minipage}[t]{3in} | 
| 476 |  |  | {Frequency of Turbulence} | 
| 477 |  |  | \end{minipage}\\ | 
| 478 |  |  | 57 & PBL      &    $mb$ &  1 | 
| 479 |  |  | &\begin{minipage}[t]{3in} | 
| 480 |  |  | {Planetary Boundary Layer depth} | 
| 481 |  |  | \end{minipage}\\ | 
| 482 |  |  | 58 & SWCLR    &  $deg/day$ &  Nrphys | 
| 483 |  |  | &\begin{minipage}[t]{3in} | 
| 484 |  |  | {Net clearsky Shortwave heating rate for each level} | 
| 485 |  |  | \end{minipage}\\ | 
| 486 |  |  | 59 & OSR      &   $Watts/m^2$  &    1 | 
| 487 |  |  | &\begin{minipage}[t]{3in} | 
| 488 |  |  | {Net downward Shortwave flux at the top of the model} | 
| 489 |  |  | \end{minipage}\\ | 
| 490 |  |  | 60 & OSRCLR   &   $Watts/m^2$  &    1 | 
| 491 |  |  | &\begin{minipage}[t]{3in} | 
| 492 |  |  | {Net downward clearsky Shortwave flux at the top of the model} | 
| 493 |  |  | \end{minipage}\\ | 
| 494 |  |  | 61 & CLDMAS   &   $kg / m^2$  &    Nrphys | 
| 495 |  |  | &\begin{minipage}[t]{3in} | 
| 496 |  |  | {Convective cloud mass flux} | 
| 497 |  |  | \end{minipage}\\ | 
| 498 |  |  | 62 & UAVE     &   $m/sec$  &    Nrphys | 
| 499 |  |  | &\begin{minipage}[t]{3in} | 
| 500 |  |  | {Time-averaged $u-Wind$} | 
| 501 |  |  | \end{minipage}\\ | 
| 502 |  |  | 63 & VAVE     &   $m/sec$  &    Nrphys | 
| 503 |  |  | &\begin{minipage}[t]{3in} | 
| 504 |  |  | {Time-averaged $v-Wind$} | 
| 505 |  |  | \end{minipage}\\ | 
| 506 |  |  | 64 & TAVE     &   $deg$  &    Nrphys | 
| 507 |  |  | &\begin{minipage}[t]{3in} | 
| 508 |  |  | {Time-averaged $Temperature$} | 
| 509 |  |  | \end{minipage}\\ | 
| 510 |  |  | 65 & QAVE     &   $g/g$  &    Nrphys | 
| 511 |  |  | &\begin{minipage}[t]{3in} | 
| 512 |  |  | {Time-averaged $Specific \, \, Humidity$} | 
| 513 |  |  | \end{minipage}\\ | 
| 514 |  |  | 66 & PAVE     &   $mb$  &    1 | 
| 515 |  |  | &\begin{minipage}[t]{3in} | 
| 516 |  |  | {Time-averaged $p_{surf} - p_{top}$} | 
| 517 |  |  | \end{minipage}\\ | 
| 518 |  |  | 67 & QQAVE    &   $(m/sec)^2$  &    Nrphys | 
| 519 |  |  | &\begin{minipage}[t]{3in} | 
| 520 |  |  | {Time-averaged $Turbulent Kinetic Energy$} | 
| 521 |  |  | \end{minipage}\\ | 
| 522 |  |  | 68 & SWGCLR   &   $Watts/m^2$  &    1 | 
| 523 |  |  | &\begin{minipage}[t]{3in} | 
| 524 |  |  | {Net downward clearsky Shortwave flux at the ground} | 
| 525 |  |  | \end{minipage}\\ | 
| 526 |  |  | 69 & SDIAG1   &             &    1 | 
| 527 |  |  | &\begin{minipage}[t]{3in} | 
| 528 |  |  | {User-Defined Surface Diagnostic-1} | 
| 529 |  |  | \end{minipage}\\ | 
| 530 |  |  | 70 & SDIAG2   &             &    1 | 
| 531 |  |  | &\begin{minipage}[t]{3in} | 
| 532 |  |  | {User-Defined Surface Diagnostic-2} | 
| 533 |  |  | \end{minipage}\\ | 
| 534 |  |  | 71 & UDIAG1   &             &    Nrphys | 
| 535 |  |  | &\begin{minipage}[t]{3in} | 
| 536 |  |  | {User-Defined Upper-Air Diagnostic-1} | 
| 537 |  |  | \end{minipage}\\ | 
| 538 |  |  | 72 & UDIAG2   &             &    Nrphys | 
| 539 |  |  | &\begin{minipage}[t]{3in} | 
| 540 |  |  | {User-Defined Upper-Air Diagnostic-2} | 
| 541 |  |  | \end{minipage}\\ | 
| 542 |  |  | 73 & DIABU    & $m/sec/day$ &    Nrphys | 
| 543 |  |  | &\begin{minipage}[t]{3in} | 
| 544 |  |  | {Total Diabatic forcing on $u-Wind$} | 
| 545 |  |  | \end{minipage}\\ | 
| 546 |  |  | 74 & DIABV    & $m/sec/day$ &    Nrphys | 
| 547 |  |  | &\begin{minipage}[t]{3in} | 
| 548 |  |  | {Total Diabatic forcing on $v-Wind$} | 
| 549 |  |  | \end{minipage}\\ | 
| 550 |  |  | 75 & DIABT    & $deg/day$ &    Nrphys | 
| 551 |  |  | &\begin{minipage}[t]{3in} | 
| 552 |  |  | {Total Diabatic forcing on $Temperature$} | 
| 553 |  |  | \end{minipage}\\ | 
| 554 |  |  | 76 & DIABQ    & $g/kg/day$ &    Nrphys | 
| 555 |  |  | &\begin{minipage}[t]{3in} | 
| 556 |  |  | {Total Diabatic forcing on $Specific \, \, Humidity$} | 
| 557 |  |  | \end{minipage}\\ | 
| 558 |  |  |  | 
| 559 |  |  | \end{tabular} | 
| 560 |  |  | \vfill | 
| 561 |  |  |  | 
| 562 |  |  | \newpage | 
| 563 |  |  | \vspace*{\fill} | 
| 564 |  |  | \begin{tabular}{lllll} | 
| 565 |  |  | \hline\hline | 
| 566 |  |  | N & NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 567 |  |  | \hline | 
| 568 |  |  |  | 
| 569 |  |  | 77 & VINTUQ  & $m/sec \cdot g/kg$ &    1 | 
| 570 |  |  | &\begin{minipage}[t]{3in} | 
| 571 |  |  | {Vertically integrated $u \, q$} | 
| 572 |  |  | \end{minipage}\\ | 
| 573 |  |  | 78 & VINTVQ  & $m/sec \cdot g/kg$ &    1 | 
| 574 |  |  | &\begin{minipage}[t]{3in} | 
| 575 |  |  | {Vertically integrated $v \, q$} | 
| 576 |  |  | \end{minipage}\\ | 
| 577 |  |  | 79 & VINTUT  & $m/sec \cdot deg$ &    1 | 
| 578 |  |  | &\begin{minipage}[t]{3in} | 
| 579 |  |  | {Vertically integrated $u \, T$} | 
| 580 |  |  | \end{minipage}\\ | 
| 581 |  |  | 80 & VINTVT  & $m/sec \cdot deg$ &    1 | 
| 582 |  |  | &\begin{minipage}[t]{3in} | 
| 583 |  |  | {Vertically integrated $v \, T$} | 
| 584 |  |  | \end{minipage}\\ | 
| 585 |  |  | 81 & CLDFRC  & $0-1$ &    1 | 
| 586 |  |  | &\begin{minipage}[t]{3in} | 
| 587 |  |  | {Total Cloud Fraction} | 
| 588 |  |  | \end{minipage}\\ | 
| 589 |  |  | 82 & QINT    & $gm/cm^2$ &    1 | 
| 590 |  |  | &\begin{minipage}[t]{3in} | 
| 591 |  |  | {Precipitable water} | 
| 592 |  |  | \end{minipage}\\ | 
| 593 |  |  | 83 & U2M     & $m/sec$ &    1 | 
| 594 |  |  | &\begin{minipage}[t]{3in} | 
| 595 |  |  | {U-Wind at 2 meters} | 
| 596 |  |  | \end{minipage}\\ | 
| 597 |  |  | 84 & V2M     & $m/sec$ &    1 | 
| 598 |  |  | &\begin{minipage}[t]{3in} | 
| 599 |  |  | {V-Wind at 2 meters} | 
| 600 |  |  | \end{minipage}\\ | 
| 601 |  |  | 85 & T2M     & $deg$ &    1 | 
| 602 |  |  | &\begin{minipage}[t]{3in} | 
| 603 |  |  | {Temperature at 2 meters} | 
| 604 |  |  | \end{minipage}\\ | 
| 605 |  |  | 86 & Q2M     & $g/kg$ &    1 | 
| 606 |  |  | &\begin{minipage}[t]{3in} | 
| 607 |  |  | {Specific Humidity at 2 meters} | 
| 608 |  |  | \end{minipage}\\ | 
| 609 |  |  | 87 & U10M    & $m/sec$ &    1 | 
| 610 |  |  | &\begin{minipage}[t]{3in} | 
| 611 |  |  | {U-Wind at 10 meters} | 
| 612 |  |  | \end{minipage}\\ | 
| 613 |  |  | 88 & V10M    & $m/sec$ &    1 | 
| 614 |  |  | &\begin{minipage}[t]{3in} | 
| 615 |  |  | {V-Wind at 10 meters} | 
| 616 |  |  | \end{minipage}\\ | 
| 617 |  |  | 89 & T10M    & $deg$ &    1 | 
| 618 |  |  | &\begin{minipage}[t]{3in} | 
| 619 |  |  | {Temperature at 10 meters} | 
| 620 |  |  | \end{minipage}\\ | 
| 621 |  |  | 90 & Q10M    & $g/kg$ &    1 | 
| 622 |  |  | &\begin{minipage}[t]{3in} | 
| 623 |  |  | {Specific Humidity at 10 meters} | 
| 624 |  |  | \end{minipage}\\ | 
| 625 |  |  | 91 & DTRAIN  & $kg/m^2$ &    Nrphys | 
| 626 |  |  | &\begin{minipage}[t]{3in} | 
| 627 |  |  | {Detrainment Cloud Mass Flux} | 
| 628 |  |  | \end{minipage}\\ | 
| 629 |  |  | 92 & QFILL   & $g/kg/day$ &    Nrphys | 
| 630 |  |  | &\begin{minipage}[t]{3in} | 
| 631 |  |  | {Filling of negative specific humidity} | 
| 632 |  |  | \end{minipage}\\ | 
| 633 |  |  |  | 
| 634 |  |  | \end{tabular} | 
| 635 |  |  | \vspace{1.5in} | 
| 636 |  |  | \vfill | 
| 637 |  |  |  | 
| 638 |  |  | \newpage | 
| 639 |  |  |  | 
| 640 |  |  | \subsubsection{Diagnostic Description} | 
| 641 |  |  |  | 
| 642 |  |  | In this section we list and describe the diagnostic quantities available within the | 
| 643 |  |  | GCM.  The diagnostics are listed in the order that they appear in the | 
| 644 |  |  | Diagnostic Menu, Section \ref{sec:diagnostics:menu}. | 
| 645 |  |  | In all cases, each diagnostic as currently archived on the output datasets | 
| 646 |  |  | is time-averaged over its diagnostic output frequency: | 
| 647 |  |  |  | 
| 648 |  |  | \[ | 
| 649 |  |  | {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t) | 
| 650 |  |  | \] | 
| 651 |  |  | where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the | 
| 652 |  |  | output frequency of the diagnositc, and $\Delta t$ is | 
| 653 |  |  | the timestep over which the diagnostic is updated.  For further information on how | 
| 654 |  |  | to set the diagnostic output frequency {\bf NQDIAG}, please see Part III, A User's Guide. | 
| 655 |  |  |  | 
| 656 |  |  | {\bf 1)  \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) } | 
| 657 |  |  |  | 
| 658 |  |  | The zonal wind stress is the turbulent flux of zonal momentum from | 
| 659 |  |  | the surface. See section 3.3 for a description of the surface layer parameterization. | 
| 660 |  |  | \[ | 
| 661 |  |  | {\bf UFLUX} =  - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u | 
| 662 |  |  | \] | 
| 663 |  |  | where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface | 
| 664 |  |  | drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum | 
| 665 |  |  | (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is | 
| 666 |  |  | the zonal wind in the lowest model layer. | 
| 667 |  |  | \\ | 
| 668 |  |  |  | 
| 669 |  |  |  | 
| 670 |  |  | {\bf 2)  \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) } | 
| 671 |  |  |  | 
| 672 |  |  | The meridional wind stress is the turbulent flux of meridional momentum from | 
| 673 |  |  | the surface. See section 3.3 for a description of the surface layer parameterization. | 
| 674 |  |  | \[ | 
| 675 |  |  | {\bf VFLUX} =  - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u | 
| 676 |  |  | \] | 
| 677 |  |  | where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface | 
| 678 |  |  | drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum | 
| 679 |  |  | (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is | 
| 680 |  |  | the meridional wind in the lowest model layer. | 
| 681 |  |  | \\ | 
| 682 |  |  |  | 
| 683 |  |  | {\bf 3)  \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) } | 
| 684 |  |  |  | 
| 685 |  |  | The turbulent flux of sensible heat from the surface to the atmosphere is a function of the | 
| 686 |  |  | gradient of virtual potential temperature and the eddy exchange coefficient: | 
| 687 |  |  | \[ | 
| 688 |  |  | {\bf HFLUX} =  P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys}) | 
| 689 |  |  | \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t | 
| 690 |  |  | \] | 
| 691 |  |  | where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific | 
| 692 |  |  | heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the | 
| 693 |  |  | magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient | 
| 694 |  |  | for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient | 
| 695 |  |  | for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature | 
| 696 |  |  | at the surface and at the bottom model level. | 
| 697 |  |  | \\ | 
| 698 |  |  |  | 
| 699 |  |  |  | 
| 700 |  |  | {\bf 4)  \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) } | 
| 701 |  |  |  | 
| 702 |  |  | The turbulent flux of latent heat from the surface to the atmosphere is a function of the | 
| 703 |  |  | gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient: | 
| 704 |  |  | \[ | 
| 705 |  |  | {\bf EFLUX} =  \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys}) | 
| 706 |  |  | \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t | 
| 707 |  |  | \] | 
| 708 |  |  | where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of | 
| 709 |  |  | the potential evapotranspiration actually evaporated, L is the latent | 
| 710 |  |  | heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the | 
| 711 |  |  | magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient | 
| 712 |  |  | for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient | 
| 713 |  |  | for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific | 
| 714 |  |  | humidity at the surface and at the bottom model level, respectively. | 
| 715 |  |  | \\ | 
| 716 |  |  |  | 
| 717 |  |  | {\bf 5)  \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) } | 
| 718 |  |  |  | 
| 719 |  |  | Over sea ice there is an additional source of energy at the surface due to the heat | 
| 720 |  |  | conduction from the relatively warm ocean through the sea ice. The heat conduction | 
| 721 |  |  | through sea ice represents an additional energy source term for the ground temperature equation. | 
| 722 |  |  |  | 
| 723 |  |  | \[ | 
| 724 |  |  | {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g) | 
| 725 |  |  | \] | 
| 726 |  |  |  | 
| 727 |  |  | where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to | 
| 728 |  |  | be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and | 
| 729 |  |  | $T_g$ is the temperature of the sea ice. | 
| 730 |  |  |  | 
| 731 |  |  | NOTE: QICE is not available through model version 5.3, but is available in subsequent versions. | 
| 732 |  |  | \\ | 
| 733 |  |  |  | 
| 734 |  |  |  | 
| 735 |  |  | {\bf 6) \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)} | 
| 736 |  |  |  | 
| 737 |  |  | \begin{eqnarray*} | 
| 738 |  |  | {\bf RADLWG} & =  & F_{LW,Nrphys+1}^{Net} \\ | 
| 739 |  |  | & =  & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow | 
| 740 |  |  | \end{eqnarray*} | 
| 741 |  |  | \\ | 
| 742 |  |  | where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. | 
| 743 |  |  | $F_{LW}^\uparrow$ is | 
| 744 |  |  | the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux. | 
| 745 |  |  | \\ | 
| 746 |  |  |  | 
| 747 |  |  | {\bf 7) \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)} | 
| 748 |  |  |  | 
| 749 |  |  | \begin{eqnarray*} | 
| 750 |  |  | {\bf RADSWG} & =  & F_{SW,Nrphys+1}^{Net} \\ | 
| 751 |  |  | & =  & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow | 
| 752 |  |  | \end{eqnarray*} | 
| 753 |  |  | \\ | 
| 754 |  |  | where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. | 
| 755 |  |  | $F_{SW}^\downarrow$ is | 
| 756 |  |  | the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux. | 
| 757 |  |  | \\ | 
| 758 |  |  |  | 
| 759 |  |  |  | 
| 760 |  |  | \noindent | 
| 761 |  |  | {\bf 8)  \underline {RI} Richardson Number} ($dimensionless$) | 
| 762 |  |  |  | 
| 763 |  |  | \noindent | 
| 764 |  |  | The non-dimensional stability indicator is the ratio of the buoyancy to the shear: | 
| 765 |  |  | \[ | 
| 766 |  |  | {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } | 
| 767 |  |  | =  {  {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } | 
| 768 |  |  | \] | 
| 769 |  |  | \\ | 
| 770 |  |  | where we used the hydrostatic equation: | 
| 771 |  |  | \[ | 
| 772 |  |  | {\pp{\Phi}{P^ \kappa}} = c_p \theta_v | 
| 773 |  |  | \] | 
| 774 |  |  | Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$) | 
| 775 |  |  | indicate dominantly unstable shear, and large positive values indicate dominantly stable | 
| 776 |  |  | stratification. | 
| 777 |  |  | \\ | 
| 778 |  |  |  | 
| 779 |  |  | \noindent | 
| 780 |  |  | {\bf 9)  \underline {CT}  Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) } | 
| 781 |  |  |  | 
| 782 |  |  | \noindent | 
| 783 |  |  | The surface exchange coefficient is obtained from the similarity functions for the stability | 
| 784 |  |  | dependant flux profile relationships: | 
| 785 |  |  | \[ | 
| 786 |  |  | {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} = | 
| 787 |  |  | -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} = | 
| 788 |  |  | { k \over { (\psi_{h} + \psi_{g}) } } | 
| 789 |  |  | \] | 
| 790 |  |  | where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the | 
| 791 |  |  | viscous sublayer non-dimensional temperature or moisture change: | 
| 792 |  |  | \[ | 
| 793 |  |  | \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and | 
| 794 |  |  | \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} } | 
| 795 |  |  | (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2} | 
| 796 |  |  | \] | 
| 797 |  |  | and: | 
| 798 |  |  | $h_{0} = 30z_{0}$ with a maximum value over land of 0.01 | 
| 799 |  |  |  | 
| 800 |  |  | \noindent | 
| 801 |  |  | $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of | 
| 802 |  |  | the temperature and moisture gradients, specified differently for stable and unstable | 
| 803 |  |  | layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the | 
| 804 |  |  | non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular | 
| 805 |  |  | viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity | 
| 806 |  |  | (see diagnostic number 67), and the subscript ref refers to a reference value. | 
| 807 |  |  | \\ | 
| 808 |  |  |  | 
| 809 |  |  | \noindent | 
| 810 |  |  | {\bf 10)  \underline {CU}  Surface Exchange Coefficient for Momentum ($dimensionless$) } | 
| 811 |  |  |  | 
| 812 |  |  | \noindent | 
| 813 |  |  | The surface exchange coefficient is obtained from the similarity functions for the stability | 
| 814 |  |  | dependant flux profile relationships: | 
| 815 |  |  | \[ | 
| 816 |  |  | {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} } | 
| 817 |  |  | \] | 
| 818 |  |  | where $\psi_m$ is the surface layer non-dimensional wind shear: | 
| 819 |  |  | \[ | 
| 820 |  |  | \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} | 
| 821 |  |  | \] | 
| 822 |  |  | \noindent | 
| 823 |  |  | $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of | 
| 824 |  |  | the temperature and moisture gradients, specified differently for stable and unstable layers | 
| 825 |  |  | according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the | 
| 826 |  |  | non-dimensional stability parameter, $u_*$ is the surface stress velocity | 
| 827 |  |  | (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind. | 
| 828 |  |  | \\ | 
| 829 |  |  |  | 
| 830 |  |  | \noindent | 
| 831 |  |  | {\bf 11)  \underline {ET}  Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) } | 
| 832 |  |  |  | 
| 833 |  |  | \noindent | 
| 834 |  |  | In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or | 
| 835 |  |  | moisture flux for the atmosphere above the surface layer can be expressed as a turbulent | 
| 836 |  |  | diffusion coefficient $K_h$ times the negative of the gradient of potential temperature | 
| 837 |  |  | or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$ | 
| 838 |  |  | takes the form: | 
| 839 |  |  | \[ | 
| 840 |  |  | {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} } | 
| 841 |  |  | = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence} | 
| 842 |  |  | \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right. | 
| 843 |  |  | \] | 
| 844 |  |  | where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm} | 
| 845 |  |  | energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model, | 
| 846 |  |  | which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer | 
| 847 |  |  | depth, | 
| 848 |  |  | $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and | 
| 849 |  |  | wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium | 
| 850 |  |  | dimensionless buoyancy and wind shear | 
| 851 |  |  | parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$, | 
| 852 |  |  | are functions of the Richardson number. | 
| 853 |  |  |  | 
| 854 |  |  | \noindent | 
| 855 |  |  | For the detailed equations and derivations of the modified level 2.5 closure scheme, | 
| 856 |  |  | see Helfand and Labraga, 1988. | 
| 857 |  |  |  | 
| 858 |  |  | \noindent | 
| 859 |  |  | In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture, | 
| 860 |  |  | in units of $m/sec$, given by: | 
| 861 |  |  | \[ | 
| 862 |  |  | {\bf ET_{Nrphys}} =  C_t * u_* = C_H W_s | 
| 863 |  |  | \] | 
| 864 |  |  | \noindent | 
| 865 |  |  | where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the | 
| 866 |  |  | surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface | 
| 867 |  |  | friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient, | 
| 868 |  |  | and $W_s$ is the magnitude of the surface layer wind. | 
| 869 |  |  | \\ | 
| 870 |  |  |  | 
| 871 |  |  | \noindent | 
| 872 |  |  | {\bf 12)  \underline {EU}  Diffusivity Coefficient for Momentum ($m^2/sec$) } | 
| 873 |  |  |  | 
| 874 |  |  | \noindent | 
| 875 |  |  | In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat | 
| 876 |  |  | momentum flux for the atmosphere above the surface layer can be expressed as a turbulent | 
| 877 |  |  | diffusion coefficient $K_m$ times the negative of the gradient of the u-wind. | 
| 878 |  |  | In the Helfand and Labraga (1988) adaptation of this closure, $K_m$ | 
| 879 |  |  | takes the form: | 
| 880 |  |  | \[ | 
| 881 |  |  | {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} } | 
| 882 |  |  | = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence} | 
| 883 |  |  | \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right. | 
| 884 |  |  | \] | 
| 885 |  |  | \noindent | 
| 886 |  |  | where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm} | 
| 887 |  |  | energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model, | 
| 888 |  |  | which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer | 
| 889 |  |  | depth, | 
| 890 |  |  | $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and | 
| 891 |  |  | wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium | 
| 892 |  |  | dimensionless buoyancy and wind shear | 
| 893 |  |  | parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$, | 
| 894 |  |  | are functions of the Richardson number. | 
| 895 |  |  |  | 
| 896 |  |  | \noindent | 
| 897 |  |  | For the detailed equations and derivations of the modified level 2.5 closure scheme, | 
| 898 |  |  | see Helfand and Labraga, 1988. | 
| 899 |  |  |  | 
| 900 |  |  | \noindent | 
| 901 |  |  | In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum, | 
| 902 |  |  | in units of $m/sec$, given by: | 
| 903 |  |  | \[ | 
| 904 |  |  | {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s | 
| 905 |  |  | \] | 
| 906 |  |  | \noindent | 
| 907 |  |  | where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer | 
| 908 |  |  | similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity | 
| 909 |  |  | (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the | 
| 910 |  |  | magnitude of the surface layer wind. | 
| 911 |  |  | \\ | 
| 912 |  |  |  | 
| 913 |  |  | \noindent | 
| 914 |  |  | {\bf 13)  \underline {TURBU}  Zonal U-Momentum changes due to Turbulence ($m/sec/day$) } | 
| 915 |  |  |  | 
| 916 |  |  | \noindent | 
| 917 |  |  | The tendency of U-Momentum due to turbulence is written: | 
| 918 |  |  | \[ | 
| 919 |  |  | {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})} | 
| 920 |  |  | = {\pp{}{z} }{(K_m \pp{u}{z})} | 
| 921 |  |  | \] | 
| 922 |  |  |  | 
| 923 |  |  | \noindent | 
| 924 |  |  | The Helfand and Labraga level 2.5 scheme models the turbulent | 
| 925 |  |  | flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion | 
| 926 |  |  | equation. | 
| 927 |  |  |  | 
| 928 |  |  | \noindent | 
| 929 |  |  | {\bf 14)  \underline {TURBV}  Meridional V-Momentum changes due to Turbulence ($m/sec/day$) } | 
| 930 |  |  |  | 
| 931 |  |  | \noindent | 
| 932 |  |  | The tendency of V-Momentum due to turbulence is written: | 
| 933 |  |  | \[ | 
| 934 |  |  | {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})} | 
| 935 |  |  | = {\pp{}{z} }{(K_m \pp{v}{z})} | 
| 936 |  |  | \] | 
| 937 |  |  |  | 
| 938 |  |  | \noindent | 
| 939 |  |  | The Helfand and Labraga level 2.5 scheme models the turbulent | 
| 940 |  |  | flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion | 
| 941 |  |  | equation. | 
| 942 |  |  | \\ | 
| 943 |  |  |  | 
| 944 |  |  | \noindent | 
| 945 |  |  | {\bf 15)  \underline {TURBT}  Temperature changes due to Turbulence ($deg/day$) } | 
| 946 |  |  |  | 
| 947 |  |  | \noindent | 
| 948 |  |  | The tendency of temperature due to turbulence is written: | 
| 949 |  |  | \[ | 
| 950 |  |  | {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} = | 
| 951 |  |  | P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})} | 
| 952 |  |  | = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})} | 
| 953 |  |  | \] | 
| 954 |  |  |  | 
| 955 |  |  | \noindent | 
| 956 |  |  | The Helfand and Labraga level 2.5 scheme models the turbulent | 
| 957 |  |  | flux of temperature in terms of $K_h$, and the equation has the form of a diffusion | 
| 958 |  |  | equation. | 
| 959 |  |  | \\ | 
| 960 |  |  |  | 
| 961 |  |  | \noindent | 
| 962 |  |  | {\bf 16)  \underline {TURBQ}  Specific Humidity changes due to Turbulence ($g/kg/day$) } | 
| 963 |  |  |  | 
| 964 |  |  | \noindent | 
| 965 |  |  | The tendency of specific humidity due to turbulence is written: | 
| 966 |  |  | \[ | 
| 967 |  |  | {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})} | 
| 968 |  |  | = {\pp{}{z} }{(K_h \pp{q}{z})} | 
| 969 |  |  | \] | 
| 970 |  |  |  | 
| 971 |  |  | \noindent | 
| 972 |  |  | The Helfand and Labraga level 2.5 scheme models the turbulent | 
| 973 |  |  | flux of temperature in terms of $K_h$, and the equation has the form of a diffusion | 
| 974 |  |  | equation. | 
| 975 |  |  | \\ | 
| 976 |  |  |  | 
| 977 |  |  | \noindent | 
| 978 |  |  | {\bf 17)  \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) } | 
| 979 |  |  |  | 
| 980 |  |  | \noindent | 
| 981 |  |  | \[ | 
| 982 |  |  | {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls} | 
| 983 |  |  | \] | 
| 984 |  |  | where: | 
| 985 |  |  | \[ | 
| 986 |  |  | \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i | 
| 987 |  |  | \hspace{.4cm} and | 
| 988 |  |  | \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q) | 
| 989 |  |  | \] | 
| 990 |  |  | and | 
| 991 |  |  | \[ | 
| 992 |  |  | \Gamma_s = g \eta \pp{s}{p} | 
| 993 |  |  | \] | 
| 994 |  |  |  | 
| 995 |  |  | \noindent | 
| 996 |  |  | The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale | 
| 997 |  |  | precipitation processes, or supersaturation rain. | 
| 998 |  |  | The summation refers to contributions from each cloud type called by RAS. | 
| 999 |  |  | The dry static energy is given | 
| 1000 |  |  | as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is | 
| 1001 |  |  | given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc}, | 
| 1002 |  |  | the description of the convective parameterization.  The fractional adjustment, or relaxation | 
| 1003 |  |  | parameter, for each cloud type is given as $\alpha$, while | 
| 1004 |  |  | $R$ is the rain re-evaporation adjustment. | 
| 1005 |  |  | \\ | 
| 1006 |  |  |  | 
| 1007 |  |  | \noindent | 
| 1008 |  |  | {\bf 18)  \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) } | 
| 1009 |  |  |  | 
| 1010 |  |  | \noindent | 
| 1011 |  |  | \[ | 
| 1012 |  |  | {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls} | 
| 1013 |  |  | \] | 
| 1014 |  |  | where: | 
| 1015 |  |  | \[ | 
| 1016 |  |  | \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i | 
| 1017 |  |  | \hspace{.4cm} and | 
| 1018 |  |  | \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q) | 
| 1019 |  |  | \] | 
| 1020 |  |  | and | 
| 1021 |  |  | \[ | 
| 1022 |  |  | \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p} | 
| 1023 |  |  | \] | 
| 1024 |  |  | \noindent | 
| 1025 |  |  | The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale | 
| 1026 |  |  | precipitation processes, or supersaturation rain. | 
| 1027 |  |  | The summation refers to contributions from each cloud type called by RAS. | 
| 1028 |  |  | The dry static energy is given as $s$, | 
| 1029 |  |  | the moist static energy is given as $h$, | 
| 1030 |  |  | the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is | 
| 1031 |  |  | given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc}, | 
| 1032 |  |  | the description of the convective parameterization.  The fractional adjustment, or relaxation | 
| 1033 |  |  | parameter, for each cloud type is given as $\alpha$, while | 
| 1034 |  |  | $R$ is the rain re-evaporation adjustment. | 
| 1035 |  |  | \\ | 
| 1036 |  |  |  | 
| 1037 |  |  | \noindent | 
| 1038 |  |  | {\bf 19)  \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) } | 
| 1039 |  |  |  | 
| 1040 |  |  | \noindent | 
| 1041 |  |  | The net longwave heating rate is calculated as the vertical divergence of the | 
| 1042 |  |  | net terrestrial radiative fluxes. | 
| 1043 |  |  | Both the clear-sky and cloudy-sky longwave fluxes are computed within the | 
| 1044 |  |  | longwave routine. | 
| 1045 |  |  | The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first. | 
| 1046 |  |  | For a given cloud fraction, | 
| 1047 |  |  | the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$ | 
| 1048 |  |  | to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$, | 
| 1049 |  |  | for the upward and downward radiative fluxes. | 
| 1050 |  |  | (see Section \ref{sec:fizhi:radcloud}). | 
| 1051 |  |  | The cloudy-sky flux is then obtained as: | 
| 1052 |  |  |  | 
| 1053 |  |  | \noindent | 
| 1054 |  |  | \[ | 
| 1055 |  |  | F_{LW} = C(p,p') \cdot F^{clearsky}_{LW}, | 
| 1056 |  |  | \] | 
| 1057 |  |  |  | 
| 1058 |  |  | \noindent | 
| 1059 |  |  | Finally, the net longwave heating rate is calculated as the vertical divergence of the | 
| 1060 |  |  | net terrestrial radiative fluxes: | 
| 1061 |  |  | \[ | 
| 1062 |  |  | \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} , | 
| 1063 |  |  | \] | 
| 1064 |  |  | or | 
| 1065 |  |  | \[ | 
| 1066 |  |  | {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} . | 
| 1067 |  |  | \] | 
| 1068 |  |  |  | 
| 1069 |  |  | \noindent | 
| 1070 |  |  | where $g$ is the accelation due to gravity, | 
| 1071 |  |  | $c_p$ is the heat capacity of air at constant pressure, | 
| 1072 |  |  | and | 
| 1073 |  |  | \[ | 
| 1074 |  |  | F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow | 
| 1075 |  |  | \] | 
| 1076 |  |  | \\ | 
| 1077 |  |  |  | 
| 1078 |  |  |  | 
| 1079 |  |  | \noindent | 
| 1080 |  |  | {\bf 20)  \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) } | 
| 1081 |  |  |  | 
| 1082 |  |  | \noindent | 
| 1083 |  |  | The net Shortwave heating rate is calculated as the vertical divergence of the | 
| 1084 |  |  | net solar radiative fluxes. | 
| 1085 |  |  | The clear-sky and cloudy-sky shortwave fluxes are calculated separately. | 
| 1086 |  |  | For the clear-sky case, the shortwave fluxes and heating rates are computed with | 
| 1087 |  |  | both CLMO (maximum overlap cloud fraction) and | 
| 1088 |  |  | CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}). | 
| 1089 |  |  | The shortwave routine is then called a second time, for the cloudy-sky case, with the | 
| 1090 |  |  | true time-averaged cloud fractions CLMO | 
| 1091 |  |  | and CLRO being used.  In all cases, a normalized incident shortwave flux is used as | 
| 1092 |  |  | input at the top of the atmosphere. | 
| 1093 |  |  |  | 
| 1094 |  |  | \noindent | 
| 1095 |  |  | The heating rate due to Shortwave Radiation under cloudy skies is defined as: | 
| 1096 |  |  | \[ | 
| 1097 |  |  | \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT}, | 
| 1098 |  |  | \] | 
| 1099 |  |  | or | 
| 1100 |  |  | \[ | 
| 1101 |  |  | {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} . | 
| 1102 |  |  | \] | 
| 1103 |  |  |  | 
| 1104 |  |  | \noindent | 
| 1105 |  |  | where $g$ is the accelation due to gravity, | 
| 1106 |  |  | $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident | 
| 1107 |  |  | shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and | 
| 1108 |  |  | \[ | 
| 1109 |  |  | F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow | 
| 1110 |  |  | \] | 
| 1111 |  |  | \\ | 
| 1112 |  |  |  | 
| 1113 |  |  | \noindent | 
| 1114 |  |  | {\bf 21)  \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) } | 
| 1115 |  |  |  | 
| 1116 |  |  | \noindent | 
| 1117 |  |  | For a change in specific humidity due to moist processes, $\Delta q_{moist}$, | 
| 1118 |  |  | the vertical integral or total precipitable amount is given by: | 
| 1119 |  |  | \[ | 
| 1120 |  |  | {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta  q_{moist} | 
| 1121 |  |  | {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp | 
| 1122 |  |  | \] | 
| 1123 |  |  | \\ | 
| 1124 |  |  |  | 
| 1125 |  |  | \noindent | 
| 1126 |  |  | A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes | 
| 1127 |  |  | time step, scaled to $mm/day$. | 
| 1128 |  |  | \\ | 
| 1129 |  |  |  | 
| 1130 |  |  | \noindent | 
| 1131 |  |  | {\bf 22)  \underline {PRECON} Convective Precipition ($mm/day$) } | 
| 1132 |  |  |  | 
| 1133 |  |  | \noindent | 
| 1134 |  |  | For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$, | 
| 1135 |  |  | the vertical integral or total precipitable amount is given by: | 
| 1136 |  |  | \[ | 
| 1137 |  |  | {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta  q_{cum} | 
| 1138 |  |  | {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp | 
| 1139 |  |  | \] | 
| 1140 |  |  | \\ | 
| 1141 |  |  |  | 
| 1142 |  |  | \noindent | 
| 1143 |  |  | A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes | 
| 1144 |  |  | time step, scaled to $mm/day$. | 
| 1145 |  |  | \\ | 
| 1146 |  |  |  | 
| 1147 |  |  | \noindent | 
| 1148 |  |  | {\bf 23)  \underline {TUFLUX}  Turbulent Flux of U-Momentum ($Newton/m^2$) } | 
| 1149 |  |  |  | 
| 1150 |  |  | \noindent | 
| 1151 |  |  | The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes | 
| 1152 |  |  | \hspace{.2cm} only$ from the eddy coefficient for momentum: | 
| 1153 |  |  |  | 
| 1154 |  |  | \[ | 
| 1155 |  |  | {\bf TUFLUX} =  {\rho } {(\overline{u^{\prime}w^{\prime}})} = | 
| 1156 |  |  | {\rho } {(- K_m \pp{U}{z})} | 
| 1157 |  |  | \] | 
| 1158 |  |  |  | 
| 1159 |  |  | \noindent | 
| 1160 |  |  | where $\rho$ is the air density, and $K_m$ is the eddy coefficient. | 
| 1161 |  |  | \\ | 
| 1162 |  |  |  | 
| 1163 |  |  | \noindent | 
| 1164 |  |  | {\bf 24)  \underline {TVFLUX}  Turbulent Flux of V-Momentum ($Newton/m^2$) } | 
| 1165 |  |  |  | 
| 1166 |  |  | \noindent | 
| 1167 |  |  | The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes | 
| 1168 |  |  | \hspace{.2cm} only$ from the eddy coefficient for momentum: | 
| 1169 |  |  |  | 
| 1170 |  |  | \[ | 
| 1171 |  |  | {\bf TVFLUX} =  {\rho } {(\overline{v^{\prime}w^{\prime}})} = | 
| 1172 |  |  | {\rho } {(- K_m \pp{V}{z})} | 
| 1173 |  |  | \] | 
| 1174 |  |  |  | 
| 1175 |  |  | \noindent | 
| 1176 |  |  | where $\rho$ is the air density, and $K_m$ is the eddy coefficient. | 
| 1177 |  |  | \\ | 
| 1178 |  |  |  | 
| 1179 |  |  |  | 
| 1180 |  |  | \noindent | 
| 1181 |  |  | {\bf 25)  \underline {TTFLUX}  Turbulent Flux of Sensible Heat ($Watts/m^2$) } | 
| 1182 |  |  |  | 
| 1183 |  |  | \noindent | 
| 1184 |  |  | The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes | 
| 1185 |  |  | \hspace{.2cm} only$ from the eddy coefficient for heat and moisture: | 
| 1186 |  |  |  | 
| 1187 |  |  | \noindent | 
| 1188 |  |  | \[ | 
| 1189 |  |  | {\bf TTFLUX} = c_p {\rho } | 
| 1190 |  |  | P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})} | 
| 1191 |  |  | = c_p  {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})} | 
| 1192 |  |  | \] | 
| 1193 |  |  |  | 
| 1194 |  |  | \noindent | 
| 1195 |  |  | where $\rho$ is the air density, and $K_h$ is the eddy coefficient. | 
| 1196 |  |  | \\ | 
| 1197 |  |  |  | 
| 1198 |  |  |  | 
| 1199 |  |  | \noindent | 
| 1200 |  |  | {\bf 26)  \underline {TQFLUX}  Turbulent Flux of Latent Heat ($Watts/m^2$) } | 
| 1201 |  |  |  | 
| 1202 |  |  | \noindent | 
| 1203 |  |  | The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes | 
| 1204 |  |  | \hspace{.2cm} only$ from the eddy coefficient for heat and moisture: | 
| 1205 |  |  |  | 
| 1206 |  |  | \noindent | 
| 1207 |  |  | \[ | 
| 1208 |  |  | {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} = | 
| 1209 |  |  | {L {\rho }(- K_h \pp{q}{z})} | 
| 1210 |  |  | \] | 
| 1211 |  |  |  | 
| 1212 |  |  | \noindent | 
| 1213 |  |  | where $\rho$ is the air density, and $K_h$ is the eddy coefficient. | 
| 1214 |  |  | \\ | 
| 1215 |  |  |  | 
| 1216 |  |  |  | 
| 1217 |  |  | \noindent | 
| 1218 |  |  | {\bf 27)  \underline {CN}  Neutral Drag Coefficient ($dimensionless$) } | 
| 1219 |  |  |  | 
| 1220 |  |  | \noindent | 
| 1221 |  |  | The drag coefficient for momentum obtained by assuming a neutrally stable surface layer: | 
| 1222 |  |  | \[ | 
| 1223 |  |  | {\bf CN} = { k \over { \ln({h \over {z_0}})} } | 
| 1224 |  |  | \] | 
| 1225 |  |  |  | 
| 1226 |  |  | \noindent | 
| 1227 |  |  | where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and | 
| 1228 |  |  | $z_0$ is the surface roughness. | 
| 1229 |  |  |  | 
| 1230 |  |  | \noindent | 
| 1231 |  |  | NOTE: CN is not available through model version 5.3, but is available in subsequent | 
| 1232 |  |  | versions. | 
| 1233 |  |  | \\ | 
| 1234 |  |  |  | 
| 1235 |  |  | \noindent | 
| 1236 |  |  | {\bf 28)  \underline {WINDS}  Surface Wind Speed ($meter/sec$) } | 
| 1237 |  |  |  | 
| 1238 |  |  | \noindent | 
| 1239 |  |  | The surface wind speed is calculated for the last internal turbulence time step: | 
| 1240 |  |  | \[ | 
| 1241 |  |  | {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2} | 
| 1242 |  |  | \] | 
| 1243 |  |  |  | 
| 1244 |  |  | \noindent | 
| 1245 |  |  | where the subscript $Nrphys$ refers to the lowest model level. | 
| 1246 |  |  | \\ | 
| 1247 |  |  |  | 
| 1248 |  |  | \noindent | 
| 1249 |  |  | {\bf 29)  \underline {DTSRF}  Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) } | 
| 1250 |  |  |  | 
| 1251 |  |  | \noindent | 
| 1252 |  |  | The air/surface virtual temperature difference measures the stability of the surface layer: | 
| 1253 |  |  | \[ | 
| 1254 |  |  | {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf} | 
| 1255 |  |  | \] | 
| 1256 |  |  | \noindent | 
| 1257 |  |  | where | 
| 1258 |  |  | \[ | 
| 1259 |  |  | \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm} | 
| 1260 |  |  | and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys}) | 
| 1261 |  |  | \] | 
| 1262 |  |  |  | 
| 1263 |  |  | \noindent | 
| 1264 |  |  | $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans), | 
| 1265 |  |  | $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature | 
| 1266 |  |  | and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$ | 
| 1267 |  |  | refers to the surface. | 
| 1268 |  |  | \\ | 
| 1269 |  |  |  | 
| 1270 |  |  |  | 
| 1271 |  |  | \noindent | 
| 1272 |  |  | {\bf 30)  \underline {TG}  Ground Temperature ($deg \hspace{.1cm} K$) } | 
| 1273 |  |  |  | 
| 1274 |  |  | \noindent | 
| 1275 |  |  | The ground temperature equation is solved as part of the turbulence package | 
| 1276 |  |  | using a backward implicit time differencing scheme: | 
| 1277 |  |  | \[ | 
| 1278 |  |  | {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm} | 
| 1279 |  |  | C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE | 
| 1280 |  |  | \] | 
| 1281 |  |  |  | 
| 1282 |  |  | \noindent | 
| 1283 |  |  | where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the | 
| 1284 |  |  | net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through | 
| 1285 |  |  | sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat | 
| 1286 |  |  | flux, and $C_g$ is the total heat capacity of the ground. | 
| 1287 |  |  | $C_g$ is obtained by solving a heat diffusion equation | 
| 1288 |  |  | for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by: | 
| 1289 |  |  | \[ | 
| 1290 |  |  | C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3} | 
| 1291 |  |  | { 86400. \over {2 \pi} } } \, \, . | 
| 1292 |  |  | \] | 
| 1293 |  |  | \noindent | 
| 1294 |  |  | Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}} | 
| 1295 |  |  | {cm \over {^oK}}$, | 
| 1296 |  |  | the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided | 
| 1297 |  |  | by $2 \pi$ $radians/ | 
| 1298 |  |  | day$, and the expression for $C_s$, the heat capacity per unit volume at the surface, | 
| 1299 |  |  | is a function of the ground wetness, $W$. | 
| 1300 |  |  | \\ | 
| 1301 |  |  |  | 
| 1302 |  |  | \noindent | 
| 1303 |  |  | {\bf 31)  \underline {TS}  Surface Temperature ($deg \hspace{.1cm} K$) } | 
| 1304 |  |  |  | 
| 1305 |  |  | \noindent | 
| 1306 |  |  | The surface temperature estimate is made by assuming that the model's lowest | 
| 1307 |  |  | layer is well-mixed, and therefore that $\theta$ is constant in that layer. | 
| 1308 |  |  | The surface temperature is therefore: | 
| 1309 |  |  | \[ | 
| 1310 |  |  | {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf} | 
| 1311 |  |  | \] | 
| 1312 |  |  | \\ | 
| 1313 |  |  |  | 
| 1314 |  |  | \noindent | 
| 1315 |  |  | {\bf 32)  \underline {DTG}  Surface Temperature Adjustment ($deg \hspace{.1cm} K$) } | 
| 1316 |  |  |  | 
| 1317 |  |  | \noindent | 
| 1318 |  |  | The change in surface temperature from one turbulence time step to the next, solved | 
| 1319 |  |  | using the Ground Temperature Equation (see diagnostic number 30) is calculated: | 
| 1320 |  |  | \[ | 
| 1321 |  |  | {\bf DTG} = {T_g}^{n} - {T_g}^{n-1} | 
| 1322 |  |  | \] | 
| 1323 |  |  |  | 
| 1324 |  |  | \noindent | 
| 1325 |  |  | where superscript $n$ refers to the new, updated time level, and the superscript $n-1$ | 
| 1326 |  |  | refers to the value at the previous turbulence time level. | 
| 1327 |  |  | \\ | 
| 1328 |  |  |  | 
| 1329 |  |  | \noindent | 
| 1330 |  |  | {\bf 33)  \underline {QG}  Ground Specific Humidity ($g/kg$) } | 
| 1331 |  |  |  | 
| 1332 |  |  | \noindent | 
| 1333 |  |  | The ground specific humidity is obtained by interpolating between the specific | 
| 1334 |  |  | humidity at the lowest model level and the specific humidity of a saturated ground. | 
| 1335 |  |  | The interpolation is performed using the potential evapotranspiration function: | 
| 1336 |  |  | \[ | 
| 1337 |  |  | {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys}) | 
| 1338 |  |  | \] | 
| 1339 |  |  |  | 
| 1340 |  |  | \noindent | 
| 1341 |  |  | where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans), | 
| 1342 |  |  | and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface | 
| 1343 |  |  | pressure. | 
| 1344 |  |  | \\ | 
| 1345 |  |  |  | 
| 1346 |  |  | \noindent | 
| 1347 |  |  | {\bf 34)  \underline {QS}  Saturation Surface Specific Humidity ($g/kg$) } | 
| 1348 |  |  |  | 
| 1349 |  |  | \noindent | 
| 1350 |  |  | The surface saturation specific humidity is the saturation specific humidity at | 
| 1351 |  |  | the ground temprature and surface pressure: | 
| 1352 |  |  | \[ | 
| 1353 |  |  | {\bf QS} = q^*(T_g,P_s) | 
| 1354 |  |  | \] | 
| 1355 |  |  | \\ | 
| 1356 |  |  |  | 
| 1357 |  |  | \noindent | 
| 1358 |  |  | {\bf 35)  \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave | 
| 1359 |  |  | radiation subroutine (deg)} | 
| 1360 |  |  | \[ | 
| 1361 |  |  | {\bf TGRLW}  = T_g(\lambda , \phi ,n) | 
| 1362 |  |  | \] | 
| 1363 |  |  | \noindent | 
| 1364 |  |  | where $T_g$ is the model ground temperature at the current time step $n$. | 
| 1365 |  |  | \\ | 
| 1366 |  |  |  | 
| 1367 |  |  |  | 
| 1368 |  |  | \noindent | 
| 1369 |  |  | {\bf 36)  \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) } | 
| 1370 |  |  | \[ | 
| 1371 |  |  | {\bf ST4} = \sigma T^4 | 
| 1372 |  |  | \] | 
| 1373 |  |  | \noindent | 
| 1374 |  |  | where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature. | 
| 1375 |  |  | \\ | 
| 1376 |  |  |  | 
| 1377 |  |  | \noindent | 
| 1378 |  |  | {\bf 37)  \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) } | 
| 1379 |  |  | \[ | 
| 1380 |  |  | {\bf OLR}  =  F_{LW,top}^{NET} | 
| 1381 |  |  | \] | 
| 1382 |  |  | \noindent | 
| 1383 |  |  | where top indicates the top of the first model layer. | 
| 1384 |  |  | In the GCM, $p_{top}$ = 0.0 mb. | 
| 1385 |  |  | \\ | 
| 1386 |  |  |  | 
| 1387 |  |  |  | 
| 1388 |  |  | \noindent | 
| 1389 |  |  | {\bf 38)  \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) } | 
| 1390 |  |  | \[ | 
| 1391 |  |  | {\bf OLRCLR}  =  F(clearsky)_{LW,top}^{NET} | 
| 1392 |  |  | \] | 
| 1393 |  |  | \noindent | 
| 1394 |  |  | where top indicates the top of the first model layer. | 
| 1395 |  |  | In the GCM, $p_{top}$ = 0.0 mb. | 
| 1396 |  |  | \\ | 
| 1397 |  |  |  | 
| 1398 |  |  | \noindent | 
| 1399 |  |  | {\bf 39)  \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) } | 
| 1400 |  |  |  | 
| 1401 |  |  | \noindent | 
| 1402 |  |  | \begin{eqnarray*} | 
| 1403 |  |  | {\bf LWGCLR} & =  & F(clearsky)_{LW,Nrphys+1}^{Net} \\ | 
| 1404 |  |  | & =  & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow | 
| 1405 |  |  | \end{eqnarray*} | 
| 1406 |  |  | where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. | 
| 1407 |  |  | $F(clearsky)_{LW}^\uparrow$ is | 
| 1408 |  |  | the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux. | 
| 1409 |  |  | \\ | 
| 1410 |  |  |  | 
| 1411 |  |  | \noindent | 
| 1412 |  |  | {\bf 40)  \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) } | 
| 1413 |  |  |  | 
| 1414 |  |  | \noindent | 
| 1415 |  |  | The net longwave heating rate is calculated as the vertical divergence of the | 
| 1416 |  |  | net terrestrial radiative fluxes. | 
| 1417 |  |  | Both the clear-sky and cloudy-sky longwave fluxes are computed within the | 
| 1418 |  |  | longwave routine. | 
| 1419 |  |  | The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first. | 
| 1420 |  |  | For a given cloud fraction, | 
| 1421 |  |  | the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$ | 
| 1422 |  |  | to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$, | 
| 1423 |  |  | for the upward and downward radiative fluxes. | 
| 1424 |  |  | (see Section \ref{sec:fizhi:radcloud}). | 
| 1425 |  |  | The cloudy-sky flux is then obtained as: | 
| 1426 |  |  |  | 
| 1427 |  |  | \noindent | 
| 1428 |  |  | \[ | 
| 1429 |  |  | F_{LW} = C(p,p') \cdot F^{clearsky}_{LW}, | 
| 1430 |  |  | \] | 
| 1431 |  |  |  | 
| 1432 |  |  | \noindent | 
| 1433 |  |  | Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the | 
| 1434 |  |  | vertical divergence of the | 
| 1435 |  |  | clear-sky longwave radiative flux: | 
| 1436 |  |  | \[ | 
| 1437 |  |  | \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} , | 
| 1438 |  |  | \] | 
| 1439 |  |  | or | 
| 1440 |  |  | \[ | 
| 1441 |  |  | {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} . | 
| 1442 |  |  | \] | 
| 1443 |  |  |  | 
| 1444 |  |  | \noindent | 
| 1445 |  |  | where $g$ is the accelation due to gravity, | 
| 1446 |  |  | $c_p$ is the heat capacity of air at constant pressure, | 
| 1447 |  |  | and | 
| 1448 |  |  | \[ | 
| 1449 |  |  | F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow | 
| 1450 |  |  | \] | 
| 1451 |  |  | \\ | 
| 1452 |  |  |  | 
| 1453 |  |  |  | 
| 1454 |  |  | \noindent | 
| 1455 |  |  | {\bf 41)  \underline {TLW} Instantaneous temperature used as input to the Longwave | 
| 1456 |  |  | radiation subroutine (deg)} | 
| 1457 |  |  | \[ | 
| 1458 |  |  | {\bf TLW}  = T(\lambda , \phi ,level, n) | 
| 1459 |  |  | \] | 
| 1460 |  |  | \noindent | 
| 1461 |  |  | where $T$ is the model temperature at the current time step $n$. | 
| 1462 |  |  | \\ | 
| 1463 |  |  |  | 
| 1464 |  |  |  | 
| 1465 |  |  | \noindent | 
| 1466 |  |  | {\bf 42)  \underline {SHLW} Instantaneous specific humidity used as input to | 
| 1467 |  |  | the Longwave radiation subroutine (kg/kg)} | 
| 1468 |  |  | \[ | 
| 1469 |  |  | {\bf SHLW}  = q(\lambda , \phi , level , n) | 
| 1470 |  |  | \] | 
| 1471 |  |  | \noindent | 
| 1472 |  |  | where $q$ is the model specific humidity at the current time step $n$. | 
| 1473 |  |  | \\ | 
| 1474 |  |  |  | 
| 1475 |  |  |  | 
| 1476 |  |  | \noindent | 
| 1477 |  |  | {\bf 43)  \underline {OZLW} Instantaneous ozone used as input to | 
| 1478 |  |  | the Longwave radiation subroutine (kg/kg)} | 
| 1479 |  |  | \[ | 
| 1480 |  |  | {\bf OZLW}  = {\rm OZ}(\lambda , \phi , level , n) | 
| 1481 |  |  | \] | 
| 1482 |  |  | \noindent | 
| 1483 |  |  | where $\rm OZ$ is the interpolated ozone data set from the climatological monthly | 
| 1484 |  |  | mean zonally averaged ozone data set. | 
| 1485 |  |  | \\ | 
| 1486 |  |  |  | 
| 1487 |  |  |  | 
| 1488 |  |  | \noindent | 
| 1489 |  |  | {\bf 44) \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) } | 
| 1490 |  |  |  | 
| 1491 |  |  | \noindent | 
| 1492 |  |  | {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed | 
| 1493 |  |  | Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm.  These are | 
| 1494 |  |  | convective clouds whose radiative characteristics are assumed to be correlated in the vertical. | 
| 1495 |  |  | For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. | 
| 1496 |  |  | \[ | 
| 1497 |  |  | {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi,  level ) | 
| 1498 |  |  | \] | 
| 1499 |  |  | \\ | 
| 1500 |  |  |  | 
| 1501 |  |  |  | 
| 1502 |  |  | {\bf 45) \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) } | 
| 1503 |  |  |  | 
| 1504 |  |  | {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed | 
| 1505 |  |  | Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave | 
| 1506 |  |  | Radiation packages. | 
| 1507 |  |  | For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. | 
| 1508 |  |  | \[ | 
| 1509 |  |  | {\bf CLDTOT} = F_{RAS} + F_{LS} | 
| 1510 |  |  | \] | 
| 1511 |  |  | \\ | 
| 1512 |  |  | where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the | 
| 1513 |  |  | time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes. | 
| 1514 |  |  | \\ | 
| 1515 |  |  |  | 
| 1516 |  |  |  | 
| 1517 |  |  | \noindent | 
| 1518 |  |  | {\bf 46) \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) } | 
| 1519 |  |  |  | 
| 1520 |  |  | \noindent | 
| 1521 |  |  | {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed | 
| 1522 |  |  | Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm.  These are | 
| 1523 |  |  | convective clouds whose radiative characteristics are assumed to be correlated in the vertical. | 
| 1524 |  |  | For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. | 
| 1525 |  |  | \[ | 
| 1526 |  |  | {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi,  level ) | 
| 1527 |  |  | \] | 
| 1528 |  |  | \\ | 
| 1529 |  |  |  | 
| 1530 |  |  | \noindent | 
| 1531 |  |  | {\bf 47) \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) } | 
| 1532 |  |  |  | 
| 1533 |  |  | \noindent | 
| 1534 |  |  | {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed | 
| 1535 |  |  | Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave | 
| 1536 |  |  | Radiation algorithm.  These are | 
| 1537 |  |  | convective and large-scale clouds whose radiative characteristics are not | 
| 1538 |  |  | assumed to be correlated in the vertical. | 
| 1539 |  |  | For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. | 
| 1540 |  |  | \[ | 
| 1541 |  |  | {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi,  level ) | 
| 1542 |  |  | \] | 
| 1543 |  |  | \\ | 
| 1544 |  |  |  | 
| 1545 |  |  | \noindent | 
| 1546 |  |  | {\bf 48)  \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) } | 
| 1547 |  |  | \[ | 
| 1548 |  |  | {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z | 
| 1549 |  |  | \] | 
| 1550 |  |  | \noindent | 
| 1551 |  |  | where $S_0$, is the extra-terrestial solar contant, | 
| 1552 |  |  | $R_a$ is the earth-sun distance in Astronomical Units, | 
| 1553 |  |  | and $cos \phi_z$ is the cosine of the zenith angle. | 
| 1554 |  |  | It should be noted that {\bf RADSWT}, as well as | 
| 1555 |  |  | {\bf OSR} and {\bf OSRCLR}, | 
| 1556 |  |  | are calculated at the top of the atmosphere (p=0 mb).  However, the | 
| 1557 |  |  | {\bf OLR} and {\bf OLRCLR} diagnostics are currently | 
| 1558 |  |  | calculated at $p= p_{top}$ (0.0 mb for the GCM). | 
| 1559 |  |  | \\ | 
| 1560 |  |  |  | 
| 1561 |  |  | \noindent | 
| 1562 |  |  | {\bf 49)  \underline {EVAP}  Surface Evaporation ($mm/day$) } | 
| 1563 |  |  |  | 
| 1564 |  |  | \noindent | 
| 1565 |  |  | The surface evaporation is a function of the gradient of moisture, the potential | 
| 1566 |  |  | evapotranspiration fraction and the eddy exchange coefficient: | 
| 1567 |  |  | \[ | 
| 1568 |  |  | {\bf EVAP} =  \rho \beta K_{h} (q_{surface} - q_{Nrphys}) | 
| 1569 |  |  | \] | 
| 1570 |  |  | where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of | 
| 1571 |  |  | the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the | 
| 1572 |  |  | turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and | 
| 1573 |  |  | $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic | 
| 1574 |  |  | number 34) and at the bottom model level, respectively. | 
| 1575 |  |  | \\ | 
| 1576 |  |  |  | 
| 1577 |  |  | \noindent | 
| 1578 |  |  | {\bf 50)  \underline {DUDT} Total Zonal U-Wind Tendency  ($m/sec/day$) } | 
| 1579 |  |  |  | 
| 1580 |  |  | \noindent | 
| 1581 |  |  | {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic, | 
| 1582 |  |  | and Analysis forcing. | 
| 1583 |  |  | \[ | 
| 1584 |  |  | {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis} | 
| 1585 |  |  | \] | 
| 1586 |  |  | \\ | 
| 1587 |  |  |  | 
| 1588 |  |  | \noindent | 
| 1589 |  |  | {\bf 51)  \underline {DVDT} Total Zonal V-Wind Tendency  ($m/sec/day$) } | 
| 1590 |  |  |  | 
| 1591 |  |  | \noindent | 
| 1592 |  |  | {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic, | 
| 1593 |  |  | and Analysis forcing. | 
| 1594 |  |  | \[ | 
| 1595 |  |  | {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis} | 
| 1596 |  |  | \] | 
| 1597 |  |  | \\ | 
| 1598 |  |  |  | 
| 1599 |  |  | \noindent | 
| 1600 |  |  | {\bf 52)  \underline {DTDT} Total Temperature Tendency  ($deg/day$) } | 
| 1601 |  |  |  | 
| 1602 |  |  | \noindent | 
| 1603 |  |  | {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic, | 
| 1604 |  |  | and Analysis forcing. | 
| 1605 |  |  | \begin{eqnarray*} | 
| 1606 |  |  | {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\ | 
| 1607 |  |  | & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis} | 
| 1608 |  |  | \end{eqnarray*} | 
| 1609 |  |  | \\ | 
| 1610 |  |  |  | 
| 1611 |  |  | \noindent | 
| 1612 |  |  | {\bf 53)  \underline {DQDT} Total Specific Humidity Tendency  ($g/kg/day$) } | 
| 1613 |  |  |  | 
| 1614 |  |  | \noindent | 
| 1615 |  |  | {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic, | 
| 1616 |  |  | and Analysis forcing. | 
| 1617 |  |  | \[ | 
| 1618 |  |  | {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes} | 
| 1619 |  |  | + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis} | 
| 1620 |  |  | \] | 
| 1621 |  |  | \\ | 
| 1622 |  |  |  | 
| 1623 |  |  | \noindent | 
| 1624 |  |  | {\bf 54)  \underline {USTAR}  Surface-Stress Velocity ($m/sec$) } | 
| 1625 |  |  |  | 
| 1626 |  |  | \noindent | 
| 1627 |  |  | The surface stress velocity, or the friction velocity, is the wind speed at | 
| 1628 |  |  | the surface layer top impeded by the surface drag: | 
| 1629 |  |  | \[ | 
| 1630 |  |  | {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm} | 
| 1631 |  |  | C_u = {k \over {\psi_m} } | 
| 1632 |  |  | \] | 
| 1633 |  |  |  | 
| 1634 |  |  | \noindent | 
| 1635 |  |  | $C_u$ is the non-dimensional surface drag coefficient (see diagnostic | 
| 1636 |  |  | number 10), and $W_s$ is the surface wind speed (see diagnostic number 28). | 
| 1637 |  |  |  | 
| 1638 |  |  | \noindent | 
| 1639 |  |  | {\bf 55)  \underline {Z0}  Surface Roughness Length ($m$) } | 
| 1640 |  |  |  | 
| 1641 |  |  | \noindent | 
| 1642 |  |  | Over the land surface, the surface roughness length is interpolated to the local | 
| 1643 |  |  | time from the monthly mean data of Dorman and Sellers (1989). Over the ocean, | 
| 1644 |  |  | the roughness length is a function of the surface-stress velocity, $u_*$. | 
| 1645 |  |  | \[ | 
| 1646 |  |  | {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}} | 
| 1647 |  |  | \] | 
| 1648 |  |  |  | 
| 1649 |  |  | \noindent | 
| 1650 |  |  | where the constants are chosen to interpolate between the reciprocal relation of | 
| 1651 |  |  | Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981) | 
| 1652 |  |  | for moderate to large winds. | 
| 1653 |  |  | \\ | 
| 1654 |  |  |  | 
| 1655 |  |  | \noindent | 
| 1656 |  |  | {\bf 56)  \underline {FRQTRB}  Frequency of Turbulence ($0-1$) } | 
| 1657 |  |  |  | 
| 1658 |  |  | \noindent | 
| 1659 |  |  | The fraction of time when turbulence is present is defined as the fraction of | 
| 1660 |  |  | time when the turbulent kinetic energy exceeds some minimum value, defined here | 
| 1661 |  |  | to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is | 
| 1662 |  |  | incremented. The fraction over the averaging interval is reported. | 
| 1663 |  |  | \\ | 
| 1664 |  |  |  | 
| 1665 |  |  | \noindent | 
| 1666 |  |  | {\bf 57)  \underline {PBL}  Planetary Boundary Layer Depth ($mb$) } | 
| 1667 |  |  |  | 
| 1668 |  |  | \noindent | 
| 1669 |  |  | The depth of the PBL is defined by the turbulence parameterization to be the | 
| 1670 |  |  | depth at which the turbulent kinetic energy reduces to ten percent of its surface | 
| 1671 |  |  | value. | 
| 1672 |  |  |  | 
| 1673 |  |  | \[ | 
| 1674 |  |  | {\bf PBL} = P_{PBL} - P_{surface} | 
| 1675 |  |  | \] | 
| 1676 |  |  |  | 
| 1677 |  |  | \noindent | 
| 1678 |  |  | where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy | 
| 1679 |  |  | reaches one tenth of its surface value, and $P_s$ is the surface pressure. | 
| 1680 |  |  | \\ | 
| 1681 |  |  |  | 
| 1682 |  |  | \noindent | 
| 1683 |  |  | {\bf 58)  \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) } | 
| 1684 |  |  |  | 
| 1685 |  |  | \noindent | 
| 1686 |  |  | The net Shortwave heating rate is calculated as the vertical divergence of the | 
| 1687 |  |  | net solar radiative fluxes. | 
| 1688 |  |  | The clear-sky and cloudy-sky shortwave fluxes are calculated separately. | 
| 1689 |  |  | For the clear-sky case, the shortwave fluxes and heating rates are computed with | 
| 1690 |  |  | both CLMO (maximum overlap cloud fraction) and | 
| 1691 |  |  | CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}). | 
| 1692 |  |  | The shortwave routine is then called a second time, for the cloudy-sky case, with the | 
| 1693 |  |  | true time-averaged cloud fractions CLMO | 
| 1694 |  |  | and CLRO being used.  In all cases, a normalized incident shortwave flux is used as | 
| 1695 |  |  | input at the top of the atmosphere. | 
| 1696 |  |  |  | 
| 1697 |  |  | \noindent | 
| 1698 |  |  | The heating rate due to Shortwave Radiation under clear skies is defined as: | 
| 1699 |  |  | \[ | 
| 1700 |  |  | \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT}, | 
| 1701 |  |  | \] | 
| 1702 |  |  | or | 
| 1703 |  |  | \[ | 
| 1704 |  |  | {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} . | 
| 1705 |  |  | \] | 
| 1706 |  |  |  | 
| 1707 |  |  | \noindent | 
| 1708 |  |  | where $g$ is the accelation due to gravity, | 
| 1709 |  |  | $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident | 
| 1710 |  |  | shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and | 
| 1711 |  |  | \[ | 
| 1712 |  |  | F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow | 
| 1713 |  |  | \] | 
| 1714 |  |  | \\ | 
| 1715 |  |  |  | 
| 1716 |  |  | \noindent | 
| 1717 |  |  | {\bf 59)  \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) } | 
| 1718 |  |  | \[ | 
| 1719 |  |  | {\bf OSR}  =  F_{SW,top}^{NET} | 
| 1720 |  |  | \] | 
| 1721 |  |  | \noindent | 
| 1722 |  |  | where top indicates the top of the first model layer used in the shortwave radiation | 
| 1723 |  |  | routine. | 
| 1724 |  |  | In the GCM, $p_{SW_{top}}$ = 0 mb. | 
| 1725 |  |  | \\ | 
| 1726 |  |  |  | 
| 1727 |  |  | \noindent | 
| 1728 |  |  | {\bf 60)  \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) } | 
| 1729 |  |  | \[ | 
| 1730 |  |  | {\bf OSRCLR}  =  F(clearsky)_{SW,top}^{NET} | 
| 1731 |  |  | \] | 
| 1732 |  |  | \noindent | 
| 1733 |  |  | where top indicates the top of the first model layer used in the shortwave radiation | 
| 1734 |  |  | routine. | 
| 1735 |  |  | In the GCM, $p_{SW_{top}}$ = 0 mb. | 
| 1736 |  |  | \\ | 
| 1737 |  |  |  | 
| 1738 |  |  |  | 
| 1739 |  |  | \noindent | 
| 1740 |  |  | {\bf 61)  \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) } | 
| 1741 |  |  |  | 
| 1742 |  |  | \noindent | 
| 1743 |  |  | The amount of cloud mass moved per RAS timestep from all convective clouds is written: | 
| 1744 |  |  | \[ | 
| 1745 |  |  | {\bf CLDMAS} = \eta m_B | 
| 1746 |  |  | \] | 
| 1747 |  |  | where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is | 
| 1748 |  |  | the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the | 
| 1749 |  |  | description of the convective parameterization. | 
| 1750 |  |  | \\ | 
| 1751 |  |  |  | 
| 1752 |  |  |  | 
| 1753 |  |  |  | 
| 1754 |  |  | \noindent | 
| 1755 |  |  | {\bf 62)  \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) } | 
| 1756 |  |  |  | 
| 1757 |  |  | \noindent | 
| 1758 |  |  | The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over | 
| 1759 |  |  | the {\bf NUAVE} output frequency.  This is contrasted to the instantaneous | 
| 1760 |  |  | Zonal U-Wind which is archived on the Prognostic Output data stream. | 
| 1761 |  |  | \[ | 
| 1762 |  |  | {\bf UAVE} = u(\lambda, \phi, level , t) | 
| 1763 |  |  | \] | 
| 1764 |  |  | \\ | 
| 1765 |  |  | Note, {\bf UAVE} is computed and stored on the staggered C-grid. | 
| 1766 |  |  | \\ | 
| 1767 |  |  |  | 
| 1768 |  |  | \noindent | 
| 1769 |  |  | {\bf 63)  \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) } | 
| 1770 |  |  |  | 
| 1771 |  |  | \noindent | 
| 1772 |  |  | The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over | 
| 1773 |  |  | the {\bf NVAVE} output frequency.  This is contrasted to the instantaneous | 
| 1774 |  |  | Meridional V-Wind which is archived on the Prognostic Output data stream. | 
| 1775 |  |  | \[ | 
| 1776 |  |  | {\bf VAVE} = v(\lambda, \phi, level , t) | 
| 1777 |  |  | \] | 
| 1778 |  |  | \\ | 
| 1779 |  |  | Note, {\bf VAVE} is computed and stored on the staggered C-grid. | 
| 1780 |  |  | \\ | 
| 1781 |  |  |  | 
| 1782 |  |  | \noindent | 
| 1783 |  |  | {\bf 64)  \underline {TAVE} Time-Averaged Temperature ($Kelvin$) } | 
| 1784 |  |  |  | 
| 1785 |  |  | \noindent | 
| 1786 |  |  | The diagnostic {\bf TAVE} is simply the time-averaged Temperature over | 
| 1787 |  |  | the {\bf NTAVE} output frequency.  This is contrasted to the instantaneous | 
| 1788 |  |  | Temperature which is archived on the Prognostic Output data stream. | 
| 1789 |  |  | \[ | 
| 1790 |  |  | {\bf TAVE} = T(\lambda, \phi, level , t) | 
| 1791 |  |  | \] | 
| 1792 |  |  | \\ | 
| 1793 |  |  |  | 
| 1794 |  |  | \noindent | 
| 1795 |  |  | {\bf 65)  \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) } | 
| 1796 |  |  |  | 
| 1797 |  |  | \noindent | 
| 1798 |  |  | The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over | 
| 1799 |  |  | the {\bf NQAVE} output frequency.  This is contrasted to the instantaneous | 
| 1800 |  |  | Specific Humidity which is archived on the Prognostic Output data stream. | 
| 1801 |  |  | \[ | 
| 1802 |  |  | {\bf QAVE} = q(\lambda, \phi, level , t) | 
| 1803 |  |  | \] | 
| 1804 |  |  | \\ | 
| 1805 |  |  |  | 
| 1806 |  |  | \noindent | 
| 1807 |  |  | {\bf 66)  \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) } | 
| 1808 |  |  |  | 
| 1809 |  |  | \noindent | 
| 1810 |  |  | The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over | 
| 1811 |  |  | the {\bf NPAVE} output frequency.  This is contrasted to the instantaneous | 
| 1812 |  |  | Surface Pressure - PTOP which is archived on the Prognostic Output data stream. | 
| 1813 |  |  | \begin{eqnarray*} | 
| 1814 |  |  | {\bf PAVE} & =  & \pi(\lambda, \phi, level , t) \\ | 
| 1815 |  |  | & =  & p_s(\lambda, \phi, level , t) - p_T | 
| 1816 |  |  | \end{eqnarray*} | 
| 1817 |  |  | \\ | 
| 1818 |  |  |  | 
| 1819 |  |  |  | 
| 1820 |  |  | \noindent | 
| 1821 |  |  | {\bf 67)  \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ } | 
| 1822 |  |  |  | 
| 1823 |  |  | \noindent | 
| 1824 |  |  | The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy | 
| 1825 |  |  | produced by the GCM Turbulence parameterization over | 
| 1826 |  |  | the {\bf NQQAVE} output frequency.  This is contrasted to the instantaneous | 
| 1827 |  |  | Turbulent Kinetic Energy which is archived on the Prognostic Output data stream. | 
| 1828 |  |  | \[ | 
| 1829 |  |  | {\bf QQAVE} = qq(\lambda, \phi, level , t) | 
| 1830 |  |  | \] | 
| 1831 |  |  | \\ | 
| 1832 |  |  | Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid. | 
| 1833 |  |  | \\ | 
| 1834 |  |  |  | 
| 1835 |  |  | \noindent | 
| 1836 |  |  | {\bf 68)  \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) } | 
| 1837 |  |  |  | 
| 1838 |  |  | \noindent | 
| 1839 |  |  | \begin{eqnarray*} | 
| 1840 |  |  | {\bf SWGCLR} & =  & F(clearsky)_{SW,Nrphys+1}^{Net} \\ | 
| 1841 |  |  | & =  & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow | 
| 1842 |  |  | \end{eqnarray*} | 
| 1843 |  |  | \noindent | 
| 1844 |  |  | \\ | 
| 1845 |  |  | where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. | 
| 1846 |  |  | $F(clearsky){SW}^\downarrow$ is | 
| 1847 |  |  | the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is | 
| 1848 |  |  | the upward clearsky Shortwave flux. | 
| 1849 |  |  | \\ | 
| 1850 |  |  |  | 
| 1851 |  |  | \noindent | 
| 1852 |  |  | {\bf 69)  \underline {SDIAG1} User-Defined Surface Diagnostic-1 } | 
| 1853 |  |  |  | 
| 1854 |  |  | \noindent | 
| 1855 |  |  | The GCM provides Users with a built-in mechanism for archiving user-defined | 
| 1856 |  |  | diagnostics.  The generic diagnostic array QDIAG located in COMMON /DIAG/, and the associated | 
| 1857 |  |  | diagnostic counters and pointers located in COMMON /DIAGP/, | 
| 1858 |  |  | must be accessable in order to use the user-defined diagnostics (see Section \ref{sec:diagnostics:diagover}). | 
| 1859 |  |  | A convenient method for incorporating all necessary COMMON files is to | 
| 1860 |  |  | include the GCM {\em vstate.com} file in the routine which employs the | 
| 1861 |  |  | user-defined diagnostics. | 
| 1862 |  |  |  | 
| 1863 |  |  | \noindent | 
| 1864 |  |  | In addition to enabling the user-defined diagnostic (ie., CALL SETDIAG(84)), the User must fill | 
| 1865 |  |  | the QDIAG array with the desired quantity within the User's | 
| 1866 |  |  | application program or within modified GCM subroutines, as well as increment | 
| 1867 |  |  | the diagnostic counter at the time when the diagnostic is updated. | 
| 1868 |  |  | The QDIAG location index for {\bf SDIAG1} and its corresponding counter is | 
| 1869 |  |  | automatically defined as {\bf ISDIAG1} and {\bf NSDIAG1}, respectively, after the | 
| 1870 |  |  | diagnostic has been enabled. | 
| 1871 |  |  | The syntax for its use is given by | 
| 1872 |  |  | \begin{verbatim} | 
| 1873 |  |  | do j=1,jm | 
| 1874 |  |  | do i=1,im | 
| 1875 |  |  | qdiag(i,j,ISDIAG1) = qdiag(i,j,ISDIAG1) + ... | 
| 1876 |  |  | enddo | 
| 1877 |  |  | enddo | 
| 1878 |  |  |  | 
| 1879 |  |  | NSDIAG1 = NSDIAG1 + 1 | 
| 1880 |  |  | \end{verbatim} | 
| 1881 |  |  | The diagnostics defined in this manner will automatically be archived by the output routines. | 
| 1882 |  |  | \\ | 
| 1883 |  |  |  | 
| 1884 |  |  | \noindent | 
| 1885 |  |  | {\bf 70)  \underline {SDIAG2} User-Defined Surface Diagnostic-2 } | 
| 1886 |  |  |  | 
| 1887 |  |  | \noindent | 
| 1888 |  |  | The GCM provides Users with a built-in mechanism for archiving user-defined | 
| 1889 |  |  | diagnostics.  For a complete description refer to Diagnostic \#84. | 
| 1890 |  |  | The syntax for using the surface SDIAG2 diagnostic is given by | 
| 1891 |  |  | \begin{verbatim} | 
| 1892 |  |  | do j=1,jm | 
| 1893 |  |  | do i=1,im | 
| 1894 |  |  | qdiag(i,j,ISDIAG2) = qdiag(i,j,ISDIAG2) + ... | 
| 1895 |  |  | enddo | 
| 1896 |  |  | enddo | 
| 1897 |  |  |  | 
| 1898 |  |  | NSDIAG2 = NSDIAG2 + 1 | 
| 1899 |  |  | \end{verbatim} | 
| 1900 |  |  | The diagnostics defined in this manner will automatically be archived by the output routines. | 
| 1901 |  |  | \\ | 
| 1902 |  |  |  | 
| 1903 |  |  | \noindent | 
| 1904 |  |  | {\bf 71)  \underline {UDIAG1} User-Defined Upper-Air Diagnostic-1 } | 
| 1905 |  |  |  | 
| 1906 |  |  | \noindent | 
| 1907 |  |  | The GCM provides Users with a built-in mechanism for archiving user-defined | 
| 1908 |  |  | diagnostics.  For a complete description refer to Diagnostic \#84. | 
| 1909 |  |  | The syntax for using the upper-air UDIAG1 diagnostic is given by | 
| 1910 |  |  | \begin{verbatim} | 
| 1911 |  |  | do L=1,Nrphys | 
| 1912 |  |  | do j=1,jm | 
| 1913 |  |  | do i=1,im | 
| 1914 |  |  | qdiag(i,j,IUDIAG1+L-1) = qdiag(i,j,IUDIAG1+L-1) + ... | 
| 1915 |  |  | enddo | 
| 1916 |  |  | enddo | 
| 1917 |  |  | enddo | 
| 1918 |  |  |  | 
| 1919 |  |  | NUDIAG1 = NUDIAG1 + 1 | 
| 1920 |  |  | \end{verbatim} | 
| 1921 |  |  | The diagnostics defined in this manner will automatically be archived by the | 
| 1922 |  |  | output programs. | 
| 1923 |  |  | \\ | 
| 1924 |  |  |  | 
| 1925 |  |  | \noindent | 
| 1926 |  |  | {\bf 72)  \underline {UDIAG2} User-Defined Upper-Air Diagnostic-2 } | 
| 1927 |  |  |  | 
| 1928 |  |  | \noindent | 
| 1929 |  |  | The GCM provides Users with a built-in mechanism for archiving user-defined | 
| 1930 |  |  | diagnostics.  For a complete description refer to Diagnostic \#84. | 
| 1931 |  |  | The syntax for using the upper-air UDIAG2 diagnostic is given by | 
| 1932 |  |  | \begin{verbatim} | 
| 1933 |  |  | do L=1,Nrphys | 
| 1934 |  |  | do j=1,jm | 
| 1935 |  |  | do i=1,im | 
| 1936 |  |  | qdiag(i,j,IUDIAG2+L-1) = qdiag(i,j,IUDIAG2+L-1) + ... | 
| 1937 |  |  | enddo | 
| 1938 |  |  | enddo | 
| 1939 |  |  | enddo | 
| 1940 |  |  |  | 
| 1941 |  |  | NUDIAG2 = NUDIAG2 + 1 | 
| 1942 |  |  | \end{verbatim} | 
| 1943 |  |  | The diagnostics defined in this manner will automatically be archived by the | 
| 1944 |  |  | output programs. | 
| 1945 |  |  | \\ | 
| 1946 |  |  |  | 
| 1947 |  |  |  | 
| 1948 |  |  | \noindent | 
| 1949 |  |  | {\bf 73)  \underline {DIABU} Total Diabatic Zonal U-Wind Tendency  ($m/sec/day$) } | 
| 1950 |  |  |  | 
| 1951 |  |  | \noindent | 
| 1952 |  |  | {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes | 
| 1953 |  |  | and the Analysis forcing. | 
| 1954 |  |  | \[ | 
| 1955 |  |  | {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis} | 
| 1956 |  |  | \] | 
| 1957 |  |  | \\ | 
| 1958 |  |  |  | 
| 1959 |  |  | \noindent | 
| 1960 |  |  | {\bf 74)  \underline {DIABV} Total Diabatic Meridional V-Wind Tendency  ($m/sec/day$) } | 
| 1961 |  |  |  | 
| 1962 |  |  | \noindent | 
| 1963 |  |  | {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes | 
| 1964 |  |  | and the Analysis forcing. | 
| 1965 |  |  | \[ | 
| 1966 |  |  | {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis} | 
| 1967 |  |  | \] | 
| 1968 |  |  | \\ | 
| 1969 |  |  |  | 
| 1970 |  |  | \noindent | 
| 1971 |  |  | {\bf 75)  \underline {DIABT} Total Diabatic Temperature Tendency  ($deg/day$) } | 
| 1972 |  |  |  | 
| 1973 |  |  | \noindent | 
| 1974 |  |  | {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes | 
| 1975 |  |  | and the Analysis forcing. | 
| 1976 |  |  | \begin{eqnarray*} | 
| 1977 |  |  | {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\ | 
| 1978 |  |  | & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis} | 
| 1979 |  |  | \end{eqnarray*} | 
| 1980 |  |  | \\ | 
| 1981 |  |  | If we define the time-tendency of Temperature due to Diabatic processes as | 
| 1982 |  |  | \begin{eqnarray*} | 
| 1983 |  |  | \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\ | 
| 1984 |  |  | & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} | 
| 1985 |  |  | \end{eqnarray*} | 
| 1986 |  |  | then, since there are no surface pressure changes due to Diabatic processes, we may write | 
| 1987 |  |  | \[ | 
| 1988 |  |  | \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic} | 
| 1989 |  |  | \] | 
| 1990 |  |  | where $\theta = T/p^\kappa$.  Thus, {\bf DIABT} may be written as | 
| 1991 |  |  | \[ | 
| 1992 |  |  | {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right) | 
| 1993 |  |  | \] | 
| 1994 |  |  | \\ | 
| 1995 |  |  |  | 
| 1996 |  |  | \noindent | 
| 1997 |  |  | {\bf 76)  \underline {DIABQ} Total Diabatic Specific Humidity Tendency  ($g/kg/day$) } | 
| 1998 |  |  |  | 
| 1999 |  |  | \noindent | 
| 2000 |  |  | {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes | 
| 2001 |  |  | and the Analysis forcing. | 
| 2002 |  |  | \[ | 
| 2003 |  |  | {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis} | 
| 2004 |  |  | \] | 
| 2005 |  |  | If we define the time-tendency of Specific Humidity due to Diabatic processes as | 
| 2006 |  |  | \[ | 
| 2007 |  |  | \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} | 
| 2008 |  |  | \] | 
| 2009 |  |  | then, since there are no surface pressure changes due to Diabatic processes, we may write | 
| 2010 |  |  | \[ | 
| 2011 |  |  | \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic} | 
| 2012 |  |  | \] | 
| 2013 |  |  | Thus, {\bf DIABQ} may be written as | 
| 2014 |  |  | \[ | 
| 2015 |  |  | {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right) | 
| 2016 |  |  | \] | 
| 2017 |  |  | \\ | 
| 2018 |  |  |  | 
| 2019 |  |  | \noindent | 
| 2020 |  |  | {\bf 77)  \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) } | 
| 2021 |  |  |  | 
| 2022 |  |  | \noindent | 
| 2023 |  |  | The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating | 
| 2024 |  |  | $u q$ over the depth of the atmosphere at each model timestep, | 
| 2025 |  |  | and dividing by the total mass of the column. | 
| 2026 |  |  | \[ | 
| 2027 |  |  | {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz  } { \int_{surf}^{top} \rho dz  } | 
| 2028 |  |  | \] | 
| 2029 |  |  | Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have | 
| 2030 |  |  | \[ | 
| 2031 |  |  | {\bf VINTUQ} = { \int_0^1 u q dp  } | 
| 2032 |  |  | \] | 
| 2033 |  |  | \\ | 
| 2034 |  |  |  | 
| 2035 |  |  |  | 
| 2036 |  |  | \noindent | 
| 2037 |  |  | {\bf 78)  \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) } | 
| 2038 |  |  |  | 
| 2039 |  |  | \noindent | 
| 2040 |  |  | The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating | 
| 2041 |  |  | $v q$ over the depth of the atmosphere at each model timestep, | 
| 2042 |  |  | and dividing by the total mass of the column. | 
| 2043 |  |  | \[ | 
| 2044 |  |  | {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz  } { \int_{surf}^{top} \rho dz  } | 
| 2045 |  |  | \] | 
| 2046 |  |  | Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have | 
| 2047 |  |  | \[ | 
| 2048 |  |  | {\bf VINTVQ} = { \int_0^1 v q dp  } | 
| 2049 |  |  | \] | 
| 2050 |  |  | \\ | 
| 2051 |  |  |  | 
| 2052 |  |  |  | 
| 2053 |  |  | \noindent | 
| 2054 |  |  | {\bf 79)  \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) } | 
| 2055 |  |  |  | 
| 2056 |  |  | \noindent | 
| 2057 |  |  | The vertically integrated heat flux due to the zonal u-wind is obtained by integrating | 
| 2058 |  |  | $u T$ over the depth of the atmosphere at each model timestep, | 
| 2059 |  |  | and dividing by the total mass of the column. | 
| 2060 |  |  | \[ | 
| 2061 |  |  | {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz  } { \int_{surf}^{top} \rho dz  } | 
| 2062 |  |  | \] | 
| 2063 |  |  | Or, | 
| 2064 |  |  | \[ | 
| 2065 |  |  | {\bf VINTUT} = { \int_0^1 u T dp  } | 
| 2066 |  |  | \] | 
| 2067 |  |  | \\ | 
| 2068 |  |  |  | 
| 2069 |  |  | \noindent | 
| 2070 |  |  | {\bf 80)  \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) } | 
| 2071 |  |  |  | 
| 2072 |  |  | \noindent | 
| 2073 |  |  | The vertically integrated heat flux due to the meridional v-wind is obtained by integrating | 
| 2074 |  |  | $v T$ over the depth of the atmosphere at each model timestep, | 
| 2075 |  |  | and dividing by the total mass of the column. | 
| 2076 |  |  | \[ | 
| 2077 |  |  | {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz  } { \int_{surf}^{top} \rho dz  } | 
| 2078 |  |  | \] | 
| 2079 |  |  | Using $\rho \delta z = -{\delta p \over g} $, we have | 
| 2080 |  |  | \[ | 
| 2081 |  |  | {\bf VINTVT} = { \int_0^1 v T dp  } | 
| 2082 |  |  | \] | 
| 2083 |  |  | \\ | 
| 2084 |  |  |  | 
| 2085 |  |  | \noindent | 
| 2086 |  |  | {\bf 81 \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) } | 
| 2087 |  |  |  | 
| 2088 |  |  | If we define the | 
| 2089 |  |  | time-averaged random and maximum overlapped cloudiness as CLRO and | 
| 2090 |  |  | CLMO respectively, then the probability of clear sky associated | 
| 2091 |  |  | with random overlapped clouds at any level is (1-CLRO) while the probability of | 
| 2092 |  |  | clear sky associated with maximum overlapped clouds at any level is (1-CLMO). | 
| 2093 |  |  | The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus | 
| 2094 |  |  | the total cloud fraction at each  level may be obtained by | 
| 2095 |  |  | 1-(1-CLRO)*(1-CLMO). | 
| 2096 |  |  |  | 
| 2097 |  |  | At any given level, we may define the clear line-of-site probability by | 
| 2098 |  |  | appropriately accounting for the maximum and random overlap | 
| 2099 |  |  | cloudiness.  The clear line-of-site probability is defined to be | 
| 2100 |  |  | equal to the product of the clear line-of-site probabilities | 
| 2101 |  |  | associated with random and maximum overlap cloudiness.  The clear | 
| 2102 |  |  | line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds, | 
| 2103 |  |  | from the current pressure $p$ | 
| 2104 |  |  | to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$, | 
| 2105 |  |  | is simply 1.0 minus the largest maximum overlap cloud value along  the | 
| 2106 |  |  | line-of-site, ie. | 
| 2107 |  |  |  | 
| 2108 |  |  | $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$ | 
| 2109 |  |  |  | 
| 2110 |  |  | Thus, even in the time-averaged sense it is assumed that the | 
| 2111 |  |  | maximum overlap clouds are correlated in the vertical.  The clear | 
| 2112 |  |  | line-of-site probability associated with random overlap clouds is | 
| 2113 |  |  | defined to be the product of the clear sky probabilities at each | 
| 2114 |  |  | level along the line-of-site, ie. | 
| 2115 |  |  |  | 
| 2116 |  |  | $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$ | 
| 2117 |  |  |  | 
| 2118 |  |  | The total cloud fraction at a given level associated with a line- | 
| 2119 |  |  | of-site calculation is given by | 
| 2120 |  |  |  | 
| 2121 |  |  | $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right) | 
| 2122 |  |  | \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$ | 
| 2123 |  |  |  | 
| 2124 |  |  |  | 
| 2125 |  |  | \noindent | 
| 2126 |  |  | The 2-dimensional net cloud fraction as seen from the top of the | 
| 2127 |  |  | atmosphere is given by | 
| 2128 |  |  | \[ | 
| 2129 |  |  | {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right) | 
| 2130 |  |  | \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right) | 
| 2131 |  |  | \] | 
| 2132 |  |  | \\ | 
| 2133 |  |  | For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. | 
| 2134 |  |  |  | 
| 2135 |  |  |  | 
| 2136 |  |  | \noindent | 
| 2137 |  |  | {\bf 82)  \underline {QINT} Total Precipitable Water ($gm/cm^2$) } | 
| 2138 |  |  |  | 
| 2139 |  |  | \noindent | 
| 2140 |  |  | The Total Precipitable Water is defined as the vertical integral of the specific humidity, | 
| 2141 |  |  | given by: | 
| 2142 |  |  | \begin{eqnarray*} | 
| 2143 |  |  | {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\ | 
| 2144 |  |  | & = & {\pi \over g} \int_0^1 q dp | 
| 2145 |  |  | \end{eqnarray*} | 
| 2146 |  |  | where we have used the hydrostatic relation | 
| 2147 |  |  | $\rho \delta z = -{\delta p \over g} $. | 
| 2148 |  |  | \\ | 
| 2149 |  |  |  | 
| 2150 |  |  |  | 
| 2151 |  |  | \noindent | 
| 2152 |  |  | {\bf 83)  \underline {U2M}  Zonal U-Wind at 2 Meter Depth ($m/sec$) } | 
| 2153 |  |  |  | 
| 2154 |  |  | \noindent | 
| 2155 |  |  | The u-wind at the 2-meter depth is determined from the similarity theory: | 
| 2156 |  |  | \[ | 
| 2157 |  |  | {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} = | 
| 2158 |  |  | { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl} | 
| 2159 |  |  | \] | 
| 2160 |  |  |  | 
| 2161 |  |  | \noindent | 
| 2162 |  |  | where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript | 
| 2163 |  |  | $sl$ refers to the height of the top of the surface layer. If the roughness height | 
| 2164 |  |  | is above two meters, ${\bf U2M}$ is undefined. | 
| 2165 |  |  | \\ | 
| 2166 |  |  |  | 
| 2167 |  |  | \noindent | 
| 2168 |  |  | {\bf 84)  \underline {V2M}  Meridional V-Wind at 2 Meter Depth ($m/sec$) } | 
| 2169 |  |  |  | 
| 2170 |  |  | \noindent | 
| 2171 |  |  | The v-wind at the 2-meter depth is a determined from the similarity theory: | 
| 2172 |  |  | \[ | 
| 2173 |  |  | {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} = | 
| 2174 |  |  | { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl} | 
| 2175 |  |  | \] | 
| 2176 |  |  |  | 
| 2177 |  |  | \noindent | 
| 2178 |  |  | where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript | 
| 2179 |  |  | $sl$ refers to the height of the top of the surface layer. If the roughness height | 
| 2180 |  |  | is above two meters, ${\bf V2M}$ is undefined. | 
| 2181 |  |  | \\ | 
| 2182 |  |  |  | 
| 2183 |  |  | \noindent | 
| 2184 |  |  | {\bf 85)  \underline {T2M}  Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) } | 
| 2185 |  |  |  | 
| 2186 |  |  | \noindent | 
| 2187 |  |  | The temperature at the 2-meter depth is a determined from the similarity theory: | 
| 2188 |  |  | \[ | 
| 2189 |  |  | {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) = | 
| 2190 |  |  | P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } | 
| 2191 |  |  | (\theta_{sl} - \theta_{surf})) | 
| 2192 |  |  | \] | 
| 2193 |  |  | where: | 
| 2194 |  |  | \[ | 
| 2195 |  |  | \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} } | 
| 2196 |  |  | \] | 
| 2197 |  |  |  | 
| 2198 |  |  | \noindent | 
| 2199 |  |  | where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is | 
| 2200 |  |  | the non-dimensional temperature gradient in the viscous sublayer, and the subscript | 
| 2201 |  |  | $sl$ refers to the height of the top of the surface layer. If the roughness height | 
| 2202 |  |  | is above two meters, ${\bf T2M}$ is undefined. | 
| 2203 |  |  | \\ | 
| 2204 |  |  |  | 
| 2205 |  |  | \noindent | 
| 2206 |  |  | {\bf 86)  \underline {Q2M}  Specific Humidity at 2 Meter Depth ($g/kg$) } | 
| 2207 |  |  |  | 
| 2208 |  |  | \noindent | 
| 2209 |  |  | The specific humidity at the 2-meter depth is determined from the similarity theory: | 
| 2210 |  |  | \[ | 
| 2211 |  |  | {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) = | 
| 2212 |  |  | P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } | 
| 2213 |  |  | (q_{sl} - q_{surf})) | 
| 2214 |  |  | \] | 
| 2215 |  |  | where: | 
| 2216 |  |  | \[ | 
| 2217 |  |  | q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} } | 
| 2218 |  |  | \] | 
| 2219 |  |  |  | 
| 2220 |  |  | \noindent | 
| 2221 |  |  | where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is | 
| 2222 |  |  | the non-dimensional temperature gradient in the viscous sublayer, and the subscript | 
| 2223 |  |  | $sl$ refers to the height of the top of the surface layer. If the roughness height | 
| 2224 |  |  | is above two meters, ${\bf Q2M}$ is undefined. | 
| 2225 |  |  | \\ | 
| 2226 |  |  |  | 
| 2227 |  |  | \noindent | 
| 2228 |  |  | {\bf 87)  \underline {U10M}  Zonal U-Wind at 10 Meter Depth ($m/sec$) } | 
| 2229 |  |  |  | 
| 2230 |  |  | \noindent | 
| 2231 |  |  | The u-wind at the 10-meter depth is an interpolation between the surface wind | 
| 2232 |  |  | and the model lowest level wind using the ratio of the non-dimensional wind shear | 
| 2233 |  |  | at the two levels: | 
| 2234 |  |  | \[ | 
| 2235 |  |  | {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} = | 
| 2236 |  |  | { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl} | 
| 2237 |  |  | \] | 
| 2238 |  |  |  | 
| 2239 |  |  | \noindent | 
| 2240 |  |  | where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript | 
| 2241 |  |  | $sl$ refers to the height of the top of the surface layer. | 
| 2242 |  |  | \\ | 
| 2243 |  |  |  | 
| 2244 |  |  | \noindent | 
| 2245 |  |  | {\bf 88)  \underline {V10M}  Meridional V-Wind at 10 Meter Depth ($m/sec$) } | 
| 2246 |  |  |  | 
| 2247 |  |  | \noindent | 
| 2248 |  |  | The v-wind at the 10-meter depth is an interpolation between the surface wind | 
| 2249 |  |  | and the model lowest level wind using the ratio of the non-dimensional wind shear | 
| 2250 |  |  | at the two levels: | 
| 2251 |  |  | \[ | 
| 2252 |  |  | {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} = | 
| 2253 |  |  | { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl} | 
| 2254 |  |  | \] | 
| 2255 |  |  |  | 
| 2256 |  |  | \noindent | 
| 2257 |  |  | where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript | 
| 2258 |  |  | $sl$ refers to the height of the top of the surface layer. | 
| 2259 |  |  | \\ | 
| 2260 |  |  |  | 
| 2261 |  |  | \noindent | 
| 2262 |  |  | {\bf 89)  \underline {T10M}  Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) } | 
| 2263 |  |  |  | 
| 2264 |  |  | \noindent | 
| 2265 |  |  | The temperature at the 10-meter depth is an interpolation between the surface potential | 
| 2266 |  |  | temperature and the model lowest level potential temperature using the ratio of the | 
| 2267 |  |  | non-dimensional temperature gradient at the two levels: | 
| 2268 |  |  | \[ | 
| 2269 |  |  | {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) = | 
| 2270 |  |  | P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } | 
| 2271 |  |  | (\theta_{sl} - \theta_{surf})) | 
| 2272 |  |  | \] | 
| 2273 |  |  | where: | 
| 2274 |  |  | \[ | 
| 2275 |  |  | \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} } | 
| 2276 |  |  | \] | 
| 2277 |  |  |  | 
| 2278 |  |  | \noindent | 
| 2279 |  |  | where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is | 
| 2280 |  |  | the non-dimensional temperature gradient in the viscous sublayer, and the subscript | 
| 2281 |  |  | $sl$ refers to the height of the top of the surface layer. | 
| 2282 |  |  | \\ | 
| 2283 |  |  |  | 
| 2284 |  |  | \noindent | 
| 2285 |  |  | {\bf 90)  \underline {Q10M}  Specific Humidity at 10 Meter Depth ($g/kg$) } | 
| 2286 |  |  |  | 
| 2287 |  |  | \noindent | 
| 2288 |  |  | The specific humidity at the 10-meter depth is an interpolation between the surface specific | 
| 2289 |  |  | humidity and the model lowest level specific humidity using the ratio of the | 
| 2290 |  |  | non-dimensional temperature gradient at the two levels: | 
| 2291 |  |  | \[ | 
| 2292 |  |  | {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) = | 
| 2293 |  |  | P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } | 
| 2294 |  |  | (q_{sl} - q_{surf})) | 
| 2295 |  |  | \] | 
| 2296 |  |  | where: | 
| 2297 |  |  | \[ | 
| 2298 |  |  | q_* =  - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} } | 
| 2299 |  |  | \] | 
| 2300 |  |  |  | 
| 2301 |  |  | \noindent | 
| 2302 |  |  | where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is | 
| 2303 |  |  | the non-dimensional temperature gradient in the viscous sublayer, and the subscript | 
| 2304 |  |  | $sl$ refers to the height of the top of the surface layer. | 
| 2305 |  |  | \\ | 
| 2306 |  |  |  | 
| 2307 |  |  | \noindent | 
| 2308 |  |  | {\bf 91)  \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) } | 
| 2309 |  |  |  | 
| 2310 |  |  | The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written: | 
| 2311 |  |  | \[ | 
| 2312 |  |  | {\bf DTRAIN} = \eta_{r_D}m_B | 
| 2313 |  |  | \] | 
| 2314 |  |  | \noindent | 
| 2315 |  |  | where $r_D$ is the detrainment level, | 
| 2316 |  |  | $m_B$ is the cloud base mass flux, and $\eta$ | 
| 2317 |  |  | is the entrainment, defined in Section \ref{sec:fizhi:mc}. | 
| 2318 |  |  | \\ | 
| 2319 |  |  |  | 
| 2320 |  |  | \noindent | 
| 2321 |  |  | {\bf 92)  \underline {QFILL}  Filling of negative Specific Humidity ($g/kg/day$) } | 
| 2322 |  |  |  | 
| 2323 |  |  | \noindent | 
| 2324 |  |  | Due to computational errors associated with the numerical scheme used for | 
| 2325 |  |  | the advection of moisture, negative values of specific humidity may be generated.  The | 
| 2326 |  |  | specific humidity is checked for negative values after every dynamics timestep.  If negative | 
| 2327 |  |  | values have been produced, a filling algorithm is invoked which redistributes moisture from | 
| 2328 |  |  | below.  Diagnostic {\bf QFILL} is equal to the net filling needed | 
| 2329 |  |  | to eliminate negative specific humidity, scaled to a per-day rate: | 
| 2330 |  |  | \[ | 
| 2331 |  |  | {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial} | 
| 2332 |  |  | \] | 
| 2333 |  |  | where | 
| 2334 |  |  | \[ | 
| 2335 |  |  | q^{n+1} = (\pi q)^{n+1} / \pi^{n+1} | 
| 2336 |  |  | \] | 
| 2337 |  |  |  | 
| 2338 |  |  | \subsection{Dos and Donts} | 
| 2339 |  |  |  | 
| 2340 |  |  | \subsection{Diagnostics Reference} | 
| 2341 |  |  |  |