| 1 |
edhill |
1.2 |
\section{Diagnostics--A Flexible Infrastructure} |
| 2 |
|
|
\label{sec:pkg:diagnostics} |
| 3 |
|
|
\begin{rawhtml} |
| 4 |
|
|
<!-- CMIREDIR:package_diagnostics: --> |
| 5 |
|
|
\end{rawhtml} |
| 6 |
molod |
1.1 |
|
| 7 |
|
|
\subsection{Introduction} |
| 8 |
|
|
|
| 9 |
molod |
1.7 |
\noindent |
| 10 |
molod |
1.5 |
This section of the documentation describes the Diagnostics package available within |
| 11 |
molod |
1.7 |
the GCM. A large selection of model diagnostics is available for output. |
| 12 |
|
|
In addition to the diagnostic quantities pre-defined in the GCM, there exists |
| 13 |
|
|
the option, in any experiment, to define a new diagnostic quantity and include it |
| 14 |
|
|
as part of the diagnostic output with the addition of a single subroutine call in the |
| 15 |
|
|
routine where the field is computed. As a matter of philosophy, no diagnostic is enabled |
| 16 |
|
|
as default, thus each user must specify the exact diagnostic information required for an |
| 17 |
|
|
experiment. This is accomplished by enabling the specific diagnostic of interest cataloged |
| 18 |
|
|
in the Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). Instructions for enabling |
| 19 |
|
|
diagnostic output and defining new diagnostic quantities are found in Section |
| 20 |
|
|
\ref{sec:diagnostics:usersguide} of this document. |
| 21 |
|
|
|
| 22 |
|
|
\noindent |
| 23 |
|
|
The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within |
| 24 |
|
|
the GCM. Once a diagnostic is enabled, the GCM will continually increment an array |
| 25 |
|
|
specifically allocated for that diagnostic whenever the appropriate quantity is computed. |
| 26 |
|
|
A counter is defined which records how many times each diagnostic quantity has been |
| 27 |
|
|
incremented. Several special diagnostics are included in the menu. Quantities refered to |
| 28 |
|
|
as ``Counter Diagnostics'', are defined for selected diagnostics which record the |
| 29 |
|
|
frequency at which a diagnostic is incremented separately for each model grid location. |
| 30 |
|
|
Quantitied refered to as ``User Diagnostics'' are included in the menu to facilitate |
| 31 |
|
|
defining new diagnostics for a particular experiment. |
| 32 |
molod |
1.1 |
|
| 33 |
|
|
\subsection{Equations} |
| 34 |
|
|
Not relevant. |
| 35 |
|
|
|
| 36 |
|
|
\subsection{Key Subroutines and Parameters} |
| 37 |
|
|
\label{sec:diagnostics:diagover} |
| 38 |
|
|
|
| 39 |
molod |
1.7 |
\noindent |
| 40 |
|
|
The diagnostics are computed at various times and places within the GCM. Because the |
| 41 |
|
|
MIT GCM may employ a staggered grid, diagnostics may be computed at grid box centers, |
| 42 |
|
|
corners, or edges, and at the middle or edge in the vertical. Some diagnostics are scalars, |
| 43 |
|
|
while others are components of vectors. An internal array is defined which contains |
| 44 |
|
|
information concerning various grid attributes of each diagnostic. The GDIAG |
| 45 |
|
|
array (in common block \\diagnostics in file diagnostics.h) is internally defined as a |
| 46 |
|
|
character*8 variable, and is equivalenced to a character*1 "parse" array in output in |
| 47 |
|
|
order to extract the grid-attribute information. The GDIAG array is described in |
| 48 |
|
|
Table \ref{tab:diagnostics:gdiag.tabl}. |
| 49 |
molod |
1.1 |
|
| 50 |
|
|
\begin{table} |
| 51 |
|
|
\caption{Diagnostic Parsing Array} |
| 52 |
|
|
\label{tab:diagnostics:gdiag.tabl} |
| 53 |
|
|
\begin{center} |
| 54 |
|
|
\begin{tabular}{ |c|c|l| } |
| 55 |
|
|
\hline |
| 56 |
|
|
\multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\ |
| 57 |
|
|
\hline |
| 58 |
|
|
\hline |
| 59 |
|
|
Array & Value & Description \\ |
| 60 |
|
|
\hline |
| 61 |
|
|
parse(1) & $\rightarrow$ S & Scalar Diagnostic \\ |
| 62 |
|
|
& $\rightarrow$ U & U-vector component Diagnostic \\ |
| 63 |
|
|
& $\rightarrow$ V & V-vector component Diagnostic \\ \hline |
| 64 |
|
|
parse(2) & $\rightarrow$ U & C-Grid U-Point \\ |
| 65 |
|
|
& $\rightarrow$ V & C-Grid V-Point \\ |
| 66 |
|
|
& $\rightarrow$ M & C-Grid Mass Point \\ |
| 67 |
molod |
1.3 |
& $\rightarrow$ Z & C-Grid Vorticity (Corner) Point \\ \hline |
| 68 |
|
|
parse(3) & $\rightarrow$ R & Not Currently in Use \\ \hline |
| 69 |
molod |
1.1 |
parse(4) & $\rightarrow$ P & Positive Definite Diagnostic \\ \hline |
| 70 |
|
|
parse(5) & $\rightarrow$ C & Counter Diagnostic \\ |
| 71 |
|
|
& $\rightarrow$ D & Disabled Diagnostic for output \\ \hline |
| 72 |
|
|
parse(6-8) & $\rightarrow$ C & 3-digit integer corresponding to \\ |
| 73 |
|
|
& & vector or counter component mate \\ \hline |
| 74 |
|
|
\end{tabular} |
| 75 |
|
|
\addcontentsline{lot}{section}{Table 3: Diagnostic Parsing Array} |
| 76 |
|
|
\end{center} |
| 77 |
|
|
\end{table} |
| 78 |
|
|
|
| 79 |
molod |
1.7 |
|
| 80 |
|
|
\noindent |
| 81 |
molod |
1.1 |
As an example, consider a diagnostic whose associated GDIAG parameter is equal |
| 82 |
molod |
1.3 |
to ``UU 002''. From GDIAG we can determine that this diagnostic is a |
| 83 |
|
|
U-vector component located at the C-grid U-point. |
| 84 |
molod |
1.1 |
Its corresponding V-component diagnostic is located in Diagnostic \# 002. |
| 85 |
|
|
|
| 86 |
molod |
1.7 |
|
| 87 |
|
|
\noindent |
| 88 |
molod |
1.1 |
In this way, each Diagnostic in the model has its attributes (ie. vector or scalar, |
| 89 |
molod |
1.7 |
C-grid location, etc.) defined internally. The Output routines use this information |
| 90 |
|
|
in order to determine what type of transformations need to be performed. Any |
| 91 |
|
|
interpolations are done at the time of output rather than during each model step. |
| 92 |
|
|
In this way the User has flexibility in determining the type of gridded data which |
| 93 |
|
|
is output. |
| 94 |
|
|
|
| 95 |
molod |
1.1 |
|
| 96 |
molod |
1.7 |
\noindent |
| 97 |
molod |
1.1 |
There are several utilities within the GCM available to users to enable, disable, |
| 98 |
molod |
1.5 |
clear, write and retrieve model diagnostics, and may be called from any routine. |
| 99 |
|
|
The available utilities and the CALL sequences are listed below. |
| 100 |
molod |
1.1 |
|
| 101 |
|
|
|
| 102 |
molod |
1.7 |
\noindent |
| 103 |
|
|
{\bf fill\_diagnostics}: This routine will increment the specified diagnostic |
| 104 |
|
|
quantity with a field sent through the argument list. |
| 105 |
|
|
|
| 106 |
|
|
|
| 107 |
|
|
\noindent |
| 108 |
|
|
\begin{tabbing} |
| 109 |
|
|
XXXXXXXXX\=XXXXXX\= \kill |
| 110 |
|
|
\> call fill\_diagnostics (myThid, chardiag, levflg, nlevs, \\ |
| 111 |
|
|
bibjflg, bi, bj, arrayin) \\ |
| 112 |
|
|
\\ |
| 113 |
|
|
where \> myThid \>= Current Process(or) \\ |
| 114 |
|
|
\> chardiag \>= Character *8 expression for diag to fill \\ |
| 115 |
|
|
\> levflg \>= Integer flag for vertical levels: \\ |
| 116 |
|
|
\> \> 0 indicates multiple levels incremented in qdiag \\ |
| 117 |
|
|
\> \> non-0 (any integer) - WHICH single level to increment. \\ |
| 118 |
|
|
\> \> negative integer - the input data array is single-leveled \\ |
| 119 |
|
|
\> \> positive integer - the input data array is multi-leveled \\ |
| 120 |
|
|
\> nlevs \>= indicates Number of levels to be filled (1 if levflg <> 0) \\ |
| 121 |
|
|
\> \> positive: fill in "nlevs" levels in the same order as \\ |
| 122 |
|
|
\> \> the input array \\ |
| 123 |
|
|
\> \> negative: fill in -nlevs levels in reverse order. \\ |
| 124 |
|
|
\> bibjflg \>= Integer flag to indicate instructions for bi bj loop \\ |
| 125 |
|
|
\> \> 0 indicates that the bi-bj loop must be done here \\ |
| 126 |
|
|
\> \> 1 indicates that the bi-bj loop is done OUTSIDE \\ |
| 127 |
|
|
\> \> 2 indicates that the bi-bj loop is done OUTSIDE \\ |
| 128 |
|
|
\> \> AND that we have been sent a local array \\ |
| 129 |
|
|
\> \> 3 indicates that the bi-bj loop is done OUTSIDE \\ |
| 130 |
|
|
\> \> AND that we have been sent a local array \\ |
| 131 |
|
|
\> \> AND that the array has the shadow regions \\ |
| 132 |
|
|
\> bi \>= X-direction process(or) number - used for bibjflg=1-3 \\ |
| 133 |
|
|
\> bj \>= Y-direction process(or) number - used for bibjflg=1-3 \\ |
| 134 |
|
|
\> arrayin \>= Field to increment diagnostics array \\ |
| 135 |
|
|
\end{tabbing} |
| 136 |
|
|
|
| 137 |
|
|
|
| 138 |
|
|
\noindent |
| 139 |
molod |
1.5 |
{\bf setdiag}: This subroutine enables a diagnostic from the Diagnostic Menu, meaning |
| 140 |
|
|
that space is allocated for the diagnostic and the model routines will increment the |
| 141 |
|
|
diagnostic value during execution. This routine is the underlying interface |
| 142 |
molod |
1.1 |
between the user and the desired diagnostic. The diagnostic is referenced by its diagnostic |
| 143 |
|
|
number from the menu, and its calling sequence is given by: |
| 144 |
|
|
|
| 145 |
molod |
1.7 |
\noindent |
| 146 |
molod |
1.1 |
\begin{tabbing} |
| 147 |
|
|
XXXXXXXXX\=XXXXXX\= \kill |
| 148 |
molod |
1.5 |
\> call setdiag (num) \\ |
| 149 |
molod |
1.1 |
\\ |
| 150 |
molod |
1.5 |
where \> num \>= Diagnostic number from menu \\ |
| 151 |
molod |
1.1 |
\end{tabbing} |
| 152 |
|
|
|
| 153 |
molod |
1.7 |
\noindent |
| 154 |
molod |
1.5 |
{\bf getdiag}: This subroutine retrieves the value of a model diagnostic. This routine |
| 155 |
|
|
is particulary useful when called from a user output routine, although it can be called |
| 156 |
|
|
from any routine. This routine returns the time-averaged value of the diagnostic by |
| 157 |
|
|
dividing the current accumulated diagnostic value by its corresponding counter. This |
| 158 |
|
|
routine does not change the value of the diagnostic itself, that is, it does not replace |
| 159 |
|
|
the diagnostic with its time-average. The calling sequence for this routine is givin by: |
| 160 |
molod |
1.1 |
|
| 161 |
molod |
1.7 |
\noindent |
| 162 |
molod |
1.1 |
\begin{tabbing} |
| 163 |
|
|
XXXXXXXXX\=XXXXXX\= \kill |
| 164 |
molod |
1.5 |
\> call getdiag (lev,num,qtmp,undef) \\ |
| 165 |
molod |
1.1 |
\\ |
| 166 |
molod |
1.5 |
where \> lev \>= Model Level at which the diagnostic is desired \\ |
| 167 |
|
|
\> num \>= Diagnostic number from menu \\ |
| 168 |
|
|
\> qtmp \>= Time-Averaged Diagnostic Output \\ |
| 169 |
|
|
\> undef \>= Fill value to be used when diagnostic is undefined \\ |
| 170 |
molod |
1.1 |
\end{tabbing} |
| 171 |
|
|
|
| 172 |
molod |
1.7 |
\noindent |
| 173 |
molod |
1.5 |
{\bf clrdiag}: This subroutine initializes the values of model diagnostics to zero, and is |
| 174 |
|
|
particularly useful when called from user output routines to re-initialize diagnostics |
| 175 |
|
|
during the run. The calling sequence is: |
| 176 |
molod |
1.1 |
|
| 177 |
molod |
1.7 |
\noindent |
| 178 |
molod |
1.1 |
\begin{tabbing} |
| 179 |
|
|
XXXXXXXXX\=XXXXXX\= \kill |
| 180 |
molod |
1.5 |
\> call clrdiag (num) \\ |
| 181 |
molod |
1.1 |
\\ |
| 182 |
molod |
1.5 |
where \> num \>= Diagnostic number from menu \\ |
| 183 |
molod |
1.1 |
\end{tabbing} |
| 184 |
|
|
|
| 185 |
molod |
1.7 |
\noindent |
| 186 |
molod |
1.5 |
{\bf zapdiag}: This entry into subroutine SETDIAG disables model diagnostics, meaning |
| 187 |
|
|
that the diagnostic is no longer available to the user. The memory previously allocated |
| 188 |
|
|
to the diagnostic is released when ZAPDIAG is invoked. The calling sequence is given by: |
| 189 |
molod |
1.1 |
|
| 190 |
molod |
1.7 |
\noindent |
| 191 |
molod |
1.1 |
\begin{tabbing} |
| 192 |
|
|
XXXXXXXXX\=XXXXXX\= \kill |
| 193 |
molod |
1.5 |
\> call zapdiag (NUM) \\ |
| 194 |
molod |
1.1 |
\\ |
| 195 |
molod |
1.5 |
where \> num \>= Diagnostic number from menu \\ |
| 196 |
molod |
1.1 |
\end{tabbing} |
| 197 |
|
|
|
| 198 |
molod |
1.7 |
|
| 199 |
|
|
\subsection{Usage Notes} |
| 200 |
|
|
\label{sec:diagnostics:usersguide} |
| 201 |
|
|
|
| 202 |
|
|
\noindent |
| 203 |
|
|
We begin this section with a discussion on the manner in which computer |
| 204 |
|
|
memory is allocated for diagnostics. All GCM diagnostic quantities are stored in the |
| 205 |
|
|
single diagnostic array QDIAG which is located in the file \\ |
| 206 |
|
|
\filelink{pkg/diagnostics/diagnostics.h}{pkg-diagnostics-diagnostics.h}. |
| 207 |
|
|
and has the form: |
| 208 |
molod |
1.1 |
|
| 209 |
molod |
1.3 |
common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy) |
| 210 |
molod |
1.1 |
|
| 211 |
molod |
1.7 |
\noindent |
| 212 |
|
|
where numdiags is an Integer variable which should be set equal to the number of |
| 213 |
|
|
enabled diagnostics, and qdiag is a three-dimensional array. The first two-dimensions |
| 214 |
|
|
of qdiag correspond to the horizontal dimension of a given diagnostic, while the third |
| 215 |
|
|
dimension of qdiag is used to identify diagnostic fields and levels combined. In order |
| 216 |
|
|
to minimize the memory requirement of the model for diagnostics, the default GCM |
| 217 |
|
|
executable is compiled with room for only one horizontal diagnostic array, or with |
| 218 |
|
|
numdiags set to 1. In order for the User to enable more than 1 two-dimensional diagnostic, |
| 219 |
molod |
1.3 |
the size of the diagnostics common must be expanded to accomodate the desired diagnostics. |
| 220 |
molod |
1.1 |
This can be accomplished by manually changing the parameter numdiags in the |
| 221 |
molod |
1.10 |
file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics\_SIZE.h}. |
| 222 |
molod |
1.7 |
numdiags should be set greater than or equal to the sum of all the diagnostics activated |
| 223 |
|
|
for output each multiplied by the number of levels defined for that diagnostic quantity. |
| 224 |
|
|
This is illustrated in the example below: |
| 225 |
molod |
1.1 |
|
| 226 |
molod |
1.7 |
\noindent |
| 227 |
molod |
1.3 |
To use the diagnostics package, other than enabling it in packages.conf |
| 228 |
|
|
and turning the usediagnostics flag in data.pkg to .TRUE., a namelist |
| 229 |
|
|
must be supplied in the run directory called data.diagnostics. The namelist |
| 230 |
|
|
will activate a user-defined list of diagnostics quantities to be computed, |
| 231 |
|
|
specify the frequency of output, the number of levels, and the name of |
| 232 |
|
|
up to 10 separate output files. A sample data.diagnostics namelist file: |
| 233 |
|
|
|
| 234 |
molod |
1.7 |
\noindent |
| 235 |
|
|
$\#$ Diagnostic Package Choices \\ |
| 236 |
|
|
$\&$diagnostics\_list \\ |
| 237 |
|
|
frequency(1) = 10, \ \\ |
| 238 |
|
|
levels(1,1) = 1.,2.,3.,4.,5., \ \\ |
| 239 |
|
|
fields(1,1) = 'UVEL ','VVEL ', \ \\ |
| 240 |
|
|
filename(1) = 'diagout1', \ \\ |
| 241 |
|
|
frequency(2) = 100, \ \\ |
| 242 |
|
|
levels(1,2) = 1.,2.,3.,4.,5., \ \\ |
| 243 |
|
|
fields(1,2) = 'THETA ','SALT ', \ \\ |
| 244 |
|
|
filename(2) = 'diagout2', \ \\ |
| 245 |
|
|
$\&$end \ \\ |
| 246 |
molod |
1.3 |
|
| 247 |
molod |
1.7 |
\noindent |
| 248 |
molod |
1.3 |
In this example, there are two output files that will be generated |
| 249 |
|
|
for each tile and for each output time. The first set of output files |
| 250 |
molod |
1.7 |
has the prefix diagout1, does time averaging every 10 time steps |
| 251 |
|
|
(frequency is 10), they will write fields which are multiple-level |
| 252 |
|
|
fields and output levels 1-5. The names of diagnostics quantities are |
| 253 |
|
|
UVEL and VVEL. The second set of output files |
| 254 |
molod |
1.3 |
has the prefix diagout2, does time averaging every 100 time steps, |
| 255 |
molod |
1.7 |
they include fields which are multiple-level fields, levels output are 1-5, |
| 256 |
molod |
1.3 |
and the names of diagnostics quantities are THETA and SALT. |
| 257 |
|
|
|
| 258 |
molod |
1.7 |
\noindent |
| 259 |
|
|
In order to define and include as part of the diagnostic output any field |
| 260 |
|
|
that is desired for a particular experiment, two steps must be taken. The |
| 261 |
|
|
first is to enable the ``User Diagnostic'' in data.diagnostics. This is |
| 262 |
|
|
accomplished by setting one of the fields slots to either UDIAG1 through |
| 263 |
|
|
UDIAG10, for multi-level fields, or SDIAG1 through SDIAG10 for single level |
| 264 |
|
|
fields. These are listed in the diagnostics menu. The second step is to |
| 265 |
|
|
add a call to fill\_diagnostics from the subroutine in which the quantity |
| 266 |
|
|
desired for diagnostic output is computed. |
| 267 |
|
|
|
| 268 |
molod |
1.1 |
\newpage |
| 269 |
|
|
|
| 270 |
|
|
\subsubsection{GCM Diagnostic Menu} |
| 271 |
|
|
\label{sec:diagnostics:menu} |
| 272 |
|
|
|
| 273 |
molod |
1.10 |
\begin{tabular}{llll} |
| 274 |
molod |
1.1 |
\hline\hline |
| 275 |
molod |
1.10 |
NAME & UNITS & LEVELS & DESCRIPTION \\ |
| 276 |
molod |
1.1 |
\hline |
| 277 |
|
|
|
| 278 |
|
|
&\\ |
| 279 |
molod |
1.10 |
SDIAG1 & & 1 |
| 280 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 281 |
molod |
1.9 |
{User-Defined Surface Diagnostic-1} |
| 282 |
molod |
1.1 |
\end{minipage}\\ |
| 283 |
molod |
1.10 |
SDIAG2 & & 1 |
| 284 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 285 |
molod |
1.9 |
{User-Defined Surface Diagnostic-2} |
| 286 |
molod |
1.1 |
\end{minipage}\\ |
| 287 |
molod |
1.10 |
UDIAG1 & & Nrphys |
| 288 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 289 |
molod |
1.9 |
{User-Defined Upper-Air Diagnostic-1} |
| 290 |
molod |
1.1 |
\end{minipage}\\ |
| 291 |
molod |
1.10 |
UDIAG2 & & Nrphys |
| 292 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 293 |
molod |
1.9 |
{User-Defined Upper-Air Diagnostic-2} |
| 294 |
molod |
1.1 |
\end{minipage}\\ |
| 295 |
molod |
1.10 |
SDIAG3 & & 1 |
| 296 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 297 |
molod |
1.9 |
{User-Defined Surface Diagnostic-3} |
| 298 |
molod |
1.1 |
\end{minipage}\\ |
| 299 |
molod |
1.10 |
SDIAG4 & & 1 |
| 300 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 301 |
molod |
1.9 |
{User-Defined Surface Diagnostic-4} |
| 302 |
molod |
1.1 |
\end{minipage}\\ |
| 303 |
molod |
1.10 |
SDIAG5 & & 1 |
| 304 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 305 |
molod |
1.9 |
{User-Defined Surface Diagnostic-5} |
| 306 |
molod |
1.1 |
\end{minipage}\\ |
| 307 |
molod |
1.10 |
SDIAG6 & & 1 |
| 308 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 309 |
molod |
1.9 |
{User-Defined Surface Diagnostic-6} |
| 310 |
molod |
1.1 |
\end{minipage}\\ |
| 311 |
molod |
1.10 |
SDIAG7 & & 1 |
| 312 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 313 |
molod |
1.9 |
{User-Defined Surface Diagnostic-7} |
| 314 |
molod |
1.1 |
\end{minipage}\\ |
| 315 |
molod |
1.10 |
SDIAG8 & & 1 |
| 316 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 317 |
molod |
1.9 |
{User-Defined Surface Diagnostic-8} |
| 318 |
molod |
1.1 |
\end{minipage}\\ |
| 319 |
molod |
1.10 |
SDIAG9 & & 1 |
| 320 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 321 |
molod |
1.9 |
{User-Defined Surface Diagnostic-9} |
| 322 |
molod |
1.1 |
\end{minipage}\\ |
| 323 |
molod |
1.10 |
SDIAG10 & & 1 |
| 324 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 325 |
molod |
1.9 |
{User-Defined Surface Diagnostic-1-} |
| 326 |
molod |
1.1 |
\end{minipage}\\ |
| 327 |
molod |
1.10 |
UDIAG3 & & Nrphys |
| 328 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 329 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-3} |
| 330 |
molod |
1.1 |
\end{minipage}\\ |
| 331 |
molod |
1.10 |
UDIAG4 & & Nrphys |
| 332 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 333 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-4} |
| 334 |
molod |
1.1 |
\end{minipage}\\ |
| 335 |
molod |
1.10 |
UDIAG5 & & Nrphys |
| 336 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 337 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-5} |
| 338 |
molod |
1.1 |
\end{minipage}\\ |
| 339 |
molod |
1.10 |
UDIAG6 & & Nrphys |
| 340 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 341 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-6} |
| 342 |
molod |
1.1 |
\end{minipage}\\ |
| 343 |
molod |
1.10 |
UDIAG7 & & Nrphys |
| 344 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 345 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-7} |
| 346 |
molod |
1.1 |
\end{minipage}\\ |
| 347 |
molod |
1.10 |
UDIAG8 & & Nrphys |
| 348 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 349 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-8} |
| 350 |
molod |
1.1 |
\end{minipage}\\ |
| 351 |
molod |
1.10 |
UDIAG9 & & Nrphys |
| 352 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 353 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-9} |
| 354 |
molod |
1.1 |
\end{minipage}\\ |
| 355 |
molod |
1.10 |
UDIAG10 & & Nrphys |
| 356 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 357 |
molod |
1.9 |
{User-Defined Multi-Level Diagnostic-10} |
| 358 |
molod |
1.1 |
\end{minipage}\\ |
| 359 |
molod |
1.10 |
SDIAGC & & 1 |
| 360 |
|
|
&\begin{minipage}[t]{3in} |
| 361 |
|
|
{User-Defined Counted Surface Diagnostic} |
| 362 |
|
|
\end{minipage}\\ |
| 363 |
|
|
SDIAGCC & & 1 |
| 364 |
|
|
&\begin{minipage}[t]{3in} |
| 365 |
|
|
{User-Defined Counted Surface Diagnostic Counter} |
| 366 |
|
|
\end{minipage}\\ |
| 367 |
|
|
ETAN & $(hPa,m)$ & 1 |
| 368 |
|
|
&\begin{minipage}[t]{3in} |
| 369 |
|
|
{Perturbation of Surface (pressure, height)} |
| 370 |
|
|
\end{minipage}\\ |
| 371 |
|
|
ETANSQ & $(hPa^2,m^2)$ & 1 |
| 372 |
|
|
&\begin{minipage}[t]{3in} |
| 373 |
|
|
{Square of Perturbation of Surface (pressure, height)} |
| 374 |
|
|
\end{minipage}\\ |
| 375 |
|
|
DETADT2 & ${r-unit}^2/s^2$ & 1 |
| 376 |
|
|
&\begin{minipage}[t]{3in} |
| 377 |
|
|
{Square of Eta (Surf.P,SSH) Tendency} |
| 378 |
|
|
\end{minipage}\\ |
| 379 |
|
|
THETA & $deg K$ & Nr |
| 380 |
|
|
&\begin{minipage}[t]{3in} |
| 381 |
|
|
{Potential Temperature} |
| 382 |
|
|
\end{minipage}\\ |
| 383 |
|
|
SST & $deg K$ & 1 |
| 384 |
|
|
&\begin{minipage}[t]{3in} |
| 385 |
|
|
{Sea Surface Temperature} |
| 386 |
|
|
\end{minipage}\\ |
| 387 |
|
|
SALT & $g/kg$ & Nr |
| 388 |
|
|
&\begin{minipage}[t]{3in} |
| 389 |
|
|
{Salt (or Water Vapor Mixing Ratio)} |
| 390 |
|
|
\end{minipage}\\ |
| 391 |
|
|
SSS & $g/kg$ & 1 |
| 392 |
|
|
&\begin{minipage}[t]{3in} |
| 393 |
|
|
{Sea Surface Salinity} |
| 394 |
|
|
\end{minipage}\\ |
| 395 |
|
|
SALTanom & $g/kg$ & Nr |
| 396 |
|
|
&\begin{minipage}[t]{3in} |
| 397 |
|
|
{Salt anomaly (=SALT-35)} |
| 398 |
|
|
\end{minipage}\\ |
| 399 |
molod |
1.8 |
\end{tabular} |
| 400 |
molod |
1.9 |
\vspace{1.5in} |
| 401 |
|
|
\vfill |
| 402 |
molod |
1.8 |
|
| 403 |
|
|
\newpage |
| 404 |
|
|
\vspace*{\fill} |
| 405 |
molod |
1.10 |
\begin{tabular}{llll} |
| 406 |
molod |
1.8 |
\hline\hline |
| 407 |
molod |
1.10 |
NAME & UNITS & LEVELS & DESCRIPTION \\ |
| 408 |
molod |
1.8 |
\hline |
| 409 |
|
|
|
| 410 |
|
|
&\\ |
| 411 |
molod |
1.10 |
UVEL & $m/sec$ & Nr |
| 412 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 413 |
molod |
1.10 |
{U-Velocity} |
| 414 |
molod |
1.1 |
\end{minipage}\\ |
| 415 |
molod |
1.10 |
VVEL & $m/sec$ & Nr |
| 416 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 417 |
molod |
1.10 |
{V-Velocity} |
| 418 |
molod |
1.1 |
\end{minipage}\\ |
| 419 |
molod |
1.10 |
UVEL\_k2 & $m/sec$ & 1 |
| 420 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 421 |
molod |
1.9 |
{U-Velocity} |
| 422 |
molod |
1.1 |
\end{minipage}\\ |
| 423 |
molod |
1.10 |
VVEL\_k2 & $m/sec$ & 1 |
| 424 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 425 |
molod |
1.9 |
{V-Velocity} |
| 426 |
molod |
1.1 |
\end{minipage}\\ |
| 427 |
molod |
1.10 |
WVEL & $m/sec$ & Nr |
| 428 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 429 |
molod |
1.9 |
{Vertical-Velocity} |
| 430 |
molod |
1.1 |
\end{minipage}\\ |
| 431 |
molod |
1.10 |
THETASQ & $deg^2$ & Nr |
| 432 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 433 |
molod |
1.9 |
{Square of Potential Temperature} |
| 434 |
molod |
1.1 |
\end{minipage}\\ |
| 435 |
molod |
1.10 |
SALTSQ & $g^2/{kg}^2$ & Nr |
| 436 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 437 |
molod |
1.9 |
{Square of Salt (or Water Vapor Mixing Ratio)} |
| 438 |
molod |
1.1 |
\end{minipage}\\ |
| 439 |
molod |
1.10 |
SALTSQan & $g^2/{kg}^2$ & Nr |
| 440 |
|
|
&\begin{minipage}[t]{3in} |
| 441 |
|
|
{Square of Salt anomaly (=SALT-35)} |
| 442 |
|
|
\end{minipage}\\ |
| 443 |
|
|
UVELSQ & $m^2/sec^2$ & Nr |
| 444 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 445 |
molod |
1.9 |
{Square of U-Velocity} |
| 446 |
molod |
1.1 |
\end{minipage}\\ |
| 447 |
molod |
1.10 |
VVELSQ & $m^2/sec^2$ & Nr |
| 448 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 449 |
molod |
1.9 |
{Square of V-Velocity} |
| 450 |
molod |
1.1 |
\end{minipage}\\ |
| 451 |
molod |
1.10 |
WVELSQ & $m^2/sec^2$ & Nr |
| 452 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 453 |
molod |
1.9 |
{Square of Vertical-Velocity} |
| 454 |
molod |
1.1 |
\end{minipage}\\ |
| 455 |
molod |
1.10 |
UV\_VEL\_C & $m^2/sec^2$ & Nr |
| 456 |
|
|
&\begin{minipage}[t]{3in} |
| 457 |
|
|
{Meridional Transport of Zonal Momentum (cell center)} |
| 458 |
|
|
\end{minipage}\\ |
| 459 |
|
|
UV\_VEL\_Z & $m^2/sec^2$ & Nr |
| 460 |
|
|
&\begin{minipage}[t]{3in} |
| 461 |
|
|
{Meridional Transport of Zonal Momentum (corner)} |
| 462 |
|
|
\end{minipage}\\ |
| 463 |
|
|
WU\_VEL & $m^2/sec^2$ & Nr |
| 464 |
|
|
&\begin{minipage}[t]{3in} |
| 465 |
|
|
{Vertical Transport of Zonal Momentum (cell center)} |
| 466 |
|
|
\end{minipage}\\ |
| 467 |
|
|
WV\_VEL & $m^2/sec^2$ & Nr |
| 468 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 469 |
molod |
1.10 |
{Vertical Transport of Meridional Momentum (cell center)} |
| 470 |
molod |
1.1 |
\end{minipage}\\ |
| 471 |
molod |
1.10 |
UVELMASS & $m/sec$ & Nr |
| 472 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 473 |
molod |
1.9 |
{Zonal Mass-Weighted Component of Velocity} |
| 474 |
molod |
1.1 |
\end{minipage}\\ |
| 475 |
molod |
1.10 |
VVELMASS & $m/sec$ & Nr |
| 476 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 477 |
molod |
1.9 |
{Meridional Mass-Weighted Component of Velocity} |
| 478 |
molod |
1.1 |
\end{minipage}\\ |
| 479 |
molod |
1.10 |
WVELMASS & $m/sec$ & Nr |
| 480 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 481 |
molod |
1.9 |
{Vertical Mass-Weighted Component of Velocity} |
| 482 |
molod |
1.1 |
\end{minipage}\\ |
| 483 |
molod |
1.10 |
UTHMASS & $m-deg/sec$ & Nr |
| 484 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 485 |
molod |
1.9 |
{Zonal Mass-Weight Transp of Pot Temp} |
| 486 |
molod |
1.1 |
\end{minipage}\\ |
| 487 |
molod |
1.10 |
VTHMASS & $m-deg/sec$ & Nr |
| 488 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 489 |
molod |
1.9 |
{Meridional Mass-Weight Transp of Pot Temp} |
| 490 |
molod |
1.1 |
\end{minipage}\\ |
| 491 |
molod |
1.10 |
WTHMASS & $m-deg/sec$ & Nr |
| 492 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 493 |
molod |
1.9 |
{Vertical Mass-Weight Transp of Pot Temp} |
| 494 |
molod |
1.1 |
\end{minipage}\\ |
| 495 |
molod |
1.10 |
USLTMASS & $m-kg/sec-kg$ & Nr |
| 496 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 497 |
molod |
1.9 |
{Zonal Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
| 498 |
molod |
1.1 |
\end{minipage}\\ |
| 499 |
molod |
1.10 |
VSLTMASS & $m-kg/sec-kg$ & Nr |
| 500 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
| 501 |
molod |
1.9 |
{Meridional Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
| 502 |
molod |
1.8 |
\end{minipage}\\ |
| 503 |
molod |
1.10 |
WSLTMASS & $m-kg/sec-kg$ & Nr |
| 504 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 505 |
molod |
1.9 |
{Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)} |
| 506 |
molod |
1.1 |
\end{minipage}\\ |
| 507 |
molod |
1.10 |
UVELTH & $m-deg/sec$ & Nr |
| 508 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 509 |
molod |
1.9 |
{Zonal Transp of Pot Temp} |
| 510 |
molod |
1.1 |
\end{minipage}\\ |
| 511 |
molod |
1.10 |
VVELTH & $m-deg/sec$ & Nr |
| 512 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 513 |
molod |
1.9 |
{Meridional Transp of Pot Temp} |
| 514 |
molod |
1.1 |
\end{minipage}\\ |
| 515 |
molod |
1.10 |
WVELTH & $m-deg/sec$ & Nr |
| 516 |
molod |
1.1 |
&\begin{minipage}[t]{3in} |
| 517 |
molod |
1.9 |
{Vertical Transp of Pot Temp} |
| 518 |
molod |
1.1 |
\end{minipage}\\ |
| 519 |
molod |
1.10 |
UVELSLT & $m-kg/sec-kg$ & Nr |
| 520 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
| 521 |
molod |
1.9 |
{Zonal Transp of Salt (or W.Vap Mix Rat.)} |
| 522 |
molod |
1.8 |
\end{minipage}\\ |
| 523 |
molod |
1.10 |
VVELSLT & $m-kg/sec-kg$ & Nr |
| 524 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
| 525 |
molod |
1.9 |
{Meridional Transp of Salt (or W.Vap Mix Rat.)} |
| 526 |
molod |
1.8 |
\end{minipage}\\ |
| 527 |
molod |
1.10 |
WVELSLT & $m-kg/sec-kg$ & Nr |
| 528 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
| 529 |
molod |
1.9 |
{Vertical Transp of Salt (or W.Vap Mix Rat.)} |
| 530 |
molod |
1.8 |
\end{minipage}\\ |
| 531 |
molod |
1.10 |
\end{tabular} |
| 532 |
|
|
\vspace{1.5in} |
| 533 |
|
|
\vfill |
| 534 |
|
|
|
| 535 |
|
|
\newpage |
| 536 |
|
|
\vspace*{\fill} |
| 537 |
|
|
\begin{tabular}{llll} |
| 538 |
|
|
\hline\hline |
| 539 |
|
|
NAME & UNITS & LEVELS & DESCRIPTION \\ |
| 540 |
|
|
\hline |
| 541 |
|
|
|
| 542 |
|
|
&\\ |
| 543 |
|
|
RHOAnoma & $kg/m^3 $ & Nr |
| 544 |
|
|
&\begin{minipage}[t]{3in} |
| 545 |
|
|
{Density Anomaly (=Rho-rhoConst)} |
| 546 |
|
|
\end{minipage}\\ |
| 547 |
|
|
RHOANOSQ & $kg^2/m^6$ & Nr |
| 548 |
|
|
&\begin{minipage}[t]{3in} |
| 549 |
|
|
{Square of Density Anomaly (=(Rho-rhoConst))} |
| 550 |
|
|
\end{minipage}\\ |
| 551 |
|
|
URHOMASS & $kg/m^2/s$ & Nr |
| 552 |
|
|
&\begin{minipage}[t]{3in} |
| 553 |
|
|
{Zonal Transport of Density} |
| 554 |
|
|
\end{minipage}\\ |
| 555 |
|
|
VRHOMASS & $kg/m^2/s$ & Nr |
| 556 |
|
|
&\begin{minipage}[t]{3in} |
| 557 |
|
|
{Meridional Transport of Density} |
| 558 |
|
|
\end{minipage}\\ |
| 559 |
|
|
WRHOMASS & $kg/m^2/s$ & Nr |
| 560 |
|
|
&\begin{minipage}[t]{3in} |
| 561 |
|
|
{Vertical Transport of Potential Density} |
| 562 |
|
|
\end{minipage}\\ |
| 563 |
|
|
PHIHYD & $m^2/s^2 $ & Nr |
| 564 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
| 565 |
molod |
1.10 |
{Hydrostatic (ocean) pressure / (atmos) geo-Potential} |
| 566 |
|
|
\end{minipage}\\ |
| 567 |
|
|
PHIHYDSQ & $m^4/s^4 $ & Nr |
| 568 |
|
|
&\begin{minipage}[t]{3in} |
| 569 |
|
|
{Square of Hyd. (ocean) press / (atmos) geoPotential} |
| 570 |
|
|
\end{minipage}\\ |
| 571 |
|
|
PHIBOT & $m^2/s^2 $ & Nr |
| 572 |
|
|
&\begin{minipage}[t]{3in} |
| 573 |
|
|
{ocean bottom pressure / top. atmos geo-Potential} |
| 574 |
|
|
\end{minipage}\\ |
| 575 |
|
|
PHIBOTSQ & $m^4/s^4 $ & Nr |
| 576 |
|
|
&\begin{minipage}[t]{3in} |
| 577 |
|
|
{Square of ocean bottom pressure / top. geo-Potential} |
| 578 |
|
|
\end{minipage}\\ |
| 579 |
|
|
DRHODR & $kg/m^3/{r-unit}$ & Nr |
| 580 |
|
|
&\begin{minipage}[t]{3in} |
| 581 |
|
|
{Stratification: d.Sigma/dr} |
| 582 |
molod |
1.8 |
\end{minipage}\\ |
| 583 |
molod |
1.10 |
VISCA4 & $m^4/sec$ & 1 |
| 584 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
| 585 |
molod |
1.9 |
{Biharmonic Viscosity Coefficient} |
| 586 |
molod |
1.8 |
\end{minipage}\\ |
| 587 |
molod |
1.10 |
VISCAH & $m^2/sec$ & 1 |
| 588 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
| 589 |
molod |
1.9 |
{Harmonic Viscosity Coefficient} |
| 590 |
molod |
1.8 |
\end{minipage}\\ |
| 591 |
molod |
1.10 |
TAUX & $N/m^2 $ & 1 |
| 592 |
|
|
&\begin{minipage}[t]{3in} |
| 593 |
|
|
{zonal surface wind stress, >0 increases uVel} |
| 594 |
|
|
\end{minipage}\\ |
| 595 |
|
|
TAUY & $N/m^2 $ & 1 |
| 596 |
|
|
&\begin{minipage}[t]{3in} |
| 597 |
|
|
{meridional surf. wind stress, >0 increases vVel} |
| 598 |
|
|
\end{minipage}\\ |
| 599 |
|
|
TFLUX & $W/m^2 $ & 1 |
| 600 |
|
|
&\begin{minipage}[t]{3in} |
| 601 |
|
|
{net surface heat flux, >0 increases theta} |
| 602 |
|
|
\end{minipage}\\ |
| 603 |
|
|
TRELAX & $W/m^2 $ & 1 |
| 604 |
|
|
&\begin{minipage}[t]{3in} |
| 605 |
|
|
{surface temperature relaxation, >0 increases theta} |
| 606 |
|
|
\end{minipage}\\ |
| 607 |
|
|
TICE & $W/m^2 $ & 1 |
| 608 |
|
|
&\begin{minipage}[t]{3in} |
| 609 |
|
|
{heat from melt/freeze of sea-ice, >0 increases theta} |
| 610 |
|
|
\end{minipage}\\ |
| 611 |
|
|
SFLUX & $g/m^2/s $ & 1 |
| 612 |
|
|
&\begin{minipage}[t]{3in} |
| 613 |
|
|
{net surface salt flux, >0 increases salt} |
| 614 |
|
|
\end{minipage}\\ |
| 615 |
|
|
SRELAX & $g/m^2/s $ & 1 |
| 616 |
|
|
&\begin{minipage}[t]{3in} |
| 617 |
|
|
{surface salinity relaxation, >0 increases salt} |
| 618 |
|
|
\end{minipage}\\ |
| 619 |
|
|
PRESSURE & $Pa $ & Nr |
| 620 |
|
|
&\begin{minipage}[t]{3in} |
| 621 |
|
|
{Atmospheric Pressure (Pa)} |
| 622 |
|
|
\end{minipage}\\ |
| 623 |
|
|
ADVr\_TH & $K.Pa.m^2/s $ & Nr |
| 624 |
|
|
&\begin{minipage}[t]{3in} |
| 625 |
|
|
{Vertical Advective Flux of Pot.Temperature} |
| 626 |
|
|
\end{minipage}\\ |
| 627 |
|
|
ADVx\_TH & $K.Pa.m^2/s $ & Nr |
| 628 |
|
|
&\begin{minipage}[t]{3in} |
| 629 |
|
|
{Zonal Advective Flux of Pot.Temperature} |
| 630 |
|
|
\end{minipage}\\ |
| 631 |
|
|
ADVy\_TH & $K.Pa.m^2/s $ & Nr |
| 632 |
|
|
&\begin{minipage}[t]{3in} |
| 633 |
|
|
{Meridional Advective Flux of Pot.Temperature} |
| 634 |
|
|
\end{minipage}\\ |
| 635 |
|
|
DFrE\_TH & $K.Pa.m^2/s $ & Nr |
| 636 |
|
|
&\begin{minipage}[t]{3in} |
| 637 |
|
|
{Vertical Diffusive Flux of Pot.Temperature (Explicit part)} |
| 638 |
|
|
\end{minipage}\\ |
| 639 |
|
|
DIFx\_TH & $K.Pa.m^2/s $ & Nr |
| 640 |
|
|
&\begin{minipage}[t]{3in} |
| 641 |
|
|
{Zonal Diffusive Flux of Pot.Temperature} |
| 642 |
|
|
\end{minipage}\\ |
| 643 |
|
|
DIFy\_TH & $K.Pa.m^2/s $ & Nr |
| 644 |
|
|
&\begin{minipage}[t]{3in} |
| 645 |
|
|
{Meridional Diffusive Flux of Pot.Temperature} |
| 646 |
|
|
\end{minipage}\\ |
| 647 |
|
|
DFrI\_TH & $K.Pa.m^2/s $ & Nr |
| 648 |
|
|
&\begin{minipage}[t]{3in} |
| 649 |
|
|
{Vertical Diffusive Flux of Pot.Temperature (Implicit part)} |
| 650 |
|
|
\end{minipage}\\ |
| 651 |
|
|
ADVr\_SLT & $g/kg.Pa.m^2/s$ & Nr |
| 652 |
|
|
&\begin{minipage}[t]{3in} |
| 653 |
|
|
{Vertical Advective Flux of Water-Vapor} |
| 654 |
|
|
\end{minipage}\\ |
| 655 |
|
|
ADVx\_SLT & $g/kg.Pa.m^2/s$ & Nr |
| 656 |
|
|
&\begin{minipage}[t]{3in} |
| 657 |
|
|
{Zonal Advective Flux of Water-Vapor} |
| 658 |
|
|
\end{minipage}\\ |
| 659 |
|
|
ADVy\_SLT & $g/kg.Pa.m^2/s$ & Nr |
| 660 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
| 661 |
molod |
1.10 |
{Meridional Advective Flux of Water-Vapor} |
| 662 |
|
|
\end{minipage}\\ |
| 663 |
|
|
\end{tabular} |
| 664 |
|
|
\vspace{1.5in} |
| 665 |
|
|
\vfill |
| 666 |
|
|
|
| 667 |
|
|
\newpage |
| 668 |
|
|
\vspace*{\fill} |
| 669 |
|
|
\begin{tabular}{llll} |
| 670 |
|
|
\hline\hline |
| 671 |
|
|
NAME & UNITS & LEVELS & DESCRIPTION \\ |
| 672 |
|
|
\hline |
| 673 |
|
|
|
| 674 |
|
|
&\\ |
| 675 |
|
|
DFrE\_SLT & $g/kg.Pa.m^2/s$ & Nr |
| 676 |
|
|
&\begin{minipage}[t]{3in} |
| 677 |
|
|
{Vertical Diffusive Flux of Water-Vapor (Explicit part)} |
| 678 |
|
|
\end{minipage}\\ |
| 679 |
|
|
DIFx\_SLT & $g/kg.Pa.m^2/s$ & Nr |
| 680 |
|
|
&\begin{minipage}[t]{3in} |
| 681 |
|
|
{Zonal Diffusive Flux of Water-Vapor} |
| 682 |
|
|
\end{minipage}\\ |
| 683 |
|
|
DIFy\_SLT & $g/kg.Pa.m^2/s$ & Nr |
| 684 |
|
|
&\begin{minipage}[t]{3in} |
| 685 |
|
|
{Meridional Diffusive Flux of Water-Vapor} |
| 686 |
molod |
1.8 |
\end{minipage}\\ |
| 687 |
molod |
1.10 |
DFrI\_SLT & $g/kg.Pa.m^2/s$ & Nr |
| 688 |
molod |
1.8 |
&\begin{minipage}[t]{3in} |
| 689 |
molod |
1.10 |
{Vertical Diffusive Flux of Water-Vapor (Implicit part)} |
| 690 |
molod |
1.1 |
\end{minipage}\\ |
| 691 |
molod |
1.8 |
\end{tabular} |
| 692 |
molod |
1.9 |
\vspace{1.5in} |
| 693 |
molod |
1.8 |
\vfill |
| 694 |
|
|
|
| 695 |
|
|
\newpage |
| 696 |
|
|
|
| 697 |
molod |
1.9 |
\subsubsection{Diagnostic Description} |
| 698 |
molod |
1.1 |
|
| 699 |
molod |
1.9 |
In this section we list and describe the diagnostic quantities available within the |
| 700 |
|
|
GCM. The diagnostics are listed in the order that they appear in the |
| 701 |
|
|
Diagnostic Menu, Section \ref{sec:diagnostics:menu}. |
| 702 |
|
|
In all cases, each diagnostic as currently archived on the output datasets |
| 703 |
|
|
is time-averaged over its diagnostic output frequency: |
| 704 |
molod |
1.1 |
|
| 705 |
molod |
1.9 |
\[ |
| 706 |
|
|
{\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t) |
| 707 |
|
|
\] |
| 708 |
|
|
where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the |
| 709 |
|
|
output frequency of the diagnostic, and $\Delta t$ is |
| 710 |
|
|
the timestep over which the diagnostic is updated. |
| 711 |
molod |
1.1 |
|
| 712 |
|
|
\subsection{Dos and Donts} |
| 713 |
|
|
|
| 714 |
|
|
\subsection{Diagnostics Reference} |
| 715 |
|
|
|