| 1 | 
edhill | 
1.2 | 
\section{Diagnostics--A Flexible Infrastructure} | 
| 2 | 
  | 
  | 
\label{sec:pkg:diagnostics} | 
| 3 | 
  | 
  | 
\begin{rawhtml} | 
| 4 | 
  | 
  | 
<!-- CMIREDIR:package_diagnostics: --> | 
| 5 | 
  | 
  | 
\end{rawhtml} | 
| 6 | 
molod | 
1.1 | 
 | 
| 7 | 
  | 
  | 
\subsection{Introduction} | 
| 8 | 
  | 
  | 
 | 
| 9 | 
molod | 
1.7 | 
\noindent | 
| 10 | 
molod | 
1.5 | 
This section of the documentation describes the Diagnostics package available within  | 
| 11 | 
molod | 
1.7 | 
the GCM.  A large selection of model diagnostics is available for output.   | 
| 12 | 
  | 
  | 
In addition to the diagnostic quantities pre-defined in the GCM, there exists | 
| 13 | 
  | 
  | 
the option, in any experiment, to define a new diagnostic quantity and include it | 
| 14 | 
  | 
  | 
as part of the diagnostic output with the addition of a single subroutine call in the | 
| 15 | 
  | 
  | 
routine where the field is computed. As a matter of philosophy, no diagnostic is enabled  | 
| 16 | 
  | 
  | 
as default, thus each user must specify the exact diagnostic information required for an  | 
| 17 | 
  | 
  | 
experiment.  This is accomplished by enabling the specific diagnostic of interest cataloged  | 
| 18 | 
  | 
  | 
in the Diagnostic Menu (see Section \ref{sec:diagnostics:menu}). Instructions for enabling | 
| 19 | 
  | 
  | 
diagnostic output and defining new diagnostic quantities are found in Section  | 
| 20 | 
  | 
  | 
\ref{sec:diagnostics:usersguide} of this document. | 
| 21 | 
  | 
  | 
 | 
| 22 | 
  | 
  | 
\noindent | 
| 23 | 
  | 
  | 
The Diagnostic Menu is a hard-wired enumeration of diagnostic quantities available within  | 
| 24 | 
  | 
  | 
the GCM. Once a diagnostic is enabled, the GCM will continually increment an array | 
| 25 | 
  | 
  | 
specifically allocated for that diagnostic whenever the appropriate quantity is computed.   | 
| 26 | 
  | 
  | 
A counter is defined which records how many times each diagnostic quantity has been  | 
| 27 | 
  | 
  | 
incremented.  Several special diagnostics are included in the menu. Quantities refered to  | 
| 28 | 
  | 
  | 
as ``Counter Diagnostics'', are defined for selected diagnostics which record the  | 
| 29 | 
  | 
  | 
frequency at which a diagnostic is incremented separately for each model grid location. | 
| 30 | 
  | 
  | 
Quantitied refered to as ``User Diagnostics'' are included in the menu to facilitate | 
| 31 | 
  | 
  | 
defining new diagnostics for a particular experiment. | 
| 32 | 
molod | 
1.1 | 
 | 
| 33 | 
  | 
  | 
\subsection{Equations} | 
| 34 | 
  | 
  | 
Not relevant. | 
| 35 | 
  | 
  | 
 | 
| 36 | 
  | 
  | 
\subsection{Key Subroutines and Parameters} | 
| 37 | 
  | 
  | 
\label{sec:diagnostics:diagover} | 
| 38 | 
  | 
  | 
 | 
| 39 | 
molod | 
1.7 | 
\noindent | 
| 40 | 
  | 
  | 
The diagnostics are computed at various times and places within the GCM. Because the | 
| 41 | 
  | 
  | 
MIT GCM may employ a staggered grid, diagnostics may be computed at grid box centers, | 
| 42 | 
  | 
  | 
corners, or edges, and at the middle or edge in the vertical. Some diagnostics are scalars,  | 
| 43 | 
  | 
  | 
while others are components of vectors. An internal array is defined which contains  | 
| 44 | 
  | 
  | 
information concerning various grid attributes of each diagnostic. The GDIAG | 
| 45 | 
  | 
  | 
array (in common block \\diagnostics in file diagnostics.h) is internally defined as a  | 
| 46 | 
  | 
  | 
character*8 variable, and is equivalenced to a character*1 "parse" array in output in  | 
| 47 | 
  | 
  | 
order to extract the grid-attribute information.  The GDIAG array is described in  | 
| 48 | 
  | 
  | 
Table \ref{tab:diagnostics:gdiag.tabl}. | 
| 49 | 
molod | 
1.1 | 
 | 
| 50 | 
  | 
  | 
\begin{table} | 
| 51 | 
  | 
  | 
\caption{Diagnostic Parsing Array} | 
| 52 | 
  | 
  | 
\label{tab:diagnostics:gdiag.tabl} | 
| 53 | 
  | 
  | 
\begin{center} | 
| 54 | 
  | 
  | 
\begin{tabular}{ |c|c|l| } | 
| 55 | 
  | 
  | 
\hline | 
| 56 | 
  | 
  | 
\multicolumn{3}{|c|}{\bf Diagnostic Parsing Array} \\  | 
| 57 | 
  | 
  | 
\hline | 
| 58 | 
  | 
  | 
\hline | 
| 59 | 
  | 
  | 
Array & Value & Description \\ | 
| 60 | 
  | 
  | 
\hline | 
| 61 | 
  | 
  | 
  parse(1)   & $\rightarrow$ S &  Scalar Diagnostic                 \\  | 
| 62 | 
  | 
  | 
             & $\rightarrow$ U &  U-vector component Diagnostic     \\  | 
| 63 | 
  | 
  | 
             & $\rightarrow$ V &  V-vector component Diagnostic     \\ \hline | 
| 64 | 
  | 
  | 
  parse(2)   & $\rightarrow$ U &  C-Grid U-Point                    \\  | 
| 65 | 
  | 
  | 
             & $\rightarrow$ V &  C-Grid V-Point                    \\  | 
| 66 | 
  | 
  | 
             & $\rightarrow$ M &  C-Grid Mass Point                 \\  | 
| 67 | 
molod | 
1.3 | 
             & $\rightarrow$ Z &  C-Grid Vorticity (Corner) Point   \\ \hline | 
| 68 | 
  | 
  | 
  parse(3)   & $\rightarrow$ R &  Not Currently in Use              \\ \hline | 
| 69 | 
molod | 
1.1 | 
  parse(4)   & $\rightarrow$ P &  Positive Definite Diagnostic      \\ \hline | 
| 70 | 
  | 
  | 
  parse(5)   & $\rightarrow$ C &  Counter Diagnostic                \\ | 
| 71 | 
  | 
  | 
             & $\rightarrow$ D &  Disabled Diagnostic for output    \\ \hline | 
| 72 | 
  | 
  | 
  parse(6-8) & $\rightarrow$ C &  3-digit integer corresponding to  \\ | 
| 73 | 
  | 
  | 
             &                 &  vector or counter component mate  \\ \hline | 
| 74 | 
  | 
  | 
\end{tabular} | 
| 75 | 
  | 
  | 
\addcontentsline{lot}{section}{Table 3:  Diagnostic Parsing Array} | 
| 76 | 
  | 
  | 
\end{center} | 
| 77 | 
  | 
  | 
\end{table} | 
| 78 | 
  | 
  | 
 | 
| 79 | 
molod | 
1.7 | 
 | 
| 80 | 
  | 
  | 
\noindent | 
| 81 | 
molod | 
1.1 | 
As an example, consider a diagnostic whose associated GDIAG parameter is equal | 
| 82 | 
molod | 
1.3 | 
to ``UU  002''.  From GDIAG we can determine that this diagnostic is a  | 
| 83 | 
  | 
  | 
U-vector component located at the C-grid U-point. | 
| 84 | 
molod | 
1.1 | 
Its corresponding V-component diagnostic is located in Diagnostic \# 002. | 
| 85 | 
  | 
  | 
 | 
| 86 | 
molod | 
1.7 | 
 | 
| 87 | 
  | 
  | 
\noindent | 
| 88 | 
molod | 
1.1 | 
In this way, each Diagnostic in the model has its attributes (ie. vector or scalar, | 
| 89 | 
molod | 
1.7 | 
C-grid location, etc.) defined internally.  The Output routines use this information  | 
| 90 | 
  | 
  | 
in order to determine what type of transformations need to be performed.  Any  | 
| 91 | 
  | 
  | 
interpolations are done at the time of output rather than during each model step. | 
| 92 | 
  | 
  | 
In this way the User has flexibility in determining the type of gridded data which  | 
| 93 | 
  | 
  | 
is output. | 
| 94 | 
  | 
  | 
 | 
| 95 | 
molod | 
1.1 | 
 | 
| 96 | 
molod | 
1.7 | 
\noindent | 
| 97 | 
molod | 
1.1 | 
There are several utilities within the GCM available to users to enable, disable, | 
| 98 | 
molod | 
1.5 | 
clear, write and retrieve model diagnostics, and may be called from any routine.   | 
| 99 | 
  | 
  | 
The available utilities and the CALL sequences are listed below. | 
| 100 | 
molod | 
1.1 | 
 | 
| 101 | 
  | 
  | 
 | 
| 102 | 
molod | 
1.7 | 
\noindent | 
| 103 | 
  | 
  | 
{\bf fill\_diagnostics}:  This routine will increment the specified diagnostic | 
| 104 | 
  | 
  | 
quantity with a field sent through the argument list. | 
| 105 | 
  | 
  | 
 | 
| 106 | 
  | 
  | 
 | 
| 107 | 
  | 
  | 
\noindent | 
| 108 | 
  | 
  | 
\begin{tabbing} | 
| 109 | 
  | 
  | 
XXXXXXXXX\=XXXXXX\= \kill | 
| 110 | 
  | 
  | 
\>        call fill\_diagnostics (myThid, chardiag, levflg, nlevs, \\ | 
| 111 | 
  | 
  | 
                bibjflg, bi, bj, arrayin) \\ | 
| 112 | 
  | 
  | 
\\ | 
| 113 | 
  | 
  | 
where \>  myThid   \>= Current Process(or) \\ | 
| 114 | 
  | 
  | 
      \>  chardiag \>= Character *8 expression for diag to fill \\ | 
| 115 | 
  | 
  | 
      \>  levflg   \>= Integer flag for vertical levels: \\ | 
| 116 | 
  | 
  | 
      \>           \> 0 indicates multiple levels incremented in qdiag \\ | 
| 117 | 
  | 
  | 
      \>           \> non-0 (any integer) - WHICH single level to increment. \\ | 
| 118 | 
  | 
  | 
      \>           \> negative integer - the input data array is single-leveled \\ | 
| 119 | 
  | 
  | 
      \>           \> positive integer - the input data array is multi-leveled \\ | 
| 120 | 
  | 
  | 
      \>  nlevs    \>= indicates Number of levels to be filled (1 if levflg <> 0) \\ | 
| 121 | 
  | 
  | 
      \>           \> positive: fill in "nlevs" levels in the same order as \\ | 
| 122 | 
  | 
  | 
      \>           \> the input array \\ | 
| 123 | 
  | 
  | 
      \>           \> negative: fill in -nlevs levels in reverse order. \\ | 
| 124 | 
  | 
  | 
      \>  bibjflg  \>= Integer flag to indicate instructions for bi bj loop \\ | 
| 125 | 
  | 
  | 
      \>           \> 0 indicates that the bi-bj loop must be done here \\ | 
| 126 | 
  | 
  | 
      \>           \> 1 indicates that the bi-bj loop is done OUTSIDE \\ | 
| 127 | 
  | 
  | 
      \>           \> 2 indicates that the bi-bj loop is done OUTSIDE \\ | 
| 128 | 
  | 
  | 
      \>           \>    AND that we have been sent a local array \\ | 
| 129 | 
  | 
  | 
      \>           \> 3 indicates that the bi-bj loop is done OUTSIDE \\ | 
| 130 | 
  | 
  | 
      \>           \>    AND that we have been sent a local array \\ | 
| 131 | 
  | 
  | 
      \>           \>    AND that the array has the shadow regions \\ | 
| 132 | 
  | 
  | 
      \>  bi       \>= X-direction process(or) number - used for bibjflg=1-3 \\ | 
| 133 | 
  | 
  | 
      \>  bj       \>= Y-direction process(or) number - used for bibjflg=1-3 \\ | 
| 134 | 
  | 
  | 
      \>  arrayin  \>= Field to increment diagnostics array \\ | 
| 135 | 
  | 
  | 
\end{tabbing} | 
| 136 | 
  | 
  | 
 | 
| 137 | 
  | 
  | 
 | 
| 138 | 
  | 
  | 
\noindent | 
| 139 | 
molod | 
1.5 | 
{\bf setdiag}:  This subroutine enables a diagnostic from the Diagnostic Menu, meaning  | 
| 140 | 
  | 
  | 
that space is allocated for the diagnostic and the model routines will increment the  | 
| 141 | 
  | 
  | 
diagnostic value during execution.  This routine is the underlying interface | 
| 142 | 
molod | 
1.1 | 
between the user and the desired diagnostic.  The diagnostic is referenced by its diagnostic | 
| 143 | 
  | 
  | 
number from the menu, and its calling sequence is given by: | 
| 144 | 
  | 
  | 
 | 
| 145 | 
molod | 
1.7 | 
\noindent | 
| 146 | 
molod | 
1.1 | 
\begin{tabbing} | 
| 147 | 
  | 
  | 
XXXXXXXXX\=XXXXXX\= \kill | 
| 148 | 
molod | 
1.5 | 
\>        call setdiag (num) \\ | 
| 149 | 
molod | 
1.1 | 
\\ | 
| 150 | 
molod | 
1.5 | 
where \>  num   \>= Diagnostic number from menu \\ | 
| 151 | 
molod | 
1.1 | 
\end{tabbing} | 
| 152 | 
  | 
  | 
 | 
| 153 | 
molod | 
1.7 | 
\noindent | 
| 154 | 
molod | 
1.5 | 
{\bf getdiag}:  This subroutine retrieves the value of a model diagnostic.  This routine  | 
| 155 | 
  | 
  | 
is particulary useful when called from a user output routine, although it can be called  | 
| 156 | 
  | 
  | 
from any routine.  This routine returns the time-averaged value of the diagnostic by | 
| 157 | 
  | 
  | 
dividing the current accumulated diagnostic value by its corresponding counter.  This  | 
| 158 | 
  | 
  | 
routine does not change the value of the diagnostic itself, that is, it does not replace  | 
| 159 | 
  | 
  | 
the diagnostic with its time-average.  The calling sequence for this routine is givin by: | 
| 160 | 
molod | 
1.1 | 
 | 
| 161 | 
molod | 
1.7 | 
\noindent | 
| 162 | 
molod | 
1.1 | 
\begin{tabbing} | 
| 163 | 
  | 
  | 
XXXXXXXXX\=XXXXXX\= \kill | 
| 164 | 
molod | 
1.5 | 
\>        call getdiag (lev,num,qtmp,undef) \\ | 
| 165 | 
molod | 
1.1 | 
\\ | 
| 166 | 
molod | 
1.5 | 
where \>  lev   \>= Model Level at which the diagnostic is desired \\ | 
| 167 | 
  | 
  | 
      \>  num   \>= Diagnostic number from menu \\ | 
| 168 | 
  | 
  | 
      \>  qtmp  \>= Time-Averaged Diagnostic Output \\ | 
| 169 | 
  | 
  | 
      \>  undef \>= Fill value to be used when diagnostic is undefined \\ | 
| 170 | 
molod | 
1.1 | 
\end{tabbing} | 
| 171 | 
  | 
  | 
 | 
| 172 | 
molod | 
1.7 | 
\noindent | 
| 173 | 
molod | 
1.5 | 
{\bf clrdiag}:  This subroutine initializes the values of model diagnostics to zero, and is | 
| 174 | 
  | 
  | 
particularly useful when called from user output routines to re-initialize diagnostics  | 
| 175 | 
  | 
  | 
during the run.  The calling sequence is: | 
| 176 | 
molod | 
1.1 | 
 | 
| 177 | 
molod | 
1.7 | 
\noindent | 
| 178 | 
molod | 
1.1 | 
\begin{tabbing} | 
| 179 | 
  | 
  | 
XXXXXXXXX\=XXXXXX\= \kill | 
| 180 | 
molod | 
1.5 | 
\>        call clrdiag (num) \\ | 
| 181 | 
molod | 
1.1 | 
\\ | 
| 182 | 
molod | 
1.5 | 
where \>  num   \>= Diagnostic number from menu \\ | 
| 183 | 
molod | 
1.1 | 
\end{tabbing} | 
| 184 | 
  | 
  | 
 | 
| 185 | 
molod | 
1.7 | 
\noindent | 
| 186 | 
molod | 
1.5 | 
{\bf zapdiag}:  This entry into subroutine SETDIAG disables model diagnostics, meaning  | 
| 187 | 
  | 
  | 
that the diagnostic is no longer available to the user.  The memory previously allocated  | 
| 188 | 
  | 
  | 
to the diagnostic is released when ZAPDIAG is invoked.  The calling sequence is given by: | 
| 189 | 
molod | 
1.1 | 
 | 
| 190 | 
molod | 
1.7 | 
\noindent | 
| 191 | 
molod | 
1.1 | 
\begin{tabbing} | 
| 192 | 
  | 
  | 
XXXXXXXXX\=XXXXXX\= \kill | 
| 193 | 
molod | 
1.5 | 
\>        call zapdiag (NUM) \\ | 
| 194 | 
molod | 
1.1 | 
\\ | 
| 195 | 
molod | 
1.5 | 
where \>  num   \>= Diagnostic number from menu \\ | 
| 196 | 
molod | 
1.1 | 
\end{tabbing} | 
| 197 | 
  | 
  | 
 | 
| 198 | 
molod | 
1.7 | 
 | 
| 199 | 
  | 
  | 
\subsection{Usage Notes} | 
| 200 | 
  | 
  | 
\label{sec:diagnostics:usersguide} | 
| 201 | 
  | 
  | 
 | 
| 202 | 
  | 
  | 
\noindent | 
| 203 | 
  | 
  | 
We begin this section with a discussion on the manner in which computer  | 
| 204 | 
  | 
  | 
memory is allocated for diagnostics. All GCM diagnostic quantities are stored in the  | 
| 205 | 
  | 
  | 
single diagnostic array QDIAG which is located in the file \\ | 
| 206 | 
  | 
  | 
\filelink{pkg/diagnostics/diagnostics.h}{pkg-diagnostics-diagnostics.h}. | 
| 207 | 
  | 
  | 
and has the form: | 
| 208 | 
molod | 
1.1 | 
 | 
| 209 | 
molod | 
1.3 | 
common /diagnostics/ qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numdiags,Nsx,Nsy) | 
| 210 | 
molod | 
1.1 | 
 | 
| 211 | 
molod | 
1.7 | 
\noindent | 
| 212 | 
  | 
  | 
where numdiags is an Integer variable which should be set equal to the number of  | 
| 213 | 
  | 
  | 
enabled diagnostics, and qdiag is a three-dimensional array.  The first two-dimensions  | 
| 214 | 
  | 
  | 
of qdiag correspond to the horizontal dimension of a given diagnostic, while the third  | 
| 215 | 
  | 
  | 
dimension of qdiag is used to identify diagnostic fields and levels combined. In order  | 
| 216 | 
  | 
  | 
to minimize the memory requirement of the model for diagnostics, the default GCM  | 
| 217 | 
  | 
  | 
executable is compiled with room for only one horizontal diagnostic array, or with | 
| 218 | 
  | 
  | 
numdiags set to 1. In order for the User to enable more than 1 two-dimensional diagnostic, | 
| 219 | 
molod | 
1.3 | 
the size of the diagnostics common must be expanded to accomodate the desired diagnostics. | 
| 220 | 
molod | 
1.1 | 
This can be accomplished by manually changing the parameter numdiags in the | 
| 221 | 
molod | 
1.10 | 
file \filelink{pkg/diagnostics/diagnostics\_SIZE.h}{pkg-diagnostics-diagnostics\_SIZE.h}. | 
| 222 | 
molod | 
1.7 | 
numdiags should be set greater than or equal to the sum of all the diagnostics activated | 
| 223 | 
  | 
  | 
for output each multiplied by the number of levels defined for that diagnostic quantity. | 
| 224 | 
  | 
  | 
This is illustrated in the example below: | 
| 225 | 
molod | 
1.1 | 
 | 
| 226 | 
molod | 
1.7 | 
\noindent | 
| 227 | 
molod | 
1.3 | 
To use the diagnostics package, other than enabling it in packages.conf | 
| 228 | 
  | 
  | 
and turning the usediagnostics flag in data.pkg to .TRUE., a namelist | 
| 229 | 
  | 
  | 
must be supplied in the run directory called data.diagnostics. The namelist | 
| 230 | 
  | 
  | 
will activate a user-defined list of diagnostics quantities to be computed, | 
| 231 | 
  | 
  | 
specify the frequency of output, the number of levels, and the name of | 
| 232 | 
  | 
  | 
up to 10 separate output files. A sample data.diagnostics namelist file: | 
| 233 | 
  | 
  | 
 | 
| 234 | 
molod | 
1.7 | 
\noindent | 
| 235 | 
  | 
  | 
$\#$ Diagnostic Package Choices \\ | 
| 236 | 
  | 
  | 
 $\&$diagnostics\_list \\ | 
| 237 | 
  | 
  | 
  frequency(1) = 10, \ \\ | 
| 238 | 
  | 
  | 
   levels(1,1) = 1.,2.,3.,4.,5., \ \\ | 
| 239 | 
  | 
  | 
   fields(1,1) = 'UVEL    ','VVEL    ', \ \\ | 
| 240 | 
  | 
  | 
   filename(1) = 'diagout1', \ \\ | 
| 241 | 
  | 
  | 
  frequency(2) = 100, \ \\ | 
| 242 | 
  | 
  | 
   levels(1,2) = 1.,2.,3.,4.,5., \ \\ | 
| 243 | 
  | 
  | 
   fields(1,2) = 'THETA   ','SALT    ', \ \\ | 
| 244 | 
  | 
  | 
   filename(2) = 'diagout2', \ \\ | 
| 245 | 
  | 
  | 
 $\&$end \ \\ | 
| 246 | 
molod | 
1.3 | 
 | 
| 247 | 
molod | 
1.7 | 
\noindent | 
| 248 | 
molod | 
1.3 | 
In this example, there are two output files that will be generated | 
| 249 | 
  | 
  | 
for each tile and for each output time. The first set of output files | 
| 250 | 
molod | 
1.7 | 
has the prefix diagout1, does time averaging every 10 time steps | 
| 251 | 
  | 
  | 
(frequency is 10), they will write fields which are multiple-level  | 
| 252 | 
  | 
  | 
fields and output levels 1-5. The names of diagnostics quantities are  | 
| 253 | 
  | 
  | 
UVEL and VVEL.  The second set of output files | 
| 254 | 
molod | 
1.3 | 
has the prefix diagout2, does time averaging every 100 time steps, | 
| 255 | 
molod | 
1.7 | 
they include fields which are multiple-level fields, levels output are 1-5, | 
| 256 | 
molod | 
1.3 | 
and the names of diagnostics quantities are THETA and SALT. | 
| 257 | 
  | 
  | 
 | 
| 258 | 
molod | 
1.7 | 
\noindent | 
| 259 | 
  | 
  | 
In order to define and include as part of the diagnostic output any field | 
| 260 | 
  | 
  | 
that is desired for a particular experiment, two steps must be taken. The | 
| 261 | 
  | 
  | 
first is to enable the ``User Diagnostic'' in data.diagnostics. This is | 
| 262 | 
  | 
  | 
accomplished by setting one of the fields slots to either UDIAG1 through  | 
| 263 | 
  | 
  | 
UDIAG10, for multi-level fields, or SDIAG1 through SDIAG10 for single level | 
| 264 | 
  | 
  | 
fields. These are listed in the diagnostics menu. The second step is to | 
| 265 | 
  | 
  | 
add a call to fill\_diagnostics from the subroutine in which the quantity | 
| 266 | 
  | 
  | 
desired for diagnostic output is computed.  | 
| 267 | 
  | 
  | 
 | 
| 268 | 
molod | 
1.1 | 
\newpage | 
| 269 | 
  | 
  | 
 | 
| 270 | 
  | 
  | 
\subsubsection{GCM Diagnostic Menu} | 
| 271 | 
  | 
  | 
\label{sec:diagnostics:menu} | 
| 272 | 
  | 
  | 
 | 
| 273 | 
molod | 
1.10 | 
\begin{tabular}{llll} | 
| 274 | 
molod | 
1.1 | 
\hline\hline | 
| 275 | 
molod | 
1.10 | 
 NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 276 | 
molod | 
1.1 | 
\hline | 
| 277 | 
  | 
  | 
 | 
| 278 | 
  | 
  | 
&\\ | 
| 279 | 
molod | 
1.10 | 
 SDIAG1   &             &    1   | 
| 280 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 281 | 
molod | 
1.9 | 
          {User-Defined Surface Diagnostic-1}  | 
| 282 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 283 | 
molod | 
1.10 | 
 SDIAG2   &             &    1   | 
| 284 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 285 | 
molod | 
1.9 | 
          {User-Defined Surface Diagnostic-2}  | 
| 286 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 287 | 
molod | 
1.10 | 
 UDIAG1   &             &    Nrphys | 
| 288 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 289 | 
molod | 
1.9 | 
          {User-Defined Upper-Air Diagnostic-1}  | 
| 290 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 291 | 
molod | 
1.10 | 
 UDIAG2   &             &    Nrphys | 
| 292 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 293 | 
molod | 
1.9 | 
          {User-Defined Upper-Air Diagnostic-2}  | 
| 294 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 295 | 
molod | 
1.10 | 
 SDIAG3   &             &    1   | 
| 296 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 297 | 
molod | 
1.9 | 
          {User-Defined Surface Diagnostic-3}  | 
| 298 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 299 | 
molod | 
1.10 | 
 SDIAG4   &             &    1   | 
| 300 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 301 | 
molod | 
1.9 | 
          {User-Defined Surface Diagnostic-4}  | 
| 302 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 303 | 
molod | 
1.10 | 
 SDIAG5   &             &    1   | 
| 304 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 305 | 
molod | 
1.9 | 
          {User-Defined Surface Diagnostic-5}  | 
| 306 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 307 | 
molod | 
1.10 | 
 SDIAG6   &             &    1   | 
| 308 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 309 | 
molod | 
1.9 | 
          {User-Defined Surface Diagnostic-6}  | 
| 310 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 311 | 
molod | 
1.10 | 
 SDIAG7   &             &    1   | 
| 312 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 313 | 
molod | 
1.9 | 
          {User-Defined Surface Diagnostic-7}  | 
| 314 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 315 | 
molod | 
1.10 | 
 SDIAG8   &             &    1   | 
| 316 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 317 | 
molod | 
1.9 | 
          {User-Defined Surface Diagnostic-8}  | 
| 318 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 319 | 
molod | 
1.10 | 
 SDIAG9   &             &    1   | 
| 320 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 321 | 
molod | 
1.9 | 
          {User-Defined Surface Diagnostic-9}  | 
| 322 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 323 | 
molod | 
1.10 | 
 SDIAG10  &             &    1   | 
| 324 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 325 | 
molod | 
1.9 | 
          {User-Defined Surface Diagnostic-1-}  | 
| 326 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 327 | 
molod | 
1.10 | 
 UDIAG3   &             &    Nrphys   | 
| 328 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 329 | 
molod | 
1.9 | 
          {User-Defined Multi-Level Diagnostic-3}  | 
| 330 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 331 | 
molod | 
1.10 | 
 UDIAG4   &             &    Nrphys   | 
| 332 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 333 | 
molod | 
1.9 | 
          {User-Defined Multi-Level Diagnostic-4}  | 
| 334 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 335 | 
molod | 
1.10 | 
 UDIAG5   &             &    Nrphys   | 
| 336 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 337 | 
molod | 
1.9 | 
          {User-Defined Multi-Level Diagnostic-5}  | 
| 338 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 339 | 
molod | 
1.10 | 
 UDIAG6   &             &    Nrphys   | 
| 340 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 341 | 
molod | 
1.9 | 
          {User-Defined Multi-Level Diagnostic-6}  | 
| 342 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 343 | 
molod | 
1.10 | 
 UDIAG7   &             &    Nrphys   | 
| 344 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 345 | 
molod | 
1.9 | 
          {User-Defined Multi-Level Diagnostic-7}  | 
| 346 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 347 | 
molod | 
1.10 | 
 UDIAG8   &             &    Nrphys   | 
| 348 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 349 | 
molod | 
1.9 | 
          {User-Defined Multi-Level Diagnostic-8}  | 
| 350 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 351 | 
molod | 
1.10 | 
 UDIAG9   &             &    Nrphys   | 
| 352 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 353 | 
molod | 
1.9 | 
          {User-Defined Multi-Level Diagnostic-9}  | 
| 354 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 355 | 
molod | 
1.10 | 
 UDIAG10  &             &    Nrphys   | 
| 356 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 357 | 
molod | 
1.9 | 
          {User-Defined Multi-Level Diagnostic-10}  | 
| 358 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 359 | 
molod | 
1.10 | 
 SDIAGC   &             &    1   | 
| 360 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 361 | 
  | 
  | 
          {User-Defined Counted Surface Diagnostic}  | 
| 362 | 
  | 
  | 
         \end{minipage}\\ | 
| 363 | 
  | 
  | 
 SDIAGCC  &             &    1   | 
| 364 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 365 | 
  | 
  | 
          {User-Defined Counted Surface Diagnostic Counter}  | 
| 366 | 
  | 
  | 
         \end{minipage}\\ | 
| 367 | 
  | 
  | 
 ETAN     & $(hPa,m)$ &    1 | 
| 368 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 369 | 
  | 
  | 
          {Perturbation of Surface (pressure, height)}  | 
| 370 | 
  | 
  | 
         \end{minipage}\\ | 
| 371 | 
  | 
  | 
 ETANSQ   & $(hPa^2,m^2)$ & 1 | 
| 372 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 373 | 
  | 
  | 
          {Square of Perturbation of Surface (pressure, height)}  | 
| 374 | 
  | 
  | 
         \end{minipage}\\ | 
| 375 | 
  | 
  | 
 DETADT2  & ${r-unit}^2/s^2$ & 1 | 
| 376 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 377 | 
  | 
  | 
          {Square of Eta (Surf.P,SSH) Tendency}  | 
| 378 | 
  | 
  | 
         \end{minipage}\\ | 
| 379 | 
  | 
  | 
 THETA    & $deg K$ & Nr | 
| 380 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 381 | 
  | 
  | 
          {Potential Temperature}  | 
| 382 | 
  | 
  | 
         \end{minipage}\\ | 
| 383 | 
  | 
  | 
 SST      & $deg K$ & 1 | 
| 384 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 385 | 
  | 
  | 
          {Sea Surface Temperature}  | 
| 386 | 
  | 
  | 
         \end{minipage}\\ | 
| 387 | 
  | 
  | 
 SALT     & $g/kg$ & Nr | 
| 388 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 389 | 
  | 
  | 
          {Salt (or Water Vapor Mixing Ratio)}  | 
| 390 | 
  | 
  | 
         \end{minipage}\\ | 
| 391 | 
  | 
  | 
 SSS      & $g/kg$ & 1 | 
| 392 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 393 | 
  | 
  | 
          {Sea Surface Salinity}  | 
| 394 | 
  | 
  | 
         \end{minipage}\\ | 
| 395 | 
  | 
  | 
 SALTanom & $g/kg$ & Nr | 
| 396 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 397 | 
  | 
  | 
          {Salt anomaly (=SALT-35)}  | 
| 398 | 
  | 
  | 
         \end{minipage}\\ | 
| 399 | 
molod | 
1.8 | 
\end{tabular} | 
| 400 | 
molod | 
1.9 | 
\vspace{1.5in} | 
| 401 | 
  | 
  | 
\vfill | 
| 402 | 
molod | 
1.8 | 
 | 
| 403 | 
  | 
  | 
\newpage | 
| 404 | 
  | 
  | 
\vspace*{\fill} | 
| 405 | 
molod | 
1.10 | 
\begin{tabular}{llll} | 
| 406 | 
molod | 
1.8 | 
\hline\hline | 
| 407 | 
molod | 
1.10 | 
 NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 408 | 
molod | 
1.8 | 
\hline | 
| 409 | 
  | 
  | 
 | 
| 410 | 
  | 
  | 
&\\ | 
| 411 | 
molod | 
1.10 | 
 UVEL     & $m/sec$ & Nr | 
| 412 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 413 | 
molod | 
1.10 | 
          {U-Velocity}  | 
| 414 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 415 | 
molod | 
1.10 | 
 VVEL     & $m/sec$ & Nr | 
| 416 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 417 | 
molod | 
1.10 | 
          {V-Velocity}  | 
| 418 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 419 | 
molod | 
1.10 | 
 UVEL\_k2  & $m/sec$ & 1 | 
| 420 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 421 | 
molod | 
1.9 | 
          {U-Velocity}  | 
| 422 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 423 | 
molod | 
1.10 | 
 VVEL\_k2  & $m/sec$ & 1 | 
| 424 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 425 | 
molod | 
1.9 | 
          {V-Velocity}  | 
| 426 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 427 | 
molod | 
1.10 | 
 WVEL     & $m/sec$ & Nr | 
| 428 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 429 | 
molod | 
1.9 | 
          {Vertical-Velocity}  | 
| 430 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 431 | 
molod | 
1.10 | 
 THETASQ  & $deg^2$ & Nr | 
| 432 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 433 | 
molod | 
1.9 | 
          {Square of Potential Temperature}  | 
| 434 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 435 | 
molod | 
1.10 | 
 SALTSQ   & $g^2/{kg}^2$ & Nr | 
| 436 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 437 | 
molod | 
1.9 | 
          {Square of Salt (or Water Vapor Mixing Ratio)}  | 
| 438 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 439 | 
molod | 
1.10 | 
 SALTSQan & $g^2/{kg}^2$ & Nr | 
| 440 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 441 | 
  | 
  | 
          {Square of Salt anomaly (=SALT-35)}  | 
| 442 | 
  | 
  | 
         \end{minipage}\\ | 
| 443 | 
  | 
  | 
 UVELSQ   & $m^2/sec^2$ & Nr | 
| 444 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 445 | 
molod | 
1.9 | 
          {Square of U-Velocity}  | 
| 446 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 447 | 
molod | 
1.10 | 
 VVELSQ   & $m^2/sec^2$ & Nr | 
| 448 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 449 | 
molod | 
1.9 | 
          {Square of V-Velocity}  | 
| 450 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 451 | 
molod | 
1.10 | 
 WVELSQ   & $m^2/sec^2$ & Nr | 
| 452 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 453 | 
molod | 
1.9 | 
          {Square of Vertical-Velocity}  | 
| 454 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 455 | 
molod | 
1.10 | 
 UV\_VEL\_C & $m^2/sec^2$ & Nr | 
| 456 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 457 | 
  | 
  | 
          {Meridional Transport of Zonal Momentum (cell center)}  | 
| 458 | 
  | 
  | 
         \end{minipage}\\ | 
| 459 | 
  | 
  | 
 UV\_VEL\_Z & $m^2/sec^2$ & Nr | 
| 460 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 461 | 
  | 
  | 
          {Meridional Transport of Zonal Momentum (corner)}  | 
| 462 | 
  | 
  | 
         \end{minipage}\\ | 
| 463 | 
  | 
  | 
 WU\_VEL   & $m^2/sec^2$ & Nr | 
| 464 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 465 | 
  | 
  | 
          {Vertical Transport of Zonal Momentum (cell center)}  | 
| 466 | 
  | 
  | 
         \end{minipage}\\ | 
| 467 | 
  | 
  | 
 WV\_VEL   & $m^2/sec^2$ & Nr | 
| 468 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 469 | 
molod | 
1.10 | 
          {Vertical Transport of Meridional Momentum (cell center)}  | 
| 470 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 471 | 
molod | 
1.10 | 
 UVELMASS & $m/sec$ & Nr | 
| 472 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 473 | 
molod | 
1.9 | 
          {Zonal Mass-Weighted Component of Velocity}  | 
| 474 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 475 | 
molod | 
1.10 | 
 VVELMASS & $m/sec$ & Nr | 
| 476 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 477 | 
molod | 
1.9 | 
          {Meridional Mass-Weighted Component of Velocity}  | 
| 478 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 479 | 
molod | 
1.10 | 
 WVELMASS & $m/sec$ & Nr | 
| 480 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 481 | 
molod | 
1.9 | 
          {Vertical Mass-Weighted Component of Velocity}  | 
| 482 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 483 | 
molod | 
1.10 | 
 UTHMASS  & $m-deg/sec$ & Nr | 
| 484 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 485 | 
molod | 
1.9 | 
          {Zonal Mass-Weight Transp of Pot Temp}  | 
| 486 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 487 | 
molod | 
1.10 | 
 VTHMASS  & $m-deg/sec$ & Nr | 
| 488 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 489 | 
molod | 
1.9 | 
          {Meridional Mass-Weight Transp of Pot Temp}  | 
| 490 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 491 | 
molod | 
1.10 | 
 WTHMASS  & $m-deg/sec$ & Nr | 
| 492 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 493 | 
molod | 
1.9 | 
          {Vertical Mass-Weight Transp of Pot Temp}  | 
| 494 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 495 | 
molod | 
1.10 | 
 USLTMASS & $m-kg/sec-kg$ & Nr | 
| 496 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 497 | 
molod | 
1.9 | 
          {Zonal Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}  | 
| 498 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 499 | 
molod | 
1.10 | 
 VSLTMASS & $m-kg/sec-kg$ & Nr | 
| 500 | 
molod | 
1.8 | 
         &\begin{minipage}[t]{3in} | 
| 501 | 
molod | 
1.9 | 
          {Meridional Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}  | 
| 502 | 
molod | 
1.8 | 
         \end{minipage}\\ | 
| 503 | 
molod | 
1.10 | 
 WSLTMASS & $m-kg/sec-kg$ & Nr | 
| 504 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 505 | 
molod | 
1.9 | 
          {Vertical Mass-Weight Transp of Salt (or W.Vap Mix Rat.)}  | 
| 506 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 507 | 
molod | 
1.10 | 
 UVELTH   & $m-deg/sec$ & Nr | 
| 508 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 509 | 
molod | 
1.9 | 
          {Zonal Transp of Pot Temp}  | 
| 510 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 511 | 
molod | 
1.10 | 
 VVELTH   & $m-deg/sec$ & Nr | 
| 512 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 513 | 
molod | 
1.9 | 
          {Meridional Transp of Pot Temp}  | 
| 514 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 515 | 
molod | 
1.10 | 
 WVELTH   & $m-deg/sec$ & Nr | 
| 516 | 
molod | 
1.1 | 
         &\begin{minipage}[t]{3in} | 
| 517 | 
molod | 
1.9 | 
          {Vertical Transp of Pot Temp}  | 
| 518 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 519 | 
molod | 
1.10 | 
 UVELSLT  & $m-kg/sec-kg$ & Nr | 
| 520 | 
molod | 
1.8 | 
         &\begin{minipage}[t]{3in} | 
| 521 | 
molod | 
1.9 | 
          {Zonal Transp of Salt (or W.Vap Mix Rat.)}  | 
| 522 | 
molod | 
1.8 | 
         \end{minipage}\\ | 
| 523 | 
molod | 
1.10 | 
 VVELSLT  & $m-kg/sec-kg$ & Nr | 
| 524 | 
molod | 
1.8 | 
         &\begin{minipage}[t]{3in} | 
| 525 | 
molod | 
1.9 | 
          {Meridional Transp of Salt (or W.Vap Mix Rat.)}  | 
| 526 | 
molod | 
1.8 | 
         \end{minipage}\\ | 
| 527 | 
molod | 
1.10 | 
 WVELSLT  & $m-kg/sec-kg$ & Nr | 
| 528 | 
molod | 
1.8 | 
         &\begin{minipage}[t]{3in} | 
| 529 | 
molod | 
1.9 | 
          {Vertical Transp of Salt (or W.Vap Mix Rat.)}  | 
| 530 | 
molod | 
1.8 | 
         \end{minipage}\\ | 
| 531 | 
molod | 
1.10 | 
\end{tabular} | 
| 532 | 
  | 
  | 
\vspace{1.5in} | 
| 533 | 
  | 
  | 
\vfill | 
| 534 | 
  | 
  | 
 | 
| 535 | 
  | 
  | 
\newpage | 
| 536 | 
  | 
  | 
\vspace*{\fill} | 
| 537 | 
  | 
  | 
\begin{tabular}{llll} | 
| 538 | 
  | 
  | 
\hline\hline | 
| 539 | 
  | 
  | 
 NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 540 | 
  | 
  | 
\hline | 
| 541 | 
  | 
  | 
 | 
| 542 | 
  | 
  | 
&\\ | 
| 543 | 
  | 
  | 
 RHOAnoma & $kg/m^3  $  &  Nr   | 
| 544 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 545 | 
  | 
  | 
          {Density Anomaly (=Rho-rhoConst)} | 
| 546 | 
  | 
  | 
         \end{minipage}\\ | 
| 547 | 
  | 
  | 
 RHOANOSQ & $kg^2/m^6$  &  Nr   | 
| 548 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 549 | 
  | 
  | 
          {Square of Density Anomaly (=(Rho-rhoConst))} | 
| 550 | 
  | 
  | 
         \end{minipage}\\ | 
| 551 | 
  | 
  | 
 URHOMASS & $kg/m^2/s$  &  Nr   | 
| 552 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 553 | 
  | 
  | 
          {Zonal Transport of Density} | 
| 554 | 
  | 
  | 
         \end{minipage}\\ | 
| 555 | 
  | 
  | 
 VRHOMASS & $kg/m^2/s$  &  Nr   | 
| 556 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 557 | 
  | 
  | 
          {Meridional Transport of Density} | 
| 558 | 
  | 
  | 
         \end{minipage}\\ | 
| 559 | 
  | 
  | 
 WRHOMASS & $kg/m^2/s$  &  Nr   | 
| 560 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 561 | 
  | 
  | 
          {Vertical Transport of Potential Density} | 
| 562 | 
  | 
  | 
         \end{minipage}\\ | 
| 563 | 
  | 
  | 
 PHIHYD   & $m^2/s^2 $  &  Nr   | 
| 564 | 
molod | 
1.8 | 
         &\begin{minipage}[t]{3in} | 
| 565 | 
molod | 
1.10 | 
          {Hydrostatic (ocean) pressure / (atmos) geo-Potential} | 
| 566 | 
  | 
  | 
         \end{minipage}\\ | 
| 567 | 
  | 
  | 
 PHIHYDSQ & $m^4/s^4 $  &  Nr   | 
| 568 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 569 | 
  | 
  | 
          {Square of Hyd. (ocean) press / (atmos) geoPotential} | 
| 570 | 
  | 
  | 
         \end{minipage}\\ | 
| 571 | 
  | 
  | 
 PHIBOT   & $m^2/s^2 $  &  Nr   | 
| 572 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 573 | 
  | 
  | 
          {ocean bottom pressure / top. atmos geo-Potential} | 
| 574 | 
  | 
  | 
         \end{minipage}\\ | 
| 575 | 
  | 
  | 
 PHIBOTSQ & $m^4/s^4 $  &  Nr   | 
| 576 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 577 | 
  | 
  | 
          {Square of ocean bottom pressure / top. geo-Potential} | 
| 578 | 
  | 
  | 
         \end{minipage}\\ | 
| 579 | 
  | 
  | 
 DRHODR   & $kg/m^3/{r-unit}$ & Nr | 
| 580 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 581 | 
  | 
  | 
          {Stratification: d.Sigma/dr}  | 
| 582 | 
molod | 
1.8 | 
         \end{minipage}\\ | 
| 583 | 
molod | 
1.10 | 
 VISCA4   & $m^4/sec$ & 1 | 
| 584 | 
molod | 
1.8 | 
         &\begin{minipage}[t]{3in} | 
| 585 | 
molod | 
1.9 | 
          {Biharmonic Viscosity Coefficient}  | 
| 586 | 
molod | 
1.8 | 
         \end{minipage}\\ | 
| 587 | 
molod | 
1.10 | 
 VISCAH   & $m^2/sec$ & 1 | 
| 588 | 
molod | 
1.8 | 
         &\begin{minipage}[t]{3in} | 
| 589 | 
molod | 
1.9 | 
          {Harmonic Viscosity Coefficient}  | 
| 590 | 
molod | 
1.8 | 
         \end{minipage}\\ | 
| 591 | 
molod | 
1.10 | 
 TAUX     & $N/m^2        $ & 1  | 
| 592 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 593 | 
  | 
  | 
          {zonal surface wind stress, >0 increases uVel} | 
| 594 | 
  | 
  | 
         \end{minipage}\\ | 
| 595 | 
  | 
  | 
 TAUY     & $N/m^2        $ & 1  | 
| 596 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 597 | 
  | 
  | 
          {meridional surf. wind stress, >0 increases vVel} | 
| 598 | 
  | 
  | 
         \end{minipage}\\ | 
| 599 | 
  | 
  | 
 TFLUX    & $W/m^2        $ & 1  | 
| 600 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 601 | 
  | 
  | 
          {net surface heat flux, >0 increases theta} | 
| 602 | 
  | 
  | 
         \end{minipage}\\ | 
| 603 | 
  | 
  | 
 TRELAX   & $W/m^2        $ & 1  | 
| 604 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 605 | 
  | 
  | 
          {surface temperature relaxation, >0 increases theta} | 
| 606 | 
  | 
  | 
         \end{minipage}\\ | 
| 607 | 
  | 
  | 
 TICE     & $W/m^2        $ & 1  | 
| 608 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 609 | 
  | 
  | 
          {heat from melt/freeze of sea-ice, >0 increases theta} | 
| 610 | 
  | 
  | 
         \end{minipage}\\ | 
| 611 | 
  | 
  | 
 SFLUX    & $g/m^2/s      $ & 1  | 
| 612 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 613 | 
  | 
  | 
          {net surface salt flux, >0 increases salt} | 
| 614 | 
  | 
  | 
         \end{minipage}\\ | 
| 615 | 
  | 
  | 
 SRELAX   & $g/m^2/s      $ & 1  | 
| 616 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 617 | 
  | 
  | 
          {surface salinity relaxation, >0 increases salt} | 
| 618 | 
  | 
  | 
         \end{minipage}\\ | 
| 619 | 
  | 
  | 
 PRESSURE & $Pa           $ & Nr  | 
| 620 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 621 | 
  | 
  | 
          {Atmospheric Pressure (Pa)} | 
| 622 | 
  | 
  | 
         \end{minipage}\\ | 
| 623 | 
  | 
  | 
 ADVr\_TH  & $K.Pa.m^2/s   $ & Nr  | 
| 624 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 625 | 
  | 
  | 
          {Vertical   Advective Flux of Pot.Temperature} | 
| 626 | 
  | 
  | 
         \end{minipage}\\ | 
| 627 | 
  | 
  | 
 ADVx\_TH  & $K.Pa.m^2/s   $ & Nr  | 
| 628 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 629 | 
  | 
  | 
          {Zonal      Advective Flux of Pot.Temperature} | 
| 630 | 
  | 
  | 
         \end{minipage}\\ | 
| 631 | 
  | 
  | 
 ADVy\_TH  & $K.Pa.m^2/s   $ & Nr  | 
| 632 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 633 | 
  | 
  | 
          {Meridional Advective Flux of Pot.Temperature} | 
| 634 | 
  | 
  | 
         \end{minipage}\\ | 
| 635 | 
  | 
  | 
 DFrE\_TH  & $K.Pa.m^2/s   $ & Nr  | 
| 636 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 637 | 
  | 
  | 
          {Vertical Diffusive Flux of Pot.Temperature (Explicit part)} | 
| 638 | 
  | 
  | 
         \end{minipage}\\ | 
| 639 | 
  | 
  | 
 DIFx\_TH  & $K.Pa.m^2/s   $ & Nr  | 
| 640 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 641 | 
  | 
  | 
          {Zonal      Diffusive Flux of Pot.Temperature} | 
| 642 | 
  | 
  | 
         \end{minipage}\\ | 
| 643 | 
  | 
  | 
 DIFy\_TH  & $K.Pa.m^2/s   $ & Nr  | 
| 644 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 645 | 
  | 
  | 
          {Meridional Diffusive Flux of Pot.Temperature} | 
| 646 | 
  | 
  | 
         \end{minipage}\\ | 
| 647 | 
  | 
  | 
 DFrI\_TH  & $K.Pa.m^2/s   $ & Nr  | 
| 648 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 649 | 
  | 
  | 
          {Vertical Diffusive Flux of Pot.Temperature (Implicit part)} | 
| 650 | 
  | 
  | 
         \end{minipage}\\ | 
| 651 | 
  | 
  | 
 ADVr\_SLT & $g/kg.Pa.m^2/s$ & Nr  | 
| 652 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 653 | 
  | 
  | 
          {Vertical   Advective Flux of Water-Vapor} | 
| 654 | 
  | 
  | 
         \end{minipage}\\ | 
| 655 | 
  | 
  | 
 ADVx\_SLT & $g/kg.Pa.m^2/s$ & Nr  | 
| 656 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 657 | 
  | 
  | 
          {Zonal      Advective Flux of Water-Vapor} | 
| 658 | 
  | 
  | 
         \end{minipage}\\ | 
| 659 | 
  | 
  | 
 ADVy\_SLT & $g/kg.Pa.m^2/s$ & Nr  | 
| 660 | 
molod | 
1.8 | 
         &\begin{minipage}[t]{3in} | 
| 661 | 
molod | 
1.10 | 
          {Meridional Advective Flux of Water-Vapor} | 
| 662 | 
  | 
  | 
         \end{minipage}\\ | 
| 663 | 
  | 
  | 
\end{tabular} | 
| 664 | 
  | 
  | 
\vspace{1.5in} | 
| 665 | 
  | 
  | 
\vfill | 
| 666 | 
  | 
  | 
 | 
| 667 | 
  | 
  | 
\newpage | 
| 668 | 
  | 
  | 
\vspace*{\fill} | 
| 669 | 
  | 
  | 
\begin{tabular}{llll} | 
| 670 | 
  | 
  | 
\hline\hline | 
| 671 | 
  | 
  | 
 NAME & UNITS & LEVELS & DESCRIPTION \\ | 
| 672 | 
  | 
  | 
\hline | 
| 673 | 
  | 
  | 
 | 
| 674 | 
  | 
  | 
&\\ | 
| 675 | 
  | 
  | 
 DFrE\_SLT & $g/kg.Pa.m^2/s$ & Nr  | 
| 676 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 677 | 
  | 
  | 
          {Vertical Diffusive Flux of Water-Vapor (Explicit part)} | 
| 678 | 
  | 
  | 
         \end{minipage}\\ | 
| 679 | 
  | 
  | 
 DIFx\_SLT & $g/kg.Pa.m^2/s$ & Nr  | 
| 680 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 681 | 
  | 
  | 
          {Zonal      Diffusive Flux of Water-Vapor} | 
| 682 | 
  | 
  | 
         \end{minipage}\\ | 
| 683 | 
  | 
  | 
 DIFy\_SLT & $g/kg.Pa.m^2/s$ & Nr  | 
| 684 | 
  | 
  | 
         &\begin{minipage}[t]{3in} | 
| 685 | 
  | 
  | 
          {Meridional Diffusive Flux of Water-Vapor} | 
| 686 | 
molod | 
1.8 | 
         \end{minipage}\\ | 
| 687 | 
molod | 
1.10 | 
 DFrI\_SLT & $g/kg.Pa.m^2/s$ & Nr  | 
| 688 | 
molod | 
1.8 | 
         &\begin{minipage}[t]{3in} | 
| 689 | 
molod | 
1.10 | 
          {Vertical Diffusive Flux of Water-Vapor (Implicit part)} | 
| 690 | 
molod | 
1.1 | 
         \end{minipage}\\ | 
| 691 | 
molod | 
1.8 | 
\end{tabular} | 
| 692 | 
molod | 
1.9 | 
\vspace{1.5in} | 
| 693 | 
molod | 
1.8 | 
\vfill | 
| 694 | 
  | 
  | 
 | 
| 695 | 
  | 
  | 
\newpage | 
| 696 | 
  | 
  | 
 | 
| 697 | 
molod | 
1.9 | 
\subsubsection{Diagnostic Description} | 
| 698 | 
molod | 
1.1 | 
 | 
| 699 | 
molod | 
1.9 | 
In this section we list and describe the diagnostic quantities available within the  | 
| 700 | 
  | 
  | 
GCM.  The diagnostics are listed in the order that they appear in the  | 
| 701 | 
  | 
  | 
Diagnostic Menu, Section \ref{sec:diagnostics:menu}. | 
| 702 | 
  | 
  | 
In all cases, each diagnostic as currently archived on the output datasets | 
| 703 | 
  | 
  | 
is time-averaged over its diagnostic output frequency: | 
| 704 | 
molod | 
1.1 | 
 | 
| 705 | 
molod | 
1.9 | 
\[ | 
| 706 | 
  | 
  | 
{\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t) | 
| 707 | 
  | 
  | 
\] | 
| 708 | 
  | 
  | 
where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the  | 
| 709 | 
  | 
  | 
output frequency of the diagnostic, and $\Delta t$ is | 
| 710 | 
  | 
  | 
the timestep over which the diagnostic is updated.   | 
| 711 | 
molod | 
1.1 | 
 | 
| 712 | 
  | 
  | 
\subsection{Dos and Donts} | 
| 713 | 
  | 
  | 
 | 
| 714 | 
  | 
  | 
\subsection{Diagnostics Reference} | 
| 715 | 
  | 
  | 
 |